401
|
A Comprehensive Review of mRNA Vaccines. Int J Mol Sci 2023; 24:ijms24032700. [PMID: 36769023 PMCID: PMC9917162 DOI: 10.3390/ijms24032700] [Citation(s) in RCA: 125] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/23/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
mRNA vaccines have been demonstrated as a powerful alternative to traditional conventional vaccines because of their high potency, safety and efficacy, capacity for rapid clinical development, and potential for rapid, low-cost manufacturing. These vaccines have progressed from being a mere curiosity to emerging as COVID-19 pandemic vaccine front-runners. The advancements in the field of nanotechnology for developing delivery vehicles for mRNA vaccines are highly significant. In this review we have summarized each and every aspect of the mRNA vaccine. The article describes the mRNA structure, its pharmacological function of immunity induction, lipid nanoparticles (LNPs), and the upstream, downstream, and formulation process of mRNA vaccine manufacturing. Additionally, mRNA vaccines in clinical trials are also described. A deep dive into the future perspectives of mRNA vaccines, such as its freeze-drying, delivery systems, and LNPs targeting antigen-presenting cells and dendritic cells, are also summarized.
Collapse
|
402
|
Singleton KL, Joffe A, Leitner WW. Review: Current trends, challenges, and success stories in adjuvant research. Front Immunol 2023; 14:1105655. [PMID: 36742311 PMCID: PMC9892189 DOI: 10.3389/fimmu.2023.1105655] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Vaccine adjuvant research is being fueled and driven by progress in the field of innate immunity that has significantly advanced in the past two decades with the discovery of countless innate immune receptors and innate immune pathways. Receptors for pathogen-associated molecules (PAMPs) or host-derived, danger-associated molecules (DAMPs), as well as molecules in the signaling pathways used by such receptors, are a rich source of potential targets for agonists that enable the tuning of innate immune responses in an unprecedented manner. Targeted modulation of immune responses is achieved not only through the choice of immunostimulator - or select combinations of adjuvants - but also through formulation and systematic modifications of the chemical structure of immunostimulatory molecules. The use of medium and high-throughput screening methods for finding immunostimulators has further accelerated the identification of promising novel adjuvants. However, despite the progress that has been made in finding new adjuvants through systematic screening campaigns, the process is far from perfect. A major bottleneck that significantly slows the process of turning confirmed or putative innate immune receptor agonists into vaccine adjuvants continues to be the lack of defined in vitro correlates of in vivo adjuvanticity. This brief review discusses recent developments, exciting trends, and notable successes in the adjuvant research field, albeit acknowledging challenges and areas for improvement.
Collapse
|
403
|
Patel HK, Zhang K, Utegg R, Stephens E, Salem S, Welch H, Grobe S, Schlereth J, Kuhn AN, Ryczek J, Cirelli DJ, Lerch TF. Characterization of BNT162b2 mRNA to Evaluate Risk of Off-Target Antigen Translation. J Pharm Sci 2023; 112:1364-1371. [PMID: 36642376 PMCID: PMC9836996 DOI: 10.1016/j.xphs.2023.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/07/2023] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
mRNA vaccines have been established as a safe and effective modality, thanks in large part to the expedited development and approval of COVID-19 vaccines. In addition to the active, full-length mRNA transcript, mRNA fragment species can be present as a byproduct of the cell-free transcription manufacturing process or due to mRNA hydrolysis. In the current study, mRNA fragment species from BNT162b2 mRNA were isolated and characterized. The translational viability of intact and fragmented mRNA species was further explored using orthogonal expression systems to understand the risk of truncated spike protein or off-target antigen translation. The study demonstrates that mRNA fragments are primarily derived from premature transcriptional termination during manufacturing, and only full-length mRNA transcripts are viable for expression of the SARS-CoV-2 spike protein antigen.
Collapse
Affiliation(s)
- Himakshi K Patel
- Analytical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, MA 01810, USA
| | - Kun Zhang
- Analytical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Chesterfield, MO 63017, USA
| | - Rachael Utegg
- Analytical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, MA 01810, USA
| | - Elaine Stephens
- Analytical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, MA 01810, USA
| | - Shauna Salem
- Analytical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, MA 01810, USA
| | - Heidi Welch
- Analytical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, MA 01810, USA
| | | | | | | | - Jeff Ryczek
- Analytical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Chesterfield, MO 63017, USA
| | - David J Cirelli
- Analytical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, MA 01810, USA
| | - Thomas F Lerch
- Analytical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Chesterfield, MO 63017, USA.
| |
Collapse
|
404
|
One-Step Pharmaceutical Preparation of PEG-Modified Exosomes Encapsulating Anti-Cancer Drugs by a High-Pressure Homogenization Technique. Pharmaceuticals (Basel) 2023; 16:ph16010108. [PMID: 36678605 PMCID: PMC9865360 DOI: 10.3390/ph16010108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 01/12/2023] Open
Abstract
The use of exosomes encapsulating therapeutic agents for the treatment of diseases is of increasing interest. However, some concerns such as limited efficiency and scalability of conventional drug encapsulation methods to exosomes have still remained; thus, a new approach that enables encapsulation of therapeutic agents with superior efficiency and scalability is required. Herein, we used RAW264 macrophage cell-derived exosomes (RAW-Exos) and demonstrated that high-pressure homogenization (HPH) using a microfluidizer decreased their particle size without changing their morphology, the amount of exosomal marker proteins, and cellular uptake efficiency into RAW264 and colon-26 cancer cells. Moreover, HPH allowed for modification of polyethylene glycol (PEG)-conjugated lipids onto RAW-Exos, as well as encapsulation of the anti-cancer agent doxorubicin. Importantly, the doxorubicin encapsulation efficiency became higher upon increasing the process pressure and simultaneous HPH with PEG-lipids. Moreover, treatment with PEG-modified RAW-Exos encapsulating doxorubicin significantly suppressed tumor growth in colon-26-bearing mice. Taken together, these results suggest that HPH using a microfluidizer could be useful to prepare PEG-modified Exos encapsulating anti-cancer drugs via a one-step pharmaceutical process, and that the prepared functional Exos could be applied for the treatment of cancer in vivo.
Collapse
|
405
|
Sciolino N, Reverdatto S, Premo A, Breindel L, Yu J, Theophall G, Burz DS, Liu A, Sulchek T, Schmidt AM, Ramasamy R, Shekhtman A. Messenger RNA in lipid nanoparticles rescues HEK 293 cells from lipid-induced mitochondrial dysfunction as studied by real time pulse chase NMR, RTPC-NMR, spectroscopy. Sci Rep 2022; 12:22293. [PMID: 36566335 PMCID: PMC9789524 DOI: 10.1038/s41598-022-26444-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/14/2022] [Indexed: 12/25/2022] Open
Abstract
Analytical tools to study cell physiology are critical for optimizing drug-host interactions. Real time pulse chase NMR spectroscopy, RTPC-NMR, was introduced to monitor the kinetics of metabolite production in HEK 293T cells treated with COVID-19 vaccine-like lipid nanoparticles, LNPs, with and without mRNA. Kinetic flux parameters were resolved for the incorporation of isotopic label into metabolites and clearance of labeled metabolites from the cells. Changes in the characteristic times for alanine production implicated mitochondrial dysfunction as a consequence of treating the cells with lipid nanoparticles, LNPs. Mitochondrial dysfunction was largely abated by inclusion of mRNA in the LNPs, the presence of which increased the size and uniformity of the LNPs. The methodology is applicable to all cultured cells.
Collapse
Affiliation(s)
- Nicholas Sciolino
- Department of Chemistry, State University of New York, Albany, NY, 12222, USA
| | - Sergey Reverdatto
- Department of Chemistry, State University of New York, Albany, NY, 12222, USA
| | - Aaron Premo
- Department of Chemistry, State University of New York, Albany, NY, 12222, USA
| | - Leonard Breindel
- Department of Chemistry, State University of New York, Albany, NY, 12222, USA
| | - Jianchao Yu
- Department of Chemistry, State University of New York, Albany, NY, 12222, USA
| | - Gregory Theophall
- Department of Chemistry, State University of New York, Albany, NY, 12222, USA
| | - David S Burz
- Department of Chemistry, State University of New York, Albany, NY, 12222, USA
| | - Anna Liu
- Georgia Tech, School of Mechanical Engineering, Atlanta, GA, 30332, USA
| | - Todd Sulchek
- Georgia Tech, School of Mechanical Engineering, Atlanta, GA, 30332, USA
| | - Ann Marie Schmidt
- New York University, Grossman School of Medicine, New York, NY, 10016, USA
| | | | - Alexander Shekhtman
- Department of Chemistry, State University of New York, Albany, NY, 12222, USA.
| |
Collapse
|
406
|
Wang L, Xu H, Weng L, Sun J, Jin Y, Xiao C. Activation of cancer immunotherapy by nanomedicine. Front Pharmacol 2022; 13:1041073. [PMID: 36618938 PMCID: PMC9814015 DOI: 10.3389/fphar.2022.1041073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer is one of the most difficult diseases to be treated in the world. Immunotherapy has made great strides in cancer treatment in recent years, and several tumor immunotherapy drugs have been approved by the U.S. Food and Drug Administration. Currently, immunotherapy faces many challenges, such as lacking specificity, cytotoxicity, drug resistance, etc. Nanoparticles have the characteristics of small particle size and stable surface function, playing a miraculous effect in anti-tumor treatment. Nanocarriers such as polymeric micelles, liposomes, nanoemulsions, dendrimers, and inorganic nanoparticles have been widely used to overcome deficits in cancer treatments including toxicity, insufficient specificity, and low bioavailability. Although nanomedicine research is extensive, only a few nanomedicines are approved to be used. Either Bottlenecks or solutions of nanomedicine in immunotherapy need to be further explored to cope with challenges. In this review, a brief overview of several types of cancer immunotherapy approaches and their advantages and disadvantages will be provided. Then, the types of nanomedicines, drug delivery strategies, and the progress of applications are introduced. Finally, the application and prospect of nanomedicines in immunotherapy and Chimeric antigen receptor T-cell therapy (CAR-T) are highlighted and summarized to address the problems of immunotherapy the overall goal of this article is to provide insights into the potential use of nanomedicines and to improve the efficacy and safety of immunotherapy.
Collapse
Affiliation(s)
- Lijuan Wang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Henan Xu
- The First Hospital of Jilin University, Changchun, China
| | - Lili Weng
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Jin Sun
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Ye Jin
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China,*Correspondence: Ye Jin, ; Chunping Xiao,
| | - Chunping Xiao
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China,*Correspondence: Ye Jin, ; Chunping Xiao,
| |
Collapse
|
407
|
Lau YMA, Pang J, Tilstra G, Couture-Senécal J, Khan OF. The engineering challenges and opportunities when designing potent ionizable materials for the delivery of ribonucleic acids. Expert Opin Drug Deliv 2022; 19:1650-1663. [PMID: 36377494 DOI: 10.1080/17425247.2022.2144827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Ionizable lipids are critical components in lipid nanoparticles. These molecules sequester nucleic acids for delivery to cells. However, to build more efficacious delivery molecules, the field must continue to broaden structure-function studies for greater insight. While nucleic acid-binding efficiency, degradability and nanoparticle stability are vitally important, this review offers perspective on additional factors that must be addressed to improve delivery efficiency. AREAS COVERED We discuss how administration route, cellular heterogeneity, uptake pathway, endosomal escape timing, age, sex, and threshold effects can change depending on the type of LNP ionizable lipid. EXPERT OPINION Ionizable lipid structure-function studies often focus on the efficiency of RNA utilization and biodistribution. While these focus areas are critical, they remain high-level observations. As our tools for observation and system interrogation improve, we believe that the field should begin collecting additional data. At the cellular level, this data should include age (dividing or senescent cells), sex and phenotype, cell entry pathway, and endosome type. Additionally, administration route and dose are essential to track. This additional data will allow us to identify and understand heterogeneity in LNP efficacy across patient populations, which will help us provide better ionizable lipid options for different groups.
Collapse
Affiliation(s)
- Yan Ming Anson Lau
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Janice Pang
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Grayson Tilstra
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | | | - Omar F Khan
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
408
|
Deepening the understanding of the in vivo and cellular fate of nanocarriers. Adv Drug Deliv Rev 2022; 189:114529. [PMID: 36064031 DOI: 10.1016/j.addr.2022.114529] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
409
|
Huang S, Hao XY, Li YJ, Wu JY, Xiang DX, Luo S. Nonviral delivery systems for antisense oligonucleotide therapeutics. Biomater Res 2022; 26:49. [PMID: 36180936 PMCID: PMC9523189 DOI: 10.1186/s40824-022-00292-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/30/2022] [Indexed: 11/10/2022] Open
Abstract
Antisense oligonucleotides (ASOs) are an important tool for the treatment of many genetic disorders. However, similar to other gene drugs, vectors are often required to protect them from degradation and clearance, and to accomplish their transport in vivo. Compared with viral vectors, artificial nonviral nanoparticles have a variety of design, synthesis, and formulation possibilities that can be selected to accomplish protection and delivery for specific applications, and they have served critical therapeutic purposes in animal model research and clinical applications, allowing safe and efficient gene delivery processes into the target cells. We believe that as new ASO drugs develop, the exploration for corresponding nonviral vectors is inevitable. Intensive development of nonviral vectors with improved delivery strategies based on specific targets can continue to expand the value of ASO therapeutic approaches. Here, we provide an overview of current nonviral delivery strategies, including ASOs modifications, action mechanisms, and multi-carrier methods, which aim to address the irreplaceable role of nonviral vectors in the progressive development of ASOs delivery.
Collapse
Affiliation(s)
- Si Huang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.,Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, 410011, People's Republic of China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Xin-Yan Hao
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.,Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, 410011, People's Republic of China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Yong-Jiang Li
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.,Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, 410011, People's Republic of China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Jun-Yong Wu
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.,Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, 410011, People's Republic of China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Da-Xiong Xiang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.,Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, 410011, People's Republic of China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Shilin Luo
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China. .,Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, 410011, People's Republic of China. .,Institute of Clinical Pharmacy, Central South University, Changsha, China.
| |
Collapse
|