401
|
Wu J, Zhao L, Xu X, Bertrand N, Choi WII, Yameen B, Shi J, Shah V, Mulvale M, MacLean JL, Farokhzad OC. Hydrophobic Cysteine Poly(disulfide)-based Redox-Hypersensitive Nanoparticle Platform for Cancer Theranostics. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201503863] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
402
|
Wu J, Zhao L, Xu X, Bertrand N, Choi WI, Yameen B, Shi J, Shah V, Mulvale M, MacLean JL, Farokhzad OC. Hydrophobic Cysteine Poly(disulfide)-based Redox-Hypersensitive Nanoparticle Platform for Cancer Theranostics. Angew Chem Int Ed Engl 2015; 54:9218-23. [PMID: 26119453 DOI: 10.1002/anie.201503863] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 05/20/2015] [Indexed: 12/29/2022]
Abstract
Selective tumor targeting and drug delivery are critical for cancer treatment. Stimulus-sensitive nanoparticle (NP) systems have been designed to specifically respond to significant abnormalities in the tumor microenvironment, which could dramatically improve therapeutic performance in terms of enhanced efficiency, targetability, and reduced side-effects. We report the development of a novel L-cysteine-based poly (disulfide amide) (Cys-PDSA) family for fabricating redox-triggered NPs, with high hydrophobic drug loading capacity (up to 25 wt% docetaxel) and tunable properties. The polymers are synthesized through one-step rapid polycondensation of two nontoxic building blocks: L-cystine ester and versatile fatty diacids, which make the polymer redox responsive and give it a tunable polymer structure, respectively. Alterations to the diacid structure could rationally tune the physicochemical properties of the polymers and the corresponding NPs, leading to the control of NP size, hydrophobicity, degradation rate, redox response, and secondary self-assembly after NP reductive dissociation. In vitro and in vivo results demonstrate these NPs' excellent biocompatibility, high selectivity of redox-triggered drug release, and significant anticancer performance. This system provides a promising strategy for advanced anticancer theranostic applications.
Collapse
Affiliation(s)
- Jun Wu
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115 (USA)
| | - Lili Zhao
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115 (USA).,Department of Endoscopy, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, Jiangsu, 210029 (P.R. China)
| | - Xiaoding Xu
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115 (USA)
| | - Nicolas Bertrand
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (USA)
| | - Won Ii Choi
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115 (USA)
| | - Basit Yameen
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115 (USA)
| | - Jinjun Shi
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115 (USA)
| | - Vishva Shah
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115 (USA)
| | - Matthew Mulvale
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115 (USA)
| | - James L MacLean
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115 (USA)
| | - Omid C Farokhzad
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115 (USA). .,King Abdulaziz University, Jeddah (Saudi Arabia).
| |
Collapse
|
403
|
Tang L, Li S, Xu L, Ma W, Kuang H, Wang L, Xu C. Chirality-based Au@Ag Nanorod Dimers Sensor for Ultrasensitive PSA Detection. ACS APPLIED MATERIALS & INTERFACES 2015; 7:12708-12712. [PMID: 26018359 DOI: 10.1021/acsami.5b01259] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A novel biosensor for ultrasensitive detection of prostate-specific antigen (PSA) was established based on gold nanorod (Au NR) dimers assembly. The circular dichroism signal was significantly amplified by a silver shell depositing on the surface of the Au NR dimers. A low limit of detection of 0.076 aM and high specificity were observed within the range of 0.1 to 50 aM target PSA. The developed biosensor has the potential to serve as a general platform for the detection of cancer biomarkers.
Collapse
Affiliation(s)
- Lijuan Tang
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Si Li
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Liguang Xu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wei Ma
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Hua Kuang
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Libing Wang
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Chuanlai Xu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
404
|
Hun Yeon J, Chan KYT, Wong TC, Chan K, Sutherland MR, Ismagilov RF, Pryzdial ELG, Kastrup CJ. A biochemical network can control formation of a synthetic material by sensing numerous specific stimuli. Sci Rep 2015; 5:10274. [PMID: 25975772 PMCID: PMC4432564 DOI: 10.1038/srep10274] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/10/2015] [Indexed: 11/29/2022] Open
Abstract
Developing bio-compatible smart materials that assemble in response to environmental cues requires strategies that can discriminate multiple specific stimuli in a complex milieu. Synthetic materials have yet to achieve this level of sensitivity, which would emulate the highly evolved and tailored reaction networks of complex biological systems. Here we show that the output of a naturally occurring network can be replaced with a synthetic material. Exploiting the blood coagulation system as an exquisite biological sensor, the fibrin clot end-product was replaced with a synthetic material under the biological control of a precisely regulated cross-linking enzyme. The functions of the coagulation network remained intact when the material was incorporated. Clot-like polymerization was induced in indirect response to distinct small molecules, phospholipids, enzymes, cells, viruses, an inorganic solid, a polyphenol, a polysaccharide, and a membrane protein. This strategy demonstrates for the first time that an existing stimulus-responsive biological network can be used to control the formation of a synthetic material by diverse classes of physiological triggers.
Collapse
Affiliation(s)
- Ju Hun Yeon
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Karen Y T Chan
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Ting-Chia Wong
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Kelvin Chan
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Michael R Sutherland
- 1] Centre for Innovation, Canadian Blood Services, Vancouver, BC, Canada [2] Centre for Blood Research and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Rustem F Ismagilov
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Edward L G Pryzdial
- 1] Centre for Innovation, Canadian Blood Services, Vancouver, BC, Canada [2] Centre for Blood Research and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Christian J Kastrup
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
405
|
Chen J, Ding J, Xiao C, Zhuang X, Chen X. Emerging antitumor applications of extracellularly reengineered polymeric nanocarriers. Biomater Sci 2015. [PMID: 26221934 DOI: 10.1039/c5bm00044k] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recently, polymeric nanocarriers with shielding surfaces, e.g., poly(ethylene glycol) and small molecules, have been widely applied in antitumor drug delivery mainly because of their stealth during blood circulation. However, the shielding shell greatly hinders the tumor penetration, drug release, and cell internalization of the nanocarriers, which leads to unsatisfactory therapeutic efficacy. To integrate the extended blood circulation time and the enhanced drug transmission in one platform, some extracellularly stimuli-mediated shell-sheddable polymeric nanocarriers have been exploited. The systems are stealthy and stable during blood circulation, and as soon as they reach tumor tissue, the shielding matrices are removed, which is triggered by extracellular endogenous stimuli (e.g., pH or enzymes) or exogenous excitations (e.g., light or voltage). This review mainly focuses on recent advances in the designs and emerging antitumor applications of extracellularly reengineered polymeric nanocarriers for directional drug delivery, as well as perspectives for future developments.
Collapse
Affiliation(s)
- Jinjin Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | | | | | | | | |
Collapse
|
406
|
Such GK, Yan Y, Johnston APR, Gunawan ST, Caruso F. Interfacing materials science and biology for drug carrier design. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:2278-2297. [PMID: 25728711 DOI: 10.1002/adma.201405084] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 12/11/2014] [Indexed: 06/04/2023]
Abstract
Over the last ten years, there has been considerable research interest in the development of polymeric carriers for biomedicine. Such delivery systems have the potential to significantly reduce side effects and increase the bioavailability of poorly soluble therapeutics. The design of carriers has relied on harnessing specific variations in biological conditions, such as pH or redox potential, and more recently, by incorporating specific peptide cleavage sites for enzymatic hydrolysis. Although much progress has been made in this field, the specificity of polymeric carriers is still limited when compared with their biological counterparts. To synthesize the next generation of carriers, it is important to consider the biological rationale for materials design. This requires a detailed understanding of the cellular microenvironments and how these can be harnessed for specific applications. In this review, several important physiological cues in the cellular microenvironments are outlined, with a focus on changes in pH, redox potential, and the types of enzymes present in specific regions. Furthermore, recent studies that use such biologically inspired triggers to design polymeric carriers are highlighted, focusing on applications in the field of therapeutic delivery.
Collapse
Affiliation(s)
- Georgina K Such
- School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | | | | | | | | |
Collapse
|
407
|
Beddoes CM, Case CP, Briscoe WH. Understanding nanoparticle cellular entry: A physicochemical perspective. Adv Colloid Interface Sci 2015; 218:48-68. [PMID: 25708746 DOI: 10.1016/j.cis.2015.01.007] [Citation(s) in RCA: 234] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 01/21/2015] [Accepted: 01/22/2015] [Indexed: 12/21/2022]
Abstract
Understanding interactions between nanoparticles (NPs) with biological matter, particularly cells, is becoming increasingly important due to their growing application in medicine and materials, and consequent biological and environmental exposure. For NPs to be utilised to their full potential, it is important to correlate their functional characteristics with their physical properties, which may also be used to predict any adverse cellular responses. A key mechanism for NPs to impart toxicity is to gain cellular entry directly. Many parameters affect the behaviour of nanomaterials in a cellular environment particularly their interactions with cell membranes, including their size, shape and surface chemistry as well as factors such as the cell type, location and external environment (e.g. other surrounding materials, temperature, pH and pressure). Aside from in vitro and in vivo experiments, model cell membrane systems have been used in both computer simulations and physicochemical experiments to elucidate the mechanisms for NP cellular entry. Here we present a brief overview of the effects of NPs physical parameters on their cellular uptake, with focuses on 1) related research using model membrane systems and physicochemical methodologies; and 2) proposed physical mechanisms for NP cellular entrance, with implications to their nanotoxicity. We conclude with a suggestion that the energetic process of NP cellular entry can be evaluated by studying the effects of NPs on lipid mesophase transitions, as the molecular deformations and thus the elastic energy cost are analogous between such transitions and endocytosis. This presents an opportunity for contributions to understanding nanotoxicity from a physicochemical perspective.
Collapse
Affiliation(s)
- Charlotte M Beddoes
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK; Bristol Centre for Functional Nanomaterials, Centre for Nanoscience and Quantum Information, University of Bristol, UK
| | - C Patrick Case
- Musculoskeletal Research Unit, Clinical Science at North Bristol, University of Bristol, Avon Orthopaedic Centre, Southmead Hospital, Bristol BS10 5NB, UK
| | - Wuge H Briscoe
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| |
Collapse
|
408
|
Yu H, Sun J, Zhang Y, Zhang G, Chu Y, Zhuo R, Jiang X. pH- and β-cyclodextrin-responsive micelles based on polyaspartamide derivatives as drug carrier. ACTA ACUST UNITED AC 2015. [DOI: 10.1002/pola.27584] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Huan Yu
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry; Wuhan University; Wuhan 430072 People's Republic of China
| | - Jian Sun
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry; Wuhan University; Wuhan 430072 People's Republic of China
| | - Yunti Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry; Wuhan University; Wuhan 430072 People's Republic of China
| | - Guangyan Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry; Wuhan University; Wuhan 430072 People's Republic of China
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Department of Light Industry; Hubei University of Technology; Wuhan 430068 People's Republic of China
| | - Yanfeng Chu
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry; Wuhan University; Wuhan 430072 People's Republic of China
| | - Renxi Zhuo
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry; Wuhan University; Wuhan 430072 People's Republic of China
| | - Xulin Jiang
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry; Wuhan University; Wuhan 430072 People's Republic of China
| |
Collapse
|
409
|
Cai Y, Ling L, Li X, Chen M, Su L. Light-stimulated cargo release from a core–shell structured nanocomposite for site-specific delivery. J SOLID STATE CHEM 2015. [DOI: 10.1016/j.jssc.2015.02.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
410
|
Pacardo DB, Ligler FS, Gu Z. Programmable nanomedicine: synergistic and sequential drug delivery systems. NANOSCALE 2015; 7:3381-91. [PMID: 25631684 DOI: 10.1039/c4nr07677j] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Recent developments in nanomedicine for the cancer therapy have enabled programmable delivery of therapeutics by exploiting the stimuli-responsive properties of nanocarriers. These therapeutic systems were designed with the relevant chemical and physical properties that respond to different triggers for enhanced anticancer efficacy, including the reduced development of drug-resistance, lower therapeutic dose, site-specific transport, and spatiotemporally controlled release. This minireview discusses the current advances in programmable nanocarriers for cancer therapy with particular emphasis on synergistic and sequential drug delivery systems.
Collapse
Affiliation(s)
- Dennis B Pacardo
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA.
| | | | | |
Collapse
|
411
|
Blum A, Kammeyer JK, Rush AM, Callmann CE, Hahn ME, Gianneschi NC. Stimuli-responsive nanomaterials for biomedical applications. J Am Chem Soc 2015; 137:2140-54. [PMID: 25474531 PMCID: PMC4353031 DOI: 10.1021/ja510147n] [Citation(s) in RCA: 330] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Indexed: 02/08/2023]
Abstract
Nature employs a variety of tactics to precisely time and execute the processes and mechanics of life, relying on sequential sense and response cascades to transduce signaling events over multiple length and time scales. Many of these tactics, such as the activation of a zymogen, involve the direct manipulation of a material by a stimulus. Similarly, effective therapeutics and diagnostics require the selective and efficient homing of material to specific tissues and biomolecular targets with appropriate temporal resolution. These systems must also avoid undesirable or toxic side effects and evade unwanted removal by endogenous clearing mechanisms. Nanoscale delivery vehicles have been developed to package materials with the hope of delivering them to select locations with rates of accumulation and clearance governed by an interplay between the carrier and its cargo. Many modern approaches to drug delivery have taken inspiration from natural activatable materials like zymogens, membrane proteins, and metabolites, whereby stimuli initiate transformations that are required for cargo release, prodrug activation, or selective transport. This Perspective describes key advances in the field of stimuli-responsive nanomaterials while highlighting some of the many challenges faced and opportunities for development. Major hurdles include the increasing need for powerful new tools and strategies for characterizing the dynamics, morphology, and behavior of advanced delivery systems in situ and the perennial problem of identifying truly specific and useful physical or molecular biomarkers that allow a material to autonomously distinguish diseased from normal tissue.
Collapse
Affiliation(s)
- Angela
P. Blum
- Department
of Chemistry & Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - Jacquelin K. Kammeyer
- Department
of Chemistry & Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - Anthony M. Rush
- Department
of Chemistry & Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - Cassandra E. Callmann
- Department
of Chemistry & Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - Michael E. Hahn
- Department
of Chemistry & Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
- Department
of Radiology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Nathan C. Gianneschi
- Department
of Chemistry & Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
412
|
Bosio VE, Islan GA, Martínez YN, Durán N, Castro GR. Nanodevices for the immobilization of therapeutic enzymes. Crit Rev Biotechnol 2015; 36:447-64. [PMID: 25641329 DOI: 10.3109/07388551.2014.990414] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Therapeutic enzymes are one of the most promising applications of this century in the field of pharmaceutics. Biocatalyst properties can be improved by enzyme immobilization on nano-objects, thereby increasing stability and reusability and also enhancing the targeting to specific tissues and cells. Therapeutic biocatalyst-nanodevice complexes will provide new tools for the diagnosis and treatment of old and newly emerging pathologies. Among the advantages of this approach are the wide span and diverse range of possible materials and biocatalysts that promise to make the matrix-enzyme combination a unique modality for therapeutic delivery. This review focuses on the most significant techniques and nanomaterials used for enzyme immobilization such as metallic superparamagnetic, silica, and polymeric and single-enzyme nanoparticles. Finally, a review of the application of these nanodevices to different pathologies and modes of administration is presented. In short, since therapeutic enzymes constitute a highly promising alternative for treating a variety of pathologies more effectively, this review is aimed at providing the comprehensive summary needed to understand and improve this burgeoning area.
Collapse
Affiliation(s)
- Valeria E Bosio
- a Nanobiomaterials Laboratory , Applied Biotechnology Institute (CINDEFI, UNLP-CONICET CCT La Plata) - School of Sciences, Universidad Nacional de La Plata , La Plata , Argentina
| | - Germán A Islan
- a Nanobiomaterials Laboratory , Applied Biotechnology Institute (CINDEFI, UNLP-CONICET CCT La Plata) - School of Sciences, Universidad Nacional de La Plata , La Plata , Argentina
| | - Yanina N Martínez
- a Nanobiomaterials Laboratory , Applied Biotechnology Institute (CINDEFI, UNLP-CONICET CCT La Plata) - School of Sciences, Universidad Nacional de La Plata , La Plata , Argentina
| | - Nelson Durán
- b Center of Natural and Human Science, Universidade Federal do ABC , Santo André , SP , Brazil , and.,c Institute of Chemistry, Biological Chemistry, Laboratory, Universidade Estadual de Campinas, UNICAMP , Campinas , SP , Brazil
| | - Guillermo R Castro
- a Nanobiomaterials Laboratory , Applied Biotechnology Institute (CINDEFI, UNLP-CONICET CCT La Plata) - School of Sciences, Universidad Nacional de La Plata , La Plata , Argentina
| |
Collapse
|
413
|
Zhao X, Yang L, Li X, Jia X, Liu L, Zeng J, Guo J, Liu P. Functionalized Graphene Oxide Nanoparticles for Cancer Cell-Specific Delivery of Antitumor Drug. Bioconjug Chem 2015; 26:128-36. [DOI: 10.1021/bc5005137] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xubo Zhao
- State Key Laboratory of Applied
Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry
and Resources Utilization of Gansu Province, College of Chemistry
and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Liangwei Yang
- State Key Laboratory of Applied
Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry
and Resources Utilization of Gansu Province, College of Chemistry
and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiaorui Li
- State Key Laboratory of Applied
Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry
and Resources Utilization of Gansu Province, College of Chemistry
and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xu Jia
- State Key Laboratory of Applied
Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry
and Resources Utilization of Gansu Province, College of Chemistry
and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Lei Liu
- State Key Laboratory of Applied
Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry
and Resources Utilization of Gansu Province, College of Chemistry
and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jin Zeng
- State Key Laboratory of Applied
Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry
and Resources Utilization of Gansu Province, College of Chemistry
and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jinshan Guo
- State Key Laboratory of Applied
Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry
and Resources Utilization of Gansu Province, College of Chemistry
and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Peng Liu
- State Key Laboratory of Applied
Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry
and Resources Utilization of Gansu Province, College of Chemistry
and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
414
|
Misson M, Zhang H, Jin B. Nanobiocatalyst advancements and bioprocessing applications. J R Soc Interface 2015; 12:20140891. [PMID: 25392397 PMCID: PMC4277080 DOI: 10.1098/rsif.2014.0891] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 10/20/2014] [Indexed: 11/12/2022] Open
Abstract
The nanobiocatalyst (NBC) is an emerging innovation that synergistically integrates advanced nanotechnology with biotechnology and promises exciting advantages for improving enzyme activity, stability, capability and engineering performances in bioprocessing applications. NBCs are fabricated by immobilizing enzymes with functional nanomaterials as enzyme carriers or containers. In this paper, we review the recent developments of novel nanocarriers/nanocontainers with advanced hierarchical porous structures for retaining enzymes, such as nanofibres (NFs), mesoporous nanocarriers and nanocages. Strategies for immobilizing enzymes onto nanocarriers made from polymers, silicas, carbons and metals by physical adsorption, covalent binding, cross-linking or specific ligand spacers are discussed. The resulting NBCs are critically evaluated in terms of their bioprocessing performances. Excellent performances are demonstrated through enhanced NBC catalytic activity and stability due to conformational changes upon immobilization and localized nanoenvironments, and NBC reutilization by assembling magnetic nanoparticles into NBCs to defray the high operational costs associated with enzyme production and nanocarrier synthesis. We also highlight several challenges associated with the NBC-driven bioprocess applications, including the maturation of large-scale nanocarrier synthesis, design and development of bioreactors to accommodate NBCs, and long-term operations of NBCs. We suggest these challenges are to be addressed through joint collaboration of chemists, engineers and material scientists. Finally, we have demonstrated the great potential of NBCs in manufacturing bioprocesses in the near future through successful laboratory trials of NBCs in carbohydrate hydrolysis, biofuel production and biotransformation.
Collapse
Affiliation(s)
- Mailin Misson
- School of Chemical Engineering, The University of Adelaide, Adelaide, South A, ustralia 5000, Australia Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
| | - Hu Zhang
- School of Chemical Engineering, The University of Adelaide, Adelaide, South A, ustralia 5000, Australia
| | - Bo Jin
- School of Chemical Engineering, The University of Adelaide, Adelaide, South A, ustralia 5000, Australia
| |
Collapse
|
415
|
Liu G, Hu J, Zhang G, Liu S. Rationally Engineering Phototherapy Modules of Eosin-Conjugated Responsive Polymeric Nanocarriers via Intracellular Endocytic pH Gradients. Bioconjug Chem 2015; 26:1328-38. [DOI: 10.1021/bc500548r] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Guhuan Liu
- CAS Key Laboratory of Soft
Matter Chemistry, Hefei National Laboratory for Physical Sciences
at the Microscale, Collaborative Innovation Center of Chemistry for
Energy Materials, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jinming Hu
- CAS Key Laboratory of Soft
Matter Chemistry, Hefei National Laboratory for Physical Sciences
at the Microscale, Collaborative Innovation Center of Chemistry for
Energy Materials, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Guoying Zhang
- CAS Key Laboratory of Soft
Matter Chemistry, Hefei National Laboratory for Physical Sciences
at the Microscale, Collaborative Innovation Center of Chemistry for
Energy Materials, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shiyong Liu
- CAS Key Laboratory of Soft
Matter Chemistry, Hefei National Laboratory for Physical Sciences
at the Microscale, Collaborative Innovation Center of Chemistry for
Energy Materials, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
416
|
Hu P, Chen Y, Liu Y. Hyaluronan/Ru( ii)-cyclodextrin supramolecular assemblies for colorimetric sensor of hyaluronidase activity. RSC Adv 2015. [DOI: 10.1039/c5ra19122j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A hyaluronidase-induced colorimetric change was found in a hyaluronan/Ru(ii)-cyclodextrin supramolecular assembly under a laser (532 nm) irradiation.
Collapse
Affiliation(s)
- Ping Hu
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Yong Chen
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Yu Liu
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| |
Collapse
|
417
|
Xiao C, Ding J, Ma L, Yang C, Zhuang X, Chen X. Synthesis of thermal and oxidation dual responsive polymers for reactive oxygen species (ROS)-triggered drug release. Polym Chem 2015. [DOI: 10.1039/c4py01156b] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A PEG-based main chain thermo-responsive polymer with oxidation-triggerable thioether groups: synthesis, characterization and its use for ROS-responsive drug release.
Collapse
Affiliation(s)
- Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Lili Ma
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Chenguang Yang
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Xiuli Zhuang
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| |
Collapse
|
418
|
Brown III CW, Oh E, Hastman DA, Walper SA, Susumu K, Stewart MH, Deschamps JR, Medintz IL. Kinetic enhancement of the diffusion-limited enzyme beta-galactosidase when displayed with quantum dots. RSC Adv 2015. [DOI: 10.1039/c5ra21187e] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Schematic of a tetrameric β-galactosidase enzyme attached to and displaying 625 nm emitting QDs coated with a CL4 ligand via each of the 4 pendent His6 tags.
Collapse
Affiliation(s)
- C. W. Brown III
- Center for Bio/Molecular Science and Engineering, Code 6900
- U.S. Naval Research Laboratory
- Washington
- USA
- College of Science
| | - E. Oh
- Optical Sciences Division, Code 5611
- U.S. Naval Research Laboratory
- Washington
- USA
- Sotera Defense Solutions, Inc
| | - D. A. Hastman
- Center for Bio/Molecular Science and Engineering, Code 6900
- U.S. Naval Research Laboratory
- Washington
- USA
| | - S. A. Walper
- Center for Bio/Molecular Science and Engineering, Code 6900
- U.S. Naval Research Laboratory
- Washington
- USA
| | - K. Susumu
- Optical Sciences Division, Code 5611
- U.S. Naval Research Laboratory
- Washington
- USA
- Sotera Defense Solutions, Inc
| | - M. H. Stewart
- Optical Sciences Division, Code 5611
- U.S. Naval Research Laboratory
- Washington
- USA
| | - J. R. Deschamps
- Center for Bio/Molecular Science and Engineering, Code 6900
- U.S. Naval Research Laboratory
- Washington
- USA
| | - I. L. Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900
- U.S. Naval Research Laboratory
- Washington
- USA
| |
Collapse
|
419
|
Maltas E, Ertekin B. Binding of actin to thioglycolic acid modified superparamagnetic nanoparticles for antibody conjugation. Int J Biol Macromol 2015; 72:984-9. [DOI: 10.1016/j.ijbiomac.2014.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 10/07/2014] [Accepted: 10/09/2014] [Indexed: 11/28/2022]
|
420
|
Paterson S, de la Rica R. Solution-based nanosensors for in-field detection with the naked eye. Analyst 2015; 140:3308-17. [DOI: 10.1039/c4an02297a] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanomaterials are revolutionising analytical applications with low-cost tests that enable detecting a target molecule in a few steps and with the naked eye.
Collapse
Affiliation(s)
- S. Paterson
- Centre for Molecular Nanometrology
- WestCHEM
- Pure and Applied Chemistry
- University of Strathclyde
- Glasgow G1 1XL
| | - R. de la Rica
- Centre for Molecular Nanometrology
- WestCHEM
- Pure and Applied Chemistry
- University of Strathclyde
- Glasgow G1 1XL
| |
Collapse
|
421
|
Wang H, Liu G, Gao H, Wang Y. A pH-responsive drug delivery system with an aggregation-induced emission feature for cell imaging and intracellular drug delivery. Polym Chem 2015. [DOI: 10.1039/c5py00584a] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A pH-sensitive fluorescent vehicle based on aggregation-induced emission (AIE) has been developed as a drug delivery system for simultaneous cell imaging and therapeutic treatment.
Collapse
Affiliation(s)
- Haibo Wang
- Textile Institute
- College of Light Industry
- Textile and Food Engineering
- Sichuan University
- Chengdu
| | - Gongyan Liu
- National Engineering Laboratory of Clean Technology of Leather Manufacture
- Sichuan University
- Chengdu 610065
- China
- National Engineering Research Center for Biomaterials
| | - Haiqi Gao
- National Engineering Laboratory of Clean Technology of Leather Manufacture
- Sichuan University
- Chengdu 610065
- China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
422
|
Gao L, Zheng B, Chen W, Schalley CA. Enzyme-responsive pillar[5]arene-based polymer-substituted amphiphiles: synthesis, self-assembly in water, and application in controlled drug release. Chem Commun (Camb) 2015; 51:14901-4. [DOI: 10.1039/c5cc06207a] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Pillar[5]arene-based PEG-substituted amphiphiles form enzyme-responsive micelles in water useful for drug-delivery.
Collapse
Affiliation(s)
- Lingyan Gao
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- P. R. China
- Institute of Chemistry and Biochemistry
| | - Bo Zheng
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- Berlin 14195
- Germany
| | - Wei Chen
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- Berlin 14195
- Germany
| | | |
Collapse
|
423
|
Gulzar A, Gai S, Yang P, Li C, Ansari MB, Lin J. Stimuli responsive drug delivery application of polymer and silica in biomedicine. J Mater Chem B 2015; 3:8599-8622. [DOI: 10.1039/c5tb00757g] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In the last decade, using polymer and mesoporous silica materials as efficient drug delivery carriers has attracted great attention.
Collapse
Affiliation(s)
- Arif Gulzar
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Material Science and Chemical Engineering
- Harbin Engineering University
- Harbin
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Material Science and Chemical Engineering
- Harbin Engineering University
- Harbin
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Material Science and Chemical Engineering
- Harbin Engineering University
- Harbin
| | - Chunxia Li
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Mohd Bismillah Ansari
- SABIC Technology & Innovation Centre
- Saudi Basic Industries Corporation (SABIC)
- Riyadh 11551
- Saudi Arabia
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| |
Collapse
|
424
|
Zhao X, Liu P, Song Q, Gong N, Yang L, Wu WD. Surface charge-reversible polyelectrolyte complex nanoparticles for hepatoma-targeting delivery of doxorubicin. J Mater Chem B 2015; 3:6185-6193. [DOI: 10.1039/c5tb00600g] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polymeric nanoparticles are greatly advancing the field of nanomedicine due to their ability for targeted and controlled drug release.
Collapse
Affiliation(s)
- Xubo Zhao
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| | - Peng Liu
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| | - Qilei Song
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| | - Nan Gong
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| | - Liangwei Yang
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| | - Winston Duo Wu
- Department of Chemical Engineering
- Monash University
- Australia
| |
Collapse
|
425
|
Radhakrishnan K, Tripathy J, Datey A, Chakravortty D, Raichur AM. Mesoporous silica–chondroitin sulphate hybrid nanoparticles for targeted and bio-responsive drug delivery. NEW J CHEM 2015; 39:1754-1760. [DOI: 10.1039/c4nj01430h] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
A polysaccharide based gatekeeper is attached to seal the nanopores of drug mesoporous silica nanoparticles, which facilitates uptake by cancer cells and undergoes intracellular degradation to initiate drug release.
Collapse
Affiliation(s)
| | - Jasaswini Tripathy
- Department of Materials Engineering
- Indian Institute of Science
- Bangalore
- India
- School of Applied sciences (Chemistry)
| | - Akshay Datey
- Department of Microbiology and Cell Biology
- Indian Institute of Science
- Bangalore
- India
- Bioengineering Program
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology
- Indian Institute of Science
- Bangalore
- India
- Bioengineering Program
| | - Ashok M. Raichur
- Department of Materials Engineering
- Indian Institute of Science
- Bangalore
- India
- Bioengineering Program
| |
Collapse
|
426
|
Ye T, Li C, Su C, Ji X, He Z. Enzymatic synthesis of a DNA-templated alloy nanocluster and its application in a fluorescence immunoassay. RSC Adv 2015. [DOI: 10.1039/c5ra07509b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Enzymatic synthesis of a DNA-template nanocluster was developed for cancer biomarker detection.
Collapse
Affiliation(s)
- Tai Ye
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Chunying Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Chen Su
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Xinghu Ji
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Zhike He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| |
Collapse
|
427
|
Miller KP, Wang L, Benicewicz BC, Decho AW. Inorganic nanoparticles engineered to attack bacteria. Chem Soc Rev 2015; 44:7787-807. [DOI: 10.1039/c5cs00041f] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Antibiotics delivered to bacteria using engineered nanoparticles (NP), offer a powerful and efficient means to kill or control bacteria, especially those already resistant to antibiotics.
Collapse
Affiliation(s)
- Kristen P. Miller
- Department of Environmental Health Sciences
- Arnold School of Public Health
- University of South Carolina
- Columbia
- USA
| | - Lei Wang
- Department of Chemistry and Biochemistry
- College of Arts and Sciences
- University of South Carolina
- Columbia
- USA
| | - Brian C. Benicewicz
- Department of Chemistry and Biochemistry
- College of Arts and Sciences
- University of South Carolina
- Columbia
- USA
| | - Alan W. Decho
- Department of Environmental Health Sciences
- Arnold School of Public Health
- University of South Carolina
- Columbia
- USA
| |
Collapse
|
428
|
Han H, Jin Q, Wang Y, Chen Y, Ji J. The rational design of a gemcitabine prodrug with AIE-based intracellular light-up characteristics for selective suppression of pancreatic cancer cells. Chem Commun (Camb) 2015; 51:17435-8. [DOI: 10.1039/c5cc06654a] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An enzyme and reduction-activatable gemcitabine prodrug with AIE properties was designed for targeted and image-guided pancreatic cancer therapy.
Collapse
Affiliation(s)
- Haijie Han
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou
- China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou
- China
| | - Yin Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou
- China
| | - Yangjun Chen
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou
- China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou
- China
| |
Collapse
|
429
|
Belbekhouche S, Reinicke S, Espeel P, Du Prez FE, Eloy P, Dupont-Gillain C, Jonas AM, Demoustier-Champagne S, Glinel K. Polythiolactone-based redox-responsive layers for the reversible release of functional molecules. ACS APPLIED MATERIALS & INTERFACES 2014; 6:22457-22466. [PMID: 25437253 DOI: 10.1021/am506489j] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The development of thin macromolecular layers with incorporated disulfide bonds that can be disrupted and formed again under redox stimulation is of general interest for drug release applications, because such layers can provide rapid and reversible responses to specific biological systems and signals. However, the preparation of such layers from polythiols remains difficult, because of the fast oxidation of thiol groups in ambient conditions. Here we propose water-soluble thiolactone-containing copolymers as stable precursors containing protected thiol groups, allowing us to produce on demand polythiol layers on gold substrates in the presence of amine derivatives. Electrochemical, water contact angle, X-ray photoelectron spectroscopy, and X-ray reflectometry measurements evidence the formation of uniform copolymer layers containing both anchored and free thiol groups. The number of free thiols increases with the content of thiolactone units in the copolymers. In a second step, a thiolated dye, used as a model drug, was successfully grafted on the free thiol groups through disulfide bonds using mild oxidizing conditions, as proved by fluorescence and quartz crystal microbalance measurements. Finally, the reversible release/regrafting of the dye under redox stimulation is demonstrated.
Collapse
Affiliation(s)
- Sabrina Belbekhouche
- Institute of Condensed Matter & Nanosciences (Bio & Soft Matter), Université catholique de Louvain , Croix du Sud 1, box L7.04.01, B-1348 Louvain-La-Neuve, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
430
|
Thamphiwatana S, Gao W, Pornpattananangkul D, Zhang Q, Fu V, Li J, Li J, Obonyo M, Zhang L. Phospholipase A2-responsive antibiotic delivery via nanoparticle-stabilized liposomes for the treatment of bacterial infection. J Mater Chem B 2014; 2:8201-8207. [PMID: 25544886 PMCID: PMC4276341 DOI: 10.1039/c4tb01110d] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Adsorbing small charged nanoparticles onto liposome surfaces to stabilize them against fusion and payload leakage has resulted in a new class of liposomes capable of environment-responsive drug delivery. Herein, we engineered a liposome formulation with a lipid composition sensitive to bacterium-secreted phospholipase A2 (PLA2) and adsorbed chitosan-modified gold nanoparticles (AuChi) onto the liposome surface. The resulting AuChi-stabilized liposomes (AuChi-liposomes) showed prohibited fusion activity and negligible drug leakage. However, upon exposure to either purified PLA2 enzyme or PLA2 secreted by Helicobacter pylori (H. pylori) bacteria in culture, AuChi-liposomes rapidly released the encapsulated payloads and such responsive release was retarded by adding quinacrine dihydrochloride, a PLA2 inhibitor. When loaded with doxycycline, AuChi-liposomes effectively inhibited H. pylori growth. Overall, the AuChi-liposomes allowed for smart "on-demand" antibitoic delivery: the more enzymes or bacteria present at the infection site, the more drug will be released to treat the infection. Given the strong association of PLA2 with a diverse range of diseases, the present liposomal delivery technique holds broad application potential for tissue microenvironment-responsive drug delivery.
Collapse
Affiliation(s)
- Soracha Thamphiwatana
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, USA
| | - Weiwei Gao
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, USA
| | - Dissaya Pornpattananangkul
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, USA
| | - Qiangzhe Zhang
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, USA
| | - Victoria Fu
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, USA
| | - Jiayang Li
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, USA
| | - Jieming Li
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, USA
| | - Marygorret Obonyo
- Department of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Liangfang Zhang
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
431
|
Lal S, Snape TJ. Aromatic amides and ureas as novel molecular probes for diagnosing disease. Med Hypotheses 2014; 83:751-4. [DOI: 10.1016/j.mehy.2014.08.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 08/11/2014] [Indexed: 11/30/2022]
|
432
|
Lu Y, Sun W, Gu Z. Stimuli-responsive nanomaterials for therapeutic protein delivery. J Control Release 2014; 194:1-19. [PMID: 25151983 PMCID: PMC4330094 DOI: 10.1016/j.jconrel.2014.08.015] [Citation(s) in RCA: 287] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/08/2014] [Accepted: 08/11/2014] [Indexed: 10/24/2022]
Abstract
Protein therapeutics have emerged as a significant role in treatment of a broad spectrum of diseases, including cancer, metabolic disorders and autoimmune diseases. The efficacy of protein therapeutics, however, is limited by their instability, immunogenicity and short half-life. In order to overcome these barriers, tremendous efforts have recently been made in developing controlled protein delivery systems. Stimuli-triggered release is an appealing and promising approach for protein delivery and has made protein delivery with both spatiotemporal- and dosage-controlled manners possible. This review surveys recent advances in controlled protein delivery of proteins or peptides using stimuli-responsive nanomaterials. Strategies utilizing both physiological and external stimuli are introduced and discussed.
Collapse
Affiliation(s)
- Yue Lu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA; Center for Nanotechnology in Drug Delivery and Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Wujin Sun
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA; Center for Nanotechnology in Drug Delivery and Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zhen Gu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA; Center for Nanotechnology in Drug Delivery and Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
433
|
Baeza A, Colilla M, Vallet-Regí M. Advances in mesoporous silica nanoparticles for targeted stimuli-responsive drug delivery. Expert Opin Drug Deliv 2014; 12:319-37. [PMID: 25421898 DOI: 10.1517/17425247.2014.953051] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Mesoporous silica nanoparticles (MSNPs) are one of the most promising inorganic drug delivery systems (DDSs). The design and development of tumour-targeted MSNPs with stimuli-responsive drug release capability aim at enhancing the efficiency and minimising the side effects of anti-tumour drugs for cancer therapy. AREAS COVERED This review provides an overview of the scientific advances in MSNPs for tumour-targeted stimuli-responsive drug delivery. The key factors that govern the passive accumulation of MSNPs within solid tumours such as size, shape and surface functionalisation are roughly described. The different active targeting strategies for the specific retention and uptake of MSNPs by tumour cells are also outlined. The approaches developed so far for the synthesis of smart MSNPs capable of releasing the trapped drugs in response to internal or external stimuli and their applications are reviewed. Critical considerations in the use of MSNPs for the treatment of cancer treatment are discussed. The future prospects and key factors concerning the clinical application of MSNPs are considered throughout the manuscript. EXPERT OPINION MSNPs are promising nanocarriers to efficiently transport and site-specifically deliver highly toxic drugs, such as chemotherapeutic agents for cancer treatment. However, there are certain issues that should be overcome to improve the suitability of MSNPs for clinical applications. Increasing the penetration capability of MSNPs within tumour tissues, providing them of appropriate colloidal stability in physiological fluids and ensuring that their active targeting capability and stimuli-responsive performance are preserved in complex biological media are of foremost significance. Few in vivo evaluation tests of MSNPs have been reported and much research effort into this field is mandatory to be able to move from bench to bedside.
Collapse
Affiliation(s)
- Alejandro Baeza
- Departamento Química Inorgánica y Bioinorgánica, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital , 12 de Octubre i+12. Pza. Ramón y Cajal s/n, 28040 Madrid , Spain
| | | | | |
Collapse
|
434
|
Wu W, Yao W, Wang X, Xie C, Zhang J, Jiang X. Bioreducible heparin-based nanogel drug delivery system. Biomaterials 2014; 39:260-8. [PMID: 25468376 DOI: 10.1016/j.biomaterials.2014.11.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/24/2014] [Accepted: 11/03/2014] [Indexed: 01/20/2023]
Abstract
Bioreducible heparin (HEP)-based nanogels were prepared by derivatizing HEP with vinyl group followed by copolymerizing with cystamine bisacrylamide in aqueous medium in the absence of surfactant. The hydrodynamic diameter of the HEP nanogels could be tuned in the range from 80 to 200 nm. Doxorubicin (DOX) was loaded into the HEP nanogels, and high drug loading content (30%) and efficiency (90%) were achieved. In vitro drug release test revealed that this drug delivery system exhibited strongly redox-sensitive drug release behavior that would greatly favor the in vivo drug delivery performance of the nanogels. After injected into tumor-bearing mice through tail vein, the DOX-loaded HEP nanogels showed remarkable accumulation in tumors as demonstrated by in vivo near infared fluorescence imaging and ex vivo DOX concentration measurements. The doxorubicin accumulation at tumor site goes beyond 9% injected dose per gram of tumor through such delivery system, making that DOX-loaded HEP nanogels have significantly superior in vivo antitumor activity.
Collapse
Affiliation(s)
- Wei Wu
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210093, PR China
| | - Wei Yao
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210093, PR China
| | - Xin Wang
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210093, PR China
| | - Chen Xie
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210093, PR China
| | - Jialiang Zhang
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210093, PR China
| | - Xiqun Jiang
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210093, PR China.
| |
Collapse
|
435
|
Kaittanis C, Shaffer TM, Thorek DLJ, Grimm J. Dawn of advanced molecular medicine: nanotechnological advancements in cancer imaging and therapy. Crit Rev Oncog 2014; 19:143-76. [PMID: 25271430 DOI: 10.1615/critrevoncog.2014011601] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Nanotechnology plays an increasingly important role not only in our everyday life (with all its benefits and dangers) but also in medicine. Nanoparticles are to date the most intriguing option to deliver high concentrations of agents specifically and directly to cancer cells; therefore, a wide variety of these nanomaterials has been developed and explored. These span the range from simple nanoagents to sophisticated smart devices for drug delivery or imaging. Nanomaterials usually provide a large surface area, allowing for decoration with a large amount of moieties on the surface for either additional functionalities or targeting. Besides using particles solely for imaging purposes, they can also carry as a payload a therapeutic agent. If both are combined within the same particle, a theranostic agent is created. The sophistication of highly developed nanotechnology targeting approaches provides a promising means for many clinical implementations and can provide improved applications for otherwise suboptimal formulations. In this review we will explore nanotechnology both for imaging and therapy to provide a general overview of the field and its impact on cancer imaging and therapy.
Collapse
Affiliation(s)
- Charalambos Kaittanis
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Travis M Shaffer
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Daniel L J Thorek
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Jan Grimm
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY
| |
Collapse
|
436
|
Gormley AJ, Chapman R, Stevens MM. Polymerization amplified detection for nanoparticle-based biosensing. NANO LETTERS 2014; 14:6368-6373. [PMID: 25315059 DOI: 10.1021/nl502840h] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Efficient signal amplification processes are key to the design of sensitive assays for biomolecule detection. Here, we describe a new assay platform that takes advantage of both polymerization reactions and the aggregation of nanoparticles to amplify signal. In our design, a cascade is set up in which radicals generated by either enzymes or metal ions are polymerized to form polymers that can entangle multiple gold nanoparticles (AuNPs) into aggregates, resulting in a visible color change. Less than 0.05% monomer-to-polymer conversion is required to initiate aggregation, providing high sensitivity toward the radical generating species. Good sensitivity of this assay toward horseradish peroxidase, catalase, and parts per billion concentrations of iron and copper is shown. Incorporation of the oxygen-consuming enzyme glucose oxidase (GOx), enables this assay to be performed in open air conditions at ambient temperature. We anticipate that such a design will provide a useful platform for sensitive detection of a broad range of biomolecules through polymerization-based amplification.
Collapse
Affiliation(s)
- Adam J Gormley
- Department of Materials, Department of Bioengineering, and Institute for Biomedical Engineering, Imperial College London , London SW7 2AZ, United Kingdom
| | | | | |
Collapse
|
437
|
Abstract
Enzymes underpin physiological function and exhibit dysregulation in many disease-associated microenvironments and aberrant cell processes. Exploiting altered enzyme activity and expression for diagnostics, drug targeting, and drug release is tremendously promising. When combined with booming research in nanobiotechnology, enzyme-responsive nanomaterials used for controlled drug release have achieved significant development and have been studied as an important class of drug delivery strategies in nanomedicine. In this review, we describe enzymes such as proteases, phospholipases and oxidoreductases that serve as delivery triggers. Subsequently, we explore recently developed enzyme-responsive nanomaterials with versatile applications for extracellular and intracellular drug delivery. We conclude by discussing future opportunities and challenges in this area.
Collapse
Affiliation(s)
- Quanyin Hu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA.
| | | | | |
Collapse
|
438
|
Luo D, Carter KA, Lovell JF. Nanomedical engineering: shaping future nanomedicines. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2014; 7:169-88. [PMID: 25377691 DOI: 10.1002/wnan.1315] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/05/2014] [Accepted: 09/27/2014] [Indexed: 12/15/2022]
Abstract
Preclinical research in the field of nanomedicine continues to produce a steady stream of new nanoparticles with unique capabilities and complex properties. With improvements come promising treatments for diseases, with the ultimate goal of clinical translation and better patient outcomes compared with current standards of care. Here, we outline engineering considerations for nanomedicines, with respect to design criteria, targeting, and stimuli-triggered drug release strategies. General properties, clinical relevance, and current research advances of various nanomedicines are discussed in light of how these will realize their potential and shape the future of the field.
Collapse
Affiliation(s)
- Dandan Luo
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | | | | |
Collapse
|
439
|
Chen M, Li YF, Besenbacher F. Electrospun nanofibers-mediated on-demand drug release. Adv Healthc Mater 2014; 3:1721-32. [PMID: 24891134 DOI: 10.1002/adhm.201400166] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 05/06/2014] [Indexed: 12/21/2022]
Abstract
A living system has a complex and accurate regulation system with intelligent sensor-processor-effector components to enable the release of vital bioactive substances on demand at a specific site and time. Stimuli-responsive polymers mimic biological systems in a crude way where an external stimulus results in a change in conformation, solubility, or alternation of the hydrophilic/hydrophobic balance, and consequently release of a bioactive substance. Electrospinning is a straightforward and robust method to produce nanofibers with the potential to incorporate drugs in a simple, rapid, and reproducible process. This feature article emphasizes an emerging area using an electrospinning technique to generate biomimetic nanofibers as drug delivery devices that are responsive to different stimuli, such as temperature, pH, light, and electric/magnetic field for controlled release of therapeutic substances. Although at its infancy, the mimicry of these stimuli-responsive nanofibers to the function of the living systems includes both the fibrous structural feature and bio-regulation function as an on demand drug release depot. The electrospun nanofibers with extracellular matrix morphology intrinsically guide cellular drug uptake, which will be highly desired to translate the promise of drug delivery for the clinical success.
Collapse
Affiliation(s)
- Menglin Chen
- Interdisciplinary Nanoscience Center; Aarhus University; DK-8000 Aarhus Denmark
| | - Yan-Fang Li
- Interdisciplinary Nanoscience Center; Aarhus University; DK-8000 Aarhus Denmark
| | | |
Collapse
|
440
|
Gunawan ST, Kempe K, Such GK, Cui J, Liang K, Richardson JJ, Johnston APR, Caruso F. Tuning Particle Biodegradation through Polymer–Peptide Blend Composition. Biomacromolecules 2014; 15:4429-38. [DOI: 10.1021/bm5012272] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sylvia T. Gunawan
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
and the Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Kristian Kempe
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
and the Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Georgina K. Such
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
and the Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jiwei Cui
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
and the Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Kang Liang
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
and the Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Joseph J. Richardson
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
and the Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Angus P. R. Johnston
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
and the Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Frank Caruso
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
and the Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
441
|
Gunawan ST, Liang K, Such GK, Johnston APR, Leung MKM, Cui J, Caruso F. Engineering enzyme-cleavable hybrid click capsules with a pH-sheddable coating for intracellular degradation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:4080-4086. [PMID: 25044500 DOI: 10.1002/smll.201400450] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Indexed: 06/03/2023]
Abstract
The engineering of layer-by-layer (LbL) hybrid click capsules that are responsive to biological stimuli is reported. The capsules comprise a pH-sheddable, non cross-linked outer coating that protects enzyme-cleavable inner layers. Upon cellular uptake, the outer coating is released and the capsules are enzymatically degraded. In vitro cell degradation results in rapid capsule degradation (10 min) upon cellular internalization.
Collapse
Affiliation(s)
- Sylvia T Gunawan
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | | | | | | | | | | | | |
Collapse
|
442
|
Crucho CIC. Stimuli-responsive polymeric nanoparticles for nanomedicine. ChemMedChem 2014; 10:24-38. [PMID: 25319803 DOI: 10.1002/cmdc.201402290] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/17/2014] [Indexed: 12/28/2022]
Abstract
Nature continues to be the ultimate in nanotechnology, where polymeric nanometer-scale architectures play a central role in biological systems. Inspired by the way nature forms functional supramolecular assemblies, researchers are trying to make nanostructures and to incorporate these into macrostructures as nature does. Recent advances and progress in nanoscience have demonstrated the great potential that nanomaterials have for applications in healthcare. In the realm of drug delivery, nanomaterials have been used in vivo to protect the drug entity in the systemic circulation, ensuring reproducible absorption of bioactive molecules that do not naturally penetrate biological barriers, restricting drug access to specific target sites. Several building blocks have been used in the formulation of nanoparticles. Thus, stability, drug release, and targeting can be tailored by surface modification. Herein the state of the art of stimuli-responsive polymeric nanoparticles are reviewed. Such systems are able to control drug release by reacting to naturally occurring or external applied stimuli. Special attention is paid to the design and nanoparticle formulation of these so-called smart drug-delivery systems. Future strategies for further developments of a promising controlled drug delivery responsive system are also outlined.
Collapse
Affiliation(s)
- Carina I C Crucho
- Department of Chemistry REQUIMTE/CQFB, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal).
| |
Collapse
|
443
|
Sun T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y. Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed Engl 2014; 53:12320-64. [PMID: 25294565 DOI: 10.1002/anie.201403036] [Citation(s) in RCA: 766] [Impact Index Per Article: 69.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Indexed: 12/18/2022]
Abstract
In medicine, nanotechnology has sparked a rapidly growing interest as it promises to solve a number of issues associated with conventional therapeutic agents, including their poor water solubility (at least, for most anticancer drugs), lack of targeting capability, nonspecific distribution, systemic toxicity, and low therapeutic index. Over the past several decades, remarkable progress has been made in the development and application of engineered nanoparticles to treat cancer more effectively. For example, therapeutic agents have been integrated with nanoparticles engineered with optimal sizes, shapes, and surface properties to increase their solubility, prolong their circulation half-life, improve their biodistribution, and reduce their immunogenicity. Nanoparticles and their payloads have also been favorably delivered into tumors by taking advantage of the pathophysiological conditions, such as the enhanced permeability and retention effect, and the spatial variations in the pH value. Additionally, targeting ligands (e.g., small organic molecules, peptides, antibodies, and nucleic acids) have been added to the surface of nanoparticles to specifically target cancerous cells through selective binding to the receptors overexpressed on their surface. Furthermore, it has been demonstrated that multiple types of therapeutic drugs and/or diagnostic agents (e.g., contrast agents) could be delivered through the same carrier to enable combination therapy with a potential to overcome multidrug resistance, and real-time readout on the treatment efficacy. It is anticipated that precisely engineered nanoparticles will emerge as the next-generation platform for cancer therapy and many other biomedical applications.
Collapse
Affiliation(s)
- Tianmeng Sun
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332 (USA)
| | | | | | | | | | | |
Collapse
|
444
|
Sun T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y. Maßgeschneiderte Nanopartikel für den Wirkstofftransport in der Krebstherapie. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201403036] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
445
|
Zhao X, Liu L, Li X, Zeng J, Jia X, Liu P. Biocompatible graphene oxide nanoparticle-based drug delivery platform for tumor microenvironment-responsive triggered release of doxorubicin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:10419-29. [PMID: 25109617 DOI: 10.1021/la502952f] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A facile strategy was established to develop a drug delivery system (DDS) based on the graphene oxide nanoparticles (GON) with suitable size and shape to deliver drug effectively, by grafting the biocompatible PEGylated alginate (ALG-PEG) brushes onto the GON via the disulfide bridge bond. TEM analysis and drug-loading performance revealed that the 3-D nanoscaled, biocompatible, reduction-responsive nanocarriers (GON-Cy-ALG-PEG) were spherical in shape with diameters of 94.73 ± 9.56 nm. They possessed high doxorubicin (DOX)-loading capacity and excellent encapsulation efficiency, owing to their unique 3-D nanoscaled structure. They also had excellent stability in simulated physiological conditions and remarkable biocompatibility. Importantly, the in vitro release showed that the platform could not only prevent the leakage of the loaded DOX under physiological conditions but also detach the cytamine (Cy) modified PEGylated alginate (Cy-ALG-PEG) moieties, response to glutathione (GSH). Confocal microscopy and WST-1 assays provided clear evidence of the DOX-loaded GON-Cy-ALG-PEG endocytosis, whereas the drug-loaded nanocarriers exhibited high cytotoxicity to model cells. Furthermore, the cell apoptosis also was monitored via Flow cytometry. The results indicated that the DOX-loaded nanocarriers presented favorable efficiency of cell apoptosis. So these findings demonstrate that the accelerated release of the loaded DOX was realized in the presence of an elevated GSH that simulate the acidic endosomal compartments.
Collapse
Affiliation(s)
- Xubo Zhao
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University , Lanzhou 730000, China
| | | | | | | | | | | |
Collapse
|
446
|
Jhaveri A, Deshpande P, Torchilin V. Stimuli-sensitive nanopreparations for combination cancer therapy. J Control Release 2014; 190:352-70. [DOI: 10.1016/j.jconrel.2014.05.002] [Citation(s) in RCA: 221] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 04/30/2014] [Accepted: 05/02/2014] [Indexed: 12/29/2022]
|
447
|
Zhang W, Mao Z, Gao C. Preparation of TAT peptide-modified poly(N-isopropylacrylamide) microgel particles and their cellular uptake, intracellular distribution, and influence on cytoviability in response to temperature change. J Colloid Interface Sci 2014; 434:122-9. [PMID: 25170605 DOI: 10.1016/j.jcis.2014.07.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/22/2014] [Accepted: 07/23/2014] [Indexed: 11/19/2022]
Abstract
Thermo-sensitive microgel particles may exert a swelling force inside cells and influence on cell viability due to their volume transition in response to external temperature change. In this study, cross-linked poly(N-isopropylacrylamide) (PNIPAM) microgel particles with a thermo-responsive volume expansion ability were prepared by precipitation polymerization of NIPAM, poly(ethylene glycol) diacrylate and acrylic acid. To endow the microgel particles with enhanced cellular uptake and visualization, cell penetrating peptide TAT and fluorescent probe were further covalently immobilized. The cellular uptake, intracellular distribution and thermo-responsive cytotoxicity of the microgel particles were studied by co-culture with lung adenocarcinoma (A549) cells. The PNIAPM microgel particles were largely ingested by A549 cells and mainly located in lysosomes. TAT modification enhanced the cellular internalization of particles but did not alter their intracellular distribution. While the PNIPAM microgel particles did not show significant impact on cell viability at 37°C, they caused cytotoxicity to some extent when being cultured at 25°C for 4 h. Doxorubicin loaded PNIPAM microgel particles showed the strongest cytotoxicity when being cultured at 25°C for 4 h, suggesting the combinational effect of intracellular volume expansion and drug release on cells.
Collapse
Affiliation(s)
- Wenjing Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
448
|
Zhang C, Pan D, Luo K, She W, Guo C, Yang Y, Gu Z. Peptide dendrimer-Doxorubicin conjugate-based nanoparticles as an enzyme-responsive drug delivery system for cancer therapy. Adv Healthc Mater 2014; 3:1299-308. [PMID: 24706635 DOI: 10.1002/adhm.201300601] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/31/2014] [Indexed: 01/01/2023]
Abstract
Peptide dendrimers have shown promise as an attractive platform for drug delivery. In this study, mPEGylated peptide dendrimer-doxorubicin (dendrimer-DOX) conjugate-based nanoparticle is prepared and characterized as an enzyme-responsive drug delivery vehicle. The drug DOX is conjugated to the periphery of dendrimer via an enzyme-responsive tetra-peptide linker Gly-Phe-Leu-Gly (GFLG). The dendrimer-DOX conjugate can self-assemble into nanoparticle, which is confirmed by dynamic light scattering, scanning electron microscopy, and transmission electron microscopy studies. At equal dose, mPEGylated dendrimer-DOX conjugate-based nanoparticle results in significantly high antitumor activity, and induces apoptosis on the 4T1 breast tumor model due to the evidences from tumor growth curves, an immunohistochemical analysis, and a histological assessment. The in vivo toxicity evaluation demonstrates that nanoparticle substantially avoids DOX-related toxicities and presents good biosafety without obvious side effects to normal organs of both tumor-bearing and healthy mice as measured by body weight shift, blood routine test, and a histological analysis. Thus, the mPEGylated peptide dendrimer-DOX conjugate-based nanoparticle may be a potential nanoscale drug delivery vehicle for the breast cancer therapy.
Collapse
Affiliation(s)
- Chengyuan Zhang
- National Engineering Research Center for Biomaterials; Sichuan University; Chengdu 610064 China
| | - Dayi Pan
- National Engineering Research Center for Biomaterials; Sichuan University; Chengdu 610064 China
| | - Kui Luo
- National Engineering Research Center for Biomaterials; Sichuan University; Chengdu 610064 China
| | - Wenchuan She
- National Engineering Research Center for Biomaterials; Sichuan University; Chengdu 610064 China
| | - Chunhua Guo
- National Engineering Research Center for Biomaterials; Sichuan University; Chengdu 610064 China
| | - Yang Yang
- National Engineering Research Center for Biomaterials; Sichuan University; Chengdu 610064 China
| | - Zhongwei Gu
- National Engineering Research Center for Biomaterials; Sichuan University; Chengdu 610064 China
| |
Collapse
|
449
|
Kulkarni PS, Haldar MK, Nahire RR, Katti P, Ambre AH, Muhonen WW, Shabb JB, Padi SKR, Singh RK, Borowicz PP, Shrivastava DK, Katti KS, Reindl K, Guo B, Mallik S. Mmp-9 responsive PEG cleavable nanovesicles for efficient delivery of chemotherapeutics to pancreatic cancer. Mol Pharm 2014; 11:2390-9. [PMID: 24827725 PMCID: PMC4096225 DOI: 10.1021/mp500108p] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
![]()
Significant differences in biochemical
parameters between normal
and tumor tissues offer an opportunity to chemically design drug carriers
which respond to these changes and deliver the drugs at the desired
site. For example, overexpression of the matrix metalloproteinase-9
(MMP-9) enzyme in the extracellular matrix of tumor tissues can act
as a trigger to chemically modulate the drug delivery from the carriers.
In this study, we have synthesized an MMP-9-cleavable, collagen mimetic
lipopeptide which forms nanosized vesicles with the POPC, POPE-SS-PEG,
and cholesteryl-hemisuccinate lipids. The lipopeptide retains the
triple-helical conformation when incorporated into these nanovesicles.
The PEG groups shield the substrate lipopeptides from hydrolysis by
MMP-9. However, in the presence of elevated glutathione levels, the
PEG groups are reductively removed, exposing the lipopeptides to MMP-9.
The resultant peptide-bond cleavage disturbs the vesicles’
lipid bilayer, leading to the release of encapsulated contents. These
PEGylated nanovesicles are capable of encapsulating the anticancer
drug gemcitabine with 50% efficiency. They were stable in physiological
conditions and in human serum. Effective drug release was demonstrated
using the pancreatic ductal carcinoma cells (PANC-1 and MIAPaCa-2)
in two-dimensional and three-dimensional “tumor-like”
spheroid cultures. A reduction in tumor growth was observed after
intravenous administration of the gemcitabine-encapsulated nanovesicles
in the xenograft model of athymic, female nude mice.
Collapse
Affiliation(s)
- Prajakta S Kulkarni
- Department of Pharmaceutical Sciences, North Dakota State University , Fargo, North Dakota 58102, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
450
|
Felice B, Prabhakaran MP, Rodríguez AP, Ramakrishna S. Drug delivery vehicles on a nano-engineering perspective. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 41:178-95. [PMID: 24907751 DOI: 10.1016/j.msec.2014.04.049] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/04/2014] [Accepted: 04/18/2014] [Indexed: 12/21/2022]
Abstract
Nanoengineered drug delivery systems (nDDS) have been successfully used as clinical tools for not only modulation of pharmacological drug release profile but also specific targeting of diseased tissues. Until now, encapsulation of anti-cancer molecules such as paclitaxel, vincristin and doxorubicin has been the main target of nDDS, whereby liposomes and polymer-drug conjugates remained as the most popular group of nDDS used for this purpose. The success reached by these nanocarriers can be imitated by careful selection and optimization of the different factors that affect drug release profile (i.e. type of biomaterial, size, system architecture, and biodegradability mechanisms) along with the selection of an appropriate manufacture technique that does not compromise the desired release profile, while it also offers possibilities to scale up for future industrialization. This review focuses from an engineering perspective on the different parameters that should be considered before and during the design of new nDDS, and the different manufacturing techniques available, in such a way to ensure success in clinical application.
Collapse
Affiliation(s)
- Betiana Felice
- Laboratorio de Medios e Interfases, Departamento de Bioingeniería, Universidad Nacional de Tucumán, Av. Kirchner 1800, Tucumán, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, Buenos Aires, Argentina.; START - Thrust 3, Create Research Wing, #03-08, 1 Create Way, National University of Singapore, Singapore 138602
| | - Molamma P Prabhakaran
- START - Thrust 3, Create Research Wing, #03-08, 1 Create Way, National University of Singapore, Singapore 138602.
| | - Andrea P Rodríguez
- Laboratorio de Medios e Interfases, Departamento de Bioingeniería, Universidad Nacional de Tucumán, Av. Kirchner 1800, Tucumán, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, Buenos Aires, Argentina
| | - Seeram Ramakrishna
- START - Thrust 3, Create Research Wing, #03-08, 1 Create Way, National University of Singapore, Singapore 138602; Department of Mechanical Engineering, National University of Singapore, Singapore
| |
Collapse
|