351
|
Puvača N, de Llanos Frutos R. Antimicrobial Resistance in Escherichia coli Strains Isolated from Humans and Pet Animals. Antibiotics (Basel) 2021; 10:69. [PMID: 33450827 PMCID: PMC7828219 DOI: 10.3390/antibiotics10010069] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/06/2021] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
Throughout scientific literature, we can find evidence that antimicrobial resistance has become a big problem in the recent years on a global scale. Public healthcare systems all over the world are faced with a great challenge in this respect. Obviously, there are many bacteria that can cause infections in humans and animals alike, but somehow it seems that the greatest threat nowadays comes from the Enterobacteriaceae members, especially Escherichia coli. Namely, we are witnesses to the fact that the systems that these bacteria developed to fight off antibiotics are the strongest and most diverse in Enterobacteriaceae. Our great advantage is in understanding the systems that bacteria developed to fight off antibiotics, so these can help us understand the connection between these microorganisms and the occurrence of antibiotic-resistance both in humans and their pets. Furthermore, unfavorable conditions related to the ease of E. coli transmission via the fecal-oral route among humans, environmental sources, and animals only add to the problem. For all the above stated reasons, it is evident that the epidemiology of E. coli strains and resistance mechanisms they have developed over time are extremely significant topics and all scientific findings in this area will be of vital importance in the fight against infections caused by these bacteria.
Collapse
Affiliation(s)
- Nikola Puvača
- Faculty of Biomedical and Health Sciences, Jaume I University, Avinguda de Vicent Sos Baynat, s/n, 12071 Castelló de la Plana, Spain;
- Department of Engineering Management in Biotechnology, Faculty of Economics and Engineering Management in Novi Sad, University Business Academy in Novi Sad, Cvećarska 2, 21000 Novi Sad, Serbia
| | - Rosa de Llanos Frutos
- Faculty of Biomedical and Health Sciences, Jaume I University, Avinguda de Vicent Sos Baynat, s/n, 12071 Castelló de la Plana, Spain;
| |
Collapse
|
352
|
Wang Q, Barnes LM, Maslakov KI, Howell CA, Illsley MJ, Dyer P, Savina IN. In situ synthesis of silver or selenium nanoparticles on cationized cellulose fabrics for antimicrobial application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111859. [PMID: 33579491 DOI: 10.1016/j.msec.2020.111859] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/28/2020] [Accepted: 12/28/2020] [Indexed: 12/24/2022]
Abstract
In this study, we developed a method to prepare inorganic nanoparticles in situ on the surface of cationized cellulose using a rapid microwave-assisted synthesis. Selenium nanoparticles (SeNPs) were employed as a novel type of antimicrobial agent and, using the same method, silver nanoparticles (AgNPs) were also prepared. The results demonstrated that both SeNPs and AgNPs of about 100 nm in size were generated on the cationized cellulose fabrics. The antibacterial tests revealed that the presence of SeNPs clearly improved the antibacterial performance of cationized cellulose in a similar way as AgNPs. The functionalised fabrics demonstrated strong antibacterial activity when assessed using the challenge test method, even after repeated washing. Microscopic investigations revealed that the bacterial cells were visually damaged through contact with the functionalised fabrics. Furthermore, the functionalised fabrics showed low cytotoxicity towards human cells when tested in vitro using an indirect contact method. In conclusion, this study provides a new approach to prepare cationic cellulose fabrics functionalised with Se or Ag nanoparticles, which exhibit excellent antimicrobial performance, low cytotoxicity and good laundry durability. We have demonstrated that SeNPs can be a good alternative to AgNPs and the functionalised fabrics have great potential to serve as an anti-infective material.
Collapse
Affiliation(s)
- Qiaoyi Wang
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton BN2 4GJ, United Kingdom
| | - Lara-Marie Barnes
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton BN2 4GJ, United Kingdom
| | - Konstantin I Maslakov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Carol A Howell
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton BN2 4GJ, United Kingdom; Enteromed Ltd., 85 Great Portland St, First floor, London, W1W 7LT, United Kingdom
| | - Matthew J Illsley
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton BN2 4GJ, United Kingdom; Anamad Ltd., Sussex Innovation Centre, Science Park Square, Brighton, BN1 9SB, United Kingdom
| | - Patricia Dyer
- School of Art, University of Brighton, 58-67 Grand Parade, Brighton BN2 0JY, United Kingdom
| | - Irina N Savina
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton BN2 4GJ, United Kingdom.
| |
Collapse
|
353
|
Takahashi H, Caputo GA, Kuroda K. Amphiphilic polymer therapeutics: an alternative platform in the fight against antibiotic resistant bacteria. Biomater Sci 2021; 9:2758-2767. [DOI: 10.1039/d0bm01865a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Amphiphilic antimicrobial polymers show promising potential as polymer therapeutics to fight drug resistant bacteria and biofilms.
Collapse
Affiliation(s)
- Haruko Takahashi
- Graduate School of Integrated Sciences for Life
- Hiroshima University
- Hiroshima 739-8526
- Japan
| | | | - Kenichi Kuroda
- Department of Biologic and Materials Sciences
- School of Dentistry
- University of Michigan
- Ann Arbor
- USA
| |
Collapse
|
354
|
Makabenta JMV, Nabawy A, Li CH, Schmidt-Malan S, Patel R, Rotello VM. Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections. Nat Rev Microbiol 2021; 19:23-36. [PMID: 32814862 PMCID: PMC8559572 DOI: 10.1038/s41579-020-0420-1] [Citation(s) in RCA: 608] [Impact Index Per Article: 152.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2020] [Indexed: 12/22/2022]
Abstract
Antibiotic-resistant bacterial infections arising from acquired resistance and/or through biofilm formation necessitate the development of innovative 'outside of the box' therapeutics. Nanomaterial-based therapies are promising tools to combat bacterial infections that are difficult to treat, featuring the capacity to evade existing mechanisms associated with acquired drug resistance. In addition, the unique size and physical properties of nanomaterials give them the capability to target biofilms, overcoming recalcitrant infections. In this Review, we highlight the general mechanisms by which nanomaterials can be used to target bacterial infections associated with acquired antibiotic resistance and biofilms. We emphasize design elements and properties of nanomaterials that can be engineered to enhance potency. Lastly, we present recent progress and remaining challenges for widespread clinical implementation of nanomaterials as antimicrobial therapeutics.
Collapse
Affiliation(s)
| | - Ahmed Nabawy
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, USA
| | - Cheng-Hsuan Li
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, USA
| | - Suzannah Schmidt-Malan
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, USA.
| |
Collapse
|
355
|
Micoli F, Bagnoli F, Rappuoli R, Serruto D. The role of vaccines in combatting antimicrobial resistance. Nat Rev Microbiol 2021; 19:287-302. [PMID: 33542518 PMCID: PMC7861009 DOI: 10.1038/s41579-020-00506-3] [Citation(s) in RCA: 230] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2020] [Indexed: 01/29/2023]
Abstract
The use of antibiotics has enabled the successful treatment of bacterial infections, saving the lives and improving the health of many patients worldwide. However, the emergence and spread of antimicrobial resistance (AMR) has been highlighted as a global threat by different health organizations, and pathogens resistant to antimicrobials cause substantial morbidity and death. As resistance to multiple drugs increases, novel and effective therapies as well as prevention strategies are needed. In this Review, we discuss evidence that vaccines can have a major role in fighting AMR. Vaccines are used prophylactically, decreasing the number of infectious disease cases, and thus antibiotic use and the emergence and spread of AMR. We also describe the current state of development of vaccines against resistant bacterial pathogens that cause a substantial disease burden both in high-income countries and in low- and medium-income countries, discuss possible obstacles that hinder progress in vaccine development and speculate on the impact of next-generation vaccines against bacterial infectious diseases on AMR.
Collapse
Affiliation(s)
- Francesca Micoli
- grid.425088.3GSK Vaccines Institute for Global Health, Siena, Italy
| | | | | | | |
Collapse
|
356
|
Prasad P, Gupta A, Sasmal PK. Aggregation-induced emission active metal complexes: a promising strategy to tackle bacterial infections. Chem Commun (Camb) 2021; 57:174-186. [DOI: 10.1039/d0cc06037b] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This Feature Article discusses the recent development of metal-based aggregation-induced emission luminogens for detection, discrimination and decimation of bacterial pathogens to tackle antimicrobial resistance.
Collapse
Affiliation(s)
- Puja Prasad
- Department of Chemical Engineering
- Indian Institute of Technology Delhi
- India
| | - Ajay Gupta
- School of Physical Sciences
- Jawaharlal Nehru University
- India
| | | |
Collapse
|
357
|
Siqueira MMR, Freire PDTC, Cruz BG, de Freitas TS, Bandeira PN, Silva Dos Santos H, Nogueira CES, Teixeira AMR, Pereira RLS, Xavier JDC, Campina FF, Dos Santos Barbosa CR, Neto JBDA, da Silva MMC, Siqueira-Júnior JP, Douglas Melo Coutinho H. Aminophenyl chalcones potentiating antibiotic activity and inhibiting bacterial efflux pump. Eur J Pharm Sci 2020; 158:105695. [PMID: 33383131 DOI: 10.1016/j.ejps.2020.105695] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/02/2020] [Accepted: 12/22/2020] [Indexed: 01/08/2023]
Abstract
Chalcones and their derivatives are substances of great interest for medicinal chemistry due to their antibacterial activities. As the bacterial resistance to clinically available antibiotics has become a worldwide public health problem, it is essential to search for compounds capable of reverting the bacterial resistance. As a possibility, the chalcone class could be an interesting answer to this problem. The chalcones (2E)-1-(4'-aminophenyl)-3-(phenyl)‑prop-2-en-1-one (APCHAL), and (2E)-1-(4'-aminophenyl)-3-(4-chlorophenyl)‑prop-2-en-1-one (ACLOPHENYL) were synthesized by the Claisen-Schmidt condensation and characterized by 1H and 13C nuclear magnetic resonance (NMR), Fourier-transform infrared (FT-IR), and mass spectrometry (MS), In addition, microbiological tests were performed to investigate the antibacterial activity, modulatory potential, and efflux pump inhibition against Staphylococcus aureus (S. aureus) multi-resistant strains. Regarding the S. aureus Gram-positive model, the APCHAL presented synergism with gentamicin and antagonism with penicillin. APCHAL reduced the Minimum inhibitory concentration (MIC) of gentamicin by almost 70%. When comparing the effects of the antibiotic modifying activity of ACLOPHENYL and APCHAL, a loss of synergism is noted with gentamicin due to the addition of a chlorine to the substance structure. For Escherichia coli (E. coli) a total lack of effect, synergistic or antagonistic, was observed between ACLOPHENYL and the antibiotics. In the evaluation of inhibition of the efflux pump, both chalcones presented a synergistic effect with norfloxacin and ciprofloxacin against S. aureus, although the effect is much less pronounced with ACLOPHENYL. The effect of APCHAL is particularly notable against the K2068 (MepA overexpresser) strain, with synergistic effects with both ciprofloxacin and ethidium bromide. The docking results also show that both compounds bind to roughly the same region of the binding site of 1199B (NorA overexpresser), and that this region overlaps with the preferred binding region of norfloxacin. The APCHAL chalcone may contribute to the prevention or treatment of infectious diseases caused by multidrug-resistant S. aureus.
Collapse
Affiliation(s)
| | - Paulo de Tarso Cavalcante Freire
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil; Department of Physics, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | | | - Paulo Nogueira Bandeira
- Science and Technology Centre - Course of Chemistry, State University Vale do Acaraú, Sobral, CE, Brazil
| | - Hélcio Silva Dos Santos
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil; Science and Technology Centre - Course of Chemistry, State University Vale do Acaraú, Sobral, CE, Brazil
| | - Carlos Emidío Sampaio Nogueira
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil; Department of Physics, Regional University of Cariri, Juazeiro do Norte, CE, Brazil
| | - Alexandre Magno Rodrigues Teixeira
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil; Department of Physics, Regional University of Cariri, Juazeiro do Norte, CE, Brazil
| | | | - Jayze da Cunha Xavier
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | | | | | | | | | | | | |
Collapse
|
358
|
Promising Anti-MRSA Activity of Brevibacillus sp. Isolated from Soil and Strain Improvement by UV Mutagenesis. Sci Pharm 2020. [DOI: 10.3390/scipharm89010001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Antibiotic-resistant infection is a major health problem, and a limited number of drugs are currently approved as antibiotics. Soil bacteria are promising sources in the search for novel antibiotics. The aim of the present study is to isolate and assess soil bacteria with anti-MRSA activity and improve their capabilities by UV mutagenesis. Soil samples from the upper south of Thailand were screened for antibacterial activity using the cross-streak method. Agar well diffusion was used to examine the activity of isolates against a spectrum of human pathogens. The most active isolate was identified by 16S rRNA sequencing, and the production kinetics and stability were investigated. The most promising isolate was mutated by UV radiation, and the resulting activity and strain stability were studied. The results show that isolates from the cross-streak method could inhibit Staphylococcus aureus TISTR 517 (94 isolates) and Escherichia coli TISTR 887 (67 isolates). Nine isolates remained active against S. aureus TISTR 517 and MRSA, and eight isolates inhibited the growth of E. coli TISTR 887 as assessed using agar well diffusion. The most active strain was Brevibacillus sp. SPR-20, which had the highest activity at 24 h of incubation. The active substances in culture supernatants exhibited more than 90% activity when subjected to treatments involving various heat, enzymes, surfactants, and pH conditions. The mutant M201 showed significantly higher activity (109.88–120.22%) and strain stability compared to the wild-type strain. In conclusion, we demonstrate that soil Brevibacillus sp. is a potential resource that can be subjected to UV mutagenesis as a useful approach for improving the production of anti-MRSA in the era of antibiotic resistance.
Collapse
|
359
|
Gray HK, Arora-Williams KK, Young C, Bouwer E, Davis MF, Preheim SP. Contribution of Time, Taxonomy, and Selective Antimicrobials to Antibiotic and Multidrug Resistance in Wastewater Bacteria. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15946-15957. [PMID: 33258596 PMCID: PMC8463082 DOI: 10.1021/acs.est.0c03803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The use of nontherapeutic broad-spectrum antimicrobial agents triclosan (TCS) and benzalkonium chloride (BC) can contribute to bacterial resistance to clinically relevant antibiotics. Antimicrobial-resistant bacteria within wastewater may reflect the resistance burden within the human microbiome, as antibiotics and pathogens in wastewater can track with clinically relevant parameters during perturbations to the community. In this study, we monitored culturable and resistant wastewater bacteria and cross-resistance to clinically relevant antibiotics to gauge the impact of each antimicrobial and identify factors influencing cross-resistance profiles. Bacteria resistant to TCS and BC were isolated from wastewater influent over 21 months, and cross-resistance, taxonomy, and monthly changes were characterized under both antimicrobial selection regimes. Cross-resistance profiles from each antimicrobial differed within and between taxa. BC-isolated bacteria had a significantly higher prevalence of resistance to "last-resort antibiotic" colistin, while isolates resistant to TCS exhibited higher rates of multidrug resistance. Prevalence of culturable TCS-resistant bacteria decreased over time following Food and Drug Administration (FDA) TCS bans. Cross-resistance patterns varied according to sampling date, including among the most clinically important antibiotics. Correlations between strain-specific resistance profiles were largely influenced by taxonomy, with some variations associated with sampling date. The results reveal that time, taxonomy, and selection by TCS and BC impact features of cross-resistance patterns among diverse wastewater microorganisms, which could reflect the variety of factors influencing resistance patterns relevant to a community microbiome.
Collapse
Affiliation(s)
- Hannah K Gray
- Department of Environmental Health and Engineering, Whiting School of Engineering, Johns Hopkins University, 3400 North Charles Street, 313 Ames Hall, Baltimore, Maryland 21218, United States
| | - Keith K Arora-Williams
- Department of Environmental Health and Engineering, Whiting School of Engineering, Johns Hopkins University, 3400 North Charles Street, 313 Ames Hall, Baltimore, Maryland 21218, United States
| | - Charles Young
- The Johns Hopkins Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, Maryland 20723, United States
| | - Edward Bouwer
- Department of Environmental Health and Engineering, Whiting School of Engineering, Johns Hopkins University, 3400 North Charles Street, 313 Ames Hall, Baltimore, Maryland 21218, United States
| | - Meghan F Davis
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, E7612, Baltimore, Maryland 21205, United States
| | - Sarah P Preheim
- Department of Environmental Health and Engineering, Whiting School of Engineering, Johns Hopkins University, 3400 North Charles Street, 313 Ames Hall, Baltimore, Maryland 21218, United States
| |
Collapse
|
360
|
Ojemaye MO, Adefisoye MA, Okoh AI. Nanotechnology as a viable alternative for the removal of antimicrobial resistance determinants from discharged municipal effluents and associated watersheds: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 275:111234. [PMID: 32866924 DOI: 10.1016/j.jenvman.2020.111234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 05/25/2020] [Accepted: 08/12/2020] [Indexed: 05/20/2023]
Abstract
Effective and efficient utilization of antimicrobial drugs has been one of the important cornerstone of modern medicine. However, since antibiotics were first discovered by Alexander Fleming about a century ago, the time clock of antimicrobial resistance (AMR) started ticking somewhat leading to a global fear of a possible "post-antimicrobial era". Antibiotic resistance (AR) remains a serious challenge causing global outcry in both the clinical setting and the environment. The huge influence of municipal wastewater effluent discharges on the aquatic environment has made the niche a hotspot of research interest in the study of emergence and spread of AMR microbes and their resistance determinants/genes. The current review adopted a holistic approach in studying the proliferation of antibiotic resistance determinants (ARDs) as well as their impacts and fate in municipal wastewater effluents and the receiving aquatic environments. The various strategies deployed hitherto for the removal of resistance determinants in municipal effluents were carefully reviewed, while the potential for the use of nanotechnology as a viable alternative is explicitly explored. Also, highlighted in this review are the knowledge gaps to be filled in order to curtail the spread of AMR in aquatic environment and lastly, suggestions on the applicability of nanotechnology in eliminating AMR determinants in municipal wastewater treatment facilities are proffered.
Collapse
Affiliation(s)
- Mike O Ojemaye
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, South Africa; Applied and Environmental Microbiology Research Group (AEMREG), University of Fort Hare, South Africa.
| | - Martins A Adefisoye
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, South Africa; Applied and Environmental Microbiology Research Group (AEMREG), University of Fort Hare, South Africa.
| | - Anthony I Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, South Africa; Applied and Environmental Microbiology Research Group (AEMREG), University of Fort Hare, South Africa.
| |
Collapse
|
361
|
Mokrzan EM, Ahearn CP, Buzzo JR, Novotny LA, Zhang Y, Goodman SD, Bakaletz LO. Nontypeable Haemophilus influenzae newly released (NRel) from biofilms by antibody-mediated dispersal versus antibody-mediated disruption are phenotypically distinct. Biofilm 2020; 2:100039. [PMID: 33447823 PMCID: PMC7798465 DOI: 10.1016/j.bioflm.2020.100039] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/02/2020] [Accepted: 11/12/2020] [Indexed: 02/08/2023] Open
Abstract
Biofilms contribute significantly to the chronicity and recurrence of bacterial diseases due to the fact that biofilm-resident bacteria are highly recalcitrant to killing by host immune effectors and antibiotics. Thus, antibody-mediated release of bacteria from biofilm residence into the surrounding milieu supports a powerful strategy to resolve otherwise difficult-to-treat biofilm-associated diseases. In our prior work, we revealed that antibodies directed against two unique determinants of nontypeable Haemophilus influenzae (NTHI) [e.g. the Type IV pilus (T4P) or a bacterial DNABII DNA-binding protein, a species-independent target that provides structural integrity to bacterial biofilms] release biofilm-resident bacteria via discrete mechanisms. Herein, we now show that the phenotype of the resultant newly released (or NRel) NTHI is dependent upon the specific mechanism of release. We used flow cytometry, proteomic profiles, and targeted transcriptomics to demonstrate that the two NRel populations were significantly different not only from planktonically grown NTHI, but importantly, from each other despite genetic identity. Moreover, each NRel population had a distinct, significantly increased susceptibility to killing by either a sulfonamide or β-lactam antibiotic compared to planktonic NTHI, an observation consistent with their individual proteomes and further supported by relative differences in targeted gene expression. The distinct phenotypes of NTHI released from biofilms by antibodies directed against specific epitopes of T4P or DNABII binding proteins provide new opportunities to develop targeted therapeutic strategies for biofilm eradication and disease resolution.
Collapse
Affiliation(s)
- Elaine M Mokrzan
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Christian P Ahearn
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - John R Buzzo
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Laura A Novotny
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Yan Zhang
- Department of Biomedical Informatics, The Ohio State University College of Medicine, Columbus, OH, USA.,The Ohio State University Comprehensive Cancer Center (OSUCCC - James), Columbus, OH, USA
| | - Steven D Goodman
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Lauren O Bakaletz
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| |
Collapse
|
362
|
Telhig S, Ben Said L, Zirah S, Fliss I, Rebuffat S. Bacteriocins to Thwart Bacterial Resistance in Gram Negative Bacteria. Front Microbiol 2020; 11:586433. [PMID: 33240239 PMCID: PMC7680869 DOI: 10.3389/fmicb.2020.586433] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/16/2020] [Indexed: 12/16/2022] Open
Abstract
An overuse of antibiotics both in human and animal health and as growth promoters in farming practices has increased the prevalence of antibiotic resistance in bacteria. Antibiotic resistant and multi-resistant bacteria are now considered a major and increasing threat by national health agencies, making the need for novel strategies to fight bugs and super bugs a first priority. In particular, Gram-negative bacteria are responsible for a high proportion of nosocomial infections attributable for a large part to Enterobacteriaceae, such as pathogenic Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. To cope with their highly competitive environments, bacteria have evolved various adaptive strategies, among which the production of narrow spectrum antimicrobial peptides called bacteriocins and specifically microcins in Gram-negative bacteria. They are produced as precursor peptides that further undergo proteolytic cleavage and in many cases more or less complex posttranslational modifications, which contribute to improve their stability and efficiency. Many have a high stability in the gastrointestinal tract where they can target a single pathogen whilst only slightly perturbing the gut microbiota. Several microcins and antibiotics can bind to similar bacterial receptors and use similar pathways to cross the double-membrane of Gram-negative bacteria and reach their intracellular targets, which they also can share. Consequently, bacteria may use common mechanisms of resistance against microcins and antibiotics. This review describes both unmodified and modified microcins [lasso peptides, siderophore peptides, nucleotide peptides, linear azole(in)e-containing peptides], highlighting their potential as weapons to thwart bacterial resistance in Gram-negative pathogens and discusses the possibility of cross-resistance and co-resistance occurrence between antibiotics and microcins in Gram-negative bacteria.
Collapse
Affiliation(s)
- Soufiane Telhig
- Institute of Nutrition and Functional Foods, Université Laval, Québec, QC, Canada
- Laboratory Molecules of Communication and Adaptation of Microorganisms, Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Paris, France
| | - Laila Ben Said
- Institute of Nutrition and Functional Foods, Université Laval, Québec, QC, Canada
| | - Séverine Zirah
- Laboratory Molecules of Communication and Adaptation of Microorganisms, Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Paris, France
| | - Ismail Fliss
- Institute of Nutrition and Functional Foods, Université Laval, Québec, QC, Canada
| | - Sylvie Rebuffat
- Laboratory Molecules of Communication and Adaptation of Microorganisms, Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Paris, France
| |
Collapse
|
363
|
Novel Antibiotics Targeting Bacterial Replicative DNA Polymerases. Antibiotics (Basel) 2020; 9:antibiotics9110776. [PMID: 33158178 PMCID: PMC7694242 DOI: 10.3390/antibiotics9110776] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 12/15/2022] Open
Abstract
Multidrug resistance is a worldwide problem that is an increasing threat to global health. Therefore, the development of new antibiotics that inhibit novel targets is of great urgency. Some of the most successful antibiotics inhibit RNA transcription, RNA translation, and DNA replication. Transcription and translation are inhibited by directly targeting the RNA polymerase or ribosome, respectively. DNA replication, in contrast, is inhibited indirectly through targeting of DNA gyrases, and there are currently no antibiotics that inhibit DNA replication by directly targeting the replisome. This contrasts with antiviral therapies where the viral replicases are extensively targeted. In the last two decades there has been a steady increase in the number of compounds that target the bacterial replisome. In particular a variety of inhibitors of the bacterial replicative polymerases PolC and DnaE have been described, with one of the DNA polymerase inhibitors entering clinical trials for the first time. In this review we will discuss past and current work on inhibition of DNA replication, and the potential of bacterial DNA polymerase inhibitors in particular as attractive targets for a new generation of antibiotics.
Collapse
|
364
|
Proposed Mechanism of Antibacterial Activity of Glutathione by Inhibition of the d-Alanyl-d-alanine Carboxypeptidase Enzyme. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10124-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
365
|
Pantyo VV, Koval GM, Danko EM, Pantyo VI. Complex impact of polarized and non-polarized low intense light and methylene blue on growth rate of some opportunistic microorganisms. REGULATORY MECHANISMS IN BIOSYSTEMS 2020. [DOI: 10.15421/022079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Resistance to antibiotics is considered as a global and unsolved problem in the branch of medicine. That is why the use of novel non-drug methods of treatment of bacterial and fungal infections is of great relevance. One of such methods is photodynamic treatment, which is a treatment procedure that uses light energy to activate a photosensitizing agent in the presence of oxygen. Due to the broad spectrum of action, the efficacy against antibiotic resistant cells and the lack of selection of photoresistant strains, antimicrobial photodynamic therapy compares favourably with traditional drug therapy, and has emerged in the clinical field as a potential alternative to antibiotics to treat microbial infections. In this article results of studies of the complex effect of methylene blue (0.1% aqueous solution) and LED radiation of the red-infrared spectrum as well as methylene blue and polarized incoherent low-energy radiation (PILER) with a red light filter on the growth rate of some opportunistic microorganisms on solid nutrient media are presented. Standardized suspensions of microorganisms were prepared for research with the subsequent determination of direct impact of polarized and non-polarized radiation (at duration of exposure of 5 min), photosensitizer, and also the set of these factors on growth of the studied microorganisms. The growth intensity of bacteria and yeast-like fungi was determined by the number of their colonies after reseeding on nutrient media in Petri dishes. The obtained data were compared with control groups, which were not influenced by any factors. The results indicate a significant antimicrobial effect of the combined action of different types of radiation and methylene blue on microorganisms, which was manifested in a reduction in the number of colonies by on average 35–45%, compared with the control groups. Comparing the effect of exposure when using LED and PILER light, we have noted its similarity. It is also worth noting a certain antimicrobial activity of 0.1% methylene blue solution on the studied strains, but this was much less pronounced than in the complex effect. The direct effect of both LED and PILER radiation with low duration of exposure caused the stimulation of the growth of the studied microorganisms with an increase in the number of their colonies on Petri dishes by 15–35%. Given the rapid growth of resistance to antimicrobial agents, the described technique can be used as an alternative to traditional antibiotic therapy for the treatment of purulent-inflammatory diseases of the skin and mucous membranes.
Collapse
|
366
|
|
367
|
Kumar SB, Arnipalli SR, Ziouzenkova O. Antibiotics in Food Chain: The Consequences for Antibiotic Resistance. Antibiotics (Basel) 2020; 9:antibiotics9100688. [PMID: 33066005 PMCID: PMC7600537 DOI: 10.3390/antibiotics9100688] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/28/2020] [Accepted: 10/08/2020] [Indexed: 12/14/2022] Open
Abstract
Antibiotics have been used as essential therapeutics for nearly 100 years and, increasingly, as a preventive agent in the agricultural and animal industry. Continuous use and misuse of antibiotics have provoked the development of antibiotic resistant bacteria that progressively increased mortality from multidrug-resistant bacterial infections, thereby posing a tremendous threat to public health. The goal of our review is to advance the understanding of mechanisms of dissemination and the development of antibiotic resistance genes in the context of nutrition and related clinical, agricultural, veterinary, and environmental settings. We conclude with an overview of alternative strategies, including probiotics, essential oils, vaccines, and antibodies, as primary or adjunct preventive antimicrobial measures or therapies against multidrug-resistant bacterial infections. The solution for antibiotic resistance will require comprehensive and incessant efforts of policymakers in agriculture along with the development of alternative therapeutics by experts in diverse fields of microbiology, biochemistry, clinical research, genetic, and computational engineering.
Collapse
|
368
|
Lima WG, de Brito JCM, Cardoso VN, Fernandes SOA. In-depth characterization of antibacterial activity of melittin against Staphylococcus aureus and use in a model of non-surgical MRSA-infected skin wounds. Eur J Pharm Sci 2020; 156:105592. [PMID: 33049305 DOI: 10.1016/j.ejps.2020.105592] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 12/12/2022]
Abstract
Skin infections caused by methicillin-resistant Staphylococcus aureus (MRSA) require the development of new and effective topical antibiotics. In this context, melittin, the main component of apitoxin, has a potent antibacterial effect. However, little is known regarding the anti-inflammatory potential this peptide in infection models, or its ability to induce clinically important resistance. Here, we aimed to conduct an in-depth characterization of the antibacterial potential of melittin in vitro and evaluate the pharmaceutical potential of an ointment containing melittin for the treatment of non-surgical infections induced by MRSA. The minimum inhibitory concentration of melittin varied from 0.12 to 4 μM. The antibacterial effect was mainly bactericidal and fast (approximately 0.5 h after incubation) and was maintained even in stationary cells and mature MRSA biofilms. Melittin interacts synergistically with beta-lactams and aminoglycosides, and its ability to form pores in the membrane reverses the resistance of vancomycin-intermediate Staphylococcus aureus (VISA) to amoxicillin, and vancomycin. Its ability to induce resistance in vitro was absent, and melittin was stable in several conditions often associated with infected wounds. In vivo, aointment containing melittin reduced bacterial load and the content of pro-inflammatory cytokines, such as tumor necrosis factor-α, interleukin-6 (IL-6), and IL-1 beta. Collectively, these data point to melittin as a potential candidate for topical formulations aimed at the treatment of non-surgical infections caused by MRSA.
Collapse
Affiliation(s)
- William Gustavo Lima
- Laboratório de Radioisótopos, Departamento de Análises Clinicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Valbert Nascimento Cardoso
- Laboratório de Radioisótopos, Departamento de Análises Clinicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Simone Odília Antunes Fernandes
- Laboratório de Radioisótopos, Departamento de Análises Clinicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
369
|
Scherf JR, Barbosa Dos Santos CR, Sampaio de Freitas T, Rocha JE, Macêdo NS, Mascarenhas Lima JN, Melo Coutinho HD, Bezerra da Cunha FA. Effect of terpinolene against the resistant Staphylococcus aureus strain, carrier of the efflux pump QacC and β-lactamase gene, and its toxicity in the Drosophila melanogaster model. Microb Pathog 2020; 149:104528. [PMID: 33002597 DOI: 10.1016/j.micpath.2020.104528] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 11/26/2022]
Abstract
Efflux pumps and β-lactamases are mechanisms of bacterial resistance that exist in Staphylococcus aureus, where both mechanisms are expressed simultaneously in the SA K4100 strain, with its efflux pump being characterized as QacC (Quaternary Ammonium Compounds C). The search for inhibitors of these mechanisms has grown gradually, with research on isolated compounds, including terpenes, which have innumerable biological activities, being common. This study sought to evaluate the antibacterial activity of Terpinolene against the S. aureus K4100 strain, carrying a QacC efflux pump and β-lactamase, as well as to evaluate its toxicity in the Drosophila melanogaster arthropod model. Determination of the Minimum Inhibitory Concentration (MIC) was performed by broth microdilution. Efflux pump inhibition was evaluated by the MIC reduction of Oxacillin and Ethidium Bromide (EtBr). β-Lactamase inhibition was analyzed by the MIC reduction of Ampicillin with Sulbactam. Toxicity was verified by mortality parameters and locomotor assays in D. melanogaster. The results demonstrated that Terpinolene did not present a direct antibacterial activity (MIC ≥ 1024 μg/mL). However, a reduction in MIC was observed when Terpinolene was associated with Oxacillin (161.26-71.83 μg/mL) and EtBr (45.25-32 μg/mL), possibly by a β-lactamase and efflux pump inhibition, thus evidencing a modulatory activity. Terpinolene presented D. melanogaster mortality with an EC50 of 34.6 μL/L within 12 h of exposure. Additionally, Terpinolene presented damage to the locomotor system after the second hour of exposure, with the effect increasing in a concentration-dependent manner. In conclusion, new tests should be carried out to investigate the Terpinolene reinforcement of antibiotic activity and toxic activity mechanisms of action.
Collapse
Affiliation(s)
- Jackelyne Roberta Scherf
- Laboratory of Bioprospecting in the Semi-Arid and Alternative Methods (LABSEMA), Regional University of Cariri - URCA, Crato, 63105-000, CE, Brazil; Biological Chemistry Pos Graduate Program, Brazil.
| | - Cristina Rodrigues Barbosa Dos Santos
- Laboratory of Bioprospecting in the Semi-Arid and Alternative Methods (LABSEMA), Regional University of Cariri - URCA, Crato, 63105-000, CE, Brazil; Biological Chemistry Pos Graduate Program, Brazil.
| | - Thiago Sampaio de Freitas
- Laboratory of Simulations and Molecular Spectroscopy, Regional University of Cariri - URCA, Crato, 63105-000, CE, Brazil; Biological Chemistry Pos Graduate Program, Brazil.
| | - Janaína Esmeraldo Rocha
- Laboratory of Microbiology and Molecular Biology (LMBM), Regional University of Cariri - URCA, Crato, 63105-000, CE, Brazil; Biological Chemistry Pos Graduate Program, Brazil.
| | - Nair Silva Macêdo
- Laboratory of Bioprospecting in the Semi-Arid and Alternative Methods (LABSEMA), Regional University of Cariri - URCA, Crato, 63105-000, CE, Brazil; Biological Sciences Pos Graduate Program - PPGCB, Federal University of Pernambuco - UFPE, Recife, 50670-901, PE, Brazil.
| | - Jessyca Nayara Mascarenhas Lima
- Laboratory of Bioprospecting in the Semi-Arid and Alternative Methods (LABSEMA), Regional University of Cariri - URCA, Crato, 63105-000, CE, Brazil.
| | - Henrique Douglas Melo Coutinho
- Laboratory of Microbiology and Molecular Biology (LMBM), Regional University of Cariri - URCA, Crato, 63105-000, CE, Brazil
| | - Francisco Assis Bezerra da Cunha
- Laboratory of Bioprospecting in the Semi-Arid and Alternative Methods (LABSEMA), Regional University of Cariri - URCA, Crato, 63105-000, CE, Brazil.
| |
Collapse
|
370
|
Synthesis of Ag-AgCl nanoparticles capped by calix[4]resorcinarene-mPEG conjugate and their antimicrobial activity. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
371
|
Singh R. Single-Cell Sequencing in Human Genital Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1255:203-220. [PMID: 32949402 DOI: 10.1007/978-981-15-4494-1_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Human genital infections are one of the most concerning issues worldwide and can be categorized into sexually transmitted, urinary tract and vaginal infections. These infections, if left untreated, can disseminate to the other parts of the body and cause more complicated illnesses such as pelvic inflammatory disease, urethritis, and anogenital cancers. The effective treatment against these infections is further complicated by the emergence of antimicrobial resistance in the genital infection causing pathogens. Furthermore, the development and applications of single-cell sequencing technologies have open new possibilities to study the drug resistant clones, cell to cell variations, the discovery of acquired drug resistance mutations, transcriptional diversity of a pathogen across different infection stages, to identify rare cell types and investigate different cellular states of genital infection causing pathogens, and to develop novel therapeutical strategies. In this chapter, I will provide a complete review of the applications of single-cell sequencing in human genital infections before discussing their limitations and challenges.
Collapse
Affiliation(s)
- Reema Singh
- Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada. .,Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, SK, Canada.
| |
Collapse
|
372
|
Taha I, Keshk EM, Khalil AGM, Fekri A. Synthesis, characterization, antibacterial evaluation, 2D-QSAR modeling and molecular docking studies for benzocaine derivatives. Mol Divers 2020; 25:435-459. [PMID: 32978693 DOI: 10.1007/s11030-020-10138-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/25/2020] [Indexed: 10/23/2022]
Abstract
Possible application of incorporating a well-known drug (benzocaine) with cyanoacetamide function to get a powerful synthon ethyl 4-cyanoacetamido benzoate. This synthetic intermediate was used as a precursor for the synthesis of triazine, pyridone, thiazolidinone, thiazole and thiophene scaffolds containing the benzocaine core. Facile coupling, Michael addition, condensation and nucleophilic attack reactions were used to synthesize our targets. The structural features of the synthesized scaffolds were characterized using IR, 1H NMR, 13C NMR and mass spectroscopy. The antibacterial activities against Gram-positive (Staphylococcus aureus, Bacillus subtilis) and Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa) were evaluated using ampicillin as a reference drug. DNA/methyl-green colorimetric assay of the DNA-binding compounds was also performed. Theoretical studies of the newly synthesized compounds based on molecular docking and QSAR study were conducted. The molecular docking studies were screened by MOE software for the more potent antibacterial agent 28b and each native ligand against four of S. aureus proteins 1jij, 2xct, 2w9s and 3t07.
Collapse
Affiliation(s)
- Israa Taha
- Chemistry Department, Faculty of Science, Mansoura University, 25 El Gomhouria St, Mansoura, Dakahlia Governorate, 35516, Egypt
| | - Eman M Keshk
- Chemistry Department, Faculty of Science, Mansoura University, 25 El Gomhouria St, Mansoura, Dakahlia Governorate, 35516, Egypt
| | - Abdel-Galil M Khalil
- Chemistry Department, Faculty of Science, Mansoura University, 25 El Gomhouria St, Mansoura, Dakahlia Governorate, 35516, Egypt
| | - Ahmed Fekri
- Chemistry Department, Faculty of Science, Mansoura University, 25 El Gomhouria St, Mansoura, Dakahlia Governorate, 35516, Egypt.
| |
Collapse
|
373
|
Ansari A, Ibrahim F, Pervez S, Aman A. Inhibitory mechanism of BAC-IB17 against β-lactamase mediated resistance in methicillin-resistant Staphylococcus aureus and application as an oncolytic agent. Microb Pathog 2020; 149:104499. [PMID: 32956794 DOI: 10.1016/j.micpath.2020.104499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 10/23/2022]
Abstract
Cancer remains a foremost cause of deaths worldwide, despite several advances in the medical science. The conventional chemotherapeutic methods are not only harmful for normal body cells but also become inactive due to the development of resistance by cancer cells. Therefore, the demand of safe anticancer agents is increasing and enforced the bottomless research on the bacteriocins. Several studies have reported the selective anticancer property of bacteriocins. Current research is the contribution to explore the exact mechanism of action and in vitro application of bacteriocin (BAC-IB17) as an oncolytic agent. In this study, β-lactamase mediated resistance of methicillin resistant Staphylococcus aureus (MRSA) was studied and inhibitory mechanism of MRSA by BAC-IB17 was investigated. Cytotoxic studies were conducted to analyze the anticancerous potential of BAC-IB17. Results revealed that BAC-IB17 inhibited the β-lactamase and produced profound effect on the membrane integrity of MRSA confirmed by scanning electron microscope (SEM). FTIR spectroscopic analysis revealed the changes in the functional groups of bacterial cells before and after treatment with BAC-IB17. BAC-IB17 also found anticancer in nature as it kills HeLa cell lines with the IC50 value of 12.5 μg mL-1 with no cytotoxic effect on normal cells at this concentration. This specific anticancer property of BAC-IB17 will make it a promising candidate for the treatment of cancer after further clinical trials. Moreover, BAC-IB17 may control MDR bacteria responsible for the secondary complications in cancer patients.
Collapse
Affiliation(s)
- Asma Ansari
- The Karachi Institute of Biotechnology & Genetic Engineering (KIBGE), University of Karachi, Karachi, 75270, Pakistan.
| | - Fariha Ibrahim
- The Karachi Institute of Biotechnology & Genetic Engineering (KIBGE), University of Karachi, Karachi, 75270, Pakistan
| | - Sidra Pervez
- Department of Biochemistry, Shaheed Benazir Bhutto Women University, Peshawar, Pakistan
| | - Afsheen Aman
- The Karachi Institute of Biotechnology & Genetic Engineering (KIBGE), University of Karachi, Karachi, 75270, Pakistan
| |
Collapse
|
374
|
Henciya S, Vengateshwaran TD, Gokul MS, Dahms HU, James RA. Antibacterial Activity of Halophilic Bacteria Against Drug-Resistant Microbes Associated with Diabetic Foot Infections. Curr Microbiol 2020; 77:3711-3723. [PMID: 32930826 DOI: 10.1007/s00284-020-02190-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/28/2020] [Indexed: 11/25/2022]
Abstract
Bacteria causing diabetic foot infections (DFI) are chronic and generally multidrug resistant (MDR), which calls urgently for alternative antibacterials. The present study focused on potential metabolite producing bacteria from a saltpan environment and screened against MDR pathogens isolated from DFI patients. Molecular identification of the DFI pathogens provided Klebsiella quasivariicola, Staphylococcus argenteus, Escherichia coli, Staphylococcus hominis subsp. novobiosepticus, Bacillus australimaris, and Corynebacterium stationis. Among 34 isolated halophilic bacteria, the cell-free supernatant of strain PSH06 provided the largest inhibition zone of 23 mm against K. quasivariicola [D1], 21 mm against. S. argenteus [D2], 19 mm against E. coli [D3], and a minimum inhibition zone was found to be 14 mm against C. stationis [D8]. The potent activity providing stain confirmed as Pseudomonas aeruginosa through molecular identification. On the other hand, ethyl acetate extract of this strain showed excellent growth inhibition in MIC at 64 µg/mL against K. quasivariicola. Distressed cell membranes and vast dead cells were observed at MIC of ethyl acetate extract by SEM and CLSM against K.quasivariicola and E. coli. GC-MS profile of ethyl acetate extract exposed the occurrence of Bis (2-Ethylhexyl) Phthalate and n-Hexadecanoic acid and shows 100% toxic effect at 24 mg/mL by Artemia nauplii. The active extract fraction with above compounds derived from saltpan bacteria provided highest antibacterial efficacy against DFI-associated pathogens depicted with broad spectrum activity compared to standard antibiotics.
Collapse
Affiliation(s)
- Santhaseelan Henciya
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620024, India
| | | | | | - Hans-Uwe Dahms
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan. .,Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan.
| | - Rathinam Arthur James
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620024, India.
| |
Collapse
|
375
|
Lemnaru (Popa) GM, Truşcă RD, Ilie CI, Țiplea RE, Ficai D, Oprea O, Stoica-Guzun A, Ficai A, Dițu LM. Antibacterial Activity of Bacterial Cellulose Loaded with Bacitracin and Amoxicillin: In Vitro Studies. Molecules 2020; 25:molecules25184069. [PMID: 32899912 PMCID: PMC7571097 DOI: 10.3390/molecules25184069] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 11/19/2022] Open
Abstract
The use of bacterial cellulose (BC) in skin wound treatment is very attractive due to its unique characteristics. These dressings’ wet environment is an important feature that ensures efficient healing. In order to enhance the antimicrobial performances, bacterial-cellulose dressings were loaded with amoxicillin and bacitracin as antibacterial agents. Infrared characterization and thermal analysis confirmed bacterial-cellulose binding to the drug. Hydration capacity showed good hydrophilicity, an efficient dressing’s property. The results confirmed the drugs’ presence in the bacterial-cellulose dressing’s structure as well as the antimicrobial efficiency against Staphylococcus aureus and Escherichia coli. The antimicrobial assessments were evaluated by contacting these dressings with the above-mentioned bacterial strains and evaluating the growth inhibition of these microorganisms.
Collapse
Affiliation(s)
- Georgiana-Mădălina Lemnaru (Popa)
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (G.-M.L.); (R.D.T.); (C.-I.I.); (R.E.Ț.); (D.F.); (A.S.-G.)
| | - Roxana Doina Truşcă
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (G.-M.L.); (R.D.T.); (C.-I.I.); (R.E.Ț.); (D.F.); (A.S.-G.)
| | - Cornelia-Ioana Ilie
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (G.-M.L.); (R.D.T.); (C.-I.I.); (R.E.Ț.); (D.F.); (A.S.-G.)
| | - Roxana Elena Țiplea
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (G.-M.L.); (R.D.T.); (C.-I.I.); (R.E.Ț.); (D.F.); (A.S.-G.)
| | - Denisa Ficai
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (G.-M.L.); (R.D.T.); (C.-I.I.); (R.E.Ț.); (D.F.); (A.S.-G.)
| | - Ovidiu Oprea
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (G.-M.L.); (R.D.T.); (C.-I.I.); (R.E.Ț.); (D.F.); (A.S.-G.)
- Correspondence: (O.O.); (A.F.)
| | - Anicuța Stoica-Guzun
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (G.-M.L.); (R.D.T.); (C.-I.I.); (R.E.Ț.); (D.F.); (A.S.-G.)
| | - Anton Ficai
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (G.-M.L.); (R.D.T.); (C.-I.I.); (R.E.Ț.); (D.F.); (A.S.-G.)
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
- Correspondence: (O.O.); (A.F.)
| | - Lia-Mara Dițu
- Faculty of Biology, University of Bucharest, 1-3 Aleea Portocalelor, 060101 Bucharest, Romania; or
| |
Collapse
|
376
|
Herrera-Sánchez MP, Rodríguez-Hernández R, Rondón-Barragán IS. Molecular characterization of antimicrobial resistance and enterobacterial repetitive intergenic consensus-PCR as a molecular typing tool for Salmonella spp. isolated from poultry and humans. Vet World 2020; 13:1771-1779. [PMID: 33132588 PMCID: PMC7566269 DOI: 10.14202/vetworld.2020.1771-1779] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/14/2020] [Indexed: 01/01/2023] Open
Abstract
Background and Aim: Salmonella spp. are one of the most important food-borne pathogens in the world, emerging as a major public health concern. Moreover, multidrug-resistant (MDR) strains have been isolated from salmonellosis outbreaks, which compromise its treatment success. This study was conducted to characterize the phenotypic and genotypic antibiotic resistance profile of Salmonella strains isolated from broilers and humans from the regions of Tolima and Santander (Colombia). Materials and Methods: Salmonella spp. strains (n=49) were confirmed through molecular detection by amplification of the invA gene. Phenotypic antibiotic resistance was determined by the automated method and the agar diffusion method, and the presence of resistance genes was evaluated by PCR. Genotypic characterization was conducted using the enterobacterial repetitive intergenic consensus (ERIC)-PCR method, from which a dendrogram was generated and the possible phylogenetic relationships were established. Results: Salmonella isolates were classified as MDR strains exhibiting resistance to four antibiotic classes, penicillins, aminoglycosides, sulfonamides, and cephalosporins, and the human strains were resistant to gentamicin. At the genotypic level, the isolates contained the genes blaCMY2, blaCTX-M, blaPSE-1, blaTEM, aadA1, srtB, dfrA1, sul2, and floR. The genotyping results obtained by ERIC-PCR allowed the grouping of strains according to the source of isolation. Conclusion: The Salmonella spp. strains exhibited resistance to multiple antibiotics, as well as multiple genes associated with them, and the ERIC-PCR method was a technique that was helpful in generating clusters with biological significance.
Collapse
Affiliation(s)
- María Paula Herrera-Sánchez
- Research Group in Immunology and Pathogenesis, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Santa Helena Highs, Ibagué, Tolima, Colombia
| | - Roy Rodríguez-Hernández
- Poultry Research Group, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Santa Helena Highs, Ibagué, Tolima, Colombia
| | - Iang Schroniltgen Rondón-Barragán
- Research Group in Immunology and Pathogenesis, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Santa Helena Highs, Ibagué, Tolima, Colombia.,Poultry Research Group, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Santa Helena Highs, Ibagué, Tolima, Colombia
| |
Collapse
|
377
|
Tsakou F, Jersie-Christensen R, Jenssen H, Mojsoska B. The Role of Proteomics in Bacterial Response to Antibiotics. Pharmaceuticals (Basel) 2020; 13:E214. [PMID: 32867221 PMCID: PMC7559545 DOI: 10.3390/ph13090214] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023] Open
Abstract
For many years, we have tried to use antibiotics to eliminate the persistence of pathogenic bacteria. However, these infectious agents can recover from antibiotic challenges through various mechanisms, including drug resistance and antibiotic tolerance, and continue to pose a global threat to human health. To design more efficient treatments against bacterial infections, detailed knowledge about the bacterial response to the commonly used antibiotics is required. Proteomics is a well-suited and powerful tool to study molecular response to antimicrobial compounds. Bacterial response profiling from system-level investigations could increase our understanding of bacterial adaptation, the mechanisms behind antibiotic resistance and tolerance development. In this review, we aim to provide an overview of bacterial response to the most common antibiotics with a focus on the identification of dynamic proteome responses, and through published studies, to elucidate the formation mechanism of resistant and tolerant bacterial phenotypes.
Collapse
Affiliation(s)
| | | | | | - Biljana Mojsoska
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark; (F.T.); (R.J.-C.); (H.J.)
| |
Collapse
|
378
|
Duda-Madej A, Kozłowska J, Krzyżek P, Anioł M, Seniuk A, Jermakow K, Dworniczek E. Antimicrobial O-Alkyl Derivatives of Naringenin and Their Oximes Against Multidrug-Resistant Bacteria. Molecules 2020; 25:E3642. [PMID: 32785151 PMCID: PMC7464300 DOI: 10.3390/molecules25163642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/01/2020] [Accepted: 08/08/2020] [Indexed: 12/23/2022] Open
Abstract
New antimicrobial agents are needed to address infections caused by multidrug-resistant bacteria. Here, we are reporting novel O-alkyl derivatives of naringenin and their oximes, including novel compounds with a naringenin core and O-hexyl chains, showing activity against clinical strains of clarithromycin-resistant Helicobacter pylori, vancomycin-resistant Enterococcus faecalis, methicillin-resistant Staphylococcus aureus, and beta-lactam-resistant Acinetobacter baumannii and Klebsiella pneumoniae. The minimum inhibitory concentrations (MICs), which provide a quantitative measure of antimicrobial activity, were in the low microgram range for the selected compounds. Checkerboard assays for the most active compounds in combination with antibiotics revealed interactions that varied from synergistic to neutral.
Collapse
Affiliation(s)
- Anna Duda-Madej
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Chałubińskiego 4, 50-368 Wrocław, Poland; (A.D.-M.); (P.K.); (A.S.); (K.J.)
| | - Joanna Kozłowska
- Department of Chemistry, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland;
| | - Paweł Krzyżek
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Chałubińskiego 4, 50-368 Wrocław, Poland; (A.D.-M.); (P.K.); (A.S.); (K.J.)
| | - Mirosław Anioł
- Department of Chemistry, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland;
| | - Alicja Seniuk
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Chałubińskiego 4, 50-368 Wrocław, Poland; (A.D.-M.); (P.K.); (A.S.); (K.J.)
| | - Katarzyna Jermakow
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Chałubińskiego 4, 50-368 Wrocław, Poland; (A.D.-M.); (P.K.); (A.S.); (K.J.)
| | - Ewa Dworniczek
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Chałubińskiego 4, 50-368 Wrocław, Poland; (A.D.-M.); (P.K.); (A.S.); (K.J.)
| |
Collapse
|
379
|
Quinn GA, Banat AM, Abdelhameed AM, Banat IM. Streptomyces from traditional medicine: sources of new innovations in antibiotic discovery. J Med Microbiol 2020; 69:1040-1048. [PMID: 32692643 PMCID: PMC7642979 DOI: 10.1099/jmm.0.001232] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/30/2020] [Indexed: 12/11/2022] Open
Abstract
Given the increased reporting of multi-resistant bacteria and the shortage of newly approved medicines, researchers have been looking towards extreme and unusual environments as a new source of antibiotics. Streptomyces currently provides many of the world's clinical antibiotics, so it comes as no surprise that these bacteria have recently been isolated from traditional medicine. Given the wide array of traditional medicines, it is hoped that these discoveries can provide the much sought after core structure diversity that will be required of a new generation of antibiotics. This review discusses the contribution of Streptomyces to antibiotics and the potential of newly discovered species in traditional medicine. We also explore how knowledge of traditional medicines can aid current initiatives in sourcing new and chemically diverse antibiotics.
Collapse
Affiliation(s)
- Gerry A. Quinn
- Centre for Molecular Biosciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Aiya M. Banat
- Department of Orthopaedics, Altnagelvin Hospital, Londonderry, Northern Ireland, UK
| | - Alyaa M. Abdelhameed
- Department of Biotechnology, College of Science, University of Diyala, Baqubah, Iraq
| | - Ibrahim M. Banat
- Centre for Molecular Biosciences, Ulster University, Coleraine, Northern Ireland, UK
| |
Collapse
|
380
|
Selleck C, Pedroso MM, Wilson L, Krco S, Knaven EG, Miraula M, Mitić N, Larrabee JA, Brück T, Clark A, Guddat LW, Schenk G. Structure and mechanism of potent bifunctional β-lactam- and homoserine lactone-degrading enzymes from marine microorganisms. Sci Rep 2020; 10:12882. [PMID: 32732933 PMCID: PMC7392888 DOI: 10.1038/s41598-020-68612-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/26/2020] [Indexed: 11/11/2022] Open
Abstract
Genes that confer antibiotic resistance can rapidly be disseminated from one microorganism to another by mobile genetic elements, thus transferring resistance to previously susceptible bacterial strains. The misuse of antibiotics in health care and agriculture has provided a powerful evolutionary pressure to accelerate the spread of resistance genes, including those encoding β-lactamases. These are enzymes that are highly efficient in inactivating most of the commonly used β-lactam antibiotics. However, genes that confer antibiotic resistance are not only associated with pathogenic microorganisms, but are also found in non-pathogenic (i.e. environmental) microorganisms. Two recent examples are metal-dependent β-lactamases (MBLs) from the marine organisms Novosphingobium pentaromativorans and Simiduia agarivorans. Previous studies have demonstrated that their β-lactamase activity is comparable to those of well-known MBLs from pathogenic sources (e.g. NDM-1, AIM-1) but that they also possess efficient lactonase activity, an activity associated with quorum sensing. Here, we probed the structure and mechanism of these two enzymes using crystallographic, spectroscopic and fast kinetics techniques. Despite highly conserved active sites both enzymes demonstrate significant variations in their reaction mechanisms, highlighting both the extraordinary ability of MBLs to adapt to changing environmental conditions and the rather promiscuous acceptance of diverse substrates by these enzymes.
Collapse
Affiliation(s)
- Christopher Selleck
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Marcelo Monteiro Pedroso
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia. .,Australian Centre for Ecogenomics, The University of Queensland, St. Lucia, QLD, 4072, Australia. .,Sustainable Minerals Institute, The University of Queensland, St. Lucia, QLD, 4072, Australia.
| | - Liam Wilson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Stefan Krco
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Esmée Gianna Knaven
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Manfredi Miraula
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.,Department of Chemistry, Maynooth University, Maynooth, County Kildare, Ireland
| | - Nataša Mitić
- Department of Chemistry, Maynooth University, Maynooth, County Kildare, Ireland
| | - James A Larrabee
- Department of Chemistry and Biochemistry, Middlebury College, Middlebury, VT, 05753, USA
| | - Thomas Brück
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), Lichtenberg Str. 4, 85748, Garching, Germany
| | - Alice Clark
- Sustainable Minerals Institute, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia. .,Australian Centre for Ecogenomics, The University of Queensland, St. Lucia, QLD, 4072, Australia. .,Sustainable Minerals Institute, The University of Queensland, St. Lucia, QLD, 4072, Australia.
| |
Collapse
|
381
|
Kong J, Wu ZX, Wei L, Chen ZS, Yoganathan S. Exploration of Antibiotic Activity of Aminoglycosides, in Particular Ribostamycin Alone and in Combination With Ethylenediaminetetraacetic Acid Against Pathogenic Bacteria. Front Microbiol 2020; 11:1718. [PMID: 32849365 PMCID: PMC7403490 DOI: 10.3389/fmicb.2020.01718] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/30/2020] [Indexed: 11/16/2022] Open
Abstract
The emergence of infections caused by bacterial pathogens that are resistant to current antibiotic therapy is a critical healthcare challenge. Aminoglycosides are natural antibiotics with broad spectrum of activity; however, their clinical use is limited due to considerable nephrotoxicity. Moreover, drug-resistant bacteria that cause infections in human as well as livestock are less responsive to conventional antibiotics. Herein, we report the in vitro antibacterial evaluation of five different aminoglycosides, including ribostamycin, against a panel of Gram-positive and Gram-negative pathogens. Eight of the tested bacterial strains are linked to gastrointestinal (GI) infections. The minimum inhibitory concentration (MIC) of ribostamycin against three different Escherichia coli strains is in the range of 0.9–7.2 μM and against a strain of Haemophilus influenzae is 0.5 μM. We also found that the MIC of ribostamycin was considerably enhanced from 57.2 to 7.2 μM, an 8-fold improvement, when bacteria were treated with a combination of ribostamycin and ethylenediaminetetraacetic acid (EDTA). These findings demonstrate a promising approach to enhance the clinical potential of ribostamycin and provide a rational for its antibiotic reclassification from special level to non-restricted level.
Collapse
Affiliation(s)
- Jing Kong
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY, United States
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY, United States
| | - Liuya Wei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY, United States.,School of Pharmacy, Weifang Medical University, Weifang, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY, United States
| | - Sabesan Yoganathan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY, United States
| |
Collapse
|
382
|
Monteiro JSC, Rangel EE, de Oliveira SCPS, Crugeira PJL, Nunes IPF, de A Fagnani SRC, Sampaio FJP, de Almeida PF, Pinheiro ALB. Enhancement of photodynamic inactivation of planktonic cultures of Staphylococcus aureus by DMMB-AuNPs. Photodiagnosis Photodyn Ther 2020; 31:101930. [PMID: 32717452 DOI: 10.1016/j.pdpdt.2020.101930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/10/2020] [Accepted: 07/20/2020] [Indexed: 10/23/2022]
Abstract
Photodynamic inactivation is a promising method for the treatment of infectious diseases. Nanotechnology through gold nanoparticles, as a tool to improve the delivery of photosensitizer is an attractive approach to enhance photodynamic inactivation of bacteria. Moreover, gold nanoparticles enchance the absorption of light due to their plasmon resonance. The aim of this study was to evaluate in vitro photodynamic inactivation effects of 1.9-Dimethyl-Methylene Blue (DMMB)-AuNPs associated with the red LED (λ630 ηm ± 20 ηm, 125 mW, 12 J / cm², 192 s) on S. aureus strain. Eight experimental groups were studied: Control, LED, AuNPs, AuNPs + LED, DMMB, DMMB + LED, DMMB + AuNPs, DMMB + AuNPs + LED. After incubation, the number of bacteria surviving each treatment was determined and then enumerated by viable counting (CFU / mL). The logarithm of CFU / mL (CFU/mL log10) was calculated. All experiments realized in triplicate. The statistical analyses included one-way ANOVA tests, Tukey's multiple comparisons and nonlinear regression, p values <0.05 were considered statistically significant. According to results, the photodynamic inactivation of S. aureus on groups DMMB + LED and DMMB-AuNPs + LED, showed a significant reduction of the microbial load (p < 0.0001) when compared to the Control group. The decimal reduction (RD) of these groups were 99.96 % (RD = 3) and 99.994 % (RD = 4) respectively. In conclusion, these findings demonstrated that photodynamic inactivation is enhanced by using DMMB-AuNPs on S. aureus.
Collapse
Affiliation(s)
- Juliana S C Monteiro
- Department of Biology, Feira de Santana State University, Feira de Santa, BA, CEP 44036-900, Brazil; Center of Biophotonics, Federal University of Bahia, 62, Araujo Pinho Ave, Canela, Salvador, BA, CEP 40110-150, Brazil.
| | - Emília E Rangel
- Department of Biology, Feira de Santana State University, Feira de Santa, BA, CEP 44036-900, Brazil.
| | - Susana C P S de Oliveira
- Center of Biophotonics, Federal University of Bahia, 62, Araujo Pinho Ave, Canela, Salvador, BA, CEP 40110-150, Brazil.
| | - Pedro J L Crugeira
- Center of Biophotonics, Federal University of Bahia, 62, Araujo Pinho Ave, Canela, Salvador, BA, CEP 40110-150, Brazil; Laboratory of Biotechnology and Ecology of Micro-organisms, Institute of Health Science, Federal University of Bahia, Reitor Miguel Calmon Ave, S/N, Salvador, BA, CEP:40110-100, Brazil.
| | - Iago P F Nunes
- Department of Biology, Feira de Santana State University, Feira de Santa, BA, CEP 44036-900, Brazil; Center of Biophotonics, Federal University of Bahia, 62, Araujo Pinho Ave, Canela, Salvador, BA, CEP 40110-150, Brazil.
| | - Sandra R C de A Fagnani
- Department of Biology, Feira de Santana State University, Feira de Santa, BA, CEP 44036-900, Brazil; Center of Biophotonics, Federal University of Bahia, 62, Araujo Pinho Ave, Canela, Salvador, BA, CEP 40110-150, Brazil.
| | - Fernando J P Sampaio
- Department of Biology, Feira de Santana State University, Feira de Santa, BA, CEP 44036-900, Brazil; Center of Biophotonics, Federal University of Bahia, 62, Araujo Pinho Ave, Canela, Salvador, BA, CEP 40110-150, Brazil.
| | - Paulo F de Almeida
- Laboratory of Biotechnology and Ecology of Micro-organisms, Institute of Health Science, Federal University of Bahia, Reitor Miguel Calmon Ave, S/N, Salvador, BA, CEP:40110-100, Brazil.
| | - Antônio L B Pinheiro
- Center of Biophotonics, Federal University of Bahia, 62, Araujo Pinho Ave, Canela, Salvador, BA, CEP 40110-150, Brazil; National Institute of Basic Optics and Applied to Life Science, 400, Trabalhador São-Carlense Ave, Parque Arnold Schimidt, São Carlos, SP, CEP:13566-590, Brazil.
| |
Collapse
|
383
|
AlbaTraDIS: Comparative analysis of large datasets from parallel transposon mutagenesis experiments. PLoS Comput Biol 2020; 16:e1007980. [PMID: 32678849 PMCID: PMC7390408 DOI: 10.1371/journal.pcbi.1007980] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/29/2020] [Accepted: 05/23/2020] [Indexed: 12/11/2022] Open
Abstract
Bacteria need to survive in a wide range of environments. Currently, there is an incomplete understanding of the genetic basis for mechanisms underpinning survival in stressful conditions, such as the presence of anti-microbials. Transposon directed insertion-site sequencing (TraDIS) is a powerful tool to identify genes and networks which are involved in survival and fitness under a given condition by simultaneously assaying the fitness of millions of mutants, thereby relating genotype to phenotype and contributing to an understanding of bacterial cell biology. A recent refinement of this approach allows the roles of essential genes in conditional stress survival to be inferred by altering their expression. These advancements combined with the rapidly falling costs of sequencing now allows comparisons between multiple experiments to identify commonalities in stress responses to different conditions. This capacity however poses a new challenge for analysis of multiple data sets in conjunction. To address this analysis need, we have developed ‘AlbaTraDIS’; a software application for rapid large-scale comparative analysis of TraDIS experiments that predicts the impact of transposon insertions on nearby genes. AlbaTraDIS can identify genes which are up or down regulated, or inactivated, between multiple conditions, producing a filtered list of genes for further experimental validation as well as several accompanying data visualisations. We demonstrate the utility of our new approach by applying it to identify genes used by Escherichia coli to survive in a wide range of different concentrations of the biocide Triclosan. AlbaTraDIS identified all well characterised Triclosan resistance genes, including the primary target, fabI. A number of new loci were also implicated in Triclosan resistance and the predicted phenotypes for a selection of these were validated experimentally with results being consistent with predictions. AlbaTraDIS provides a simple and rapid method to analyse multiple transposon mutagenesis data sets allowing this technology to be used at large scale. To our knowledge this is the only tool currently available that can perform these tasks. AlbaTraDIS is written in Python 3 and is available under the open source licence GNU GPL 3 from https://github.com/quadram-institute-bioscience/albatradis.
Collapse
|
384
|
Duggal Y, Fontaine BM, Dailey DM, Ning G, Weinert EE. RNase I Modulates Escherichia coli Motility, Metabolism, and Resistance. ACS Chem Biol 2020; 15:1996-2004. [PMID: 32551492 DOI: 10.1021/acschembio.0c00390] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bacteria are constantly adapting to their environment by sensing extracellular factors that trigger production of intracellular signaling molecules, known as second messengers. Recently, 2',3'-cyclic nucleotide monophosphates (2',3'-cNMPs) were identified in Escherichia coli and have emerged as possible novel signaling molecules. 2',3'-cNMPs are produced through endonucleolytic cleavage of short RNAs by the T2 endoribonuclease, RNase I; however, the physiological roles of RNase I remain unclear. Our transcriptomic analysis suggests that RNase I is involved in modulating numerous cellular processes, including nucleotide metabolism, motility, acid sensitivity, metal homeostasis, and outer membrane morphology. Through a combination of deletion strain and inhibitor studies, we demonstrate that RNase I plays a previously unknown role in E. coli stress resistance by affecting pathways that are part of the defense mechanisms employed by bacteria when introduced to external threats, including antibiotics. Thus, this work provides insight into the emerging roles of RNase I in bacterial signaling and physiology and highlights the potential of RNase I as a target for antibacterial adjuvants.
Collapse
Affiliation(s)
- Yashasvika Duggal
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Benjamin M. Fontaine
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Deanna M. Dailey
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Gang Ning
- Microscopy Facility, Huck Institute of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Emily E. Weinert
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
385
|
Saedtler M, Förtig N, Ohlsen K, Faber F, Masota N, Kowalick K, Holzgrabe U, Meinel L. Antibacterial Anacardic Acid Derivatives. ACS Infect Dis 2020; 6:1674-1685. [PMID: 32519844 DOI: 10.1021/acsinfecdis.9b00378] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We report on the antibacterial activity of five phenolic lipids derived from anacardic acid characterized by increasing alkyl chain lengths with 6, 8, 10, 12, or 14 carbon atoms. The compounds were profiled for their physicochemical properties, transport across epithelial monolayers, cytotoxicity, and antibacterial activity as compared to common antibiotics. No cytotoxicity was reported in cell lines of fibroblast, hepatic, colorectal, or renal origin. C10 and C12 significantly increased the survival in a Galleria mellonella model infected with multi-drug-resistant Staphylococcus aureus (MRSA) or vancomycin-resistant Enterococci (VRE) as compared to the untreated control group. Future studies are required to corroborate these findings in relevant animal model systems of infection.
Collapse
Affiliation(s)
- Marco Saedtler
- Institute for Pharmacy and Food Chemistry, Am Hubland, 97074 Würzburg, Germany
| | - Niclas Förtig
- Institute for Pharmacy and Food Chemistry, Am Hubland, 97074 Würzburg, Germany
| | - Knut Ohlsen
- Institute for Molecular Infection Biology (IMIB), Josef-Schneider-Straße 2, 97080 Würzburg, Germany
| | - Franziska Faber
- Institute for Molecular Infection Biology (IMIB), Josef-Schneider-Straße 2, 97080 Würzburg, Germany
| | - Nelson Masota
- Institute for Pharmacy and Food Chemistry, Am Hubland, 97074 Würzburg, Germany
| | - Kristin Kowalick
- Labor LS SE & Co. KG, Mangelsfeld 4-6, 97708 Bad Bocklet, Germany
| | - Ulrike Holzgrabe
- Institute for Pharmacy and Food Chemistry, Am Hubland, 97074 Würzburg, Germany
| | - Lorenz Meinel
- Institute for Pharmacy and Food Chemistry, Am Hubland, 97074 Würzburg, Germany
- Helmholtz Institute for RNA-Based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), 97080 Würzburg, Germany
| |
Collapse
|
386
|
Li X, Liu J, Zhang W, Wu Y, Li J, Foda MF, Han H. Biogenic Hybrid Nanosheets Activated Photothermal Therapy and Promoted Anti-PD-L1 Efficacy for Synergetic Antitumor Strategy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:29122-29132. [PMID: 32501679 DOI: 10.1021/acsami.0c09111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Bacteria show promise for use in the field of combination cancer therapy because of their abilities to accumulate in tumors and their roles as natural immunologic adjuvants. However, the huge size of bacteria decreases their chances of being delivered into tumor cells. Moreover, their toxins may cause systemic toxicity in living organisms. Here, we proposed a method to in situ synthesize Au nanoparticles on the surface of Escherichia coli (E. coli), followed by sonication to acquire Au nanoparticles loaded membrane nanosheets (AuMNs) for use in photothermal and combination cancer therapy. Compared to E. coli-loaded Au nanoparticles (E. coli@Au), the small size of membrane nanosheets can be successfully delivered into tumor cells. In addition, the enrichment of AuMNs in tumor site is significantly enhanced via EPR effect, facilitating to activate photothermal conversion under 808 nm laser. Besides, the function of bacteria as natural immunologic adjuvants to promote anti-PD-L1 efficacy is still retained in AuMNs, while the inflammation and damage to viscera caused by AuMNs were milder than E. coli@Au. This study aims to decrease the systemic toxicity of bacteria and promote anti-PD-L1 efficacy in bacteria-mediated combination therapy, so as to open up a new avenue for drug delivery via natural processes.
Collapse
Affiliation(s)
- Xuyu Li
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiawei Liu
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Weiyun Zhang
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Wu
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinjie Li
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Mohamed F Foda
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Department of Biochemistry, Faculty of Agriculture, Benha University, Moshtohor Toukh 13736, Egypt
| | - Heyou Han
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
387
|
Shahin IG, Abutaleb NS, Alhashimi M, Kassab AE, Mohamed KO, Taher AT, Seleem MN, Mayhoub AS. Evaluation of N-phenyl-2-aminothiazoles for treatment of multi-drug resistant and intracellular Staphylococcus aureus infections. Eur J Med Chem 2020; 202:112497. [PMID: 32707373 DOI: 10.1016/j.ejmech.2020.112497] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/16/2020] [Accepted: 05/19/2020] [Indexed: 12/14/2022]
Abstract
The increasing emergence of antibiotic-resistant bacterial pathogens calls for additional urgency in the development of new antibacterial candidates. N-Phenyl-2-aminothiazoles are promising candidates that possess potent anti-MRSA activity and could potentially replenish the MRSA antibiotic pipeline. The initial screen of a series of compounds in this novel class against several bacterial strains revealed that the aminoguanidine analogues possessed promising activities and superior safety profiles. The determined MICs of these compounds were comparable to, if not better than, those of the control drugs (linezolid and vancomycin). Remarkably, compounds 3a, 3b, and 3e possessed potent activities against multidrug resistant staphylococcal isolates and several clinically important pathogens, such as vancomycin-resistant enterococci (VRE) and Streptococcus pneumoniae. In addition, the compounds were superior to vancomycin in the rapid killing of MRSA and the longer post-antibiotic effects. Furthermore, low concentrations of compounds 3a, 3b, and 3e reduced the intracellular burden of MRSA by greater than 90%. Initial in vitro PK/toxicity assessments revealed that compound 3e was highly tolerable and possessed a low metabolic clearance rate and a highly acceptable half-life.
Collapse
Affiliation(s)
- Inas G Shahin
- Organic Chemistry Department, Faculty of Pharmacy, October University for Modern Sciences and Arts, Giza, 11787, Egypt
| | - Nader S Abutaleb
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Marwa Alhashimi
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Asmaa E Kassab
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Khaled O Mohamed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Azza T Taher
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt; Department of Pharmaceutical Organic Chemistry, College of Pharmacy, October 6 University, 6-October, Giza, Egypt
| | - Mohamed N Seleem
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute of Inflammation, Immunology, and Infectious Disease, West Lafayette, IN, 47907, USA.
| | - Abdelrahman S Mayhoub
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al- Azhar University, Cairo, 11884, Egypt; University of Science and Technology, Nanoscience Program, Zewail City of Science and Technology, October Gardens, 6th October, Giza, 12578, Egypt.
| |
Collapse
|
388
|
Jubeh B, Breijyeh Z, Karaman R. Resistance of Gram-Positive Bacteria to Current Antibacterial Agents and Overcoming Approaches. Molecules 2020; 25:E2888. [PMID: 32586045 PMCID: PMC7356343 DOI: 10.3390/molecules25122888] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/22/2022] Open
Abstract
The discovery of antibiotics has created a turning point in medical interventions to pathogenic infections, but unfortunately, each discovery was consistently followed by the emergence of resistance. The rise of multidrug-resistant bacteria has generated a great challenge to treat infections caused by bacteria with the available antibiotics. Today, research is active in finding new treatments for multidrug-resistant pathogens. In a step to guide the efforts, the WHO has published a list of the most dangerous bacteria that are resistant to current treatments and requires the development of new antibiotics for combating the resistance. Among the list are various Gram-positive bacteria that are responsible for serious healthcare and community-associated infections. Methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus faecium, and drug-resistant Streptococcus pneumoniae are of particular concern. The resistance of bacteria is an evolving phenomenon that arises from genetic mutations and/or acquired genomes. Thus, antimicrobial resistance demands continuous efforts to create strategies to combat this problem and optimize the use of antibiotics. This article aims to provide a review of the most critical resistant Gram-positive bacterial pathogens, their mechanisms of resistance, and the new treatments and approaches reported to circumvent this problem.
Collapse
Affiliation(s)
| | | | - Rafik Karaman
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem P.O. Box 20002, Palestine; (B.J.); (Z.B.)
| |
Collapse
|
389
|
Khodadadi E, Zeinalzadeh E, Taghizadeh S, Mehramouz B, Kamounah FS, Khodadadi E, Ganbarov K, Yousefi B, Bastami M, Kafil HS. Proteomic Applications in Antimicrobial Resistance and Clinical Microbiology Studies. Infect Drug Resist 2020; 13:1785-1806. [PMID: 32606829 PMCID: PMC7305820 DOI: 10.2147/idr.s238446] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 05/23/2020] [Indexed: 12/11/2022] Open
Abstract
Sequences of the genomes of all-important bacterial pathogens of man, plants, and animals have been completed. Still, it is not enough to achieve complete information of all the mechanisms controlling the biological processes of an organism. Along with all advances in different proteomics technologies, proteomics has completed our knowledge of biological processes all around the world. Proteomics is a valuable technique to explain the complement of proteins in any organism. One of the fields that has been notably benefited from other systems approaches is bacterial pathogenesis. An emerging field is to use proteomics to examine the infectious agents in terms of, among many, the response the host and pathogen to the infection process, which leads to a deeper knowledge of the mechanisms of bacterial virulence. This trend also enables us to identify quantitative measurements for proteins extracted from microorganisms. The present review study is an attempt to summarize a variety of different proteomic techniques and advances. The significant applications in bacterial pathogenesis studies are also covered. Moreover, the areas where proteomics may lead the future studies are introduced.
Collapse
Affiliation(s)
- Ehsaneh Khodadadi
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Zeinalzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepehr Taghizadeh
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahareh Mehramouz
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fadhil S Kamounah
- Department of Chemistry, University of Copenhagen, Copenhagen, DK 2100, Denmark
| | - Ehsan Khodadadi
- Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | | | - Bahman Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Bastami
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
390
|
Shorter Antibacterial Peptide Having High Selectivity for E. coli Membranes and Low Potential for Inducing Resistance. Microorganisms 2020; 8:microorganisms8060867. [PMID: 32521823 PMCID: PMC7356157 DOI: 10.3390/microorganisms8060867] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/11/2022] Open
Abstract
Antimicrobial peptides (AMPs) have been recognised as a significant therapeutic option for mitigating resistant microbial infections. It has been found recently that Plasmodium falciparum-derived, 20 residue long, peptide 35409 had antibacterial and haemolytic activity, making it an AMP having reduced selectivity, and suggesting that it should be studied more extensively for obtaining new AMPs having activity solely targeting the bacterial membrane. Peptide 35409 was thus used as template for producing short synthetic peptides (<20 residues long) and evaluating their biological activity and relevant physicochemical characteristics for therapeutic use. Four of the sixteen short peptides evaluated here had activity against E. coli without any associated haemolytic effects. The 35409-1 derivative (17 residues long) had the best therapeutic characteristics as it had high selectivity for bacterial cells, stability in the presence of human sera, activity against E. coli multiresistant clinical isolates and was shorter than the original sequence. It had a powerful membranolytic effect and low potential for inducing resistance in bacteria. This peptide’s characteristics highlighted its potential as an alternative for combating infection caused by E. coli multiresistant bacteria and/or for designing new AMPs.
Collapse
|
391
|
Walker LR, Marty MT. Revealing the Specificity of a Range of Antimicrobial Peptides in Lipid Nanodiscs by Native Mass Spectrometry. Biochemistry 2020; 59:2135-2142. [PMID: 32452672 DOI: 10.1021/acs.biochem.0c00335] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Antimicrobial peptides (AMPs) interact directly with lipid membranes of pathogens and may have the potential to combat antibiotic resistance. Although many AMPs are thought to form toxic oligomeric pores, their interactions within lipid membranes are not well understood. Here, we used native mass spectrometry to measure the incorporation of a range of different AMPs in lipoprotein nanodiscs. We found that the truncation of human LL37 increases the lipid specificity but decreases the specificity of complex formation. We also saw that the reduction of disulfide bonds can have a dramatic effect on the ability of AMPs to interact with lipid bilayers. Finally, by examining a wider range of peptides we discovered that AMPs tend to interact specifically with anionic lipids but form nonspecific complexes with wide oligomeric state distributions. Overall, these data reveal that each AMP has unique behaviors but some common trends apply to many AMPs.
Collapse
|
392
|
Melaleuca leucadendra Essential Oil Promotes Loss of Cell Membrane and Wall Integrity and Inhibits Bacterial Growth: An In Silico and In Vitro Approach. Curr Microbiol 2020; 77:2181-2191. [DOI: 10.1007/s00284-020-02024-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/13/2020] [Indexed: 10/24/2022]
|
393
|
Ting DSJ, Beuerman RW, Dua HS, Lakshminarayanan R, Mohammed I. Strategies in Translating the Therapeutic Potentials of Host Defense Peptides. Front Immunol 2020; 11:983. [PMID: 32528474 PMCID: PMC7256188 DOI: 10.3389/fimmu.2020.00983] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/27/2020] [Indexed: 01/13/2023] Open
Abstract
The golden era of antibiotics, heralded by the discovery of penicillin, has long been challenged by the emergence of antimicrobial resistance (AMR). Host defense peptides (HDPs), previously known as antimicrobial peptides, are emerging as a group of promising antimicrobial candidates for combatting AMR due to their rapid and unique antimicrobial action. Decades of research have advanced our understanding of the relationship between the physicochemical properties of HDPs and their underlying antimicrobial and non-antimicrobial functions, including immunomodulatory, anti-biofilm, and wound healing properties. However, the mission of translating novel HDP-derived molecules from bench to bedside has yet to be fully accomplished, primarily attributed to their intricate structure-activity relationship, toxicity, instability in host and microbial environment, lack of correlation between in vitro and in vivo efficacies, and dwindling interest from large pharmaceutical companies. Based on our previous experience and the expanding knowledge gleaned from the literature, this review aims to summarize the novel strategies that have been employed to enhance the antimicrobial efficacy, proteolytic stability, and cell selectivity, which are all crucial factors for bench-to-bedside translation of HDP-based treatment. Strategies such as residues substitution with natural and/or unnatural amino acids, hybridization, L-to-D heterochiral isomerization, C- and N-terminal modification, cyclization, incorporation with nanoparticles, and "smart design" using artificial intelligence technology, will be discussed. We also provide an overview of HDP-based treatment that are currently in the development pipeline.
Collapse
Affiliation(s)
- Darren Shu Jeng Ting
- Larry A. Donoso Laboratory for Eye Research, Academic Ophthalmology, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, United Kingdom.,Department of Ophthalmology, Queen's Medical Centre, Nottingham, United Kingdom.,Anti-infectives Research Group, Singapore Eye Research Institute, The Academia, Singapore, Singapore
| | - Roger W Beuerman
- Anti-infectives Research Group, Singapore Eye Research Institute, The Academia, Singapore, Singapore
| | - Harminder S Dua
- Larry A. Donoso Laboratory for Eye Research, Academic Ophthalmology, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, United Kingdom.,Department of Ophthalmology, Queen's Medical Centre, Nottingham, United Kingdom
| | - Rajamani Lakshminarayanan
- Anti-infectives Research Group, Singapore Eye Research Institute, The Academia, Singapore, Singapore
| | - Imran Mohammed
- Larry A. Donoso Laboratory for Eye Research, Academic Ophthalmology, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
394
|
Ben Said L, Emond-Rheault JG, Soltani S, Telhig S, Zirah S, Rebuffat S, Diarra MS, Goodridge L, Levesque RC, Fliss I. Phenomic and genomic approaches to studying the inhibition of multiresistant Salmonella enterica by microcin J25. Environ Microbiol 2020; 22:2907-2920. [PMID: 32363677 DOI: 10.1111/1462-2920.15045] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/15/2020] [Accepted: 04/25/2020] [Indexed: 12/22/2022]
Abstract
In livestock production, antibiotics are used to promote animal growth, control infections and thereby increase profitability. This practice has led to the emergence of multiresistant bacteria such as Salmonella, of which some serovars are disseminated in the environment. The objective of this study is to evaluate microcin J25 as an inhibitor of Salmonella enterica serovars of various origins including human, livestock and food. Among the 116 isolates tested, 37 (31.8%) were found resistant to at least one antibiotic, and 28 were multiresistant with 19 expressing the penta-resistant phenotype ACSSuT. Microcin J25 inhibited all isolates, with minimal inhibitory concentration values ranging from 0.06 μg/ml (28.4 nM) to 400 μg/ml (189 μM). Interestingly, no cross-resistance was found between microcin J25 and antibiotics. Multiple sequence alignments of genes encoding for the different proteins involved in the recognition and transport of microcin J25 showed that only ferric-hydroxamate uptake is an essential determinant for susceptibility of S. enterica to microcin J25. Examination of Salmonella strains exposed to microcin J25 by transmission electronic microscopy showed for the first-time involvement of a pore formation mechanism. Microcin J25 was a strong inhibitor of several multiresistant isolates of Salmonella and may have a great potential as an alternative to antibiotics.
Collapse
Affiliation(s)
- Laila Ben Said
- Institute of Nutrition and Functional Foods, Université Laval, Québec, Quebec, G1V 0A6, Canada
| | | | - Samira Soltani
- Institute of Nutrition and Functional Foods, Université Laval, Québec, Quebec, G1V 0A6, Canada
| | - Sofiane Telhig
- Institute of Nutrition and Functional Foods, Université Laval, Québec, Quebec, G1V 0A6, Canada.,Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Laboratory of Communication Molecules and Adaptation of Micro-organisms, UMR 7245 CNRS-MNHN, Paris, CP 54, 57 rue Cuvier 75005, France
| | - Séverine Zirah
- Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Laboratory of Communication Molecules and Adaptation of Micro-organisms, UMR 7245 CNRS-MNHN, Paris, CP 54, 57 rue Cuvier 75005, France
| | - Sylvie Rebuffat
- Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Laboratory of Communication Molecules and Adaptation of Micro-organisms, UMR 7245 CNRS-MNHN, Paris, CP 54, 57 rue Cuvier 75005, France
| | - Moussa Sory Diarra
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario, N1G 5C9, Canada
| | - Lawrence Goodridge
- Department of Food Science and Agriculture, McGill University, Ste Anne de Bellevue, Québec, Quebec, H9X3V9, Canada
| | - Roger C Levesque
- Institute of Integrative Biology and Systems, Université Laval, QC, Québec, G1V 0A6, Canada
| | - Ismail Fliss
- Institute of Nutrition and Functional Foods, Université Laval, Québec, Quebec, G1V 0A6, Canada
| |
Collapse
|
395
|
Ibrahim DM, Sani ES, Soliman AM, Zandi N, Mostafavi E, Youssef AM, Allam NK, Annabi N. Bioactive and Elastic Nanocomposites with Antimicrobial Properties for Bone Tissue Regeneration. ACS APPLIED BIO MATERIALS 2020; 3:3313-3325. [DOI: 10.1021/acsabm.0c00250] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Dina M. Ibrahim
- Energy Materials Laboratory (EML), School of Sciences and Engineering, The American University in Cairo, New Cairo, 11835, Egypt
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Ehsan Shirzaei Sani
- Department of Chemical and Biomolecular Engineering, University of California—Los Angeles, Los Angeles, California 90095, United States
| | - Alaa M. Soliman
- Energy Materials Laboratory (EML), School of Sciences and Engineering, The American University in Cairo, New Cairo, 11835, Egypt
| | - Nooshin Zandi
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran 11365-11155, Iran
| | - Ebrahim Mostafavi
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Ahmed M. Youssef
- Packaging Materials Department, National Research Centre, Giza, 12622, Egypt
| | - Nageh K. Allam
- Energy Materials Laboratory (EML), School of Sciences and Engineering, The American University in Cairo, New Cairo, 11835, Egypt
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California—Los Angeles, Los Angeles, California 90095, United States
- Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California—Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
396
|
Cefotiam Treatment in Children: Evidence of Subtherapeutic Levels. Ther Drug Monit 2020; 42:733-736. [PMID: 32251152 DOI: 10.1097/ftd.0000000000000759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Cefotiam, a second-generation cephalosporin, is a broad-spectrum antibiotic with good antibacterial action against both gram-negative and gram-positive bacteria. It is used widely in clinical practice, although bacterial drug resistance makes its clinical use problematic. The authors hypothesized that subtherapeutic concentrations of cefotiam leads to bacterial resistance. The present study was conducted to evaluate whether the standard cefotiam dosing regimen resulted in a subtherapeutic concentrations in children. METHOD Data were prospectively collected from pediatric patients with suspected or confirmed community-acquired pneumonia who were receiving cefotiam at the standard dosing regimen (40-80 mg/kg, 2 or 3 times daily). A blood sample was collected after 70%-100% of the dosing interval, and plasma concentrations were determined by high-performance liquid chromatography using an ultraviolet detector. RESULTS The data from 88 patients (age, 3.0 ± 2.8 years; weight, 15.4 ± 8.3 kg) were used for analysis. The average of cefotiam concentrations was 0.06 mcg/mL (range: <0.05-0.79 mcg/mL). Most patients (n = 72, 81.8%) had concentrations below 0.1 mcg/mL; only 2 patients had concentrations higher than 0.4 mcg/mL. CONCLUSIONS The standard dosing regimen for cefotiam resulted in extremely low plasma concentrations in children; such low concentrations may lead to antimicrobial drug resistance. Thus, an increase in cefotiam dosage in children to 80 mg/kg 4 times daily is recommended (maximum dose on the label).
Collapse
|
397
|
Falcao CB, Radis-Baptista G. Crotamine and crotalicidin, membrane active peptides from Crotalus durissus terrificus rattlesnake venom, and their structurally-minimized fragments for applications in medicine and biotechnology. Peptides 2020; 126:170234. [PMID: 31857106 DOI: 10.1016/j.peptides.2019.170234] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/13/2019] [Accepted: 12/14/2019] [Indexed: 12/11/2022]
Abstract
A global public health crisis has emerged with the extensive dissemination of multidrug-resistant microorganisms. Antimicrobial peptides (AMPs) from plants and animals have represented promising tools to counteract those resistant pathogens due to their multiple pharmacological properties such as antimicrobial, anticancer, immunomodulatory and cell-penetrating activities. In this review, we will focus on crotamine and crotalicidin, which are two interesting examples of membrane active peptides derived from the South America rattlesnake Crotalus durrisus terrificus venom. Their full-sequences and structurally-minimized fragments have potential applications, as anti-infective and anti-proliferative agents and diagnostics in medicine and in pharmaceutical biotechnology.
Collapse
Affiliation(s)
- Claudio Borges Falcao
- Laboratory of Biochemistry and Biotechnology, Graduate program in Pharmaceutical Sciences, Federal University of Ceara, Brazil; Peter Pan Association to Fight Childhood Cancer, Fortaleza, CE, 60410-770, Brazil.
| | - Gandhi Radis-Baptista
- Laboratory of Biochemistry and Biotechnology, Graduate program in Pharmaceutical Sciences and Institute for Marine Sciences, Federal University of Ceara, Av da Abolição 3207, Fortaleza, CE, 60165-081, Brazil.
| |
Collapse
|
398
|
Chemical composition, antibacterial and antioxidant activities of some essential oils against multidrug resistant bacteria. Eur J Integr Med 2020. [DOI: 10.1016/j.eujim.2020.101074] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
399
|
Joshi A, Kim KH. Recent advances in nanomaterial-based electrochemical detection of antibiotics: Challenges and future perspectives. Biosens Bioelectron 2020; 153:112046. [DOI: 10.1016/j.bios.2020.112046] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/20/2019] [Accepted: 01/20/2020] [Indexed: 12/16/2022]
|
400
|
Mokbel SA, Fathalla RK, El-Sharkawy LY, Abadi AH, Engel M, Abdel-Halim M. Synthesis of novel 1,2-diarylpyrazolidin-3-one-based compounds and their evaluation as broad spectrum antibacterial agents. Bioorg Chem 2020; 99:103759. [PMID: 32220665 DOI: 10.1016/j.bioorg.2020.103759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 03/13/2020] [Indexed: 11/16/2022]
Abstract
There is a continuous need to develop new antibacterial agents with non-traditional mechanisms to combat the nonstop emerging resistance to most of the antibiotics used in clinical settings. We identified novel pyrazolidinone derivatives as antibacterial hits in an in-house library screening and synthesized several derivatives in order to improve the potency and increase the polarity of the discovered hit compounds. The oxime derivative 24 exhibited promising antibacterial activity against E. coli TolC, B. subtilis and S. aureus with MIC values of 4, 10 and 20 µg/mL, respectively. The new lead compound 24 was found to exhibit a weak dual inhibitory activity against both the E. coli MurA and MurB enzymes with IC50 values of 88.1 and 79.5 µM, respectively, which could partially explain its antibacterial effect. A comparison with the previously reported, structurally related pyrazolidinediones suggested that the oxime functionality at position 4 enhanced the activity against MurA and recovered the activity against the MurB enzyme. Compound 24 can serve as a lead for further development of novel and safe antibiotics with potential broad spectrum activity.
Collapse
Affiliation(s)
- Salma A Mokbel
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Reem K Fathalla
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123 Saarbrücken, Germany
| | - Lina Y El-Sharkawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt; Division of Pharmacy & Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT, UK
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Matthias Engel
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123 Saarbrücken, Germany.
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt.
| |
Collapse
|