351
|
Predicting the unpredictable: Recent structure–activity studies on peptide-based macrocycles. Bioorg Chem 2015; 60:74-97. [DOI: 10.1016/j.bioorg.2015.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/13/2015] [Accepted: 04/22/2015] [Indexed: 11/18/2022]
|
352
|
Mendive-Tapia L, Preciado S, García J, Ramón R, Kielland N, Albericio F, Lavilla R. New peptide architectures through C-H activation stapling between tryptophan-phenylalanine/tyrosine residues. Nat Commun 2015; 6:7160. [PMID: 25994485 PMCID: PMC4455059 DOI: 10.1038/ncomms8160] [Citation(s) in RCA: 218] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 04/10/2015] [Indexed: 12/22/2022] Open
Abstract
Natural peptides show high degrees of specificity in their biological action. However, their therapeutical profile is severely limited by their conformational freedom and metabolic instability. Stapled peptides constitute a solution to these problems and access to these structures lies on a limited number of reactions involving the use of non-natural amino acids. Here, we describe a synthetic strategy for the preparation of unique constrained peptides featuring a covalent bond between tryptophan and phenylalanine or tyrosine residues. The preparation of such peptides is achieved in solution and on solid phase directly from the corresponding sequences having an iodo-aryl amino acid through an intramolecular palladium-catalysed C–H activation process. Moreover, complex topologies arise from the internal stapling of cyclopeptides and double intramolecular arylations within a linear peptide. Finally, as a proof of principle, we report the application to this new stapling method to relevant biologically active compounds. Macrocyclic, constrained peptides show promise in therapeutic applications due to the stable and defined conformations that can be produced. Here, the authors report a method to form macrocyclic peptides through C–H activation on tryptophan and coupling with iodo-substituted aryl amino acids
Collapse
Affiliation(s)
- Lorena Mendive-Tapia
- 1] Institute for Research in Biomedicine, Barcelona Science Park, Baldiri Reixac 10-12, 08028 Barcelona, Spain [2] Department of Organic Chemistry, University of Barcelona, Martí i Franqués 1-11, 08028 Barcelona, Spain [3] CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine
| | - Sara Preciado
- Department of Organic Chemistry, University of Barcelona, Martí i Franqués 1-11, 08028 Barcelona, Spain
| | - Jesús García
- Institute for Research in Biomedicine, Barcelona Science Park, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Rosario Ramón
- Barcelona Science Park, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Nicola Kielland
- Barcelona Science Park, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Fernando Albericio
- 1] Institute for Research in Biomedicine, Barcelona Science Park, Baldiri Reixac 10-12, 08028 Barcelona, Spain [2] Department of Organic Chemistry, University of Barcelona, Martí i Franqués 1-11, 08028 Barcelona, Spain [3] CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine [4] School of Chemistry, Yachay Tech, Yachay City of Knowledge, 100119 Urcuqui, Ecuador
| | - Rodolfo Lavilla
- 1] Barcelona Science Park, Baldiri Reixac 10-12, 08028 Barcelona, Spain [2] Laboratory of Organic Chemistry, Faculty of Pharmacy, University of Barcelona, Avda. Joan XXII s.n., 08028 Barcelona, Spain
| |
Collapse
|
353
|
Browne A, Tookman LA, Ingemarsdotter CK, Bouwman RD, Pirlo K, Wang Y, McNeish IA, Lockley M. Pharmacological Inhibition of β3 Integrin Reduces the Inflammatory Toxicities Caused by Oncolytic Adenovirus without Compromising Anticancer Activity. Cancer Res 2015; 75:2811-21. [PMID: 25977332 DOI: 10.1158/0008-5472.can-14-3761] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 04/07/2015] [Indexed: 01/28/2023]
Abstract
Adenoviruses have been clinically tested as anticancer therapies but their utility has been severely limited by rapid, systemic cytokine release and consequent inflammatory toxicity. Here, we describe a new approach to tackling these dangerous side effects. Using human ovarian cancer cell lines as well as malignant epithelial cells harvested from the ascites of women with ovarian cancer, we show that tumor cells do not produce cytokines in the first 24 hours following in vitro infection with the oncolytic adenovirus dl922-947. In contrast, dl922-947 does induce inflammatory cytokines at early time points following intraperitoneal delivery in mice with human ovarian cancer intraperitoneal xenografts. In these animals, cytokines originate predominantly in murine tissues, especially in macrophage-rich organs such as the spleen. We use a nonreplicating adenovirus to confirm that early cytokine production is independent of adenoviral replication. Using β3 integrin knockout mice injected intraperitoneally with dl922-947 and β3 null murine peritoneal macrophages, we confirm a role for macrophage cell surface β3 integrin in this dl922-947-induced inflammation. We present new evidence that co-administration of a cyclic RGD-mimetic-specific inhibitor of β3 integrin significantly attenuates the cytokine release and inflammatory hepatic toxicity induced by dl922-947 in an intraperitoneal murine model of ovarian cancer. Importantly, we find no evidence that β3 inhibition compromises viral infectivity and oncolysis in vitro or anticancer efficacy in vivo. By enabling safe, systemic delivery of replicating adenoviruses, this novel approach could have a major impact on the future development of these effective anticancer agents.
Collapse
Affiliation(s)
- Ashley Browne
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| | - Laura A Tookman
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| | - Carin K Ingemarsdotter
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| | - Russell D Bouwman
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| | - Katrina Pirlo
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| | - Yaohe Wang
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| | - Iain A McNeish
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, United Kingdom. Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Michelle Lockley
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, United Kingdom.
| |
Collapse
|
354
|
Khashper A, Lubell WD. Design, synthesis, conformational analysis and application of indolizidin-2-one dipeptide mimics. Org Biomol Chem 2015; 12:5052-70. [PMID: 24899358 DOI: 10.1039/c4ob00777h] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Growth in the field of peptide mimicry over the past few decades has resulted in the synthesis of many new compounds and the investigation of novel pharmacological agents. Azabicyclo[X.Y.0]alkanone amino acids are among the attractive classes of constrained mimics, because they can create rigid peptide structures for probing the conformation and roles of natural motifs in recognition events important for biological activity. Herein, we review the last ten years of the synthesis, conformational analysis and activity of analogs of the azabicyclo[4.3.0]alkan-2-one amino acid subclass, so-called indolizidin-2-one amino acids, with particular attention on their employment as inputs for biological applications.
Collapse
Affiliation(s)
- Arkady Khashper
- Département de Chimie, Université de Montréal, Montréal H3C 3J7, Canada.
| | | |
Collapse
|
355
|
Unseld M, Chilla A, Pausz C, Mawas R, Breuss J, Zielinski C, Schabbauer G, Prager GW. PTEN expression in endothelial cells is down-regulated by uPAR to promote angiogenesis. Thromb Haemost 2015; 114:379-89. [PMID: 25925849 DOI: 10.1160/th15-01-0016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/16/2015] [Indexed: 12/16/2022]
Abstract
The tumour suppressor phosphatase and tensin homologue (PTEN), mutated or lost in many human cancers, is a major regulator of angiogenesis. However, the cellular mechanism of PTEN regulation in endothelial cells so far remains elusive. Here, we characterise the urokinase receptor (uPAR, CD87) and its tumour-derived soluble form, suPAR, as a key molecule of regulating PTEN in endothelial cells. We observed uPAR-deficient endothelial cells to express enhanced PTEN mRNA- and protein levels. Consistently, uPAR expression in endogenous negative uPAR cells, down-regulated PTEN and activated the PI3K/Akt pathway. Additionally, we found that integrin adhesion receptors act as trans-membrane signaling partners for uPAR to repress PTEN transcription in a NF-κB-dependent manner. Functional in vitro assays with endothelial cells, derived from uPAR-deficient and PTEN heterozygous crossbred mice, demonstrated the impact of uPAR-dependent PTEN regulation on cell motility and survival. In an in vivo murine angiogenesis model uPAR-deficient PTEN heterozygous animals increased the impaired angiogenic phenotype of uPAR knockout mice and were able to reverse the high invasive potential of PTEN heterozygots. Our data provide first evidence that endogenous as well as exogenous soluble uPAR down-regulated PTEN in endothelial cells to support angiogenesis. The uPAR-induced PTEN regulation might represent a novel target for drug interference, and may lead to the development of new therapeutic strategies in anti-angiogenic treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - G Schabbauer
- Gernot Schabbauer, Institute for Physiology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria, Tel.: +43 1 40160 31427, Fax: +43 1 40160 93101, E-mail:
| | - G W Prager
- Gerald W. Prager, Department of Medicine I, Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria, Tel.: +43 1 40400 4450, Fax: +43 1 40400 4451, e-mail:
| |
Collapse
|
356
|
Cilengitide – Exceptional pseudopolymorphism of a cyclic pentapeptide. Eur J Pharm Sci 2015; 71:1-11. [DOI: 10.1016/j.ejps.2015.01.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 01/28/2015] [Accepted: 01/29/2015] [Indexed: 11/19/2022]
|
357
|
Becker A, von Richter O, Kovar A, Scheible H, van Lier JJ, Johne A. Metabolism and disposition of the αv-integrin ß3/ß5 receptor antagonist cilengitide, a cyclic polypeptide, in humans. J Clin Pharmacol 2015; 55:815-24. [PMID: 25683324 DOI: 10.1002/jcph.482] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 02/06/2015] [Indexed: 01/02/2023]
Abstract
Cilengitide (EMD 121974, manufactured by Merck KGaA, Darmstadt, Germany) is an αv-integrin receptor antagonist showing high affinity for αvβ3 and αvβ5.This study determined the mass balance of cilengitide in healthy volunteers receiving a single intravenous infusion of 2.1 MBq (14) C-cilengitide spiked into 250 mL of 2000 mg of cilengitide. Blood, urine, and feces were collected up to day 15 or until excretion of radioactivity was below 1% of the administered dose. Total radioactivity derived from the administration of (14) C-cilengitide and unlabeled cilengitide levels were determined and used for calculation of pharmacokinetic parameters.(14) C-cilengitide-related radioactivity was completely recovered (94.5%; 87.4%-100.6%) and was mainly excreted into urine (mean, 79.0%; range, 70.3%-88.2%) and to a lesser extent into feces (mean, 15.5%; range, 9.3%-20.3%). Of the administered dose, 77.5% was recovered as unchanged cilengitide in urine. The concentration profiles of cilengitide and total radioactivity in plasma were comparable. No circulating metabolites were identified in plasma and urine. Two metabolites,M606-1 and M606-2, were identified in feces considered to be formed by intestinal peptidases or by peptidases from fecal bacteria. In conclusion, the data show that following intravenous administration, (14) C-cilengitide was completely recovered, was excreted mainly via renal elimination, and was not metabolized systemically.
Collapse
Affiliation(s)
- Andreas Becker
- Merck Serono-Global Early Development, Department of Clinical Pharmacology, Merck KGaA, Darmstadt, Germany
| | - Oliver von Richter
- Merck Serono-Global Early Development, Department of Clinical Pharmacology, Merck KGaA, Darmstadt, Germany
| | | | - Holger Scheible
- Merck Serono-Global Early Development, Institute of Drug Metabolism and Pharmacokinetics, Merck KGaA, Grafing, Germany
| | - Jan J van Lier
- Pharmaceutical Research Association (PRA), Zuidlaren, The Netherlands
| | - Andreas Johne
- Merck Serono-Global Early Development, Department of Clinical Pharmacology, Merck KGaA, Darmstadt, Germany
| |
Collapse
|
358
|
Wakefield AE, Wuest WM, Voelz VA. Molecular Simulation of Conformational Pre-Organization in Cyclic RGD Peptides. J Chem Inf Model 2015; 55:806-13. [PMID: 25741627 DOI: 10.1021/ci500768u] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To test the ability of molecular simulations to accurately predict the solution-state conformational properties of peptidomimetics, we examined a test set of 18 cyclic RGD peptides selected from the literature, including the anticancer drug candidate cilengitide, whose favorable binding affinity to integrin has been ascribed to its pre-organization in solution. For each design, we performed all-atom replica-exchange molecular dynamics simulations over several microseconds and compared the results to extensive published NMR data. We find excellent agreement with experimental NOE distance restraints, suggesting that molecular simulation can be a useful tool for the computational design of pre-organized solution-state structure. Moreover, our analysis of conformational populations estimates that, despite the potential for increased flexibility due to backbone amide isomerizaton, N-methylation provides about 0.5 kcal/mol of reduced conformational entropy to cyclic RGD peptides. The combination of pre-organization and binding-site compatibility explains the strong binding affinity of cilengitide to integrin.
Collapse
Affiliation(s)
- Amanda E Wakefield
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - William M Wuest
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Vincent A Voelz
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
359
|
Panzeri S, Zanella S, Arosio D, Vahdati L, Dal Corso A, Pignataro L, Paolillo M, Schinelli S, Belvisi L, Gennari C, Piarulli U. Cyclic isoDGR and RGD peptidomimetics containing bifunctional diketopiperazine scaffolds are integrin antagonists. Chemistry 2015; 21:6265-71. [PMID: 25761230 DOI: 10.1002/chem.201406567] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Indexed: 01/18/2023]
Abstract
The cyclo[DKP-isoDGR] peptidomimetics 2-5, containing bifunctional diketopiperazine (DKP) scaffolds that differ in the configuration of the two DKP stereocenters and in the substitution at the DKP nitrogen atoms, were prepared and examined in vitro in competitive binding assays with purified αv β3 and αv β5 integrin receptors. IC50 values ranged from low nanomolar (ligand 3) to submicromolar with αv β3 integrin. The biological activities of ligands cyclo[DKP3-RGD] 1 and cyclo[DKP3-isoDGR] 3, bearing the same bifunctional DKP scaffold and showing similar αV β3 integrin binding values, were compared in terms of their cellular effects in human U373 glioblastoma cells. Compounds 1 and 3 displayed overlapping inhibitory effects on the FAK/Akt integrin activated transduction pathway and on integrin-mediated cell infiltration processes, and qualify therefore, despite the different RGD and isoDGR sequences, as integrin antagonists. Both compounds induced apoptosis in glioma cells after 72 hour treatment.
Collapse
Affiliation(s)
- Silvia Panzeri
- Università degli Studi dell'Insubria, Dipartimento di Scienza e Alta Tecnologia, Via Valleggio 11, 22100 Como (Italy)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
360
|
Toum V, Bolley J, Lalatonne Y, Barbey C, Motte L, Lecouvey M, Royer J, Dupont N, Pérard-Viret J. In silico studies, synthesis and binding evaluation of substituted 2-pyrrolidinones as peptidomimetics of RGD tripeptide sequence. Eur J Med Chem 2015; 93:360-72. [DOI: 10.1016/j.ejmech.2015.02.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 01/26/2015] [Accepted: 02/12/2015] [Indexed: 01/31/2023]
|
361
|
Wong PP, Demircioglu F, Ghazaly E, Alrawashdeh W, Stratford MRL, Scudamore CL, Cereser B, Crnogorac-Jurcevic T, McDonald S, Elia G, Hagemann T, Kocher HM, Hodivala-Dilke KM. Dual-action combination therapy enhances angiogenesis while reducing tumor growth and spread. Cancer Cell 2015; 27:123-37. [PMID: 25584895 DOI: 10.1016/j.ccell.2014.10.015] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 08/12/2014] [Accepted: 10/27/2014] [Indexed: 01/04/2023]
Abstract
Increasing chemotherapy delivery to tumors, while enhancing drug uptake and reducing side effects, is a primary goal of cancer research. In mouse and human cancer models in vivo, we show that coadministration of low-dose Cilengitide and Verapamil increases tumor angiogenesis, leakiness, blood flow, and Gemcitabine delivery. This approach reduces tumor growth, metastasis, and minimizes side effects while extending survival. At a molecular level, this strategy alters Gemcitabine transporter and metabolizing enzyme expression levels, enhancing the potency of Gemcitabine within tumor cells in vivo and in vitro. Thus, the dual action of low-dose Cilengitide, in vessels and tumor cells, improves chemotherapy efficacy. Overall, our data demonstrate that vascular promotion therapy is a means to improve cancer treatment.
Collapse
Affiliation(s)
- Ping-Pui Wong
- Centre for Tumor Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Fevzi Demircioglu
- Centre for Tumor Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Essam Ghazaly
- Centre for Haemato-Oncology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Wasfi Alrawashdeh
- Centre for Molecular Oncology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Michael R L Stratford
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Cheryl L Scudamore
- Mary Lyon Centre, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Biancastella Cereser
- Centre for Tumor Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Tatjana Crnogorac-Jurcevic
- Centre for Molecular Oncology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Stuart McDonald
- Centre for Tumor Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - George Elia
- Centre for Tumor Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Thorsten Hagemann
- Centre for Cancer Inflammation, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK; Barts and the London HPB Centre, The Royal London Hospital, Barts Health NHS Trust, London E1 1BB, UK
| | - Hemant M Kocher
- Centre for Tumor Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK; Barts and the London HPB Centre, The Royal London Hospital, Barts Health NHS Trust, London E1 1BB, UK
| | - Kairbaan M Hodivala-Dilke
- Centre for Tumor Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
362
|
Visconti A, Ermondi G, Caron G, Esposito R. Prediction and interpretation of the lipophilicity of small peptides. J Comput Aided Mol Des 2015; 29:361-70. [PMID: 25577035 DOI: 10.1007/s10822-015-9829-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 01/02/2015] [Indexed: 01/28/2023]
Abstract
Peptide-based drug discovery has considerably expanded and solid in silico tools for the prediction of physico-chemical properties of peptides are urgently needed. In this work we tested some combinations of descriptors/algorithms to find the best model to predict [Formula: see text] of a series of peptides. To do that we evaluate the models statistical performances but also their skills in providing a reliable deconvolution of the balance of intermolecular forces governing the partitioning phenomenon. Results prove that a PLS model based on VolSurf+ descriptors is the best tool to predict [Formula: see text] of neutral and ionised peptides. The mechanistic interpretation also reveals that the inclusion in the chemical structure of a HBD group is more efficient in decreasing lipophilicity than the inclusion of a HBA group.
Collapse
Affiliation(s)
- Alessia Visconti
- Department of Genomics of Common Disease, Imperial College London, Du Cane Road, W12 ONN, London, UK,
| | | | | | | |
Collapse
|
363
|
Sartori A, Bianchini F, Migliari S, Burreddu P, Curti C, Vacondio F, Arosio D, Ruffini L, Rassu G, Calorini L, Pupi A, Zanardi F, Battistini L. Synthesis and preclinical evaluation of a novel, selective 111In-labelled aminoproline-RGD-peptide for non-invasive melanoma tumor imaging. MEDCHEMCOMM 2015. [DOI: 10.1039/c5md00301f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
An 111In-labelled Amp-based RGD-DOTA conjugate was synthesized and evaluated in preclinical models of human melanoma as a novel integrin-targeted SPECT imaging tracer.
Collapse
|
364
|
Koay YC, McConnell JR, Wang Y, McAlpine SR. Blocking the heat shock response and depleting HSF-1 levels through heat shock protein 90 (hsp90) inhibition: a significant advance on current hsp90 chemotherapies. RSC Adv 2015. [DOI: 10.1039/c5ra07056b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
C-terminal inhibitors of heat shock protein 90 (hsp90) modulate the C-terminus and do not elicit a heat shock response.
Collapse
Affiliation(s)
- Yen Chin Koay
- School of Chemistry
- University of New South Wales
- Sydney
- Australia
| | | | - Yao Wang
- School of Chemistry
- University of New South Wales
- Sydney
- Australia
| | | |
Collapse
|
365
|
Zimmer AS, Steeg PS. Meaningful prevention of breast cancer metastasis: candidate therapeutics, preclinical validation, and clinical trial concerns. J Mol Med (Berl) 2015; 93:13-29. [PMID: 25412774 PMCID: PMC6545582 DOI: 10.1007/s00109-014-1226-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/08/2014] [Accepted: 10/30/2014] [Indexed: 12/31/2022]
Abstract
The development of drugs to treat breast and other cancers proceeds through phase I dose finding, phase II efficacy, and phase III comparative studies in the metastatic setting, only then asking if metastasis can be prevented in adjuvant trials. Compounds without overt cytotoxic activity, such as those developed to inhibit metastatic colonization, will likely fail to shrink established lesions in the metastatic setting and never be tested in a metastasis prevention scenario where they were preclinically validated. We and others have proposed phase II primary and secondary metastasis prevention studies to address this need. Herein, we have asked whether preclinical metastasis prevention data agrees with the positive adjuvant setting trials. The data are limited but complimentary. We also review fundamental pathways involved in metastasis, including Src, integrins, focal adhesion kinase (FAK), and fibrosis, for their clinical progress to date and potential for metastasis prevention. Issues of inadequate preclinical validation and clinical toxicity profiles are discussed.
Collapse
Affiliation(s)
- Alexandra S Zimmer
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA,
| | | |
Collapse
|
366
|
Kim JW, Cochran FV, Cochran JR. A chemically cross-linked knottin dimer binds integrins with picomolar affinity and inhibits tumor cell migration and proliferation. J Am Chem Soc 2014; 137:6-9. [PMID: 25486381 PMCID: PMC4304478 DOI: 10.1021/ja508416e] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
Molecules that target and inhibit
αvβ3, αvβ5, and α5β1 integrins have
generated great interest
because of the role of these receptors in mediating angiogenesis and
metastasis. Attempts to increase the binding affinity and hence the
efficacy of integrin inhibitors by dimerization have been marginally
effective. In the present work, we achieved this goal by using oxime-based
chemical conjugation to synthesize dimers of integrin-binding cystine
knot (knottin) miniproteins with low-picomolar binding affinity to
tumor cells. A non-natural amino acid containing an aminooxy side
chain was introduced at different locations within a knottin monomer
and reacted with dialdehyde-containing cross-linkers of different
lengths to create knottin dimers with varying molecular topologies.
Dimers cross-linked through an aminooxy functional group located near
the middle of the protein exhibited higher apparent binding affinity
to integrin-expressing tumor cells compared with dimers cross-linked
through an aminooxy group near the C-terminus. In contrast, the cross-linker
length had no effect on the integrin binding affinity. A chemical-based
dimerization strategy was critical, as knottin dimers created through
genetic fusion to a bivalent antibody domain exhibited only modest
improvement (less than 5-fold) in tumor cell binding relative to the
knottin monomer. The best oxime-conjugated knottin dimer achieved
an unprecedented 150-fold increase in apparent binding affinity over
the knottin monomer. Also, this dimer bound 3650-fold stronger and
inhibited tumor cell migration and proliferation compared with cilengitide,
an integrin-targeting peptidomimetic that performed poorly in recent
clinical trials, suggesting promise for further therapeutic development.
Collapse
Affiliation(s)
- Jun W Kim
- Departments of †Bioengineering and ‡Chemical Engineering, Stanford University , Stanford, California 94305, United States
| | | | | |
Collapse
|
367
|
Integrin αvβ3 acting as membrane receptor for thyroid hormones mediates angiogenesis in malignant T cells. Blood 2014; 125:841-51. [PMID: 25488971 DOI: 10.1182/blood-2014-07-587337] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The interaction of lymphoid tumor cells with components of the extracellular matrix via integrin αvβ3 allows tumor survival and growth. This integrin was demonstrated to be the membrane receptor for thyroid hormones (THs) in several tissues. We found that THs, acting as soluble integrin αvβ3 ligands, activated growth-related signaling pathways in T-cell lymphomas (TCLs). Specifically, TH-activated αvβ3 integrin signaling promoted TCL proliferation and angiogenesis, in part, via the upregulation of vascular endothelial growth factor (VEGF). Consequently, genetic or pharmacologic inhibition of integrin αvβ3 decreased VEGF production and induced TCL cell death in vitro and in human xenograft models. In sum, we show that integrin αvβ3 transduces prosurvival signals into TCL nuclei, suggesting a novel mechanism for the endocrine modulation of TCL pathophysiology. Targeting this mechanism could constitute an effective and potentially low-toxicity chemotherapy-free treatment of TCL patients.
Collapse
|
368
|
Via A, Uyar B, Brun C, Zanzoni A. How pathogens use linear motifs to perturb host cell networks. Trends Biochem Sci 2014; 40:36-48. [PMID: 25475989 DOI: 10.1016/j.tibs.2014.11.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 11/03/2014] [Accepted: 11/03/2014] [Indexed: 12/31/2022]
Abstract
Molecular mimicry is one of the powerful stratagems that pathogens employ to colonise their hosts and take advantage of host cell functions to guarantee their replication and dissemination. In particular, several viruses have evolved the ability to interact with host cell components through protein short linear motifs (SLiMs) that mimic host SLiMs, thus facilitating their internalisation and the manipulation of a wide range of cellular networks. Here we present convincing evidence from the literature that motif mimicry also represents an effective, widespread hijacking strategy in prokaryotic and eukaryotic parasites. Further insights into host motif mimicry would be of great help in the elucidation of the molecular mechanisms behind host cell invasion and the development of anti-infective therapeutic strategies.
Collapse
Affiliation(s)
- Allegra Via
- Department of Physics, Sapienza University, 00185 Rome, Italy
| | - Bora Uyar
- Structural and Computational Biology, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Christine Brun
- Inserm, UMR1090 TAGC, Marseille F-13288, France; Aix-Marseille Université, UMR1090 TAGC, Marseille F-13288, France; CNRS, Marseille F-13402, France
| | - Andreas Zanzoni
- Inserm, UMR1090 TAGC, Marseille F-13288, France; Aix-Marseille Université, UMR1090 TAGC, Marseille F-13288, France.
| |
Collapse
|
369
|
Ruffini F, Graziani G, Levati L, Tentori L, D'Atri S, Lacal PM. Cilengitide downmodulates invasiveness and vasculogenic mimicry of neuropilin 1 expressing melanoma cells through the inhibition of αvβ5 integrin. Int J Cancer 2014; 136:E545-58. [PMID: 25284767 DOI: 10.1002/ijc.29252] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 09/17/2014] [Indexed: 01/09/2023]
Abstract
During melanoma progression, tumour cells show increased adhesiveness to the vascular wall, invade the extracellular matrix (ECM) and frequently form functional channels similar to vascular vessels (vasculogenic mimicry). These properties are mainly mediated by the interaction of integrins with ECM components. Since we had previously identified neuropilin 1 (NRP-1), a coreceptor of vascular endothelial growth factor A (VEGF-A), as an important determinant of melanoma aggressiveness, aims of this study were to identify the specific integrins involved in the highly invasive phenotype of NRP-1 expressing cells and to investigate their role as targets to counteract melanoma progression. Melanoma aggressiveness was evaluated in vitro as cell ability to migrate through an ECM layer and to form tubule-like structures using transfected cells. Integrins relevant to these processes were identified using specific blocking antibodies. The αvβ5 integrin was found to be responsible for about 80% of the capability of NRP-1 expressing cells to adhere on vitronectin. In these cells αvβ5 expression level was twice higher than in low-invasive control cells and contributed to the ability of melanoma cells to form tubule-like structures on matrigel. Cilengitide, a potent inhibitor of αν integrins activation, reduced ECM invasion, vasculogenic mimicry and secretion of VEGF-A and metalloproteinase 9 by melanoma cells. In conclusion, we demonstrated that ανβ5 integrin is involved in the highly aggressive phenotype of melanoma cells expressing NRP-1. Moreover, we identified a novel mechanism that contributes to the antimelanoma activity of the αv integrin inhibitor cilengitide based on the inhibition of vasculogenic mimicry.
Collapse
Affiliation(s)
- Federica Ruffini
- Laboratory of Molecular Oncology, "Istituto Dermopatico dell'Immacolata"-IRCCS, Rome, Italy
| | | | | | | | | | | |
Collapse
|
370
|
Alsibai W, Hahnenkamp A, Eisenblätter M, Riemann B, Schäfers M, Bremer C, Haufe G, Höltke C. Fluorescent Non-peptidic RGD Mimetics with High Selectivity for αVβ3 vs αIIbβ3 Integrin Receptor: Novel Probes for in Vivo Optical Imaging. J Med Chem 2014; 57:9971-82. [DOI: 10.1021/jm501197c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
| | | | - Michel Eisenblätter
- Division
of Imaging Sciences, King’s College London, London SE1 7EH, United Kingdom
| | | | | | - Christoph Bremer
- Clinic for Radiology, St. Franziskus Hospital Muenster, Muenster D-48145, Germany
| | | | | |
Collapse
|
371
|
Structural determinants of integrin β-subunit specificity for latent TGF-β. Nat Struct Mol Biol 2014; 21:1091-6. [PMID: 25383667 DOI: 10.1038/nsmb.2905] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 09/23/2014] [Indexed: 01/01/2023]
Abstract
Eight integrin α-β heterodimers recognize ligands with an Arg-Gly-Asp (RGD) motif. However, the structural mechanism by which integrins differentiate among extracellular proteins with RGD motifs is not understood. Here, crystal structures, mutations and peptide-affinity measurements show that αVβ6 binds with high affinity to a RGDLXXL/I motif within the prodomains of TGF-β1 and TGF-β3. The LXXL/I motif forms an amphipathic α-helix that binds in a hydrophobic pocket in the β6 subunit. Elucidation of the basis for ligand binding specificity by the integrin β subunit reveals contributions by three different βI-domain loops, which we designate specificity-determining loops (SDLs) 1, 2 and 3. Variation in a pair of single key residues in SDL1 and SDL3 correlates with the variation of the entire β subunit in integrin evolution, thus suggesting a paradigmatic role in overall β-subunit function.
Collapse
|
372
|
Safinya CR, Ewert KK, Majzoub RN, Leal C. Cationic liposome-nucleic acid complexes for gene delivery and gene silencing. NEW J CHEM 2014; 38:5164-5172. [PMID: 25587216 PMCID: PMC4288823 DOI: 10.1039/c4nj01314j] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cationic liposomes (CLs) are studied worldwide as carriers of DNA and short interfering RNA (siRNA) for gene delivery and gene silencing, and related clinical trials are ongoing. Optimization of transfection efficiency and silencing efficiency by cationic liposome carriers requires a comprehensive understanding of the structures of CL-nucleic acid complexes and the nature of their interactions with cell membranes as well as events leading to release of active nucleic acids within the cytoplasm. Synchrotron x-ray scattering has revealed that CL-nucleic acid complexes spontaneously assemble into distinct liquid crystalline phases including the lamellar, inverse hexagonal, hexagonal, and gyroid cubic phases, and fluorescence microscopy has revealed CL-DNA pathways and interactions with cells. The combining of custom synthesis with characterization techniques and gene expression and silencing assays has begun to unveil structure-function relations in vitro. As a recent example, this review will briefly describe experiments with surface-functionalized PEGylated CL-DNA nanoparticles. The functionalization, which is achieved through custom synthesis, is intended to address and overcome cell targeting and endosomal escape barriers to nucleic acid delivery faced by PEGylated nanoparticles designed for in vivo applications.
Collapse
Affiliation(s)
- Cyrus R Safinya
- Materials, Physics, and Molecular, Cellular, & Developmental Biology Departments, University of California, Santa Barbara, CA 93106, USA
| | - Kai K Ewert
- Materials Science & Engineering Department, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ramsey N Majzoub
- Materials Science & Engineering Department, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Cecília Leal
- Materials Science & Engineering Department, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
373
|
Ermert P, Moehle K, Obrecht D. Macrocyclic Inhibitors of GPCR's, Integrins and Protein–Protein Interactions. MACROCYCLES IN DRUG DISCOVERY 2014. [DOI: 10.1039/9781782623113-00283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
This chapter summarizes some highlights of macrocyclic drug discovery in the area of GPCRs, integrins, and protein–protein interactions spanning roughly the last 30 years. Several examples demonstrate that incorporation of pharmacophores derived from natural peptide ligands into the context of a constrained macrocycle (“lock of the bioactive conformation”) has proven a powerful approach for the discovery of potent and selective macrocyclic drugs. In addition, it will be shown that macrocycles, due to their semi-rigid nature, can exhibit unique properties that can be beneficially exploited by medicinal chemists. Macrocycles can adapt their conformation during binding to a flexible protein target surface (“induced fit”), and due to their size, can interact with larger protein interfaces (“hot spots”). Also, macrocycles can display favorable ADME properties well beyond the rule of 5 in particular exhibiting favorable cell penetrating properties and oral bioavailability.
Collapse
Affiliation(s)
- Philipp Ermert
- Polyphor Ltd Hegenheimermattweg 125 CH-4123 Allschwil Switzerland
| | - Kerstin Moehle
- University of Zurich Winterthurerstrasse 190 CH-8057 Zurich Switzerland
| | - Daniel Obrecht
- Polyphor Ltd Hegenheimermattweg 125 CH-4123 Allschwil Switzerland
| |
Collapse
|
374
|
Hill TA, Shepherd NE, Diness F, Fairlie DP. Constraining cyclic peptides to mimic protein structure motifs. Angew Chem Int Ed Engl 2014; 53:13020-41. [PMID: 25287434 DOI: 10.1002/anie.201401058] [Citation(s) in RCA: 314] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/02/2013] [Indexed: 12/18/2022]
Abstract
Many proteins exert their biological activities through small exposed surface regions called epitopes that are folded peptides of well-defined three-dimensional structures. Short synthetic peptide sequences corresponding to these bioactive protein surfaces do not form thermodynamically stable protein-like structures in water. However, short peptides can be induced to fold into protein-like bioactive conformations (strands, helices, turns) by cyclization, in conjunction with the use of other molecular constraints, that helps to fine-tune three-dimensional structure. Such constrained cyclic peptides can have protein-like biological activities and potencies, enabling their uses as biological probes and leads to therapeutics, diagnostics and vaccines. This Review highlights examples of cyclic peptides that mimic three-dimensional structures of strand, turn or helical segments of peptides and proteins, and identifies some additional restraints incorporated into natural product cyclic peptides and synthetic macrocyclic peptidomimetics that refine peptide structure and confer biological properties.
Collapse
Affiliation(s)
- Timothy A Hill
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072 (Australia)
| | | | | | | |
Collapse
|
375
|
Hill TA, Shepherd NE, Diness F, Fairlie DP. Fixierung cyclischer Peptide: Mimetika von Proteinstrukturmotiven. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201401058] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
376
|
Venkatasubramaniam A, Drude A, Good T. Role of N-terminal residues in Aβ interactions with integrin receptor and cell surface. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2568-77. [DOI: 10.1016/j.bbamem.2014.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 05/26/2014] [Accepted: 06/13/2014] [Indexed: 01/12/2023]
|
377
|
Amschler K, Erpenbeck L, Kruss S, Schön MP. Nanoscale integrin ligand patterns determine melanoma cell behavior. ACS NANO 2014; 8:9113-25. [PMID: 25171587 DOI: 10.1021/nn502690b] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Cells use integrin receptors to adhere onto surfaces by binding to ligands such as the arginine-glycine-aspartic acid (RGD) motif. Cancer cells make use of this adhesion process, which has motivated the development of integrin-directed drugs. However, those drugs may exert paradoxical effects on tumor progression, which raises the question of how integrin function is governed in tumor cells on the nanoscale. We have utilized precisely defined and tunable RGD ligand site densities spanning 1 order of magnitude, i.e., 103 to 1145 ligand sites/μm(2), by using RGD-functionalized gold nanoparticle patterns immobilized on glass by block copolymer (micellar) nanolithography. In an αVβ3 integrin-dependent fashion, human melanoma cells spread, formed focal contacts, and reorganized cytoskeletal fibers on a physiologically relevant RGD density of 349 sites/μm(2). Intriguingly, low doses of solute RGD "shifted" the optimal densities of immobilized ligand along with corresponding melanoma cell integrin clusters and cytoskeletal changes toward those typical for "intermediate" ligand presentation. Consequently, melanoma cells were forced into a "permissive" state, optimizing interactions with suboptimal nanostructured biomimetic surfaces, thus providing an explanation for the seemingly paradoxical effects on tumor progression and a potential clue for individualized antitumoral therapies.
Collapse
Affiliation(s)
- Katharina Amschler
- Department of Dermatology, Venereology and Allergology, Georg August University , Göttingen, Germany
| | | | | | | |
Collapse
|
378
|
Marelli UK, Frank AO, Wahl B, La Pietra V, Novellino E, Marinelli L, Herdtweck E, Groll M, Kessler H. Receptor-bound conformation of cilengitide better represented by its solution-state structure than the solid-state structure. Chemistry 2014; 20:14201-6. [PMID: 25251673 DOI: 10.1002/chem.201403839] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Indexed: 11/09/2022]
Abstract
The X-ray crystal and NMR spectroscopic structures of the peptide drug candidate Cilengitide (cyclo(RGDf(NMe)Val)) in various solvents are obtained and compared in addition to the integrin receptor bound conformation. The NMR-based solution structures exhibit conformations closely resembling the X-ray structure of Cilengitide bound to the head group of integrin αvβ3. In contrast, the structure of pure Cilengitide recrystallized from methanol reveals a different conformation controlled by the lattice forces of the crystal packing. Molecular modeling studies of the various ligand structures docked to the αvβ3 integrin revealed that utilization of the solid-state conformation of Cilengitide leads-unlike the solution-based structures-to a mismatch of the ligand-receptor interactions compared with the experimentally determined structure of the protein-ligand complex. Such discrepancies between solution and crystal conformations of ligands can be misleading during the structure-based lead optimization process and should thus be taken carefully into account in ligand orientated drug design.
Collapse
Affiliation(s)
- Udaya Kiran Marelli
- Institute for Advanced Study (IAS) and Center for Integrated Protein Science (CIPSM), Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching (Germany)
| | | | | | | | | | | | | | | | | |
Collapse
|
379
|
Frisco-Cabanos HL, Watanabe M, Okumura N, Kusamori K, Takemoto N, Takaya J, Sato SI, Yamazoe S, Takakura Y, Kinoshita S, Nishikawa M, Koizumi N, Uesugi M. Synthetic molecules that protect cells from anoikis and their use in cell transplantation. Angew Chem Int Ed Engl 2014; 53:11208-13. [PMID: 25196666 DOI: 10.1002/anie.201405829] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Indexed: 11/06/2022]
Abstract
One of the major problems encountered in cell transplantation is the low level of survival of transplanted cells due to detachment-induced apoptosis, called anoikis. The present study reports on the chemical synthesis and biological evaluation of water-soluble molecules that protect suspended cells from anoikis. The synthetic molecules bind to and induce clusters of integrins and heparan-sulfate-bound syndecans, two classes of receptors that are important for extracellular matrix-mediated cell survival. Molecular biological analysis indicates that such molecules prolong the survival of suspended NIH3T3 cells, at least in part, by promoting clustering of syndecan-4 and integrin β1 on the cell surface, leading to the activation of small GTPase Rac-1 and Akt. In vivo experiments using animal disease models demonstrated the ability of the molecules to improve cell engraftment. The cluster-inducing molecules may provide a starting point for the design of new synthetic tools for cell-based therapy.
Collapse
Affiliation(s)
- Heidie L Frisco-Cabanos
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS) and Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 (Japan); Graduate School of Medicine Kyoto University (Japan)
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
380
|
Frisco-Cabanos HL, Watanabe M, Okumura N, Kusamori K, Takemoto N, Takaya J, Sato SI, Yamazoe S, Takakura Y, Kinoshita S, Nishikawa M, Koizumi N, Uesugi M. Synthetic Molecules that Protect Cells from Anoikis and Their Use in Cell Transplantation. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201405829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
381
|
New cyclic RGD peptides: synthesis, characterization, and theoretical activity towards αvβ3 integrin. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.06.121] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
382
|
Ray AM, Schaffner F, Janouskova H, Noulet F, Rognan D, Lelong-Rebel I, Choulier L, Blandin AF, Lehmann M, Martin S, Kapp T, Neubauer S, Rechenmacher F, Kessler H, Dontenwill M. Single cell tracking assay reveals an opposite effect of selective small non-peptidic α5β1 or αvβ3/β5 integrin antagonists in U87MG glioma cells. Biochim Biophys Acta Gen Subj 2014; 1840:2978-87. [DOI: 10.1016/j.bbagen.2014.04.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 04/11/2014] [Accepted: 04/29/2014] [Indexed: 01/24/2023]
|
383
|
Galletti P, Soldati R, Pori M, Durso M, Tolomelli A, Gentilucci L, Dattoli SD, Baiula M, Spampinato S, Giacomini D. Targeting integrins αvβ3 and α5β1 with new β-lactam derivatives. Eur J Med Chem 2014; 83:284-93. [DOI: 10.1016/j.ejmech.2014.06.041] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 06/17/2014] [Accepted: 06/18/2014] [Indexed: 10/25/2022]
|
384
|
Müller MA, Brunie L, Bächer AS, Kessler H, Gottschalk KE, Reuning U. Cytoplasmic salt bridge formation in integrin αvß3 stabilizes its inactive state affecting integrin-mediated cell biological effects. Cell Signal 2014; 26:2493-503. [PMID: 25041847 DOI: 10.1016/j.cellsig.2014.07.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 07/09/2014] [Indexed: 02/01/2023]
Abstract
Heterodimeric integrin receptors are mediators of cell adhesion, motility, invasion, proliferation, and survival. By this, they are crucially involved in (tumor) cell biological behavior. Integrins trigger signals bidirectionally across cell membranes: by outside-in, following binding of protein ligands of the extracellular matrix, and by inside-out, where proteins are recruited to ß-integrin cytoplasmic tails resulting in conformational changes leading to increased integrin binding affinity and integrin activation. Computational modeling and experimental/mutational approaches imply that associations of integrin transmembrane domains stabilize the low-affinity integrin state. Moreover, a cytoplasmic interchain salt bridge is discussed to contribute to a tight clasp of the α/ß-membrane-proximal regions; however, its existence and physiological relevance for integrin activation are still a controversial issue. In order to further elucidate the functional role of salt bridge formation, we designed mutants of the tumor biologically relevant integrin αvß3 by mutually exchanging the salt bridge forming amino acid residues on each chain (αvR995D and ß3D723R). Following transfection of human ovarian cancer cells with different combinations of wild type and mutated integrin chains, we showed that loss of salt bridge formation strengthened αvß3-mediated adhesion to vitronectin, provoked recruitment of cytoskeletal proteins, such as talin, and induced integrin signaling, ultimately resulting in enhanced cell migration, proliferation, and activation of integrin-related signaling molecules. These data support the notion of a functional relevance of integrin cytoplasmic salt bridge disruption during integrin activation.
Collapse
Affiliation(s)
- Martina A Müller
- Clinical Research Unit, Dept. for Obstetrics & Gynecology, Technische Universitaet München, Munich, Germany
| | - Leonora Brunie
- Clinical Research Unit, Dept. for Obstetrics & Gynecology, Technische Universitaet München, Munich, Germany
| | - Anne-Sophie Bächer
- Clinical Research Unit, Dept. for Obstetrics & Gynecology, Technische Universitaet München, Munich, Germany
| | - Horst Kessler
- Institute for Advanced Study and Centre of Integrated Protein Science, Department Chemie, Technische Universitaet München, Garching, Germany; Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Ute Reuning
- Clinical Research Unit, Dept. for Obstetrics & Gynecology, Technische Universitaet München, Munich, Germany.
| |
Collapse
|
385
|
Hegemann JD, De Simone M, Zimmermann M, Knappe TA, Xie X, Di Leva FS, Marinelli L, Novellino E, Zahler S, Kessler H, Marahiel MA. Rational Improvement of the Affinity and Selectivity of Integrin Binding of Grafted Lasso Peptides. J Med Chem 2014; 57:5829-34. [DOI: 10.1021/jm5004478] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Julian D. Hegemann
- Department
of Chemistry/Biochemistry, LOEWE Center for Synthetic Microbiology, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | - Mariarosaria De Simone
- Department
of Chemistry, Institute for Advanced Study, Center of Integrated Protein
Science (CIPSM), Technische Universität München, Lichtenbergstrasse
4, 85747 Garching, Germany
- Department
of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Marcel Zimmermann
- Department
of Chemistry/Biochemistry, LOEWE Center for Synthetic Microbiology, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | - Thomas A. Knappe
- Department
of Chemistry/Biochemistry, LOEWE Center for Synthetic Microbiology, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | - Xiulan Xie
- Department
of Chemistry/Biochemistry, LOEWE Center for Synthetic Microbiology, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | - Francesco Saverio Di Leva
- Department
of Pharmacy, Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy
| | - Luciana Marinelli
- Department
of Pharmacy, Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy
| | - Ettore Novellino
- Department
of Pharmacy, Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy
| | - Stefan Zahler
- Department
of Pharmacy, Ludwig Maximilian University, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Horst Kessler
- Department
of Chemistry, Institute for Advanced Study, Center of Integrated Protein
Science (CIPSM), Technische Universität München, Lichtenbergstrasse
4, 85747 Garching, Germany
- Department
of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Mohamed A. Marahiel
- Department
of Chemistry/Biochemistry, LOEWE Center for Synthetic Microbiology, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| |
Collapse
|
386
|
Van Roey K, Uyar B, Weatheritt RJ, Dinkel H, Seiler M, Budd A, Gibson TJ, Davey NE. Short Linear Motifs: Ubiquitous and Functionally Diverse Protein Interaction Modules Directing Cell Regulation. Chem Rev 2014; 114:6733-78. [DOI: 10.1021/cr400585q] [Citation(s) in RCA: 293] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Kim Van Roey
- Structural
and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Bora Uyar
- Structural
and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Robert J. Weatheritt
- MRC
Laboratory of Molecular Biology (LMB), Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom
| | - Holger Dinkel
- Structural
and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Markus Seiler
- Structural
and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Aidan Budd
- Structural
and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Toby J. Gibson
- Structural
and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Norman E. Davey
- Structural
and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
- Department
of Physiology, University of California, San Francisco, San Francisco, California 94143, United States
| |
Collapse
|
387
|
Selzer E, Kornek G. Targeted drugs in combination with radiotherapy for the treatment of solid tumors: current state and future developments. Expert Rev Clin Pharmacol 2014; 6:663-76. [PMID: 24164614 DOI: 10.1586/17512433.2013.841540] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The continuously rising use of novel drugs, especially of molecules belonging to the group of targeted drugs is now shaping the therapeutic landscape. However, treatment combinations of targeted drugs with radiotherapy are still rare. Only the monoclonal antibody cetuximab (Erbitux®) has been approved for the treatment of locally advanced squamous cell cancer of the head and neck in combination with radiotherapy. Several targeted compounds are in advanced stages of clinical development for combination treatments with radiotherapy, of which substances with either anti-EGFR or anti-angiogenic mechanisms, such as trastuzumab, panitumumab, erlotinib, cilengitide and bevacizumab are the most promising. Aim of this article is to provide, mainly from a radio-oncological point of view, an overview about the current state as well as to give an outlook on the near future of the most advanced targeted combined treatment concepts for solid tumors.
Collapse
Affiliation(s)
- Edgar Selzer
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
388
|
Majzoub RN, Chan CL, Ewert KK, Silva BFB, Liang KS, Jacovetty EL, Carragher B, Potter CS, Safinya CR. Uptake and transfection efficiency of PEGylated cationic liposome-DNA complexes with and without RGD-tagging. Biomaterials 2014; 35:4996-5005. [PMID: 24661552 PMCID: PMC4032065 DOI: 10.1016/j.biomaterials.2014.03.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 03/03/2014] [Indexed: 01/01/2023]
Abstract
Steric stabilization of cationic liposome-DNA (CL-DNA) complexes is required for in vivo applications such as gene therapy. PEGylation (PEG: poly(ethylene glycol)) of CL-DNA complexes by addition of PEG2000-lipids yields sterically stabilized nanoparticles but strongly reduces their gene delivery efficacy. PEGylation-induced weakening of the electrostatic binding of CL-DNA nanoparticles to cells (leading to reduced uptake) has been considered as a possible cause, but experimental results have been ambiguous. Using quantitative live-cell imaging in vitro, we have investigated cell attachment and uptake of PEGylated CL-DNA nanoparticles with and without a custom synthesized RGD-peptide grafted to the distal ends of PEG2000-lipids. The RGD-tagged nanoparticles exhibit strongly increased cellular attachment as well as uptake compared to nanoparticles without grafted peptide. Transfection efficiency of RGD-tagged PEGylated CL-DNA NPs increases by about an order of magnitude between NPs with low and high membrane charge density (σM; the average charge per unit area of the membrane; controlled by the molar ratio of cationic to neutral lipid), even though imaging data show that uptake of RGD-tagged particles is only slightly enhanced by high σM. This suggests that endosomal escape and, as a result, transfection efficiency of RGD-tagged NPs is facilitated by high σM. We present a model describing the interactions between PEGylated CL-DNA nanoparticles and the anionic cell membrane which shows how the PEG grafting density and membrane charge density affect adhesion of nanoparticles to the cell surface.
Collapse
Affiliation(s)
- Ramsey N Majzoub
- Department of Physics, University of California, Santa Barbara, CA 93106, USA; Department of Materials, University of California, Santa Barbara, CA 93106, USA; Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA
| | - Chia-Ling Chan
- Department of Physics, University of California, Santa Barbara, CA 93106, USA; Department of Materials, University of California, Santa Barbara, CA 93106, USA; Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA; Institute of Physics, Academica Sinica, Taipei 11529, Taiwan; National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Kai K Ewert
- Department of Physics, University of California, Santa Barbara, CA 93106, USA; Department of Materials, University of California, Santa Barbara, CA 93106, USA; Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA
| | - Bruno F B Silva
- Department of Physics, University of California, Santa Barbara, CA 93106, USA; Department of Materials, University of California, Santa Barbara, CA 93106, USA; Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA; Division of Physical Chemistry, Centre for Chemistry and Chemical Engineering, Lund University, SE-221 00 Lund, Sweden
| | - Keng S Liang
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan; Department of Electrophysics, National Chiao-Tung University, Hsinchu 30010, Taiwan
| | - Erica L Jacovetty
- National Resource for Automated Molecular Microscopy, Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Bridget Carragher
- National Resource for Automated Molecular Microscopy, Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Clinton S Potter
- National Resource for Automated Molecular Microscopy, Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Cyrus R Safinya
- Department of Physics, University of California, Santa Barbara, CA 93106, USA; Department of Materials, University of California, Santa Barbara, CA 93106, USA; Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
389
|
Ruiz-Rodríguez J, Miguel M, Preciado S, Acosta GA, Adan J, Bidon-Chanal A, Luque FJ, Mitjans F, Lavilla R, Albericio F. Polythiazole linkers as functional rigid connectors: a new RGD cyclopeptide with enhanced integrin selectivity. Chem Sci 2014. [DOI: 10.1039/c4sc00572d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
390
|
Fanelli R, Schembri L, Piarulli U, Pinoli M, Rasini E, Paolillo M, Galiazzo MC, Cosentino M, Marino F. Effects of a novel cyclic RGD peptidomimetic on cell proliferation, migration and angiogenic activity in human endothelial cells. Vasc Cell 2014; 6:11. [PMID: 25053992 PMCID: PMC4105520 DOI: 10.1186/2045-824x-6-11] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 04/17/2014] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Cyclic RGD peptidomimetics containing a bifunctional diketopiperazine scaffold are a novel class of high-affinity ligands for the integrins αVβ3 and αVβ5. Since integrins are a promising target for the modulation of normal and pathological angiogenesis, the present study aimed at characterizing the ability of the RGD peptidomimetic cyclo[DKP-RGD] 1 proliferation, migration and network formation in human umbilical vein endothelial cells (HUVEC). METHODS Cell viability was assessed by flow cytometry and annexin V (ANX)/propidium iodide (PI) staining. Cell proliferation was evaluated by the ELISA measurement of bromodeoxyuridine (BrdU) incorporation. Network formation by HUVEC cultured in Matrigel-coated plates was evaluated by optical microscopy and image analysis. Integrin subunit mRNA expression was assessed by real time-PCR and Akt phosphorylation by western blot analysis. RESULTS Cyclo[DKP-RGD] 1 does not affect cell viability and proliferation either in resting conditions or in the presence of the pro-angiogenic growth factors VEGF, EGF, FGF, and IGF-I. Addition of cyclo[DKP-RGD] 1 however significantly decreased network formation induced by pro-angiogenic growth factors or by IL-8. Cyclo[DKP-RGD] 1 did not affect mRNA levels of αV, β3 or β5 integrin subunits, however it significantly reduced the phosphorylation of Akt. CONCLUSIONS Cyclo[DKP-RGD] 1 can be a potential modulator of angiogenesis induced by different growth factors, possibly devoid of the adverse effects of cytotoxic RGD peptidomimetic analogues.
Collapse
Affiliation(s)
- Roberto Fanelli
- Department of Science and High Technology, University of Insubria, Como, Italy
| | - Laura Schembri
- Center for Research in Medical Pharmacology, University of Insubria, Via Ottorino Rossi n. 9 21100, Varese, VA, Italy
| | - Umberto Piarulli
- Department of Science and High Technology, University of Insubria, Como, Italy
| | - Monica Pinoli
- Center for Research in Medical Pharmacology, University of Insubria, Via Ottorino Rossi n. 9 21100, Varese, VA, Italy
| | - Emanuela Rasini
- Center for Research in Medical Pharmacology, University of Insubria, Via Ottorino Rossi n. 9 21100, Varese, VA, Italy
| | - Mayra Paolillo
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | | | - Marco Cosentino
- Center for Research in Medical Pharmacology, University of Insubria, Via Ottorino Rossi n. 9 21100, Varese, VA, Italy
| | - Franca Marino
- Center for Research in Medical Pharmacology, University of Insubria, Via Ottorino Rossi n. 9 21100, Varese, VA, Italy
| |
Collapse
|
391
|
Razavi AM, Wuest WM, Voelz VA. Computational screening and selection of cyclic peptide hairpin mimetics by molecular simulation and kinetic network models. J Chem Inf Model 2014; 54:1425-32. [PMID: 24754484 DOI: 10.1021/ci500102y] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Designing peptidomimetic compounds to have a preorganized structure in solution is highly nontrivial. To show how simulation-based approaches can help speed this process, we performed an extensive simulation study of designed cyclic peptide mimics of a β-hairpin from bacterial protein LapD involved in a protein-protein interaction (PPI) pertinent to bacterial biofilm formation. We used replica exchange molecular dynamics (REMD) simulation to screen 20 covalently cross-linked designs with varying stereochemistry and selected the most favorable of these for massively parallel simulation on Folding@home in explicit solvent. Markov state models (MSMs) built from the trajectory data reveal how subtle chemical modifications can have a significant effect on conformational populations, leading to the overall stabilization of the target structure. In particular, we identify a key steric interaction between a methyl substituent and a valine side chain that acts to allosterically shift population between native and near-native states, which could be exploited in future designs. Visualization of this mechanism is aided considerably by the tICA method, which identifies degrees of freedom most important in slow conformational transitions. The combination of quantitative detail and human comprehension provided by MSMs suggests such approaches will be increasingly useful for design.
Collapse
Affiliation(s)
- Asghar M Razavi
- Department of Chemistry, Temple University , Philadelphia, Pennsylvania 19122, United States
| | | | | |
Collapse
|
392
|
Eble JA, de Rezende FF. Redox-relevant aspects of the extracellular matrix and its cellular contacts via integrins. Antioxid Redox Signal 2014; 20:1977-93. [PMID: 24040997 PMCID: PMC3993061 DOI: 10.1089/ars.2013.5294] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 08/29/2013] [Accepted: 09/16/2013] [Indexed: 12/30/2022]
Abstract
SIGNIFICANCE The extracellular matrix (ECM) fulfills essential functions in multicellular organisms. It provides the mechanical scaffold and environmental cues to cells. Upon cell attachment, the ECM signals into the cells. In this process, reactive oxygen species (ROS) are physiologically used as signalizing molecules. RECENT ADVANCES ECM attachment influences the ROS-production of cells. In turn, ROS affect the production, assembly and turnover of the ECM during wound healing and matrix remodeling. Pathological changes of ROS levels lead to excess ECM production and increased tissue contraction in fibrotic disorders and desmoplastic tumors. Integrins are cell adhesion molecules which mediate cell adhesion and force transmission between cells and the ECM. They have been identified as a target of redox-regulation by ROS. Cysteine-based redox-modifications, together with structural data, highlighted particular regions within integrin heterodimers that may be subject to redox-dependent conformational changes along with an alteration of integrin binding activity. CRITICAL ISSUES In a molecular model, a long-range disulfide-bridge within the integrin β-subunit and disulfide bridges within the genu and calf-2 domains of the integrin α-subunit may control the transition between the bent/inactive and upright/active conformation of the integrin ectodomain. These thiol-based intramolecular cross-linkages occur in the stalk domain of both integrin subunits, whereas the ligand-binding integrin headpiece is apparently unaffected by redox-regulation. FUTURE DIRECTIONS Redox-regulation of the integrin activation state may explain the effect of ROS in physiological processes. A deeper understanding of the underlying mechanism may open new prospects for the treatment of fibrotic disorders.
Collapse
Affiliation(s)
- Johannes A. Eble
- Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
- Excellence Cluster Cardio-Pulmonary System, Center for Molecular Medicine, Vascular Matrix Biology, Frankfurt University Hospital, Frankfurt/Main, Germany
| | - Flávia Figueiredo de Rezende
- Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
- Excellence Cluster Cardio-Pulmonary System, Center for Molecular Medicine, Vascular Matrix Biology, Frankfurt University Hospital, Frankfurt/Main, Germany
| |
Collapse
|
393
|
Kapp TG, Rechenmacher F, Sobahi TR, Kessler H. Integrin modulators: a patent review. Expert Opin Ther Pat 2014; 23:1273-95. [PMID: 24050747 DOI: 10.1517/13543776.2013.818133] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Integrins are heterodimeric cell surface receptors, which enable adhesion, proliferation, and migration of cells by recognizing binding motifs in extracellular matrix (ECM) proteins. As transmembrane linkers between the cytoskeleton and the ECM, they are able to recruit a huge variety of proteins and to influence signaling pathways bidirectionally, thereby regulating gene expression and cell survival. Hence, integrins play a key role in various physiological as well as pathological processes, which has turned them into an attractive target for pharmaceutical research. AREAS COVERED In this review, the latest therapeutic developments of drug candidates and recently patented integrin ligands are summarized. EXPERT OPINION Integrins have been proven to be valuable therapeutic targets in the treatment of several inflammatory and autoimmune diseases, where leukocyte adhesion processes are regulated by them. Furthermore, they play an important role in pathological angiogenesis and tumor metastasis, being a promising target for cancer therapy.
Collapse
Affiliation(s)
- Tobias G Kapp
- Institute for Advanced Study (IAS) and Center for Integrated Protein Science (CIPSM), Department Chemie, Technische Universität München , Lichtenbergstrasse 4, 85747 Garching , Germany
| | | | | | | |
Collapse
|
394
|
Fukai M, Suzuki T, Nagasawa I, Kinoshita K, Takahashi K, Koyama K. Antiangiogenic activity of hypoxylonol C. JOURNAL OF NATURAL PRODUCTS 2014; 77:1065-1068. [PMID: 24593182 DOI: 10.1021/np400687y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Hypoxylonol C (1), isolated from the inedible mushroom Hypoxylon truncatum, exhibited inhibitory activities against the migration and tube formation of HUVECs. A cDNA microarray analysis was performed to investigate the target of hypoxylonol C (1) in HUVECs, and it was found that the genes related to cell cycle and adhesion were down-regulated. The down-regulation of mRNA levels of cell cycle and adhesion genes was confirmed by real-time RT-PCR. Cell cycle arrest and suppression of adhesion molecule expression might be plausible mechanisms of actions for the antiangiogenic activity of hypoxylonol C (1).
Collapse
Affiliation(s)
- Miyuki Fukai
- Department of Pharmacognosy and Phytochemistry, Meiji Pharmaceutical University , Noshio 2-522-1 Kiyose-shi, Tokyo 204-8588, Japan
| | | | | | | | | | | |
Collapse
|
395
|
Apoptosis therapy in cancer: the first single-molecule co-activating p53 and the translocator protein in glioblastoma. Sci Rep 2014; 4:4749. [PMID: 24756113 PMCID: PMC3996484 DOI: 10.1038/srep04749] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 04/03/2014] [Indexed: 12/26/2022] Open
Abstract
In the complex scenario of cancer, treatment with compounds targeting multiple cell pathways has been emerging. In Glioblastoma Multiforme (GBM), p53 and Translocator Protein (TSPO), both acting as apoptosis inducers, represent two attractive intracellular targets. On this basis, novel indolylglyoxylyldipeptides, rationally designed to activate TSPO and p53, were synthesized and biologically characterized. The new compounds were able to bind TSPO and to reactivate p53 functionality, through the dissociation from its physiological inhibitor, murine double minute 2 (MDM2). In GBM cells, the new molecules caused Δψm dissipation and inhibition of cell viability. These effects resulted significantly higher with respect to those elicited by the single target reference standards applied alone, and coherent with the synergism resulting from the simultaneous activation of TSPO and p53. Taken together, these results suggest that TSPO/MDM2 dual-target ligands could represent a new attractive multi-modal opportunity for anti-cancer strategy in GBM.
Collapse
|
396
|
Tsou PS, Haak AJ, Khanna D, Neubig RR. Cellular mechanisms of tissue fibrosis. 8. Current and future drug targets in fibrosis: focus on Rho GTPase-regulated gene transcription. Am J Physiol Cell Physiol 2014; 307:C2-13. [PMID: 24740541 DOI: 10.1152/ajpcell.00060.2014] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tissue fibrosis occurs with excessive extracellular matrix deposition from myofibroblasts, resulting in tissue scarring and inflammation. It is driven by multiple mediators, such as the G protein-coupled receptor ligands lysophosphatidic acid and endothelin, as well as signaling by transforming growth factor-β, connective tissue growth factor, and integrins. Fibrosis contributes to 45% of deaths in the developed world. As current therapeutic options for tissue fibrosis are limited and organ transplantation is the only effective treatment for end-stage disease, there is an imminent need for efficacious antifibrotic therapies. This review discusses the various molecular pathways involved in fibrosis. It highlights the Rho GTPase signaling pathway and its downstream gene transcription output through myocardin-related transcription factor and serum response factor as a convergence point for targeting this complex set of diseases.
Collapse
Affiliation(s)
- Pei-Suen Tsou
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Scleroderma Program, Ann Arbor, Michigan
| | - Andrew J Haak
- Department of Pharmacology, University of Michigan Medical Center, Ann Arbor, Michigan; and
| | - Dinesh Khanna
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Scleroderma Program, Ann Arbor, Michigan
| | - Richard R Neubig
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
397
|
Joo SH. Cyclic peptides as therapeutic agents and biochemical tools. Biomol Ther (Seoul) 2014; 20:19-26. [PMID: 24116270 PMCID: PMC3792197 DOI: 10.4062/biomolther.2012.20.1.019] [Citation(s) in RCA: 234] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 10/10/2011] [Accepted: 10/28/2011] [Indexed: 01/08/2023] Open
Abstract
There are many cyclic peptides with diverse biological activities, such as antibacterial activity, immunosuppressive activity, and anti-tumor activity, and so on. Encouraged by natural cyclic peptides with biological activity, efforts have been made to develop cyclic peptides with both genetic and synthetic methods. The genetic methods include phage display, intein-based cyclic peptides, and mRNA display. The synthetic methods involve individual synthesis, parallel synthesis, as well as split-and-pool synthesis. Recent development of cyclic peptide library based on split-and-pool synthesis allows on-bead screening, in-solution screening, and microarray screening of cyclic peptides for biological activity. Cyclic peptides will be useful as receptor agonist/antagonist, RNA binding molecule, enzyme inhibitor and so on, and more cyclic peptides will emerge as therapeutic agents and biochemical tools.
Collapse
Affiliation(s)
- Sang Hoon Joo
- Laboratory of Biochemistry, College of Pharmacy, Catholic University of Daegu, Gyeongsan 712-702, Republic of Korea
| |
Collapse
|
398
|
Neubauer S, Rechenmacher F, Brimioulle R, Di Leva FS, Bochen A, Sobahi TR, Schottelius M, Novellino E, Mas-Moruno C, Marinelli L, Kessler H. Pharmacophoric modifications lead to superpotent αvβ3 integrin ligands with suppressed α5β1 activity. J Med Chem 2014; 57:3410-7. [PMID: 24654918 DOI: 10.1021/jm500092w] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The selective targeting of the αvβ3 integrin subtype without affecting the structurally closely related receptor α5β1 is crucial for understanding the details of their biological and pathological functions and thus of great relevance for diagnostic and therapeutic approaches in cancer treatment. Here, we present the synthesis of highly active RGD peptidomimetics for the αvβ3 integrin with remarkable selectivity against α5β1. Incorporation of a methoxypyridine building block into a ligand scaffold and variation of different functional moieties led to αvβ3-antagonistic activities in the low nanomolar or even subnanomolar range. Furthermore, docking studies were performed to give insights into the binding modes of the novel compounds. The presented library comprises powerful ligands for specific addressing and blocking of the αvβ3 integrin subtype, thereby representing privileged tools for integrin-based personalized medicine.
Collapse
Affiliation(s)
- Stefanie Neubauer
- Department Chemie, Institute for Advanced Study (IAS) and Center of Integrated Protein Science (CIPSM), Technische Universität München , Lichtenbergstrasse 4, 85747 Garching, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
399
|
Rechenmacher F, Steigerwald K, Laufer B, Neubauer S, Kapp TG, Li L, Mas-Moruno C, Joner M, Kessler H. The Integrin Ligandc(RGDf(NMe)Nal) Reduces Neointimal Hyperplasia in a Polymer-Free Drug-Eluting Stent System. ChemMedChem 2014; 9:1413-8. [DOI: 10.1002/cmdc.201400078] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Indexed: 01/28/2023]
|
400
|
Simeček J, Notni J, Kapp TG, Kessler H, Wester HJ. Benefits of NOPO as chelator in gallium-68 peptides, exemplified by preclinical characterization of (68)Ga-NOPO-c(RGDfK). Mol Pharm 2014; 11:1687-95. [PMID: 24669840 DOI: 10.1021/mp5000746] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The αvβ3-integrin addressing cyclic pentapeptide cyclo(RGDfK) was conjugated to NOPO, 1,4,7-triazacyclononane-1,4-bis[methylene(hydroxymethyl)phosphinic acid]-7-[methylene(2-carboxyethyl)phosphinic acid], a bifunctional chelator with exceptional gallium-68 labeling properties. NOPO-c(RGDfK) and its Ga(III) and Cu(II) complexes showed high affinity to αvβ3 integrin (IC50 = 0.94 ± 0.06, 1.02 ± 0.09, and 0.51 ± 0.06 nM, respectively). (68)Ga labeling of NOPO-c(RGDfK) in an automated GMP-compliant procedure was performed with near-quantitative radiochemical yield, using precursor amounts as low as 0.5 nmol (approximately 0.6 μg). (68)Ga-NOPO-c(RGDfK) was obtained with high purity (>99% by radio-HPLC/TLC) and, optionally, could be produced with specific activities up to 6 TBq/μmol. M21/M21L (human melanoma with high/low αvβ3 integrin expression) xenografted athymic CD-1 nude mice were used for biodistribution, in vivo stability studies, and PET imaging. (68)Ga-NOPO-c(RGDfK) showed rapid and specific uptake in M21 tumor xenografts (2.02 ± 0.34% ID/g at 60 min p.i.) and was found stable in vivo. Its high hydrophilicity is reflected by an octanol-water distribution coefficient (log D = -4.6) which is more than 1 order of magnitude lower compared to respective NOTA or DOTA analogues. As expected, (68)Ga-NOPO-c(RGDfK) thus showed fast renal clearance from nontargeted tissues. We conclude that NOPO might generally prove a useful means to improve renal clearance of corresponding radiopharmaceuticals by increasing the polarity of its bioconjugates. Favorable labeling properties render NOPO conjugates highly recommendable for reliable routine production of (68)Ga-radiopharmaceuticals in a clinical setting.
Collapse
Affiliation(s)
- Jakub Simeček
- Pharmaceutical Radiochemistry and ‡Institute for Advanced Study and Center of Integrated Protein Science, Technische Universität München , München, Germany
| | | | | | | | | |
Collapse
|