4001
|
Wisdom R, Huynh L, Hsia D, Kim S. RAS and TGF-β exert antagonistic effects on extracellular matrix gene expression and fibroblast transformation. Oncogene 2005; 24:7043-54. [PMID: 16007133 DOI: 10.1038/sj.onc.1208870] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ras, Raf, and Fos function as components in a signal transduction pathway that is constitutively active in many cancers. Many of the changes that underlie cell transformation arise through changes in gene expression. We have used gene expression profiling of 3T3 cells transformed by Ras, Raf, and Fos to define the common and distinct targets of transcriptional control by each of these oncogenes. In this analysis, the most strongly conserved feature of cell transformation at the transcriptional level is the transcriptional repression of genes that encode components of the extracellular matrix (ECM). TGF-beta treatment of fibroblasts is known to increase production of ECM, suggesting that TGF-beta might selectively reverse some of the gene expression changes that occur during cell transformation. Using gene expression profiling of the TGF-beta response, we show that the ability of TGF-beta to reverse the changes in gene expression brought about by cellular transformation is essentially confined to genes that encode components of the ECM and the cytoskeleton. This selective reversal of transformation-induced changes in gene expression is associated with partial reversal of many parameters of cell transformation. The results demonstrate a correlation between gene repression by the Ras/Raf/ERK signaling pathway, gene activation by the TGF-beta signaling pathway, and the transformed phenotype in fibroblasts.
Collapse
Affiliation(s)
- Ron Wisdom
- UC Davis Cancer Center and Division of Hematology and Oncology, UC Davis School of Medicine, Sacramento, CA 95817, USA.
| | | | | | | |
Collapse
|
4002
|
Tang Y, Katuri V, Srinivasan R, Fogt F, Redman R, Anand G, Said A, Fishbein T, Zasloff M, Reddy EP, Mishra B, Mishra L. Transforming growth factor-beta suppresses nonmetastatic colon cancer through Smad4 and adaptor protein ELF at an early stage of tumorigenesis. Cancer Res 2005; 65:4228-37. [PMID: 15899814 DOI: 10.1158/0008-5472.can-04-4585] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Although transforming growth factor-beta (TGF-beta) is both a suppressor and promoter of tumorigenesis, its contribution to early tumor suppression and staging remains largely unknown. In search of the mechanism of early tumor suppression, we identified the adaptor protein ELF, a beta-spectrin from stem/progenitor cells committed to foregut lineage. ELF activates and modulates Smad4 activation of TGF-beta to confer cell polarity, to maintain cell architecture, and to inhibit epithelial-to-mesenchymal transition. Analysis of development of colon cancer in (adult) elf+/-/Smad4+/-, elf+/-, Smad4+/-, and gut epithelial cells from elf-/- mutant mouse embryos pinpoints the defect to hyperplasia/adenoma transition. Further analysis of the role of ELF in human colorectal cancer confirms reduced expression of ELF in Dukes' B1 stage tissues (P < 0.05) and of Smad4 in advanced colon cancers (P < 0.05). This study indicates that by modulating Smad 4, ELF has a key role in TGF-beta signaling in the suppression of early colon cancer.
Collapse
Affiliation(s)
- Yi Tang
- Laboratory of GI Developmental Biology, Department of Surgery, Lombardi Cancer Center, Georgetown University, Washington, DC 20007, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4003
|
Abstract
Transforming growth factor-beta is a pleiotropic growth factor that has enthralled many investigators for approximately two decades. In addition to many reports that have clarified the basic mechanism of transforming growth factor-beta signal transduction, numerous laboratories have published on the clinical implication/application of transforming growth factor-beta . To name a few, dysregulation of transforming growth factor-beta signaling plays a role in carcinogenesis, autoimmunity, angiogenesis, and wound healing. In this report, we will review these clinical implications of transforming growth factor-beta .
Collapse
Affiliation(s)
- Isaac Yi Kim
- Department of Urology, University of California at Irvine, Orange, CA 92868, USA
| | | | | |
Collapse
|
4004
|
Wang L, Clutter S, Benincosa J, Fortney J, Gibson LF. Activation of transforming growth factor-beta1/p38/Smad3 signaling in stromal cells requires reactive oxygen species-mediated MMP-2 activity during bone marrow damage. Stem Cells 2005; 23:1122-34. [PMID: 16002781 DOI: 10.1634/stemcells.2004-0354] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Dose-escalated chemotherapy has proven utility in a variety of treatment settings, including preparative regimens before bone marrow or hematopoietic stem cell transplantation. However, the potential damage imposed by aggressive regimens on the marrow microenvironment warrants further investigation. In the present study, we tested the hypothesis that dose-escalated chemotherapy, with etoposide as a model chemotherapeutic agent, activates the transforming growth factor beta-1 (TGF-beta1) signaling pathway in bone marrow stromal cells. After high-dose etoposide exposure in vitro, Smad3 protein was phosphorylated in a time-and dose-dependent manner in marrow-derived stromal cells, coincident with the release of active and latent TGF-beta1 from the extracellular matrix. Phosphorylation was modulated by p38 kinase, with translocation of Smad3 from the cytoplasm to the nucleus subsequent to its phosphorylation. Etoposide induced activation of TGF-beta1 followed the generation of reactive oxygen species and required matrix metalloproteinase-2 (MMP-2) protein availability. Chemotherapy effects were diminished in MMP-2(-/-) knockout stromal cells and TGF-beta1 knockdown small interfering RNA-transfected stromal cells, in which phosphorylation of Smad3 was negligible after etoposide exposure. Stable transfection of a human MMP-2 cDNA into bone marrow stromal cells resulted in elevated phosphorylation of Smad3 during chemotherapy. These data suggest TGF-beta1/p38/Smad3 signaling cascades are activated in bone marrow stromal cells after dose-escalated chemotherapy and may contribute to chemotherapy-induced alterations of the marrow microenvironment.
Collapse
Affiliation(s)
- Lin Wang
- P.O. Box 9214, Department of Pediatrics, School of Medicine, WV University, Morgantown, West Virginia, 26506, USA.
| | | | | | | | | |
Collapse
|
4005
|
Prokova V, Mavridou S, Papakosta P, Kardassis D. Characterization of a novel transcriptionally active domain in the transforming growth factor beta-regulated Smad3 protein. Nucleic Acids Res 2005; 33:3708-21. [PMID: 15994459 PMCID: PMC1169234 DOI: 10.1093/nar/gki679] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/20/2005] [Accepted: 06/12/2005] [Indexed: 01/09/2023] Open
Abstract
Transforming growth factor beta (TGFbeta) regulates transcriptional responses via activation of cytoplasmic effector proteins termed Smads. Following their phosphorylation by the type I TGFbeta receptor, Smads form oligomers and translocate to the nucleus where they activate the transcription of TGFbeta target genes in cooperation with nuclear cofactors and coactivators. In the present study, we have undertaken a deletion analysis of human Smad3 protein in order to characterize domains that are essential for transcriptional activation in mammalian cells. With this analysis, we showed that Smad3 contains two domains with transcriptional activation function: the MH2 domain and a second middle domain that includes the linker region and the first two beta strands of the MH2 domain. Using a protein-protein interaction assay based on biotinylation in vivo, we were able to show that a Smad3 protein bearing an internal deletion in the middle transactivation domain is characterized by normal oligomerization and receptor activation properties. However, this mutant has reduced transactivation capacity on synthetic or natural promoters and is unable to interact physically and functionally with the histone acetyltransferase p/CAF. The loss of interaction with p/CAF or other coactivators could account, at least in part, for the reduced transactivation capacity of this Smad3 mutant. Our data support an essential role of the previously uncharacterized middle region of Smad3 for nuclear functions, such as transcriptional activation and interaction with coactivators.
Collapse
Affiliation(s)
- Vassiliki Prokova
- Department of Basic Sciences, University of Crete Medical SchoolHeraklion 71003, Greece
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-HellasHeraklion 71003, Greece
| | - Sofia Mavridou
- Department of Basic Sciences, University of Crete Medical SchoolHeraklion 71003, Greece
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-HellasHeraklion 71003, Greece
| | - Paraskevi Papakosta
- Department of Basic Sciences, University of Crete Medical SchoolHeraklion 71003, Greece
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-HellasHeraklion 71003, Greece
| | - Dimitris Kardassis
- Department of Basic Sciences, University of Crete Medical SchoolHeraklion 71003, Greece
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-HellasHeraklion 71003, Greece
| |
Collapse
|
4006
|
Volmer MW, Stühler K, Zapatka M, Schöneck A, Klein-Scory S, Schmiegel W, Meyer HE, Schwarte-Waldhoff I. Differential proteome analysis of conditioned media to detect Smad4 regulated secreted biomarkers in colon cancer. Proteomics 2005; 5:2587-601. [PMID: 15912508 DOI: 10.1002/pmic.200401188] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Smad4 is a tumor suppressor gene primarily involved in carcinogenesis of the pancreas and colon. The functional inactivation of Smad4 is a late step genetically. In pancreatic carcinogenesis, loss of Smad4 marks the transition to invasive growth. In colorectal cancers, the frequency of Smad4 inactivation is markedly increased in metastatic cancers. We have established cell biological models, re-expressing Smad4 in deficient human cancer cells, in which we could show that Smad4 is adequate to suppress tumor growth through suppression of angiogenic and invasive properties. Thus, pairs of Smad4-re-expressing and Smad4-deficient cells are prone to model the progression from premalignant stages to carcinomas in the carcinogenic process and may provide access to Smad4 targets of high clinical relevance. We present here a "differential secretome analysis", comparing all the proteins released in vitro from the Smad4-deficient and Smad4-re-expressing SW480 human colon carcinoma cells. The differential secretome catalog comprises more than 25 proteins including proteases and protease inhibitors, as well as established tumor biomarkers. In conclusion, this approach proved to be a sensitive tool to specifically detect Smad4 targets relevant for tumor-stroma interactions. It is also able to reflect complex alterations of cellular physiology. Moreover, the results support our hypothesis that human tumor markers detectable in serum may be identified through differential secretome analyses.
Collapse
MESH Headings
- Biomarkers, Tumor/chemistry
- Biomarkers, Tumor/isolation & purification
- Cell Division
- Cell Line, Tumor
- Colonic Neoplasms/metabolism
- Culture Media, Conditioned/chemistry
- DNA-Binding Proteins/metabolism
- Electrophoresis, Gel, Two-Dimensional/methods
- Enzymes/isolation & purification
- Enzymes/metabolism
- Genes, Tumor Suppressor
- Humans
- Models, Biological
- Peptide Fragments/chemistry
- Peptide Fragments/isolation & purification
- Protease Inhibitors
- Proteome
- Smad4 Protein
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Trans-Activators/metabolism
- Trypsin
Collapse
|
4007
|
de la Peña LS, Billings PC, Fiori JL, Ahn J, Kaplan FS, Shore EM. Fibrodysplasia ossificans progressiva (FOP), a disorder of ectopic osteogenesis, misregulates cell surface expression and trafficking of BMPRIA. J Bone Miner Res 2005; 20:1168-76. [PMID: 15940369 DOI: 10.1359/jbmr.050305] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2004] [Revised: 01/14/2005] [Accepted: 03/01/2005] [Indexed: 12/31/2022]
Abstract
UNLABELLED FOP is a disorder in which skeletal muscle is progressively replaced with bone. FOP lymphocytes, a model system for exploring the BMP pathway in these patients, exhibit a defect in BMPRIA internalization and increased activation of downstream signaling, suggesting that altered BMP receptor trafficking underlies ectopic bone formation in this disease. INTRODUCTION Fibrodysplasia ossificans progressiva (FOP) is a severely disabling disorder characterized by progressive heterotopic ossification of connective tissues. Whereas the genetic defect and pathophysiology of this condition remain enigmatic, BMP4 mRNA and protein are overexpressed, and mRNAs for a subset of secreted BMP antagonists are not synthesized at appropriate levels in cultured lymphocytes from FOP patients. These data suggest involvement of altered BMP signaling in the disease. In this study, we investigate whether the abnormality is associated with defective BMP receptor function in lymphocytes. MATERIALS AND METHODS Cell surface proteins were quantified by fluorescence-activated cell sorting (FACS). Protein phosphorylation was assayed by immunoprecipitation and immunoblotting. Protein synthesis and degradation were examined by [35S]methionine labeling and pulse-chase assays. mRNA was detected by RT-PCR. RESULTS FOP lymphocytes expressed 6-fold higher levels of BMP receptor type IA (BMPRIA) on the cell surface compared with control cells and displayed a marked reduction in ligand-stimulated internalization and degradation of BMPRIA. Moreover, in control cells, BMP4 treatment increased BMPRIA phosphorylation, whereas BMPRIA showed ligand-insensitive constitutive phosphorylation in FOP cells. Our data additionally support that the p38 mitogen-activated protein kinase (MAPK) signaling pathway is a major BMP signaling pathway in these cell lines and that expression of inhibitor of DNA binding and differentiation 1 (ID-1), a transcriptional target of BMP signaling, is enhanced in FOP cells. CONCLUSIONS These data extend our previous observations of misregulated BMP4 signaling in FOP lymphocytes and show that cell surface overabundance and constitutive phosphorylation of BMPRIA are associated with a defect in receptor internalization. Altered BMP receptor trafficking may play a significant role in FOP pathogenesis.
Collapse
Affiliation(s)
- Lourdes Serrano de la Peña
- Department of Orthopaedic Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6081, USA
| | | | | | | | | | | |
Collapse
|
4008
|
Hocevar BA, Prunier C, Howe PH. Disabled-2 (Dab2) Mediates Transforming Growth Factor β(TGFβ)-stimulated Fibronectin Synthesis through TGFβ-activatedKinase 1 and Activation of the JNKPathway. J Biol Chem 2005; 280:25920-7. [PMID: 15894542 DOI: 10.1074/jbc.m501150200] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The multifunctional cytokine transforming growth factor beta (TGFbeta) exerts many of its effects through its regulation of extracellular matrix components, including fibronectin (FN). Although expression of both TGFbeta and FN are essential for embryonic development and wound healing in the adult, overexpression leads to excessive deposition of extracellular matrix observed in many fibroproliferative disorders. We previously have demonstrated that TGFbeta-stimulated FN induction requires activation of the c-Jun N-terminal kinase (JNK) pathway; however, the signaling molecules that link the TGFbeta receptors to the JNK pathway remain unknown. We show here that the cytosolic adaptor protein disabled-2 (Dab2) directly stimulates JNK activity, whereas stable small interfering RNA-mediated ablation of Dab2 in NIH3T3 mouse fibroblasts and A10 rat aortic smooth muscle cells demonstrates that its expression is required for TGFbeta-mediated FN induction. We demonstrate that TGFbeta treatment stimulates the association of Dab2 with the mitogen-activated protein kinase kinase kinase, TAK1. Attenuation of cellular TAK1 levels by transient double-stranded RNA oligonucleotide transfection as well as overexpression of kinase-deficient TAK1 leads to abrogation of TGFbeta-stimulated FN induction. Furthermore, cell migration, another JNK-dependent response, is attenuated in NIH3T3-siDab2-expressing clones. We, therefore, delineate a signaling pathway proceeding from the TGFbeta receptors to Dab2 and TAK1, leading to TGFbeta-stimulated JNK activation, FN expression, and cell migration.
Collapse
Affiliation(s)
- Barbara A Hocevar
- Department of Cell Biology, Cleveland Clinic Lerner College of Medicine, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | |
Collapse
|
4009
|
Yu PB, Beppu H, Kawai N, Li E, Bloch KD. Bone Morphogenetic Protein (BMP) Type II Receptor Deletion Reveals BMP Ligand-specific Gain of Signaling in Pulmonary Artery Smooth Muscle Cells. J Biol Chem 2005; 280:24443-50. [PMID: 15883158 DOI: 10.1074/jbc.m502825200] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bone morphogenetic protein (BMP) ligands signal by binding the BMP type II receptor (BMPR2) or the activin type II receptors (ActRIIa and ActRIIb) in conjunction with type I receptors to activate SMADs 1, 5, and 8, as well as members of the mitogen-activated protein kinase family. Loss-of-function mutations in Bmpr2 have been implicated in tumorigenesis and in the etiology of primary pulmonary hypertension. Because several different type II receptors are known to recognize BMP ligands, the specific contribution of BMPR2 to BMP signaling is not defined. Here we report that the ablation of Bmpr2 in pulmonary artery smooth muscle cells, using an ex vivo conditional knock-out (Cre-lox) approach, as well as small interfering RNA specific for Bmpr2, does not abolish BMP signaling. Disruption of Bmpr2 leads to diminished signaling by BMP2 and BMP4 and augmented signaling by BMP6 and BMP7. Using small interfering RNAs to inhibit the expression of other BMP receptors, we found that wild-type cells transduce BMP signals via BMPR2, whereas BMPR2-deficient cells transduce BMP signals via ActRIIa in conjunction with a set of type I receptors distinct from those utilized by BMPR2. These findings suggest that disruption of Bmpr2 leads to the net gain of signaling by some, but not all, BMP ligands via the activation of ActRIIa.
Collapse
MESH Headings
- Activin Receptors, Type II/genetics
- Activin Receptors, Type II/physiology
- Alleles
- Animals
- Bone Morphogenetic Protein 2
- Bone Morphogenetic Protein 4
- Bone Morphogenetic Protein 6
- Bone Morphogenetic Protein 7
- Bone Morphogenetic Protein Receptors, Type II
- Bone Morphogenetic Proteins/metabolism
- Cell Membrane/metabolism
- Dose-Response Relationship, Drug
- Gene Deletion
- Heterozygote
- Ligands
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Models, Biological
- Mutation
- Myocytes, Smooth Muscle/metabolism
- Phosphorylation
- Protein Binding
- Protein Serine-Threonine Kinases/chemistry
- Protein Serine-Threonine Kinases/metabolism
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- RNA/metabolism
- RNA, Small Interfering/metabolism
- Signal Transduction
- Transcription, Genetic
- Transfection
- Transforming Growth Factor beta/metabolism
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Paul B Yu
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA.
| | | | | | | | | |
Collapse
|
4010
|
Rojas A, De Val S, Heidt AB, Xu SM, Bristow J, Black BL. Gata4 expression in lateral mesoderm is downstream of BMP4 and is activated directly by Forkhead and GATA transcription factors through a distal enhancer element. Development 2005; 132:3405-17. [PMID: 15987774 DOI: 10.1242/dev.01913] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The GATA family of zinc-finger transcription factors plays key roles in the specification and differentiation of multiple cell types during development. GATA4 is an early regulator of gene expression during the development of endoderm and mesoderm, and genetic studies in mice have demonstrated that GATA4 is required for embryonic development. Despite the importance of GATA4 in tissue specification and differentiation, the mechanisms by which Gata4 expression is activated and the transcription factor pathways upstream of GATA4 remain largely undefined. To identify transcriptional regulators of Gata4 in the mouse, we screened conserved noncoding sequences from the mouse Gata4 gene for enhancer activity in transgenic embryos. Here, we define the regulation of a distal enhancer element from Gata4 that is sufficient to direct expression throughout the lateral mesoderm, beginning at 7.5 days of mouse embryonic development. The activity of this enhancer is initially broad but eventually becomes restricted to the mesenchyme surrounding the liver. We demonstrate that the function of this enhancer in transgenic embryos is dependent upon highly conserved Forkhead and GATA transcription factor binding sites, which are bound by FOXF1 and GATA4, respectively. Furthermore, the activity of the Gata4 lateral mesoderm enhancer is attenuated by the BMP antagonist Noggin, and the enhancer is not activated in Bmp4-null embryos. Thus, these studies establish that Gata4 is a direct transcriptional target of Forkhead and GATA transcription factors in the lateral mesoderm, and demonstrate that Gata4 lateral mesoderm enhancer activation requires BMP4, supporting a model in which GATA4 serves as a downstream effector of BMP signaling in the lateral mesoderm.
Collapse
Affiliation(s)
- Anabel Rojas
- Cardiovascular Research Institute, University of California, San Francisco, CA 94143-0130, USA
| | | | | | | | | | | |
Collapse
|
4011
|
Cui Q, Lim SK, Zhao B, Hoffmann FM. Selective inhibition of TGF-beta responsive genes by Smad-interacting peptide aptamers from FoxH1, Lef1 and CBP. Oncogene 2005; 24:3864-74. [PMID: 15750622 DOI: 10.1038/sj.onc.1208556] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Transforming growth factor beta (TGF-beta) stimulation results in the assembly of Smad-containing protein complexes that mediate activation or repression of TGF-beta responsive genes. To determine if disruption of specific Smad protein-protein interactions would selectively inhibit responses to TGF-beta or generally interfere with Smad-dependent signaling, we developed three Smad-binding peptide aptamers by introducing Smad interaction motifs from Smad-binding proteins CBP, FoxH1 and Lef1 into the scaffold protein E. coli thioredoxin A (Trx). All three classes of aptamers bound to Smads by GST pulldown assays and co-immunoprecipitation from mammalian cells. Expression of the aptamers in HepG2 cells did not generally inhibit Smad-dependent signaling as evaluated using seven TGF-beta responsive luciferase reporter genes. The Trx-xFoxH1b aptamer inhibited TGF-beta-induced expression from a reporter dependent on the Smad-FoxH1 interaction, A3-lux, by 50%. Trx-xFoxH1b also partially inhibited two reporters not dependent on a Smad-FoxH1 interaction, 3TP-lux and Twntop, and endogenous PAI-1 expression. Trx-Lef1 aptamer only inhibited expression of the Smad-Lef1 responsive reporter gene TwnTop. The Trx-CBP aptamer had no significant effect on reporter gene expression. The results suggest that Smad-binding peptide aptamers can be developed to selectively inhibit TGF-beta-induced gene expression.
Collapse
Affiliation(s)
- Qiqi Cui
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
4012
|
Thannickal VJ, Flaherty KR, Martinez FJ, Lynch JP. Idiopathic pulmonary fibrosis: emerging concepts on pharmacotherapy. Expert Opin Pharmacother 2005; 5:1671-86. [PMID: 15264982 DOI: 10.1517/14656566.5.8.1671] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive, fibrosing disease of the distal air spaces of the lung of unknown aetiology. IPF is usually fatal with a median survival of < 3 years. There are currently no effective pharmacotherapeutic agents for the treatment of IPF. In this review, unifying concepts on the pathogenesis of IPF based on understanding of host responses to tissue injury are presented. These host responses involve tightly regulated and contextually orchestrated inflammatory and repair processes. Dysregulation of either of these processes can lead to pathological outcomes. Fibrosis results from an exaggerated or dysregulated repair process that proceeds 'uncontrolled' even after inflammatory responses have subsided. Disease heterogeneity may arise when inflammation and repair are in different (dys)regulatory phases, thus accounting for regional disparity. Usual interstitial pneumonia (UIP), the histopathological correlate of clinical IPF, represents a more fibrotic tissue reaction pattern and for which anti-inflammatory agents are ineffective. Emerging 'antifibrotic' drugs and strategies for UIP/IPF are discussed. The importance of accurately phenotyping a highly heterogeneous disease process that may require individualised and 'combined' therapies is emphasised.
Collapse
Affiliation(s)
- Victor J Thannickal
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical Center, 6301 MSRB III, 1150 W. Medical Center Drive, Ann Arbor, MI 48109, USA.
| | | | | | | |
Collapse
|
4013
|
Saika S, Ikeda K, Yamanaka O, Miyamoto T, Ohnishi Y, Sato M, Muragaki Y, Ooshima A, Nakajima Y, Kao WWY, Flanders KC, Roberts AB. Expression of Smad7 in mouse eyes accelerates healing of corneal tissue after exposure to alkali. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 166:1405-18. [PMID: 15855641 PMCID: PMC1606395 DOI: 10.1016/s0002-9440(10)62358-9] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Damage to the cornea from chemical burns is a serious clinical problem that often leads to permanent visual impairment. Because transforming growth factor (TGF)-beta has been implicated in the response to corneal injury, we evaluated the effects of altered TGF-beta signaling in a corneal alkali burn model using mice treated topically with an adenovirus (Ad) expressing inhibitory Smad7 and mice with a targeted deletion of the TGF-beta/activin signaling mediator Smad3. Expression of exogenous Smad7 in burned corneal tissue resulted in reduced activation of Smad signaling and nuclear factor-kappaB signaling via RelA/p65. Resurfacing of the burned cornea by conjunctival epithelium and its differentiation to cornea-like epithelium were both accelerated in Smad7-Ad-treated corneas with suppressed stromal ulceration, opacification, and neovascularization 20 days after injury. Introduction of the Smad7 gene suppressed invasion of monocytes/macrophages and expression of monocyte/macrophage chemotactic protein-1, TGF-beta1, TGF-beta2, vascular endothelial growth factor, matrix metalloproteinase-9, and tissue inhibitors of metalloproteinase-2 and abolished the generation of myofibroblasts. Although acceleration of healing of the burned cornea was also observed in mice lacking Smad3, the effects on epithelial and stromal healing were less pronounced than those in corneas treated with Smad7. Together these data suggest that overexpression of Smad7 may have effects beyond those of simply blocking Smad3/TGF-beta signaling and may represent an effective new strategy for treatment of ocular burns.
Collapse
Affiliation(s)
- Shizuya Saika
- Department of Ophthalmology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-0012, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4014
|
Schmidt-Weber CB, Letarte M, Kunzmann S, Rückert B, Bernabéu C, Blaser K. TGF-{beta} signaling of human T cells is modulated by the ancillary TGF-{beta} receptor endoglin. Int Immunol 2005; 17:921-30. [PMID: 15967783 DOI: 10.1093/intimm/dxh272] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Transforming growth factor beta (TGF-beta) inhibits T cell activation and alters differentiation of naive T cells into effector cells. Although four main cell-surface proteins can interact with TGF-beta, only the signaling receptors type I (TGF-betaR type I) and type II (TGF-betaR type II) have so far been described on T cells. The aim of the present study was to investigate the expression of the ancillary receptor endoglin (CD105) by T cells and its role in TGF-beta-mediated signal transduction and function. CD105 expression was analyzed on resting and activated human CD4(+) T cells by flow cytometry, western blot, immunoprecipitation, proliferation and SMAD-responsive reporter gene assays. CD4(+) T cells constitutively expressed CD105 in memory T cells and partially also in naive T cells; however, surface expression is regulated and is increased following TCR engagement, which induced serine/threonine phosphorylation of CD105. In contrast to the suppressive signal mediated by the TGF-beta, cross-linking of CD105 substantially enhanced T cell proliferation, indicating that CD105 by itself mediates signal transduction. Furthermore, CD105 cross-linking induced SMAD-independent signaling via ERK kinase phosphorylation. The present study demonstrates that CD105 is expressed on the surface by activated CD4(+) T cells and CD3 regulated by post-translational means. Furthermore, CD105 acts as a regulatory receptor, counteracting TGF-beta-mediated suppression.
Collapse
Affiliation(s)
- Carsten B Schmidt-Weber
- Swiss Institute of Allergy and Asthma Research, Obere Strasse 22, CH-7270 Davos, Switzerland.
| | | | | | | | | | | |
Collapse
|
4015
|
Coss D, Thackray VG, Deng CX, Mellon PL. Activin regulates luteinizing hormone beta-subunit gene expression through Smad-binding and homeobox elements. Mol Endocrinol 2005; 19:2610-23. [PMID: 15961509 PMCID: PMC2932483 DOI: 10.1210/me.2005-0047] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
LH beta-subunit (LHbeta), which is essential for ovulation and reproductive fitness, is synthesized specifically in pituitary gonadotropes. In this study, we show that LHbeta gene expression is induced by activin in mouse primary pituitary cells if the cells are treated within 24 h after dispersion in culture. Furthermore, male mice deficient in Smad3, and therefore in activin signaling, have lower expression of both LHbeta and FSHbeta mRNAs compared with their wild-type littermates. Using the LbetaT2 immortalized mouse gonadotrope cell line that endogenously expresses LH, we identify specific elements in the regulatory region of the rat LHbeta gene necessary for its induction by activin. Activin responsiveness is conferred by a promoter-proximal region located -121/-86 from the transcriptional start site. Maximal LHbeta induction by activin requires a homeobox element (HB) and a 5'-early growth response (Egr) site found in this region of the promoter. Juxtaposed to the HB are three Smad-binding elements (SBEs), which are essential for LHbeta induction. Interestingly, two of the SBEs are also critical for basal expression of the LHbeta gene. We demonstrate that Smad proteins are necessary and sufficient for activin induction of the LHbeta gene. Furthermore, Smad proteins can bind one of the identified SBEs. In addition to binding this SBE, Smad proteins interact with pituitary homeobox 1 (Ptx-1) and orthodenticle homeobox 1 (Otx-1), which can bind the HB located close to the Smad-binding site. Thus, activin induction of LHbeta gene expression requires a combination of several transcription factors, both basal and activin induced, as well as cooperation between multiple DNA elements.
Collapse
Affiliation(s)
- Djurdjica Coss
- Department of Reproductive Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0674, USA
| | | | | | | |
Collapse
|
4016
|
Abstract
Extensive studies have demonstrated that transforming growth factor-beta (TGF-beta) plays an important role in the progression of renal diseases. TGF-beta exerts its biological functions mainly through its downstream signalling molecules, Smad2 and Smad3. It is now clear that Smad3 is critical for TGF-beta's pro-fibrotic effect, whereas the functions of Smad2 in fibrosis in response to TGF-beta still need to be determined. Our recent studies have demonstrated that Smad signalling is also a critical pathway for renal fibrosis induced by other pro-fibrotic factors, such as angiotensin II and advanced glycation end products (AGE). These pro-fibrotic factors can activate Smads directly and independently of TGF-beta. They can also cause renal fibrosis via the ERK/p38 MAP kinase-Smad signalling cross-talk pathway. In contrast, blockade of Smad2/3 activation by overexpression of an inhibitory Smad7 prevents collagen matrix production induced by TGF-beta, angiotensin II, high glucose and AGE and attenuates renal fibrosis in various animal models including rat obstructive kidney, remnant kidney and diabetic kidney diseases. Results from these studies indicate that Smad signalling is a key and final common pathway of renal fibrosis. In addition, TGF-beta has anti-inflammatory and immune-regulatory properties. Our most recent studies demonstrated that TGF-beta transgenic mice are protected against renal inflammation in mouse obstructive and diabetic models. Upregulation of renal Smad7, thereby blocking NF.kappaB activation via induction of IkappaBalpha, is a central mechanism by which TGF-beta inhibits renal inflammation. In conclusion, TGF-beta signals through Smad2/3 to mediate renal fibrosis, whereas induction of Smad7 inhibits renal fibrosis and inflammation. Thus, targeting Smad signalling by overexpression of Smad7 may have great therapeutic potential for kidney diseases.
Collapse
Affiliation(s)
- Wansheng Wang
- Department of Medicine-Nephrology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | |
Collapse
|
4017
|
Han G, Lu SL, Li AG, He W, Corless CL, Kulesz-Martin M, Wang XJ. Distinct mechanisms of TGF-beta1-mediated epithelial-to-mesenchymal transition and metastasis during skin carcinogenesis. J Clin Invest 2005; 115:1714-23. [PMID: 15937546 PMCID: PMC1142114 DOI: 10.1172/jci24399] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Accepted: 04/19/2005] [Indexed: 12/18/2022] Open
Abstract
In the present study, we demonstrated that human skin cancers frequently overexpress TGF-beta1 but exhibit decreased expression of the TGF-beta type II receptor (TGF-(beta)RII). To understand how this combination affects cancer prognosis, we generated a transgenic mouse model that allowed inducible expression of TGF-beta(1) in keratinocytes expressing a dominant negative TGF-(beta)RII (Delta(beta)RII) in the epidermis. Without Delta(beta)RII expression, TGF-beta1 transgene induction in late-stage, chemically induced papillomas failed to inhibit tumor growth but increased metastasis and epithelial-to-mesenchymal transition (EMT), i.e., formation of spindle cell carcinomas. Interestingly, Delta(beta)RII expression abrogated TGF-beta1-mediated EMT and was accompanied by restoration of membrane-associated E-cadherin/catenin complex in TGF-beta1/Delta(beta)RII compound tumors. Furthermore, expression of molecules thought to mediate TGF-beta1-induced EMT was attenuated in TGF-beta1/Delta(beta)RII-transgenic tumors. However, TGF-beta1/Delta(beta)RII-transgenic tumors progressed to metastasis without losing expression of the membrane-associated E-cadherin/catenin complex and at a rate higher than those observed in nontransgenic, TGF-beta1-transgenic, or Delta(beta)RII-transgenic mice. Abrogation of Smad activation by Delta(beta)RII correlated with the blockade of EMT. However, Delta(beta)RII did not alter TGF-beta1-mediated expression of RhoA/Rac and MAPK, which contributed to increased metastasis. Our study provides evidence that TGF-beta1 induces EMT and invasion via distinct mechanisms. TGF-beta1-mediated EMT requires functional TGF-(beta)RII, whereas TGF-beta1-mediated tumor invasion cooperates with reduced TGF-(beta)RII signaling in tumor epithelia.
Collapse
Affiliation(s)
- Gangwen Han
- Department of Otolaryngology, Oregon Health & Science University, Portland, OR, USA
| | | | | | | | | | | | | |
Collapse
|
4018
|
Morén A, Imamura T, Miyazono K, Heldin CH, Moustakas A. Degradation of the Tumor Suppressor Smad4 by WW and HECT Domain Ubiquitin Ligases. J Biol Chem 2005; 280:22115-23. [PMID: 15817471 DOI: 10.1074/jbc.m414027200] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Smad4 mediates signaling by the transforming growth factor-beta (TGF-beta) superfamily of cytokines. Smad signaling is negatively regulated by inhibitory (I) Smads and ubiquitin-mediated processes. Known mechanisms of proteasomal degradation of Smads depend on the direct interaction of specific E3 ligases with Smads. Alternatively, I-Smads elicit degradation of the TGF-beta receptor by recruiting the WW and HECT domain E3 ligases, Smurfs, WWP1, or NEDD4-2. We describe an equivalent mechanism of degradation of Smad4 by the above E3 ligases, via formation of ternary complexes between Smad4 and Smurfs, mediated by R-Smads (Smad2) or I-Smads (Smad6/7), acting as adaptors. Smurfs, which otherwise cannot directly bind to Smad4, mediated poly-ubiquitination of Smad4 in the presence of Smad6 or Smad7. Smad4 co-localized with Smad7 and Smurf1 primarily in the cytoplasm and in peripheral cell protrusions. Smad2 or Smad7 mutants defective in Smad4 interaction failed to induce Smurf1-mediated down-regulation of Smad4. A Smad4 mutant defective in Smad2 or Smad7 interaction could not be effectively down-regulated by Smurf1. We propose that Smad4 is targeted for degradation by multiple ubiquitin ligases that can simultaneously act on R-Smads and signaling receptors. Such mechanisms of down-regulation of TGF-beta signaling may be critical for proper physiological response to this pathway.
Collapse
Affiliation(s)
- Anita Morén
- Ludwig Institute for Cancer Research, Box 595, Biomedical Center, Uppsala University, SE-751 24 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
4019
|
Alliston T, Ko TC, Cao Y, Liang YY, Feng XH, Chang C, Derynck R. Repression of Bone Morphogenetic Protein and Activin-inducible Transcription by Evi-1. J Biol Chem 2005; 280:24227-37. [PMID: 15849193 DOI: 10.1074/jbc.m414305200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Smads, key effectors of transforming growth factor (TGF)-beta, activin, and bone morphogenetic protein (BMP) signaling, regulate gene expression and interact with coactivators and corepressors that modulate Smad activity. The corepressor Evi-1 exerts its oncogenic effects by repressing TGF-beta/Smad3-mediated transcription, thereby blocking TGF-beta-induced growth arrest. Because Evi-1 interacts with the highly conserved MH2 domain of Smad3, we investigated the physical and functional interaction of Evi-1 with Smad1 and Smad2, downstream targets of BMP and activin signaling, respectively. Evi-1 interacted with and repressed the receptor-activated transcription through Smad1 and Smad2, similarly to Smad3. In addition, Evi-1 repressed BMP/Smad1- and activin/Smad2-mediated induction of endogenous Xenopus gene expression, suggesting a role of repression of BMP and activin signals by Evi-1 in vertebrate embryogenesis. Evi-1 also repressed the induction of endogenous Smad7 expression by TGF-beta family ligands. In the course of these studies, we observed Evi-1 repression of Smad transactivation even when Smad binding to DNA was kept constant. We therefore explored the mechanism of Evi-1 repression of TGF-beta family-inducible transcription. Evi-1 repression did not result from displacement of Smad binding to DNA or to CREB-binding protein but from the recruitment of Evi-1 by Smad3 and CREB-binding protein to DNA. Following TGF-beta stimulation, Evi-1 and the associated corepressor CtBP were recruited to the endogenous Smad7 promoter. Evi-1 recruitment to the promoter decreased TGF-beta-induced histone acetylation, coincident with its repression of Smad7 gene expression. In this way, Evi-1 acts as a general Smad corepressor to inhibit TGF-beta-, activin-, and BMP-inducible transcription.
Collapse
Affiliation(s)
- Tamara Alliston
- Department of Cell and Tissue Biology, University of California at San Francisco, San Francisco, California 94143-0512, USA
| | | | | | | | | | | | | |
Collapse
|
4020
|
Sebestyén A, Barna G, Nagy K, Jánosi J, Paku S, Kohut E, Berczi L, Mihalik R, Kopper L. Smad signal and TGFβ induced apoptosis in human lymphoma cells. Cytokine 2005; 30:228-35. [PMID: 15927846 DOI: 10.1016/j.cyto.2005.01.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2004] [Revised: 10/26/2004] [Accepted: 01/25/2005] [Indexed: 11/17/2022]
Abstract
Transforming growth factor beta1 (TGF beta1) has antiproliferative and/or apoptotic effect on lymphoid cells. In certain lymphomas exogenous TGF beta1 is able to induce apoptosis, however many lymphoid malignancies are resistant to the endogenous TGF beta1 production. We studied the expression and the activity of TGF beta1 signalling components in B cell lymphoma cell lines (e.g. HT 58 cells) and in isolated human peripheral mononuclear cells (PBMCs) from healthy individual's and B-CLL patient's blood. We found that all signal transducer Smads (Smad2,-3; Smad4) and at least one of the inhibitory Smads (Smad6,-7) were expressed in non-treated lymphoma cells, but the inhibitory Smads did not in normal/control PBMCs. However, after TGF beta1 treatment Smad6 disappeared, while the expression of Smad7 increased in HT 58 cells. The activity of Smad signals was proved by phosphorylation of Smad2, nuclear translocation of Smad2/3, and the increased expression of Smad-dependent gene, TIEG in TGF beta1 treated lymphoma cells. These results showed that Smad signaling is available in certain different human lymphoma cells, however ISmads expression could inhibit the signal transmission. This findings indicates that the lost sensitivity of lymphoma cells toward a physiological regulatory factor could be reversed.
Collapse
Affiliation(s)
- Anna Sebestyén
- Ist Department of Pathology and Experimental Cancer Research, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary.
| | | | | | | | | | | | | | | | | |
Collapse
|
4021
|
Tsumaki N, Yoshikawa H. The role of bone morphogenetic proteins in endochondral bone formation. Cytokine Growth Factor Rev 2005; 16:279-85. [PMID: 15869898 DOI: 10.1016/j.cytogfr.2005.04.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bone morphogenetic proteins (BMPs) were originally identified as proteins capable of inducing endochondral bone formation when implanted at extraskeletal sites. BMPs have diverse biological activities during early embryogenesis and various aspects of organogenesis. BMPs bind to BMP receptors on the cell surface, and these signals are transduced intracellularly by Smad proteins. BMP signal pathways can be inhibited by both extra- and intracellular mechanisms. As for skeletal development, genetic studies suggest that BMPs are skeletal mesoderm inducers. Recent studies of tissue-specific activation and inactivation of BMP signals have revealed that BMP signals control proliferation and differentiation of chondrocytes, differentiation of osteoblasts and bone quality. These findings may contribute not only to understanding of bone biology and pathology, but also to improvement of the clinical efficacy of BMPs.
Collapse
Affiliation(s)
- Noriyuki Tsumaki
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | |
Collapse
|
4022
|
Takayashiki N, Kawata H, Kamiakito T, Tanaka A. Transcriptional repression of fibroblast growth factor 8 by transforming growth factor-beta in androgen-dependent SC-3 cells. J Steroid Biochem Mol Biol 2005; 96:1-12. [PMID: 15935652 DOI: 10.1016/j.jsbmb.2005.01.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2004] [Accepted: 01/10/2005] [Indexed: 01/07/2023]
Abstract
We here characterized the transcriptional profiles of TGF-beta-responsive genes using androgen-dependent mouse mammary carcinoma SC-3 cells. Compared with the testosterone-stimulated SC-3 cells, 165 genes were up-regulated at more than 5-fold, and 78 genes were down-regulated to less than one-third in response to TGF-beta. Of note, fgf8, an androgen-inducible growth factor essential to the androgen-dependent growth of SC-3 cells, was severely repressed in response to TGF-beta. Real-time PCR confirmed that the androgenic induction of the fgf8 transcripts is severely attenuated by TGF-beta. Although a considerable number of growth-suppressive genes were up-regulated in response to TGF-beta, the treatment with TGF-beta was insufficient to lead SC-3 cells to apoptosis within 24h by both the TUNEL method and the caspase 3 activity assay. Flow cytometric analysis rather indicated the cell-static effect of TGF-beta on the androgen-stimulated SC-3 cells. In addition, TGF-beta failed to suppress the FGF8-stimulated growth of SC-3 cells, suggesting that the repression of fgf8 is required for the TGF-beta-mediated growth inhibition in SC-3 cells. In a reporter assay, androgen-responsive promoter activity was suppressed by TGF-beta in SC-3 cells. Based on this finding, it is likely that some of the androgen-inducible genes are physiological targets of the TGF-beta-mediated transcriptional control, and therefore, it is strongly suggested that the repression of fgf8 might be directly or indirectly involved in this transcriptional control by TGF-beta.
Collapse
Affiliation(s)
- Norio Takayashiki
- Department of Pathology, Jichi Medical School, 3311-1 Yakushiji, Minamikawachi, Kawachi, Tochigi 329-0498, Japan
| | | | | | | |
Collapse
|
4023
|
Xia W, Cheng CY. TGF-beta3 regulates anchoring junction dynamics in the seminiferous epithelium of the rat testis via the Ras/ERK signaling pathway: An in vivo study. Dev Biol 2005; 280:321-43. [PMID: 15882576 DOI: 10.1016/j.ydbio.2004.12.036] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2004] [Revised: 12/16/2004] [Accepted: 12/16/2004] [Indexed: 10/25/2022]
Abstract
Recent studies have shown that transforming growth factor (TGF)-beta3 regulates blood-testis barrier (BTB) dynamics in vivo, plausibly by determining the steady-state levels of occludin and zonula occludens-1 (ZO-1) at the BTB site via the p38 MAP kinase signaling pathway. Since BTB is composed of coexisting TJs and basal ectoplasmic specializations [ES, a testis-specific adherens junction (AJ) type] in the seminiferous epithelium of the rat testis, we sought to examine if TGF-beta3 would also regulate anchoring junction dynamics. Using an in vivo model in which rats were treated with AF-2364 [1-(2,4-dichlorobenzyl)-indazole-3-carbohydrazide] to perturb Sertoli-germ cell AJs without affecting the integrity of TJs at the BTB, it was noted that the event of germ cell loss from the epithelium was associated with a transient surge in TGF-beta3. Furthermore, it was also associated with a surge in the protein levels of Ras, p-ERK, and the intrinsic activity of ERK, illustrating TGF-beta3 apparently regulates Sertoli-germ cell ES function via the Ras/MEK/ERK signaling pathway. Indeed, pretreatment of rats with TbetaRII/Fc chimera, a TGF-beta antagonist, or U0126, a specific MEK inhibitor, could significantly delay and partially block the disruptive effects of AF-2364 in depleting germ cells from the epithelium. While the protein levels of the cadherin/catenin complex were significantly induced during AF-2364-mediated germ cell loss, perhaps being used to retain germ cells in the epithelium, this increase failed to reverse the loss of adhesion function between Sertoli and germ cells because of a loss of protein-protein interactions between cadherins and catenins. Collectively, these results illustrate that the testis has a novel mechanism in place in which an agent that primarily disrupts TJs can induce secondary loss of AJ function, leading to germ cell loss from the seminiferous epithelium. Yet an agent that selectively disrupts AJs (e.g., AF-2364) can limit its effects exclusively at the Sertoli-germ cell adhesive site without perturbing the Sertoli-Sertoli TJs.
Collapse
Affiliation(s)
- Weiliang Xia
- Population Council, Center for Biomedical Research, New York, NY 10021, USA
| | | |
Collapse
|
4024
|
|
4025
|
Dohgu S, Takata F, Yamauchi A, Nakagawa S, Egawa T, Naito M, Tsuruo T, Sawada Y, Niwa M, Kataoka Y. Brain pericytes contribute to the induction and up-regulation of blood-brain barrier functions through transforming growth factor-beta production. Brain Res 2005; 1038:208-15. [PMID: 15757636 DOI: 10.1016/j.brainres.2005.01.027] [Citation(s) in RCA: 247] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2004] [Revised: 01/06/2005] [Accepted: 01/10/2005] [Indexed: 01/01/2023]
Abstract
The blood-brain barrier (BBB) is a highly organized multicellular complex consisting of an endothelium, brain pericytes and astrocytes. The present study was aimed at evaluating the role of brain pericytes in the induction and maintenance of BBB functions and involvement of transforming growth factor-beta (TGF-beta) in the functional properties of pericytes. We used an in vitro BBB model established by coculturing immortalized mouse brain capillary endothelial (MBEC4) cells with a primary culture of rat brain pericytes. The coculture with rat pericytes significantly decreased the permeability to sodium fluorescein and the accumulation of rhodamine 123 in MBEC4 cells, suggesting that brain pericytes induce and up-regulate the BBB functions. Rat brain pericytes expressed TGF-beta1 mRNA. The pericyte-induced enhancement of BBB functions was significantly inhibited when cells were treated with anti-TGF-beta1 antibody (10 microg/ml) or a TGF-beta type I receptor antagonist (SB431542) (10 microM) for 12 h. In MBEC4 monolayers, a 12 h exposure to TGF-beta1 (1 ng/ml) significantly facilitated the BBB functions, this facilitation being blocked by SB431542. These findings suggest that brain pericytes contribute to the up-regulation of BBB functions through continuous TGF-beta production.
Collapse
Affiliation(s)
- Shinya Dohgu
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4026
|
Ray D, Terao Y, Nimbalkar D, Chu LH, Donzelli M, Tsutsui T, Zou X, Ghosh AK, Varga J, Draetta GF, Kiyokawa H. Transforming growth factor beta facilitates beta-TrCP-mediated degradation of Cdc25A in a Smad3-dependent manner. Mol Cell Biol 2005; 25:3338-47. [PMID: 15798217 PMCID: PMC1069597 DOI: 10.1128/mcb.25.8.3338-3347.2005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Ubiquitin-dependent degradation of Cdc25A is a major mechanism for damage-induced S-phase checkpoint. Two ubiquitin ligases, the Skp1-cullin-beta-TrCP (SCFbeta-TrCP) complex and the anaphase-promoting complex (APCCdh1), are involved in Cdc25A degradation. Here we demonstrate that the transforming growth factor beta (TGF-beta)-Smad3 pathway promotes SCF(beta-TrCP)-mediated Cdc25A ubiquitination. Cells treated with TGF-beta, as well as cells transfected with Smad3 or a constitutively active type I TGF-beta receptor, exhibit increased ubiquitination and markedly shortened half-lives of Cdc25A. Furthermore, Cdc25A is stabilized in cells transfected with Smad3 small interfering RNA (siRNA) and cells from Smad3-null mice. TGF-beta-induced ubiquitination is associated with Cdc25A phosphorylation at the beta-TrCP docking site (DS82G motif) and physical association of Cdc25A with Smad3 and beta-TrCP. Cdc25A mutant proteins deficient in DS82G phosphorylation are resistant to TGF-beta-Smad3-induced degradation, whereas a Cdc25A mutant protein defective in APCCdh1 recognition undergoes efficient degradation. Smad3 siRNA inhibits beta-TrCP-Cdc25A interaction and Cdc25A degradation in response to TGF-beta. beta-TrCP2 siRNA also inhibits Smad3-induced Cdc25A degradation. In contrast, Cdh1 siRNA had no effect on Cdc25A down-regulation by Smad3. These data suggest that Smad3 plays a key role in the regulation of Cdc25A ubiquitination by SCFbeta-TrCP and that Cdc25A stabilization observed in various cancers could be associated with defects in the TGF-beta-Smad3 pathway.
Collapse
Affiliation(s)
- Dipankar Ray
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, IL 60607, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4027
|
Norata GD, Callegari E, Marchesi M, Chiesa G, Eriksson P, Catapano AL. High-density lipoproteins induce transforming growth factor-beta2 expression in endothelial cells. Circulation 2005; 111:2805-11. [PMID: 15911702 DOI: 10.1161/circulationaha.104.472886] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND HDL is endowed with cardiovascular protective activities. In addition to its role in reverse cholesterol transport, HDL influences different functions of endothelial cells. In the present study, we investigated in endothelial cells the genes involved in inflammation modulated by HDL. METHODS AND RESULTS Through cDNA array analysis, transforming growth factor (TGF)-beta2 appeared to be a gene responsive to HDL treatment in endothelial cells. Quantitative real-time polymerase chain reaction confirmed that HDL subfraction 3 selectively induces TGF-beta2 mRNA expression and protein release, whereas TGF-beta1 and TGF-beta3 were not affected. This effect was mainly PI3K/Akt dependent. Lysosphingolipids present in HDL such as sphingosine 1 phosphate and sphingosylphosphorylcholine mimicked the effects of the whole HDL. These results were confirmed in vivo in transgenic mice overexpressing human apolipoprotein (apo) A-I. Compared with apoA-I-knockout mice, phospho-Akt, phospho-ERK1/2, and TGF-beta2 expression was increased in the aorta of transgenic mice overexpressing human apoA-I. In addition, the expression of phospho-Smad2/3, the transcription factor activated by TGF-beta, is increased in transgenic mice compared with knockout mice. CONCLUSIONS Because TGF-beta possesses antiinflammatory properties and stabilizes the plaque, the results of the present work suggest a novel target for the antiatherosclerotic effect of HDL.
Collapse
Affiliation(s)
- Giuseppe D Norata
- Department of Pharmacological Sciences, University of Milan, Via Balzaretti 9, 20133, Milan, Italy.
| | | | | | | | | | | |
Collapse
|
4028
|
Dash PK, Orsi SA, Moore AN. Sequestration of serum response factor in the hippocampus impairs long-term spatial memory. J Neurochem 2005; 93:269-78. [PMID: 15816850 DOI: 10.1111/j.1471-4159.2004.03016.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The formation of long-term memory has been shown to require protein kinase-mediated gene expression. One such kinase, mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK), can lead to the phosphorylation of serum response factor (SRF) and Elk-1, enhancing the expression of target genes. However, a direct involvement of these transcription factors in memory storage has not been demonstrated. We have employed an oligonucleotide decoy technique to interrogate SRF and Elk-1. Previously, it has been shown that intra-amygdalal infusion of small double-stranded decoy oligonucleotides for nuclear factor-kappaB (NFkappaB) can impair long-term memory for fear-potentiated startle. Using this approach, we found that intra-hippocampal infusion of NFkappaB decoy oligonucleotides also impairs long-term spatial memory, consistent with a role for this factor in long-term memory storage. Decoy oligonucleotides containing the binding site for SRF, as confirmed by shift-western, did not influence memory acquisition but impaired long-term spatial memory. Analysis of search behavior during the transfer test revealed deficits consistent with a loss of precise platform location information. In contrast, oligonucleotides with a binding site for either Elk-1 or another target of ERK activity, SMAD3/SMAD4, did not interfere with memory formation or storage. These findings suggest that SRF-mediated gene expression is required for long-term spatial memory.
Collapse
Affiliation(s)
- Pramod K Dash
- The Vivian L. Smith Center for Neurologic Research, Department of Neurobiology and Anatomy, The University of Texas Medical School, Houston, Texas 77225, USA.
| | | | | |
Collapse
|
4029
|
Kawakita T, Espana EM, He H, Hornia A, Yeh LK, Ouang J, Liu CY, Tseng SCG. Keratocan expression of murine keratocytes is maintained on amniotic membrane by down-regulating transforming growth factor-beta signaling. J Biol Chem 2005; 280:27085-92. [PMID: 15908433 PMCID: PMC1282515 DOI: 10.1074/jbc.m409567200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Keratocytes in the corneal stroma express keratan sulfate-containing proteoglycans including cornea-specific keratocan. On plastic dishes, human, bovine, and rabbit keratocytes lose their characteristic dendritic morphology and keratocan expression when cultured in serum-containing media. Herein, we demonstrated that murine keratocytes also acquired a fibroblastic shape and lost keratocan expression after first passage when cultured on plastic in the presence of serum. In contrast, cells expanded on human amniotic membrane (AM) stromal matrix maintained a three-dimensional dendritic morphology and expressed keratocan mRNA and protein for at least 8 passages before senescence. When keratocytes were cultured on AM, the promoter activity of transforming growth factor (TGF)-beta2 and TGF-beta receptor II was down-regulated as compared with that on plastic. Furthermore, cells on AM continuously retained Smad 2 and Smad 4 in the cytoplasm and did not express alpha-smooth muscle actin, even when 10 ng/ml TGF-beta1 was added in a serum-free medium for up to 5 days. In parallel to such down-regulation of TGF-beta signaling, keratocan promoter-driven ECFP expression was observed in cells cultured either on AM in the presence of serum or on plastic containing serum treated with a neutralizing antibody to TGF-beta. Collectively, these results indicate that down-regulation of Smad-mediated TGF-beta signaling is an important mechanism for cultured keratocytes to maintain a normal phenotype while continuously expanded in a serum-containing medium. This strategy of suppressing TGF-beta signaling, achieved by AM stromal matrix in part via suppression of TGF-beta gene transcription, can be used to expand keratocytes in culture without the use of AM in the future.
Collapse
Affiliation(s)
- Tetsuya Kawakita
- From TissueTech, Inc. and Ocular Surface Center, Miami, Florida, 33173 and
| | - Edgar M. Espana
- From TissueTech, Inc. and Ocular Surface Center, Miami, Florida, 33173 and
| | - Hua He
- From TissueTech, Inc. and Ocular Surface Center, Miami, Florida, 33173 and
| | - Armand Hornia
- From TissueTech, Inc. and Ocular Surface Center, Miami, Florida, 33173 and
| | - Lung-Kun Yeh
- Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, Florida, 33136
| | - Jie Ouang
- Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, Florida, 33136
| | - Chia-Yang Liu
- Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, Florida, 33136
| | - Scheffer C. G. Tseng
- From TissueTech, Inc. and Ocular Surface Center, Miami, Florida, 33173 and
- Address correspondence to: Scheffer C. G. Tseng, MD, PhD, Ocular Surface Center, 7000 SW 97 Avenue, Suite 213, Miami, FL 33173, Tel. (305) 274-1299; Fax. (305) 274-1297; E-mail:
| |
Collapse
|
4030
|
Romero-Gallo J, Sozmen EG, Chytil A, Russell WE, Whitehead R, Parks WT, Holdren MS, Her MF, Gautam S, Magnuson M, Moses HL, Grady WM. Inactivation of TGF-beta signaling in hepatocytes results in an increased proliferative response after partial hepatectomy. Oncogene 2005; 24:3028-41. [PMID: 15735717 DOI: 10.1038/sj.onc.1208475] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The transforming growth factor beta (TGF-beta) signaling pathway, which is activated by the TGF-beta receptor complex consisting of type I and type II TGF-beta receptors (TGFBR1 and TGFBR2), regulates cell growth and death. TGF-beta and components of its signaling pathway, particularly TGFBR2, have been implicated as tumor suppressor genes and important antimitogenic factors in the gastrointestinal tract and liver. An in vivo approach to study these effects has been hindered by the embryonic lethality of Tgfbr2(-/-) mice and poor viability of the Tgfb1(-/-) mice. Consequently, we have developed a hepatocyte-specific Tgfbr2 knockout mouse, the Alb-cre Tgfbr2(flx/flx) mouse, to study the physiologically relevant effects of TGF-beta signaling on epithelial cell proliferation in vivo. After 70% hepatectomy, we observed increased proliferation and an increased liver mass : body weight ratio in the Alb-cre Tgfbr2(flx/flx) mice compared to Tgfbr2(flx/flx) mice. We also observed decreased expression and increased phosphorylation of p130 in the livers from the Alb-cre Tgfbr2(flx/flx) mice as well as increased expression of cyclin E, which is transcriptionally regulated, in part, by p130:E2F4. Consistent with these results, in a hepatocyte cell line derived from the Tgfbr2(flx/flx) mice, we found that TGF-beta increases the nuclear localization of E2F4, and presumably the transcriptional repression of the p130:E2F4 complex. Thus, we have demonstrated that TGF-beta signaling in vivo regulates the mitogenic response in the regenerating liver, affecting the liver mass : body weight ratio after partial hepatectomy, and that these mitogenic responses are accompanied by alterations in p130 expression and phosphorylation, implicating p130 as one of the proteins regulated in vivo by TGF-beta during liver regeneration.
Collapse
|
4031
|
Bhattacharyya S, Ghosh AK, Pannu J, Mori Y, Takagawa S, Chen G, Trojanowska M, Gilliam AC, Varga J. Fibroblast expression of the coactivator p300 governs the intensity of profibrotic response to transforming growth factor beta. ACTA ACUST UNITED AC 2005; 52:1248-58. [PMID: 15818659 DOI: 10.1002/art.20996] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Transforming growth factor beta (TGFbeta) induces profibrotic responses in normal fibroblasts, and plays a fundamental role in the pathogenesis of fibrosis in scleroderma (systemic sclerosis [SSc]). The intensity of cellular responses elicited by cytokines is modulated by transcriptional coactivators such as the histone acetylase p300. The objective of these studies was to delineate the physiologic role of p300 in Smad-dependent profibrotic responses elicited by TGFbeta. METHODS Ectopic p300 was transiently expressed in normal dermal fibroblasts. Cellular p300 levels were suppressed using p300-specific ribozymes. The regulation of gene expression was examined by transient transfection assays, Northern blotting, and immunoblot analysis. The expression of p300 in normal and scleroderma fibroblasts was evaluated by confocal microscopy and immunoblotting, and p300 levels in skin from mice with experimental scleroderma were assessed by immunohistochemistry. RESULTS In normal fibroblasts, TGFbeta induced an increase in the levels of p300. Forced expression of ectopic p300 in these cells dramatically enhanced the magnitude of TGFbeta responses, whereas selective depletion of p300 using ribozyme resulted in abrogation of TGFbeta-induced collagen synthesis and promoter activity. Furthermore, TGFbeta lost its ability to induce Smad-dependent transcription in p300-depleted fibroblasts. These responses could be fully rescued with ectopic p300. Abrogation of Smad-mediated TGFbeta signaling was not due to alterations in the levels or the ligand-dependent phosphorylation or intracellular trafficking of endogenous Smads. Immunohistochemical analysis demonstrated substantially increased p300 expression in lesional skin from mice with chronic graft-versus-host disease, an animal model of scleroderma. Furthermore, levels of p300 were 2-3-fold higher in cultured fibroblasts derived from SSc patients than in fibroblasts from matched normal controls. CONCLUSION These results establish, for the first time, that the coactivator histone acetylase p300, itself a target of TGFbeta regulation, is an essential component of the cellular TGFbeta signal transduction pathways mediating stimulation of collagen synthesis in fibroblasts. Since the cellular abundance of p300 appears to govern the intensity of profibrotic responses elicited by TGFbeta, elevated p300 expression in lesional tissue may contribute to the progression of skin fibrosis in scleroderma.
Collapse
|
4032
|
Epperly MW, Cao S, Goff J, Shields D, Zhou S, Glowacki J, Greenberger JS. Increased longevity of hematopoiesis in continuous bone marrow cultures and adipocytogenesis in marrow stromal cells derived from Smad3(-/-) mice. Exp Hematol 2005; 33:353-62. [PMID: 15730859 DOI: 10.1016/j.exphem.2004.11.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Revised: 11/12/2004] [Accepted: 11/18/2004] [Indexed: 01/04/2023]
Abstract
OBJECTIVE To determine the role of Smad3 in modulating hematopoiesis, continuous bone marrow cultures were established from Smad-/- mice, and the longevity of hematopoiesis and extent of adipogenesis in the supportive hematopoietic microenvironment were compared to those from cultures of control, Smad3+/+ or heterozygous Smad3+/- mice. MATERIALS AND METHODS Long-term bone marrow cultures (LTBMCs) were established from Smad3+/+, Smad3+/-, or Smad3-/- mice. On a weekly basis, the number of cobblestone islands, number of nonadherent cells, confluence of the adherent cells, or CFU-GEMM colonies was determined. Bone marrow stromal cell lines were established and cobblestone island production on these cell lines determined in the presence of nonadherent cells from week-42 Smad3-/- or week-4 C57BL/6J LTBMCs. RESULTS Initial proliferative capacity of the LTBMCs was similar in all groups through week 20, at which time there was an increase in cobblestone islands and production of nonadherent cells and CFU-GEMM colonies in the Smad3-/- group. By week 28, only the Smad3-/- LTBMCs had significantly maintained increased production of these parameters. Maintenance of cobblestone islands indicative of the most primitive hematopoietic progenitor cells persisted past 45 weeks in Smad3-/- cultures. The Smad3-/- stromal cell line also demonstrated increased support of cobblestone island production when incubated with nonadherent cells from week-42 Smad3-/- or week-4 C57BL/6J LTBMCs. Evaluation of adipocytogenesis in stromal cells showed significantly greater accumulation of adipocytes in lines from Smad3-/- than from Smad3+/+ mice. CONCLUSIONS These data provide evidence for a significant effect of deletion of the Smad3 signaling pathway in increased hematopoiesis in LTBMCs and support the negative regulatory influence of TGFbeta signaling on adipocytogenesis and long-term hematopoiesis in vitro.
Collapse
Affiliation(s)
- Michael W Epperly
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | |
Collapse
|
4033
|
Kim HP, Kim TY, Lee MS, Jong HS, Kim TY, Lee JW, Bang YJ. TGF-beta1-mediated activations of c-Src and Rac1 modulate levels of cyclins and p27(Kip1) CDK inhibitor in hepatoma cells replated on fibronectin. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1743:151-61. [PMID: 15777850 DOI: 10.1016/j.bbamcr.2004.09.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Revised: 07/30/2004] [Accepted: 09/16/2004] [Indexed: 01/03/2023]
Abstract
Integrin-mediated cell adhesion transduces signals to regulate actin cytoskeleton and cell proliferation. While understanding how integrin signals cross-talk with the TGF-beta1 pathways, we observed lamellipodia formation and cyclin regulation in Hep3B cells, following TGF-beta1 treatment. To answer if integrin signaling via actin organization might regulate cell cycle progression after TGF-beta1 treatment, we analyzed cross-talk between the two receptor-mediated pathways in hepatoma cells on specific ECMs. We found that basal and TGF-beta1-mediated activation of c-Src and Rac1, expression of cyclins E and A, and suppression of p27Kip1 were significant in cells replated on fibronectin, but not in cells on collagen I, indicating a different integrin-mediated cellular response to TGF-beta1 treatment. Levels of tyrosine phosphorylation and actin-enriched lamellipodia on fibronectin were also more prominent than in cells on collagen I. Studies using pharmacological inhibitors or transient transfections revealed that the preferential TGF-beta1 effects in cells on fibronectin required c-Src family kinase activity. These observations suggest that a specific cross-talk between TGF-beta1 and fibronectin-binding integrin signal pathways leads to the activation of c-Src/Rac1/actin-organization, leading to changes in cell cycle regulator levels in hepatoma cells. Therefore, this study represents another mechanism to regulate cell cycle regulators when integrin signaling is collaborative with TGF-beta1 pathways.
Collapse
Affiliation(s)
- Hwang-Phill Kim
- National Research Laboratory for Cancer Epigenetics, Cancer Research Institute, Department of Tumor Biology, College of Medicine, Seoul National University, Seoul 110-799, South Korea
| | | | | | | | | | | | | |
Collapse
|
4034
|
Abstract
The TGF-beta superfamily members have important roles in controlling patterning and tissue formation in both invertebrates and vertebrates. Two types of signal transducers, receptors and Smads, mediate the signaling to regulate expression of their target genes. Despite of the relatively simple signal transduction pathway, many modulators have been found to contribute to a tight regulation of this pathway in a variety of mechanisms. This article reviews the negative regulation of TGF-beta signaling with focus on its roles in vertebrate development.
Collapse
Affiliation(s)
- Ye Guang Chen
- The State Key Laboratory of Biomembrane and Membrane Biotechnology, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China.
| | | |
Collapse
|
4035
|
Mazzieri R, Jurukovski V, Obata H, Sung J, Platt A, Annes E, Karaman-Jurukovska N, Gleizes PE, Rifkin DB. Expression of truncated latent TGF-beta-binding protein modulates TGF-beta signaling. J Cell Sci 2005; 118:2177-87. [PMID: 15870109 DOI: 10.1242/jcs.02352] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Transforming growth factor-beta is released from most cells as an inactive complex consisting of transforming growth factor-beta, the transforming growth factor-beta propeptide and the latent transforming growth factor-beta-binding protein. We studied the role of latent transforming growth factor-beta-binding protein in modulating transforming growth factor-beta availability by generating transgenic mice that express a truncated form of latent transforming growth factor-beta-binding protein-1 that binds to transforming growth factor-beta but is missing the known N- and C-terminal matrix-binding sequences. As transforming growth factor-beta is an inhibitor of keratinocyte proliferation and is involved in the control of hair cycling, we over-expressed the mutated form of latent transforming growth factor-beta-binding protein under the control of the keratin 14-promoter. Transgenic animals displayed a hair phenotype due to a reduction in keratinocyte proliferation, an abbreviated growth phase and an early initiation of the involution (catagen) phase of the hair cycle. This phenotype appears to result from excess active transforming growth factor-beta, as enhanced numbers of pSmad2/3-positive nuclei are observed in transgenic animal skin. These data suggest that the truncated form of latent transforming growth factor-beta-binding protein-1 competes with wild-type latent transforming growth factor-beta-binding protein for binding to latent transforming growth factor-beta, resulting in latent transforming growth factor-beta complexes that fail to be targeted correctly in the extracellular matrix. The mis-localization of the transforming growth factor-beta results in inappropriate activation and premature initiation of catagen, thereby illustrating the significance of latent transforming growth factor-beta-binding protein interaction with transforming growth factor-beta in the targeting and activation of latent transforming growth factor-beta in addition to previously reported effects on small latent complex secretion.
Collapse
Affiliation(s)
- Roberta Mazzieri
- Department of Cell Biology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
4036
|
Warburton D, Bellusci S, De Langhe S, Del Moral PM, Fleury V, Mailleux A, Tefft D, Unbekandt M, Wang K, Shi W. Molecular mechanisms of early lung specification and branching morphogenesis. Pediatr Res 2005; 57:26R-37R. [PMID: 15817505 DOI: 10.1203/01.pdr.0000159570.01327.ed] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The "hard wiring" encoded within the genome that determines the emergence of the laryngotracheal groove and subsequently early lung branching morphogenesis is mediated by finely regulated, interactive growth factor signaling mechanisms that determine the automaticity of branching, interbranch length, stereotypy of branching, left-right asymmetry, and finally gas diffusion surface area. The extracellular matrix is an important regulator as well as a target for growth factor signaling in lung branching morphogenesis and alveolarization. Coordination not only of epithelial but also endothelial branching morphogenesis determines bronchial branching and the eventual alveolar-capillary interface. Improved prospects for lung protection, repair, regeneration, and engineering will depend on more detailed understanding of these processes. Herein, we concisely review the functionally integrated morphogenetic signaling network comprising the critical bone morphogenetic protein, fibroblast growth factor, Sonic hedgehog, transforming growth factor-beta, vascular endothelial growth factor, and Wnt signaling pathways that specify and drive early embryonic lung morphogenesis.
Collapse
Affiliation(s)
- David Warburton
- Developmental Biology Program, The Saban Research Institute of Childrens Hospital Los Angeles, CA 90027, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4037
|
Bradley KC, Boulware MB, Jiang H, Doerge RW, Meisel RL, Mermelstein PG. Changes in gene expression within the nucleus accumbens and striatum following sexual experience. GENES BRAIN AND BEHAVIOR 2005; 4:31-44. [PMID: 15660666 DOI: 10.1111/j.1601-183x.2004.00093.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Sexual experience, like repeated drug use, produces long-term changes including sensitization in the nucleus accumbens and dorsal striatum. To better understand the molecular mechanisms underlying the neuroadaptations following sexual experience, we employed a DNA microarray approach to identify genes differentially expressed between sexually experienced and sexually naive female hamsters within the nucleus accumbens and dorsal striatum. For 6 weeks, a stimulus male was placed in the home cage of one-half of the hormonally primed, ovariectomized female hamsters. On the seventh week, the two experimental groups were subdivided, with one half paired with a stimulus male. In comparison with sexually naive animals, sexually experienced hamsters receiving a stimulus male on week 7 exhibited an increase in a large number of genes. Conversely, sexually experienced female hamsters not receiving a stimulus male on week 7 exhibited a reduction in the expression of many genes. For directional changes and the categories of genes regulated by the experimental conditions, data were consistent across the nucleus accumbens and dorsal striatum. However, the specific genes exhibiting changes in expression were disparate. These experiments, among the first to profile genes regulated by female sexual behavior, will provide insight into the mechanisms by which both motivated behaviors and drugs of abuse induce long-term changes in the mesolimbic and nigrostriatal dopamine pathways.
Collapse
Affiliation(s)
- K C Bradley
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | |
Collapse
|
4038
|
Zhang C, Basta T, Fawcett SR, Klymkowsky MW. SOX7 is an immediate-early target of VegT and regulates Nodal-related gene expression in Xenopus. Dev Biol 2005; 278:526-41. [PMID: 15680368 DOI: 10.1016/j.ydbio.2004.11.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Revised: 10/18/2004] [Accepted: 11/09/2004] [Indexed: 02/06/2023]
Abstract
In zebrafish, the divergent F-type SOX casanova acts downstream of Nodal signaling to specify endoderm. While no casanova orthologs have been identified in tetrapods, the F-type SOX, SOX7, is supplied maternally in Xenopus (Fawcett and Klymkowsky, 2004. GER 4, 29). Subsequent RT-PCR and section-based in situ hybridization analyses indicate that SOX7 mRNA is localized to the vegetal region of the blastula-stage embryo. Overexpression and maternal depletion studies reveal that the T-box transcription factor VegT, which initiates mesoendodermal differentiation, directly regulates SOX7 expression. SOX7, but not SOX17 (another F-type SOX), binds to sites within the Xnr5 promoter and SOX7, but not SOX17, induces expression of the Nodal-related genes Xnr1, Xnr2, Xnr4, Xnr5, and Xnr6, the homeodomain transcription factor Mixer, and the endodermal marker SOX17beta; both SOX7 and SOX17 induce expression of the pan-endodermal marker endodermin. SOX7's induction of Xnr expression in animal caps is independent of Mixer and Nodal signaling. In animal caps, VegT's ability to induce Mixer and Edd appears to depend upon SOX7 activity. Whole embryo experiments suggests that vegetal factors partially compensate for the absence of SOX7. Based on the antagonistic effects of SOX7 and SOX3 (Zhang et al., 2004. Dev. Biol. 273, 23) and their common binding sites in the Xnr5 promoter, we propose a model in which competitive interactions between these two proteins are involved in refining the domain of endodermal differentiation.
Collapse
Affiliation(s)
- Chi Zhang
- Molecular, Cellular and Developmental Biology, University of Colorado, Porter Biosci. Building, Boulder, CO 80309-0347, USA
| | | | | | | |
Collapse
|
4039
|
Dubrovska A, Kanamoto T, Lomnytska M, Heldin CH, Volodko N, Souchelnytskyi S. TGFbeta1/Smad3 counteracts BRCA1-dependent repair of DNA damage. Oncogene 2005; 24:2289-97. [PMID: 15735739 DOI: 10.1038/sj.onc.1208443] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Inactivation of the BRCA1 gene has been found to confer susceptibility to early-onset familial breast and ovarian cancers. BRCA1 regulates DNA repair, chromatin remodeling and affects gene transcription. Transforming growth factor-beta (TGFbeta) is a potent regulator of growth, apoptosis and invasiveness of tumor cells, including breast cancer cells. Here we show that Smad3 which is a component of the TGFbeta signaling pathway, forms a complex with BRCA1 in vitro and in vivo. The interaction is mediated by the MH1 domain of Smad3 and the C-terminal part of BRCA1. We observed a co-localization of Smad3 and BRCA1 in nuclear complexes. We also found that TGFbeta1/Smad3 counteracted BRCA1-dependent repair of DNA double-strand breaks in human breast epithelial cells, as evaluated by BRCA1 nuclear foci formation, single-cell gel electrophoresis and cell survival assays. Thus, TGFbeta1/Smad3 suppresses BRCA1-dependent DNA repair in response to a DNA damaging agent.
Collapse
Affiliation(s)
- Anna Dubrovska
- Ludwig Institute for Cancer Research, Box 595, Biomedical Center, SE-751 24 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
4040
|
Callery EM, Smith JC, Thomsen GH. The ARID domain protein dril1 is necessary for TGF(beta) signaling in Xenopus embryos. Dev Biol 2005; 278:542-59. [PMID: 15680369 DOI: 10.1016/j.ydbio.2004.11.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2004] [Revised: 10/30/2004] [Accepted: 11/11/2004] [Indexed: 11/18/2022]
Abstract
ARID domain proteins are members of a highly conserved family involved in chromatin remodeling and cell-fate determination. Dril1 is the founding member of the ARID family and is involved in developmental processes in both Drosophila and Caenorhabditis elegans. We describe the first embryological characterization of this gene in chordates. Dril1 mRNA expression is spatiotemporally regulated and is detected in the involuting mesoderm during gastrulation. Inhibition of dril1 by either a morpholino or an engrailed repressor-dril1 DNA binding domain fusion construct inhibits gastrulation and perturbs induction of the zygotic mesodermal marker Xbra and the organizer markers chordin, noggin, and Xlim1. Xenopus tropicalis dril1 morphants also exhibit impaired gastrulation and axial deficiencies, which can be rescued by coinjection of Xenopus laevis dril1 mRNA. Loss of dril1 inhibits the response of animal caps to activin and secondary axis induction by smad2. Dril1 depletion in animal caps prevents both the smad2-mediated induction of dorsal mesodermal and endodermal markers and the induction of ventral mesoderm by smad1. Mesoderm induction by eFGF is uninhibited in dril1 morphant caps, reflecting pathway specificity for dril1. These experiments identify dril1 as a novel regulator of TGF(beta) signaling and a vital component of mesodermal patterning and embryonic morphogenesis.
Collapse
Affiliation(s)
- Elizabeth M Callery
- Department of Biochemistry and Cell Biology and Center for Developmental Genetics, Stony Brook University, Stony Brook, NY 11794-5215, USA.
| | | | | |
Collapse
|
4041
|
Dennler S, Pendaries V, Tacheau C, Costas MA, Mauviel A, Verrecchia F. The steroid receptor co-activator-1 (SRC-1) potentiates TGF-beta/Smad signaling: role of p300/CBP. Oncogene 2005; 24:1936-45. [PMID: 15688032 DOI: 10.1038/sj.onc.1208343] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The three related 160-kDa proteins, SRC-1, TIF-2 and RAC-3, were initially identified as factors interacting with nuclear receptors. They have also been reported to potentiate the activity of other transcription factors such as AP-1 or NF-kappaB. The aim of this work was to identify whether SRC-1 interferes with the TGF-beta/Smad signaling pathway, and if so, to identify its underlying mechanisms of action. Using transient cell transfection experiments performed in human dermal fibroblasts with the Smad3/4-specific (SBE)4-lux reporter construct, as well as the human PAI-1 promoter, we determined that SRC-1 enhances TGF-beta-induced, Smad-mediated, transcription. Likewise, SRC-1 overexpression potentiated TGF-beta-induced upregulation of PAI-1 steady-state mRNA levels. Using a mammalian two-hybrid system, we demonstrated that SRC-1 interacts with the transcriptional co-activators p300/CBP, but not with Smad3. Overexpression of the adenovirus E1A oncoprotein, an inhibitor of CBP/p300 activity, prevented the enhancing effect of SRC-1 on Smad3/4-mediated transcription, indicating that p300/CBP may be required for SRC-1 effect. Such hypothesis was validated, as expression of a mutant form of SRC-1 lacking the CBP/p300-binding site failed to upregulate Smad3/4-dependent transcription, while full-length SRC-1 potentiated p300.Smad3 interactions. These results identify SRC-1 as a novel Smad3/4 transcriptional partner, facilitating the functional link between Smad3 and p300/CBP.
Collapse
Affiliation(s)
- Sylviane Dennler
- INSERM U697, Institut de recherche sur la peau, Hôpital Saint-Louis, Paris, France
| | | | | | | | | | | |
Collapse
|
4042
|
Wurdak H, Ittner LM, Lang KS, Leveen P, Suter U, Fischer JA, Karlsson S, Born W, Sommer L. Inactivation of TGFbeta signaling in neural crest stem cells leads to multiple defects reminiscent of DiGeorge syndrome. Genes Dev 2005; 19:530-5. [PMID: 15741317 PMCID: PMC551573 DOI: 10.1101/gad.317405] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Specific inactivation of TGFbeta signaling in neural crest stem cells (NCSCs) results in cardiovascular defects and thymic, parathyroid, and craniofacial anomalies. All these malformations characterize DiGeorge syndrome, the most common microdeletion syndrome in humans. Consistent with a role of TGFbeta in promoting non-neural lineages in NCSCs, mutant neural crest cells migrate into the pharyngeal apparatus but are unable to acquire non-neural cell fates. Moreover, in neural crest cells, TGFbeta signaling is both sufficient and required for phosphorylation of CrkL, a signal adaptor protein implicated in the development of DiGeorge syndrome. Thus, TGFbeta signal modulation in neural crest differentiation might play a crucial role in the etiology of DiGeorge syndrome.
Collapse
Affiliation(s)
- Heiko Wurdak
- Institute of Cell Biology, Department of Biology, Swiss Federal Institute of Technology, ETH-Hönggerberg, Zurich, CH-8093, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
4043
|
Yamashita M, Ying SX, Zhang GM, Li C, Cheng SY, Deng CX, Zhang YE. Ubiquitin ligase Smurf1 controls osteoblast activity and bone homeostasis by targeting MEKK2 for degradation. Cell 2005; 121:101-13. [PMID: 15820682 PMCID: PMC3314294 DOI: 10.1016/j.cell.2005.01.035] [Citation(s) in RCA: 286] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Revised: 11/24/2004] [Accepted: 01/20/2005] [Indexed: 01/17/2023]
Abstract
Bone is constantly resorbed and formed throughout life by coordinated actions of osteoclasts and osteoblasts. Here we show that Smurf1, a HECT domain ubiquitin ligase, has a specific physiological role in suppressing the osteogenic activity of osteoblasts. Smurf1-deficient mice are born normal but exhibit an age-dependent increase of bone mass. The cause of this increase can be traced to enhanced activities of osteoblasts, which become sensitized to bone morphogenesis protein (BMP) in the absence of Smurf1. However, loss of Smurf1 does not affect the canonical Smad-mediated intracellular TGFbeta or BMP signaling; instead, it leads to accumulation of phosphorylated MEKK2 and activation of the downstream JNK signaling cascade. We demonstrate that Smurf1 physically interacts with MEKK2 and promotes the ubiquitination and turnover of MEKK2. These results indicate that Smurf1 negatively regulates osteoblast activity and response to BMP through controlling MEKK2 degradation.
Collapse
Affiliation(s)
- Motozo Yamashita
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892
| | - Sai-Xia Ying
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892
| | - Gen-mu Zhang
- Laboratory Animal Science Program, National Cancer Institute at Frederick, Frederick, Maryland 21702
| | - Cuiling Li
- Mammalian Genetics Section, Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Steven Y. Cheng
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892
| | - Chu-xia Deng
- Mammalian Genetics Section, Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Ying E. Zhang
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892
| |
Collapse
|
4044
|
Ohashi N, Yamamoto T, Uchida C, Togawa A, Fukasawa H, Fujigaki Y, Suzuki S, Kitagawa K, Hattori T, Oda T, Hayashi H, Hishida A, Kitagawa M. Transcriptional induction of Smurf2 ubiquitin ligase by TGF-β. FEBS Lett 2005; 579:2557-63. [PMID: 15862290 DOI: 10.1016/j.febslet.2005.03.069] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Revised: 02/28/2005] [Accepted: 03/21/2005] [Indexed: 11/24/2022]
Abstract
Smad ubiquitination regulatory factor 2 (Smurf2), a ubiquitin ligase for Smads, plays critical roles in the regulation of transforming growth factor-beta (TGF-beta)-Smad signaling via ubiquitin-dependent degradation of Smad2 and Smad7. We found that TGF-beta stimulates Smurf2 expression. TGF-beta activated the Smurf2 promoter in a TGF-beta responsive cell lines, whereas IL-1alpha, PDGF and epidermal growth factor did not. TGF-beta-mediated Smurf2 promoter activation was inhibited by Smad7 or an activin receptor-like kinase 5 inhibitor but not by dominant negative Smad or disruption of Smad-binding elements in the promoter. Moreover, inhibition of the phosphatidil inositol 3 kinase (PI3K)/Akt pathway suppressed TGF-beta-mediated Smurf2 induction. These results suggest that TGF-beta stimulates Smurf2 expression by Smad-independent pathway such as PI3K/Akt pathway via TGF-beta receptor.
Collapse
Affiliation(s)
- Naro Ohashi
- First Department of Medicine, Hamamatsu University School of Medicine, Shizuoka, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4045
|
Abstract
Transforming growth factor beta (TGF-beta) is a ubiquitous and essential regulator of cellular and physiologic processes including proliferation, differentiation, migration, cell survival, angiogenesis, and immunosurveillance. Alterations in the TGF-beta signaling pathway, including mutation or deletion of members of the signaling pathway and resistance to TGF-beta-mediated inhibition of proliferation are frequently observed in human cancers. Although these alterations define a tumor suppressor role for the TGF-beta pathway in human cancer, TGF-beta also mediates tumor-promoting effects, either through differential effects on tumor and stromal cells or through a fundamental alteration in the TGF-beta responsiveness of the tumor cells themselves. TGF-beta and members of the TGF-beta signaling pathway are being evaluated as prognostic or predictive markers for cancer patients. Ongoing advances in understanding the TGF-beta signaling pathway will enable targeting of this pathway for the chemoprevention and treatment of human cancers.
Collapse
Affiliation(s)
- Rebecca L Elliott
- Department of Medicine and Pharmacology and Cancer Biology, Duke University Medical Center, 221 BMSRB Research Drive, Box 2631 DUMC, Durham, NC 27710, USA
| | | |
Collapse
|
4046
|
Mukhopadhyay A, Tan EKJ, Khoo YTA, Chan SY, Lim IJ, Phan TT. Conditioned medium from keloid keratinocyte/keloid fibroblast coculture induces contraction of fibroblast-populated collagen lattices. Br J Dermatol 2005; 152:639-45. [PMID: 15840092 DOI: 10.1111/j.1365-2133.2005.06545.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Keloid scars represent a pathological response to cutaneous injury. Overproliferation of fibroblasts and overproduction of collagen characterize these abnormal scars. The pathology of these scars remains poorly understood. The role of epithelial-mesenchymal interactions in keloid pathogenesis and scar contracture has recently been explored. OBJECTIVES To test our hypothesis that epithelial-mesenchymal interactions play a major role in modulating keloid scar contracture. METHODS A coculture model was employed wherein keloid and normal keratinocytes were cocultured with keloid or normal fibroblasts, and the conditioned media from day 5 cocultures were collected to study the effect of the paracrine secretions on contraction of an in vitro fibroblast-populated collagen lattice (FPCL) model. RESULTS Keloid keratinocyte/keloid fibroblast coculture conditioned media brought about increased contraction of the collagen lattice compared with non-cocultured conditioned media. When keloid fibroblasts populated the collagen lattice, significantly increased lattice contraction was induced compared with lattices populated by normal fibroblasts. The addition of antitransforming growth factor (TGF)-beta neutralizing antibody to the conditioned media produced an attenuation of the contraction of the FPCLs. When keloid and normal fibroblasts were cultured on chamber slides and treated with conditioned media from coculture and non-coculture series, immunohistochemical analysis demonstrated an increased expression of alpha-smooth muscle actin (a marker for fibroblast differentiation into myofibroblasts) in fibroblasts exposed to conditioned media from coculture. CONCLUSIONS These data indicate that epithelial-mesenchymal interactions are likely to play a major role in scar contracture and scar pathogenesis, and underscore the role of TGF-beta1 as a key player in keloid pathogenesis.
Collapse
Affiliation(s)
- A Mukhopadhyay
- Department of Surgery, The National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260
| | | | | | | | | | | |
Collapse
|
4047
|
Chen H, Sun J, Buckley S, Chen C, Warburton D, Wang XF, Shi W. Abnormal mouse lung alveolarization caused by Smad3 deficiency is a developmental antecedent of centrilobular emphysema. Am J Physiol Lung Cell Mol Physiol 2005; 288:L683-91. [PMID: 15591413 DOI: 10.1152/ajplung.00298.2004] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Transforming growth factor-β (TGF-β) signaling plays an important regulatory role during lung development and remodeling. Smad3 is a major downstream signal transducer in the TGF-β pathway from the cell membrane to the nucleus. In Smad3 null mutant mice, we have observed retarded lung alveolarization from postnatal day 7 to day 28, and subsequently centrilobular emphysema starting from day 28, as determined by morphometric analysis. In addition to the morphological changes, peripheral lung cell proliferation in Smad3 knockout mice was reduced compared with the wild-type control between postnatal days 7 and 28. Expression of tropoelastin at the mRNA level was also dramatically decreased in Smad3 knockout lungs from postnatal day 28 through adulthood. Furthermore, increased matrix metalloproteinase-9 protein expression and activity were detected in the Smad3 knockout mouse lung tissue and the bronchoalveolar lavage fluid at postnatal day 28 when the centrilobular emphysema pathology was just beginning to appear. Therefore, these results indicate that Smad3 not only has a positive regulatory impact on neonatal lung alveolarization but also potentially plays a protective role against the occurrence of centrilobular emphysema later on in life.
Collapse
Affiliation(s)
- Hui Chen
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, USA
| | | | | | | | | | | | | |
Collapse
|
4048
|
Kulinsky VI, Kolesnichenko LS. Molecular Mechanisms of Hormonal Activity. II. Kinase Systems. Systems with Intracellular Receptors. Transactivation of STS. BIOCHEMISTRY (MOSCOW) 2005; 70:391-405. [PMID: 15892606 DOI: 10.1007/s10541-005-0130-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Hormone receptors and other components, functional mechanisms, and biological role of analyzed signal transduction systems (STS) are described. The recently revealed module principle of the structure and STS transactivation providing diversity and plasticity of regulation are highlighted. STS activities are significantly changed in many diseases. Novel promising pharmaceuticals targeted to certain components of STS increase in number from year to year. The data published by the beginning of January 2004 are summarized in this review.
Collapse
Affiliation(s)
- V I Kulinsky
- Department of Biochemistry, Irkutsk State Medical University, 664003 Irkutsk, Russia.
| | | |
Collapse
|
4049
|
Schreuder H, Liesum A, Pohl J, Kruse M, Koyama M. Crystal structure of recombinant human growth and differentiation factor 5: Evidence for interaction of the type I and type II receptor-binding sites. Biochem Biophys Res Commun 2005; 329:1076-86. [PMID: 15752764 DOI: 10.1016/j.bbrc.2005.02.078] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2005] [Indexed: 11/23/2022]
Abstract
The crystal structure of human growth differentiation factor 5 (GDF5) was solved at 2.4A resolution. The structure is very similar to the structure of bone morphogenetic factor 7 (BMP7) and consists of two banana-shaped monomers, linked via a disulfide bridge. The crystal packing of GDF5 is the same as the crystal packing of BMP7. This is highly unusual since only 25-30% of the crystal contacts involve identical residues. Analysis of the crystal packing revealed that residues of the type I receptor epitope are binding to residues of the type II receptor-binding epitope. The fact that for both BMP family members the type I and type II receptor-binding sites interact suggests that the complementary sites on the receptors may interact as well, suggesting a way how preformed receptor heterodimers may form, similar to the preformed receptors observed for the erythropoietin receptor and the BMP2 receptors.
Collapse
Affiliation(s)
- Herman Schreuder
- sanofi-aventis, Industriepark Hoechst, Building G 865, A-65926 Frankfurt, Germany.
| | | | | | | | | |
Collapse
|
4050
|
Messenger NJ, Kabitschke C, Andrews R, Grimmer D, Núñez Miguel R, Blundell TL, Smith JC, Wardle FC. Functional Specificity of the Xenopus T-Domain Protein Brachyury Is Conferred by Its Ability to Interact with Smad1. Dev Cell 2005; 8:599-610. [PMID: 15809041 DOI: 10.1016/j.devcel.2005.03.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2004] [Revised: 11/01/2004] [Accepted: 03/04/2005] [Indexed: 11/30/2022]
Abstract
Members of the T-box gene family play important and diverse roles in development and disease. Here, we study the functional specificities of the Xenopus T-domain proteins Xbra and VegT, which differ in their abilities to induce gene expression in prospective ectodermal tissue. In particular, VegT induces strong expression of goosecoid whereas Xbra cannot. Our results indicate that Xbra is unable to induce goosecoid because it directly activates expression of Xom, a repressor of goosecoid that acts downstream of BMP signaling. We show that the inability of Xbra to induce goosecoid is imposed by an N-terminal domain that interacts with the C-terminal MH2 domain of Smad1, a component of the BMP signal transduction pathway. Interference with this interaction causes ectopic activation of goosecoid and anteriorization of the embryo. These findings suggest a mechanism by which individual T-domain proteins may interact with different partners to elicit a specific response.
Collapse
Affiliation(s)
- Nigel J Messenger
- Wellcome Trust/Cancer Research UK Gurdon Institute, Department of Zoology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|