401
|
Andersson MN, Larsson MC, Blazenec M, Jakus R, Zhang QH, Schlyter F. Peripheral modulation of pheromone response by inhibitory host compound in a beetle. ACTA ACUST UNITED AC 2011; 213:3332-9. [PMID: 20833926 DOI: 10.1242/jeb.044396] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We identified several compounds, by gas chromatographic-electroantennographic detection (GC-EAD), that were antennally active in the bark beetle Ips typographus and also abundant in beetle-attacked spruce trees. One of them, 1,8-cineole (Ci), strongly inhibited the attraction to pheromone in the field. Single-sensillum recordings (SSRs) previously showed olfactory receptor neurons (ORNs) on I. typographus antennae selectively responding to Ci. All Ci neurons were found within sensilla co-inhabited by a pheromone neuron responding to cis-verbenol (cV); however, in other sensilla, the cV neuron was paired with a neuron not responding to any test odorant. We hypothesized that the colocalization of ORNs had a functional and ecological relevance. We show by SSR that Ci inhibited spontaneous activity of the cV neuron only in sensilla in which the Ci neuron was also present. Using mixtures of cV and Ci, we further show that responses to low doses (1-10 ng) of cV were significantly reduced when the colocalized Ci neuron simultaneously responded to high doses (1-10 μg) of Ci. This indicated that the response of the Ci neuron, rather than ligand-receptor interactions in the cV neuron, caused the inhibition. Moreover, cV neurons paired with Ci neurons were more sensitive to cV alone than the ones paired with the non-responding ORN. Our observations question the traditional view that ORNs within a sensillum function as independent units. The colocalization of ORNs might sharpen adaptive responses to blends of semiochemicals with different ecological significance in the olfactory landscape.
Collapse
Affiliation(s)
- Martin N Andersson
- Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, SE-230 53 Alnarp, Sweden.
| | | | | | | | | | | |
Collapse
|
402
|
Tom W, de Bruyne M, Haehnel M, Carlson JR, Ray A. Disruption of olfactory receptor neuron patterning in Scutoid mutant Drosophila. Mol Cell Neurosci 2011; 46:252-61. [PMID: 20875862 PMCID: PMC3019251 DOI: 10.1016/j.mcn.2010.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 09/18/2010] [Accepted: 09/20/2010] [Indexed: 11/20/2022] Open
Abstract
Olfactory neurons show an extreme diversity of cell types with each cell usually expressing one member from a large family of 60 Odorant receptor (Or) genes in Drosophila. Little is known about the developmental processes and transcription factors that generate this stereotyped pattern of cellular diversity. Here we investigate the molecular and cellular basis of defects in olfactory system function in an unusual dominant mutant, Scutoid. We show that the defects map to olfactory neurons innervating a specific morphological class of sensilla on the antenna, large basiconics. Molecular analysis indicates defects in neurons expressing specific classes of receptor genes that map to large basiconic sensilla. Previous studies have shown that in Scutoid mutants the coding region of the transcriptional repressor snail is translocated near the no-ocelli promoter, leading to misexpression of snail in the developing eye-antenna disc. We show that ectopic expression of snail in developing olfactory neurons leads to severe defects in neurons of the antennal large basiconics, supporting the model that the dominant olfactory phenotype in Scutoid is caused by misexpression of snail.
Collapse
Affiliation(s)
- W Tom
- Department of Entomology, University of California Riverside, CA 92521, USA
| | | | | | | | | |
Collapse
|
403
|
Burgstaller M, Tichy H. Functional asymmetries in cockroach ON and OFF olfactory receptor neurons. J Neurophysiol 2010; 105:834-45. [PMID: 21160009 DOI: 10.1152/jn.00785.2010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ON and OFF olfactory receptor neurons (ORNs) on the antenna of the American cockroach respond to the same changes in the concentration of the odor of lemon oil, but in the opposite direction. The same jump in concentration raises impulse frequency in the ON and lowers it in the OFF ORN and, conversely, the same concentration drop raises impulse frequency in the OFF and lowers it in the ON ORN. When the new concentration level is maintained, it becomes a background concentration and affects the responses of the ON and OFF ORNs to superimposed changes. Raising the background concentration decreases both the ON-ORN's response to concentration jumps and the OFF-ORN's response to concentration drops. In addition, the slopes of the functions approximating the relationship of impulse frequency to concentration changes become flatter for both types of ORNs as the background concentration rises. The progressively compressed scaling optimizes the detection of concentration changes in the low concentration range. The loss of information caused by the lower differential sensitivity in the high concentration range is partially compensated by the higher discharge rates of the OFF ORNs. The functional asymmetry of the ON and OFF ORNs, which reflects nonlinearity in the detection of changes in the concentration of the lemon oil odor, improves information transfer for decrements in the high concentration range.
Collapse
Affiliation(s)
- Maria Burgstaller
- University of Vienna, Faculty of Life Sciences, Department of Neurobiology, Althanstrasse 14, 1090 Vienna, Austria
| | | |
Collapse
|
404
|
Brochtrup A, Hummel T. Olfactory map formation in the Drosophila brain: genetic specificity and neuronal variability. Curr Opin Neurobiol 2010; 21:85-92. [PMID: 21112768 DOI: 10.1016/j.conb.2010.11.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 11/02/2010] [Indexed: 11/17/2022]
Abstract
The development of the Drosophila olfactory system is a striking example of how genetic programs specify a large number of different neuron types and assemble them into functional circuits. To ensure precise odorant perception, each sensory neuron has to not only select a single olfactory receptor (OR) type out of a large genomic repertoire but also segregate its synaptic connections in the brain according to the OR class identity. Specification and patterning of second-order interneurons in the olfactory brain center occur largely independent of sensory input, followed by a precise point-to-point matching of sensory and relay neurons. Here we describe recent progress in the understanding of how cell-intrinsic differentiation programs and context-dependent cellular interactions generate a stereotyped sensory map in the Drosophila brain. Recent findings revealed an astonishing morphological diversity among members of the same interneuron class, suggesting an unexpected variability in local microcircuits involved in insect sensory processing.
Collapse
Affiliation(s)
- Anna Brochtrup
- Institut für Neurobiologie, Universität Münster, Badestr. 9, D-48149 Münster, Germany
| | | |
Collapse
|
405
|
Abstract
Odor signals received by odorant receptors (ORs) in the olfactory epithelium are represented as an odor map of activated glomeruli in the olfactory bulb. In the mouse olfactory system, it appears that much of axon pathfinding and sorting occurs autonomously by olfactory neuron axons. Here, we review the recent progress on the study of olfactory map formation in rodents. We will discuss how neuronal identity is represented at axon termini and how the OR-instructed axonal projection is regulated.
Collapse
Affiliation(s)
- Hitoshi Sakano
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan.
| |
Collapse
|
406
|
Olsson SB, Kesevan S, Groot AT, Dekker T, Heckel DG, Hansson BS. Ostrinia revisited: Evidence for sex linkage in European Corn Borer Ostrinia nubilalis (Hubner) pheromone reception. BMC Evol Biol 2010; 10:285. [PMID: 20846425 PMCID: PMC2955028 DOI: 10.1186/1471-2148-10-285] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 09/16/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The European Corn Borer, Ostrinia nubilalis (Hubner), is a keystone model for studies on the evolution of sex pheromone diversity and its role in establishing reproductive isolation. This species consists of two sympatric races, each utilizing opposite isomers of the same compound as their major pheromone component. Female production and male response are congruent in each race, and males from each strain exhibit phenotypic differences in peripheral physiology. Both strains possess co-localized pheromone-sensitive olfactory sensory neurons characterized by a larger amplitude action potential (spike) responding to the major pheromone component, and a smaller spike amplitude cell responding to the minor component, i.e. the opposite isomer. These differences in amplitude correspond to differences in dendritic diameter between the two neurons. Previous studies showed that behavioral response to the pheromone blend was sex-linked, but spike amplitude response to pheromone components matched autosomal, not sex-linked inheritance. RESULTS As part of a larger study to finely map the loci responsible for pheromone communication in this species, we have reanalyzed peripheral physiology among parental, and first and second generation hybrids between the two pheromone strains using tungsten electrode electrophysiology. Our results reveal that differences in spike amplitude ratio between male pheromone-sensitive sensory neurons in O. nubilalis races are controlled, at least partially, by sex-linked genes that exhibit E-strain dominance. CONCLUSIONS We propose that peripheral olfactory response in O. nubilalis may be affected both by autosomal and sex-linked genes exhibiting a cross-locus dominance effect, and suggest that the genetic basis for pheromone reception and response in the species is more closely linked than previously thought.
Collapse
Affiliation(s)
- Shannon B Olsson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena 07745, Germany.
| | | | | | | | | | | |
Collapse
|
407
|
Vermehren-Schmaedick A, Ainsley JA, Johnson WA, Davies SA, Morton DB. Behavioral responses to hypoxia in Drosophila larvae are mediated by atypical soluble guanylyl cyclases. Genetics 2010; 186:183-96. [PMID: 20592263 PMCID: PMC2940286 DOI: 10.1534/genetics.110.118166] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 06/19/2010] [Indexed: 02/07/2023] Open
Abstract
The three Drosophila atypical soluble guanylyl cyclases, Gyc-89Da, Gyc-89Db, and Gyc-88E, have been proposed to act as oxygen detectors mediating behavioral responses to hypoxia. Drosophila larvae mutant in any of these subunits were defective in their hypoxia escape response-a rapid cessation of feeding and withdrawal from their food. This response required cGMP and the cyclic nucleotide-gated ion channel, cng, but did not appear to be dependent on either of the cGMP-dependent protein kinases, dg1 and dg2. Specific activation of the Gyc-89Da neurons using channel rhodopsin showed that activation of these neurons was sufficient to trigger the escape behavior. The hypoxia escape response was restored by reintroducing either Gyc-89Da or Gyc-89Db into either Gyc-89Da or Gyc-89Db neurons in either mutation. This suggests that neurons that co-express both Gyc-89Da and Gyc-89Db subunits are primarily responsible for activating this behavior. These include sensory neurons that innervate the terminal sensory cones. Although the roles of Gyc-89Da and Gyc-89Db in the hypoxia escape behavior appeared to be identical, we also showed that changes in larval crawling behavior in response to either hypoxia or hyperoxia differed in their requirements for these two atypical sGCs, with responses to 15% oxygen requiring Gyc-89Da and responses to 19 and 25% requiring Gyc-89Db. For this behavior, the identity of the neurons appeared to be critical in determining the ability to respond appropriately.
Collapse
Affiliation(s)
- Anke Vermehren-Schmaedick
- Department of Integrative Biosciences, Oregon Health and Science University, Portland, Oregon 97239, University of Iowa, Roy J. and Lucille A. Carver College of Medicine, Department of Molecular Physiology and Biophysics, Iowa City, Iowa 52242 and Integrative and Systems Biology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | - Joshua A. Ainsley
- Department of Integrative Biosciences, Oregon Health and Science University, Portland, Oregon 97239, University of Iowa, Roy J. and Lucille A. Carver College of Medicine, Department of Molecular Physiology and Biophysics, Iowa City, Iowa 52242 and Integrative and Systems Biology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | - Wayne A. Johnson
- Department of Integrative Biosciences, Oregon Health and Science University, Portland, Oregon 97239, University of Iowa, Roy J. and Lucille A. Carver College of Medicine, Department of Molecular Physiology and Biophysics, Iowa City, Iowa 52242 and Integrative and Systems Biology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | - Shireen-A Davies
- Department of Integrative Biosciences, Oregon Health and Science University, Portland, Oregon 97239, University of Iowa, Roy J. and Lucille A. Carver College of Medicine, Department of Molecular Physiology and Biophysics, Iowa City, Iowa 52242 and Integrative and Systems Biology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | - David B. Morton
- Department of Integrative Biosciences, Oregon Health and Science University, Portland, Oregon 97239, University of Iowa, Roy J. and Lucille A. Carver College of Medicine, Department of Molecular Physiology and Biophysics, Iowa City, Iowa 52242 and Integrative and Systems Biology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| |
Collapse
|
408
|
Paluch G, Bartholomay L, Coats J. Mosquito repellents: a review of chemical structure diversity and olfaction. PEST MANAGEMENT SCIENCE 2010; 66:925-935. [PMID: 20623705 DOI: 10.1002/ps.1974] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Research on mosquito chemical repellents continues to advance, along with knowledge of mosquito olfaction and behavior, mosquito-host interactions and chemical structure. New tools and technologies have revealed information about insect olfactory mechanisms and processing, providing a more complex approach for the interpretation of how chemical repellents influence host-seeking and feeding behavior. Even with these advances, there is still a large amount of information contained in the early works on insect repellents. Many of the standard test methods and chemicals that are still used for evaluating active repellents were developed in the 1940s. These studies contain valuable references to the activity of different structural classes of chemicals, and serve as a guide to optimization of select compounds for insect repellency effects.
Collapse
Affiliation(s)
- Gretchen Paluch
- Department of Entomology, Iowa State University, Ames, IA 50011, USA
| | | | | |
Collapse
|
409
|
Liu C, Pitts RJ, Bohbot JD, Jones PL, Wang G, Zwiebel LJ. Distinct olfactory signaling mechanisms in the malaria vector mosquito Anopheles gambiae. PLoS Biol 2010; 8:e1000467. [PMID: 20824161 PMCID: PMC2930861 DOI: 10.1371/journal.pbio.1000467] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 07/19/2010] [Indexed: 11/18/2022] Open
Abstract
Anopheles gambiae is the principal Afrotropical vector for human malaria, in which olfaction mediates a wide range of both adult and larval behaviors. Indeed, mosquitoes depend on the ability to respond to chemical cues for feeding, host preference, and mate location/selection. Building upon previous work that has characterized a large family of An. gambiae odorant receptors (AgORs), we now use behavioral analyses and gene silencing to examine directly the role of AgORs, as well as a newly identified family of candidate chemosensory genes, the An. gambiae variant ionotropic receptors (AgIRs), in the larval olfactory system. Our results validate previous studies that directly implicate specific AgORs in behavioral responses to DEET as well as other odorants and reveal the existence of at least two distinct olfactory signaling pathways that are active in An. gambiae. One system depends directly on AgORs; the other is AgOR-independent and requires the expression and activity of AgIRs. In addition to clarifying the mechanistic basis for olfaction in this system, these advances may ultimately enhance the development of vector control strategies, targeting olfactory pathways in mosquitoes to reduce the catastrophic effects of malaria and other mosquito-borne diseases.
Collapse
Affiliation(s)
- Chao Liu
- Departments of Biological Sciences and Pharmacology, Center for Molecular Neuroscience, Institutes of Chemical Biology and Global Health and Program in Developmental Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - R. Jason Pitts
- Departments of Biological Sciences and Pharmacology, Center for Molecular Neuroscience, Institutes of Chemical Biology and Global Health and Program in Developmental Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Jonathan D. Bohbot
- USDA, Agricultural Research Service, Henry A. Wallace Beltsville Agricultural Research Center, Plant Sciences Institute, Invasive Insect Biocontrol and Behavior Laboratory, Beltsville, Maryland, United States of America
| | - Patrick L. Jones
- Departments of Biological Sciences and Pharmacology, Center for Molecular Neuroscience, Institutes of Chemical Biology and Global Health and Program in Developmental Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Guirong Wang
- Departments of Biological Sciences and Pharmacology, Center for Molecular Neuroscience, Institutes of Chemical Biology and Global Health and Program in Developmental Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Laurence J. Zwiebel
- Departments of Biological Sciences and Pharmacology, Center for Molecular Neuroscience, Institutes of Chemical Biology and Global Health and Program in Developmental Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| |
Collapse
|
410
|
Große-Wilde E, Stieber R, Forstner M, Krieger J, Wicher D, Hansson BS. Sex-specific odorant receptors of the tobacco hornworm manduca sexta. Front Cell Neurosci 2010; 4. [PMID: 20725598 PMCID: PMC2922936 DOI: 10.3389/fncel.2010.00022] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 06/03/2010] [Indexed: 11/13/2022] Open
Abstract
As odor information plays a vital role in the life of moths, their olfactory sense has evolved into a highly specific and sensitive apparatus relevant to reproduction and survival. The key players in the detection of odorants are olfactory receptor (OR) proteins. Here we identify four OR-encoding genes differentially expressed in the antennae of males and females of the sphingid moth Manduca sexta. Two male-specific receptors (the previously reported MsexOR-1 and the newly identified MsexOR-4) show great resemblance to other male moth pheromone ORs. The putative pheromone receptors are co-expressed with the co-receptor involved in general odorant signal transduction, the DmelOr83b homolog MsexOR-2. One female-specific receptor (MsexOR-5) displays similarities to BmorOR-19, a receptor in Bombyx mori tuned to the detection of the plant odor linalool.
Collapse
Affiliation(s)
- Ewald Große-Wilde
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology Jena, Germany
| | | | | | | | | | | |
Collapse
|
411
|
Odorant receptor polymorphisms and natural variation in olfactory behavior in Drosophila melanogaster. Genetics 2010; 186:687-97. [PMID: 20628035 DOI: 10.1534/genetics.110.119446] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Animals perceive and discriminate among a vast array of sensory cues in their environment. Both genetic and environmental factors contribute to individual variation in behavioral responses to these cues. Here, we asked to what extent sequence variants in six Drosophila melanogaster odorant receptor (Or) genes are associated with variation in behavioral responses to benzaldehyde by sequencing alleles from a natural population. Sequence analyses showed signatures of deviations from neutrality for Or42b and Or85f, and linkage disequilibrium analyses showed a history of extensive recombination between polymorphic markers for all six Or genes. We identified polymorphisms in Or10a, Or43a, and Or67b that were significantly associated with variation in response to benzaldehyde. To verify these associations, we repeated the analyses with an independent set of behavioral measurements of responses to a structurally similar odorant, acetophenone. Association profiles for both odorants were similar with many polymorphisms and haplotypes associated with variation in responsiveness to both odorants. Some polymorphisms, however, were associated with one, but not the other odorant. We also observed a correspondence between behavioral response to benzaldehyde and differences in Or10a and Or43a expression. These results illustrate that sequence variants that arise during the evolution of odorant receptor genes can contribute to individual variation in olfactory behavior and give rise to subtle shifts in olfactory perception.
Collapse
|
412
|
Zhou S, Mackay TFC, Anholt RRH. Tuning the chemosensory window: a fly's perspective. Fly (Austin) 2010; 4:230-5. [PMID: 20305396 DOI: 10.4161/fly.4.3.11627] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Accurate perception of chemical signals from the environment is critical for the fitness of most animals. Drosophila melanogaster experiences its chemical environment through families of chemoreceptors that include olfactory receptors, gustatory receptors and odorant binding proteins. Its chemical environment, however, changes during its life cycle and the interpretation of chemical signals is dependent on dynamic social and physical surroundings. Phenotypic plasticity of gene expression of the chemoreceptor repertoire allows flies to adjust the chemosensory window through which they "view" their world and to modify the ensemble of expressed chemoreceptor proteins in line with their developmental and physiological state and according to their needs to locate food and oviposition sites under different social and physical environmental conditions. Furthermore, males and females differ in their expression profiles of chemoreceptor genes. Thus, each sex experiences its chemical environment via combinatorial activation of distinct chemoreceptor ensembles. The remarkable phenotypic plasticity of the chemoreceptor repertoire raises several fundamental questions. What are the mechanisms that translate environmental cues into regulation of chemoreceptor gene expression? How are gustatory and olfactory cues integrated perceptually? What is the relationship between ensembles of odorant binding proteins and odorant receptors? And, what is the significance of co-regulated chemoreceptor transcriptional networks?
Collapse
Affiliation(s)
- Shanshan Zhou
- Department of Biology, North Carolina State University, Raleigh, NC, USA
| | | | | |
Collapse
|
413
|
Imai T, Sakano H, Vosshall LB. Topographic mapping--the olfactory system. Cold Spring Harb Perspect Biol 2010; 2:a001776. [PMID: 20554703 DOI: 10.1101/cshperspect.a001776] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Sensory systems must map accurate representations of the external world in the brain. Although the physical senses of touch and vision build topographic representations of the spatial coordinates of the body and the field of view, the chemical sense of olfaction maps discontinuous features of chemical space, comprising an extremely large number of possible odor stimuli. In both mammals and insects, olfactory circuits are wired according to the convergence of axons from sensory neurons expressing the same odorant receptor. Synapses are organized into distinctive spherical neuropils--the olfactory glomeruli--that connect sensory input with output neurons and local modulatory interneurons. Although there is a strong conservation of form in the olfactory maps of mammals and insects, they arise using divergent mechanisms. Olfactory glomeruli provide a unique solution to the problem of mapping discontinuous chemical space onto the brain.
Collapse
Affiliation(s)
- Takeshi Imai
- The University of Tokyo, Graduate School of Science, Department of Biophysics and Biochemistry, Yayoi 2-11-16, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | |
Collapse
|
414
|
Abstract
This study concerns the problem of odor receptor gene choice in the fruit fly Drosophila melanogaster. From a family of 60 Odor receptor genes, only one or a small number are selected for expression by each olfactory receptor neuron. Little is known about how an olfactory receptor neuron selects a receptor, or how the nucleotide sequences flanking a receptor gene dictate its expression in a particular neuron. Previous investigation has primarily concerned the maxillary palp, the simpler of the fly's two olfactory organs. Here we focus on genes encoding four antennal receptors that respond to fly odors in an in vivo expression system. To investigate the logic of odor receptor expression, we carry out a genetic analysis of their upstream regulatory sequences. Deletion analysis reveals that relatively short regulatory regions are sufficient to confer expression in the appropriate neurons, with limited if any misexpression. We find evidence for both positive and negative regulation. Multiple repressive functions restrict expression to the antenna, to a region of the antenna, and to neurons. Through deletion and base substitution mutagenesis we identify GCAATTA elements and find evidence that they act in both positive and negative regulation.
Collapse
|
415
|
Galizia CG, Münch D, Strauch M, Nissler A, Ma S. Integrating heterogeneous odor response data into a common response model: A DoOR to the complete olfactome. Chem Senses 2010; 35:551-63. [PMID: 20530377 PMCID: PMC2924422 DOI: 10.1093/chemse/bjq042] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We have developed a new computational framework for merging odor response data sets from heterogeneous studies, creating a consensus metadatabase, the database of odor responses (DoOR). As a result, we obtained a functional atlas of all available odor responses in Drosophila melanogaster. Both the program and the data set are freely accessible and downloadable on the Internet (http://neuro.uni-konstanz.de/DoOR). The procedure can be adapted to other species, thus creating a family of “olfactomes” in the near future. Drosophila melanogaster was chosen because of all species this one is closest to having the complete olfactome characterized, with the highest number of deorphanized receptors available. The database guarantees long-term stability (by offering time-stamped, downloadable versions), up-to-date accuracy (by including new data sets as soon as they are published), and portability (for other species). We hope that this comprehensive repository of odor response profiles will be useful to the olfactory community and to computational neuroscientists alike.
Collapse
Affiliation(s)
- C Giovanni Galizia
- Department of Neurobiology, University of Konstanz, 78457 Konstanz, Germany.
| | | | | | | | | |
Collapse
|
416
|
Hansson BS, Stensmyr MC. A silicon olfactome. Chem Senses 2010; 35:541-3. [PMID: 20530378 DOI: 10.1093/chemse/bjq047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this issue of Chemical Senses, Galizia et al publish an important new tool for the chemosensory research community in general and for olfactory-oriented scientist in particular. The primary aim of the tool is to make it possible to compare results regarding the response specificity of Drosophila melanogaster olfactory receptors (DOrs) from different laboratories. These results have often been arrived at by the use of varying stimulation paradigms and different response registration methods. By building an impressive algorithm, the authors have created a web-based resource, where all extant response spectra have been entered, already now providing a very comprehensive overview of key ligands and tuning width of the DOrs. The web resource is highly attractive, as the authors make it freely available to the scientific community, with an open structure allowing new results to be entered as they emerge. The general structure of the program also allows its application to other species, such as other drosophilids, mice, and humans. Even though the application, as the authors themselves point out, still has its shortcomings, we find it to be a very important step forward in correlating the strong universal effort in understanding Drosophila olfaction.
Collapse
Affiliation(s)
- Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany.
| | | |
Collapse
|
417
|
Bellmann D, Richardt A, Freyberger R, Nuwal N, Schwärzel M, Fiala A, Störtkuhl KF. Optogenetically Induced Olfactory Stimulation in Drosophila Larvae Reveals the Neuronal Basis of Odor-Aversion behavior. Front Behav Neurosci 2010; 4:27. [PMID: 20577637 PMCID: PMC2889724 DOI: 10.3389/fnbeh.2010.00027] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 05/05/2010] [Indexed: 12/01/2022] Open
Abstract
Olfactory stimulation induces an odor-guided crawling behavior of Drosophila melanogaster larvae characterized by either an attractive or a repellent reaction. In order to understand the underlying processes leading to these orientations we stimulated single olfactory receptor neurons (ORNs) through photo-activation within an intact neuronal network. Using the Gal4-UAS system two light inducible proteins, the light-sensitive cation channel channelrhodopsin-2 (ChR-2) or the light-sensitive adenylyl cyclase (Pacα) were expressed in all or in individual ORNs of the larval olfactory system. Blue light stimulation caused an activation of these neurons, ultimately producing the illusion of an odor stimulus. Larvae were tested in a phototaxis assay for their orientation toward or away from the light source. Here we show that activation of Pacα expressing ORNs bearing the receptors Or33b or Or45a in blind norpA mutant larvae induces a repellent behavior away from the light. Conversely, photo-activation of the majority of ORNs induces attraction towards the light. Interestingly, in wild type larvae two ligands of Or33b and Or45a, octyl acetate and propionic ethylester, respectively, have been found to cause an escape reaction. Therefore, we combined light and odor stimulation to analyze the function of Or33b and Or45a expressing ORNs. We show that the larval olfactory system contains a designated neuronal pathway for repellent odorants and that activation of a specific class of ORNs already determines olfactory avoidance behavior.
Collapse
Affiliation(s)
- Dennis Bellmann
- AG Physiology of Senses, Department of Biology, Ruhr-University Bochum Bochum, Germany
| | | | | | | | | | | | | |
Collapse
|
418
|
Affiliation(s)
- Barry W Ache
- Center for Smell and Taste, University of Florida, Gainesville, 32610, USA.
| |
Collapse
|
419
|
Generating sparse and selective third-order responses in the olfactory system of the fly. Proc Natl Acad Sci U S A 2010; 107:10713-8. [PMID: 20498080 DOI: 10.1073/pnas.1005635107] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the antennal lobe of Drosophila, information about odors is transferred from olfactory receptor neurons (ORNs) to projection neurons (PNs), which then send axons to neurons in the lateral horn of the protocerebrum (LHNs) and to Kenyon cells (KCs) in the mushroom body. The transformation from ORN to PN responses can be described by a normalization model similar to what has been used in modeling visually responsive neurons. We study the implications of this transformation for the generation of LHN and KC responses under the hypothesis that LHN responses are highly selective and therefore suitable for driving innate behaviors, whereas KCs provide a more general sparse representation of odors suitable for forming learned behavioral associations. Our results indicate that the transformation from ORN to PN firing rates in the antennal lobe equalizes the magnitudes of and decorrelates responses to different odors through feedforward nonlinearities and lateral suppression within the circuitry of the antennal lobe, and we study how these two components affect LHN and KC responses.
Collapse
|
420
|
Satoh R, Oizumi M, Kazama H, Okada M. Mechanisms of maximum information preservation in the Drosophila antennal lobe. PLoS One 2010; 5:e10644. [PMID: 20502639 PMCID: PMC2873944 DOI: 10.1371/journal.pone.0010644] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 04/26/2010] [Indexed: 12/03/2022] Open
Abstract
We examined the presence of maximum information preservation, which may be a fundamental principle of information transmission in all sensory modalities, in the Drosophila antennal lobe using an experimentally grounded network model and physiological data. Recent studies have shown a nonlinear firing rate transformation between olfactory receptor neurons (ORNs) and second-order projection neurons (PNs). As a result, PNs can use their dynamic range more uniformly than ORNs in response to a diverse set of odors. Although this firing rate transformation is thought to assist the decoder in discriminating between odors, there are no comprehensive, quantitatively supported studies examining this notion. Therefore, we quantitatively investigated the efficiency of this firing rate transformation from the viewpoint of information preservation by computing the mutual information between odor stimuli and PN responses in our network model. In the Drosophila olfactory system, all ORNs and PNs are divided into unique functional processing units called glomeruli. The nonlinear transformation between ORNs and PNs is formed by intraglomerular transformation and interglomerular interaction through local neurons (LNs). By exploring possible nonlinear transformations produced by these two factors in our network model, we found that mutual information is maximized when a weak ORN input is preferentially amplified within a glomerulus and the net LN input to each glomerulus is inhibitory. It is noteworthy that this is the very combination observed experimentally. Furthermore, the shape of the resultant nonlinear transformation is similar to that observed experimentally. These results imply that information related to odor stimuli is almost maximally preserved in the Drosophila olfactory circuit. We also discuss how intraglomerular transformation and interglomerular inhibition combine to maximize mutual information.
Collapse
Affiliation(s)
- Ryota Satoh
- The University of Tokyo, Kashiwa-shi, Chiba, Japan
| | | | - Hokto Kazama
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Masato Okada
- The University of Tokyo, Kashiwa-shi, Chiba, Japan
- RIKEN Brain Science Institute, Wako-shi, Saitama, Japan
| |
Collapse
|
421
|
Liang L, Luo L. The olfactory circuit of the fruit fly Drosophila melanogaster. SCIENCE CHINA-LIFE SCIENCES 2010; 53:472-84. [PMID: 20596914 DOI: 10.1007/s11427-010-0099-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 02/15/2010] [Indexed: 11/29/2022]
Abstract
The olfactory circuit of the fruit fly Drosophila melanogaster has emerged in recent years as an excellent paradigm for studying the principles and mechanisms of information processing in neuronal circuits. We discuss here the organizational principles of the olfactory circuit that make it an attractive model for experimental manipulations, the lessons that have been learned, and future challenges.
Collapse
Affiliation(s)
- Liang Liang
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | |
Collapse
|
422
|
Abstract
Male moths are endowed with odorant receptors (ORs) to detect species-specific sex pheromones with remarkable sensitivity and selectivity. We serendipitously discovered that an endogenous OR in the fruit fly, Drosophila melanogaster, is highly sensitive to the sex pheromone of the silkworm moth, bombykol. Intriguingly, the fruit fly detectors are more sensitive than the receptors of the silkworm moth, although its ecological significance is unknown. By expression in the "empty neuron" system, we identified the fruit fly bombykol-sensitive OR as DmelOR7a (= DmOR7a). The profiles of this receptor in response to bombykol in the native sensilla (ab4) or expressed in the empty neuron system (ab3 sensilla) are indistinguishable. Both WT and transgenic flies responded with high sensitivity, in a dose-dependent manner, and with rapid signal termination. In contrast, the same empty neuron expressing the moth bombykol receptor, BmorOR1, demonstrated low sensitivity and slow signal inactivation. When expressed in the trichoid sensilla T1 of the fruit fly, the neuron housing BmorOR1 responded with sensitivity comparable to that of the native trichoid sensilla in the silkworm moth. By challenging the native bombykol receptor in the fruit fly with high doses of another odorant to which the receptor responds with the highest sensitivity, we demonstrate that slow signal termination is induced by overdose of a stimulus. As opposed to the empty neuron system in the basiconic sensilla, the structural, biochemical, and/or biophysical features of the sensilla make the T1 trichoid system of the fly a better surrogate for the moth receptor.
Collapse
|
423
|
Chou YH, Spletter ML, Yaksi E, Leong JCS, Wilson RI, Luo L. Diversity and wiring variability of olfactory local interneurons in the Drosophila antennal lobe. Nat Neurosci 2010; 13:439-49. [PMID: 20139975 PMCID: PMC2847188 DOI: 10.1038/nn.2489] [Citation(s) in RCA: 249] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 12/22/2009] [Indexed: 12/11/2022]
Abstract
Local interneurons are essential in information processing by neural circuits. Here we present a comprehensive genetic, anatomical and electrophysiological analysis of local interneurons (LNs) in the Drosophila melanogaster antennal lobe, the first olfactory processing center in the brain. We found LNs to be diverse in their neurotransmitter profiles, connectivity and physiological properties. Analysis of >1,500 individual LNs revealed principal morphological classes characterized by coarsely stereotyped glomerular innervation patterns. Some of these morphological classes showed distinct physiological properties. However, the finer-scale connectivity of an individual LN varied considerably across brains, and there was notable physiological variability within each morphological or genetic class. Finally, LN innervation required interaction with olfactory receptor neurons during development, and some individual variability also likely reflected LN-LN interactions. Our results reveal an unexpected degree of complexity and individual variation in an invertebrate neural circuit, a result that creates challenges for solving the Drosophila connectome.
Collapse
Affiliation(s)
- Ya-Hui Chou
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA 94305
| | - Maria L. Spletter
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA 94305
| | - Emre Yaksi
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Jonathan C. S. Leong
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA 94305
| | - Rachel I. Wilson
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Liqun Luo
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA 94305
| |
Collapse
|
424
|
Unraveling the auditory system of Drosophila. Curr Opin Neurobiol 2010; 20:281-7. [PMID: 20362428 DOI: 10.1016/j.conb.2010.02.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 02/25/2010] [Accepted: 02/25/2010] [Indexed: 11/29/2022]
Abstract
Acoustic communication in flies is based on the production and perception of courtship song. Drosophila males sing to females during the courtship ritual, while females listen for the correct species-specific song parameters before deciding to mate. While we know that song is important for mating, the neural mechanisms involved in song recognition remain mysterious. However, the last few years have seen major advances in our understanding of the auditory system of Drosophila, including delineation of the neurons involved in song production, detailed characterization of the auditory receptor organ, and mapping of auditory projections into the brain. The stage is being set to tackle the auditory system of Drosophila in much the same way as has been done for its olfactory system. This review covers recent work and discusses prospects for future research on Drosophila audition.
Collapse
|
425
|
Yao CA, Carlson JR. Role of G-proteins in odor-sensing and CO2-sensing neurons in Drosophila. J Neurosci 2010; 30:4562-72. [PMID: 20357107 PMCID: PMC2858456 DOI: 10.1523/jneurosci.6357-09.2010] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 01/17/2010] [Accepted: 01/28/2010] [Indexed: 01/19/2023] Open
Abstract
A central question in insect chemoreception is whether signaling occurs via G-proteins. Two families of seven-transmembrane-domain chemoreceptors, the odor (Or) and gustatory receptor (Gr) families, have been identified in Drosophila (Clyne et al., 1999, 2000; Vosshall et al., 1999). Ors mediate odor responses, whereas two Grs, Gr21a and Gr63a, mediate CO2 response (Hallem et al., 2004; Jones et al., 2007; Kwon et al., 2007). Using single-sensillum recordings, we systematically investigate the role of Galpha proteins in vivo, initially with RNA interference constructs, competitive peptides, and constitutively active Galpha proteins. The results do not support a role for Galpha proteins in odor sensitivity. In parallel experiments, manipulations of Galpha(q), but not other Galpha proteins, affected CO2 response. Transient, conditional, and ectopic expression analyses consistently supported a role for Galpha(q) in the response of CO2-sensing neurons, but not odor-sensing neurons. Genetic mosaic analysis confirmed that odor responses are normal in the absence of Galpha(q). Ggamma30A is also required for normal CO2 response. The simplest interpretation of these results is that Galpha(q) and Ggamma30A play a role in the response of CO2-sensing neurons, but are not required for Or-mediated odor signaling.
Collapse
Affiliation(s)
- C. Andrea Yao
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut, 06520-8074, and
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, 06520-8103
| | - John R. Carlson
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, 06520-8103
| |
Collapse
|
426
|
Gomez-Marin A, Duistermars BJ, Frye MA, Louis M. Mechanisms of odor-tracking: multiple sensors for enhanced perception and behavior. Front Cell Neurosci 2010; 4:6. [PMID: 20407585 PMCID: PMC2854573 DOI: 10.3389/fncel.2010.00006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 03/10/2010] [Indexed: 11/21/2022] Open
Abstract
Early in evolution, the ability to sense and respond to changing environments must have provided a critical survival advantage to living organisms. From bacteria and worms to flies and vertebrates, sophisticated mechanisms have evolved to enhance odor detection and localization. Here, we review several modes of chemotaxis. We further consider the relevance of a striking and recurrent motif in the organization of invertebrate and vertebrate sensory systems, namely the existence of two symmetrical olfactory sensors. By combining our current knowledge about the olfactory circuits of larval and adult Drosophila, we examine the molecular and neural mechanisms underlying robust olfactory perception and extend these analyses to recent behavioral studies addressing the relevance and function of bilateral olfactory input for gradient detection. Finally, using a comparative theoretical approach based on Braitenberg's vehicles, we speculate about the relationships between anatomy, circuit architecture and stereotypical orientation behaviors.
Collapse
Affiliation(s)
- Alex Gomez-Marin
- EMBL-CRG Systems Biology Unit, Centre for Genomic Regulation, Universitat Pompeu Fabra Barcelona, Spain
| | | | | | | |
Collapse
|
427
|
Wang G, Carey AF, Carlson JR, Zwiebel LJ. Molecular basis of odor coding in the malaria vector mosquito Anopheles gambiae. Proc Natl Acad Sci U S A 2010; 107:4418-23. [PMID: 20160092 PMCID: PMC2840125 DOI: 10.1073/pnas.0913392107] [Citation(s) in RCA: 296] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A systematic functional analysis across much of the conventional Anopheles gambiae odorant receptor (AgOR) repertoire was carried out in Xenopus oocytes using two-electrode, voltage-clamp electrophysiology. The resulting data indicate that each AgOR manifests a distinct odor-response profile and tuning breadth. The large diversity of tuning responses ranges from AgORs that are responsive to a single or small number of odorants (specialists) to more broadly tuned receptors (generalists). Several AgORs were identified that respond robustly to a range of human volatiles that may play a critical role in anopheline host selection. AgOR responses were analyzed further by constructing a multidimensional odor space representing the relationships between odorants and AgOR responses. Within this space, the distance between odorants is related to both chemical class and concentration and may correlate with olfactory discrimination. This study provides a comprehensive overview of olfactory coding mechanisms of An. gambiae that ultimately may aid in fostering the design and development of olfactory-based strategies for reducing the transmission of malaria and other mosquito-borne diseases.
Collapse
Affiliation(s)
- Guirong Wang
- Departments of Biological Sciences and Pharmacology, Center for Molecular Neuroscience, Institutes of Chemical Biology and Global Health and Program in Developmental Biology, Vanderbilt University, Nashville, TN 37235; and
| | - Allison F. Carey
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520
| | - John R. Carlson
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520
| | - Laurence J. Zwiebel
- Departments of Biological Sciences and Pharmacology, Center for Molecular Neuroscience, Institutes of Chemical Biology and Global Health and Program in Developmental Biology, Vanderbilt University, Nashville, TN 37235; and
| |
Collapse
|
428
|
Guo S, Kim J. Dissecting the molecular mechanism of drosophila odorant receptors through activity modeling and comparative analysis. Proteins 2010; 78:381-99. [PMID: 19714770 DOI: 10.1002/prot.22556] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
To gain insight into the molecular mechanism of odorant receptors (ORs) in Drosophila species, we developed a Quantitative Structure Activity Relationship (QSAR) model that predicts experimentally measured electrophysiological activities between 24 D. melanogaster ORs and 108 odorants. Although the model is limited by the tested odorants,analyzing the model allowed dissection of specific topological and chemical properties necessary for an odorant to elicit excitatory or inhibitory receptor response. Linear odorants with five to eight nonhydrogen atoms at the main chain and hydrogen-bond acceptor and/or hydrogen-bond donor at its ends were found to stimulate strong excitatory response. A comparative sequence analysis of 90 ORs in 15 orthologous groups identified 15 putative specificity-determining residues (SDRs) and 15 globally conserved residues that we postulate as functionally key residues. Mapping to a model of secondary structure resulted in 14 out of 30 key residues locating to the transmembrane (TM) domains. Twelve residues, including six SDRs and six conserved residues, are located at the extracellular halves of the TM domains. Combining the evidence from the QSAR modeling and the comparative sequence analysis, we hypothesize that the Drosophila ORs accept odorants into a binding pocket located on the extracellular halves of its TM domains. The QSAR modeling suggests that the binding pocket is around 15 A in depth and about 6 A in width. Twelve mainly polar or charged key residues, both SDRs and conserved, are located in this pocket and postulated to distinguish docked odorants via primarily geometry fitting and hydrogen-bond interaction.
Collapse
Affiliation(s)
- Sheng Guo
- Genomics and Computational Biology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
429
|
Pellegrino M, Nakagawa T, Vosshall LB. Single sensillum recordings in the insects Drosophila melanogaster and Anopheles gambiae. J Vis Exp 2010:1-5. [PMID: 20164822 PMCID: PMC2830253 DOI: 10.3791/1725] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The sense of smell is essential for insects to find foods, mates, predators, and oviposition sites3. Insect olfactory sensory neurons (OSNs) are enclosed in sensory hairs called sensilla, which cover the surface of olfactory organs. The surface of each sensillum is covered with tiny pores, through which odorants pass and dissolve in a fluid called sensillum lymph, which bathes the sensory dendrites of the OSNs housed in a given sensillum. The OSN dendrites express odorant receptor (OR) proteins, which in insects function as odor-gated ion channels4, 5. The interaction of odorants with ORs either increases or decreases the basal firing rate of the OSN. This neuronal activity in the form of action potentials embodies the first representation of the quality, intensity, and temporal characteristics of the odorant6, 7. Given the easy access to these sensory hairs, it is possible to perform extracellular recordings from single OSNs by introducing a recording electrode into the sensillum lymph, while the reference electrode is placed in the lymph of the eye or body of the insect. In Drosophila, sensilla house between one and four OSNs, but each OSN typically displays a characteristic spike amplitude. Spike sorting techniques make it possible to assign spiking responses to individual OSNs. This single sensillum recording (SSR) technique monitors the difference in potential between the sensillum lymph and the reference electrode as electrical spikes that are generated by the receptor activity on OSNs1, 2, 8. Changes in the number of spikes in response to the odorant represent the cellular basis of odor coding in insects. Here, we describe the preparation method currently used in our lab to perform SSR on Drosophila melanogaster and Anopheles gambiae, and show representative traces induced by the odorants in a sensillum-specific manner.
Collapse
|
430
|
Nichols AS, Luetje CW. Transmembrane segment 3 of Drosophila melanogaster odorant receptor subunit 85b contributes to ligand-receptor interactions. J Biol Chem 2010; 285:11854-62. [PMID: 20147286 DOI: 10.1074/jbc.m109.058321] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The OR class insect odorant receptors are ligand-gated ion channels comprised of at least one common subunit (OR83b in Drosophila) and at least one putative odorant-binding subunit. However, little else is known about the molecular details of insect OR architecture. For example, nothing is known about how these receptors bind odorants, greatly limiting efforts to develop insect OR-targeted compounds for the control of insects involved in disease propagation and agricultural damage. Here we identify a portion of a Drosophila OR that is involved in odorant activation of the receptor. Using the substituted cysteine accessibility method, we identified residues 146-150 of OR85b, located at the predicted interface between transmembrane segment 3 (TMS3) and extracellular loop 2 (ECL2), as playing a role in odorant (2-heptanone) activation. We found that occupation of the receptor by the competitive antagonist 2-nonanone protected the receptor from methanethiosulfonate action at position 148, placing this region close to the odorant-binding site. In addition, mutations at positions 142 and 143 within TMS3 altered odorant sensitivity. Our results identify the involvement of the extracellular half of TMS3 in Drosophila OR85b in odorant activation of the receptor. This finding can serve as a starting point for future detailed analysis of the molecular basis for odorant recognition by insect ORs, a novel class of ligand-gated channel.
Collapse
Affiliation(s)
- Andrew S Nichols
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida 33101, USA
| | | |
Collapse
|
431
|
Olfactory signalling in vertebrates and insects: differences and commonalities. Nat Rev Neurosci 2010; 11:188-200. [DOI: 10.1038/nrn2789] [Citation(s) in RCA: 350] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
432
|
Carey AF, Wang G, Su CY, Zwiebel LJ, Carlson JR. Odorant reception in the malaria mosquito Anopheles gambiae. Nature 2010; 464:66-71. [PMID: 20130575 PMCID: PMC2833235 DOI: 10.1038/nature08834] [Citation(s) in RCA: 403] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Accepted: 01/15/2010] [Indexed: 12/02/2022]
Abstract
The mosquito Anopheles gambiae is the major vector of malaria in sub-Saharan Africa. It locates its human hosts primarily through olfaction, but little is known about the molecular basis of this process. Here we functionally characterize the Anopheles gambiae Odourant Receptor (AgOr) repertoire. We identify receptors that respond strongly to components of human odour and that may act in the process of human recognition. Some of these receptors are narrowly tuned, and some salient odourants elicit strong responses from only one or a few receptors, suggesting a central role for specific transmission channels in human host-seeking behavior. This analysis of the Anopheles gambiae receptors permits a comparison with the corresponding Drosophila melanogaster odourant receptor repertoire. We find that odourants are differentially encoded by the two species in ways consistent with their ecological needs. Our analysis of the Anopheles gambiae repertoire identifies receptors that may be useful targets for controlling the transmission of malaria.
Collapse
Affiliation(s)
- Allison F Carey
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | | | |
Collapse
|
433
|
Ionotropic and metabotropic mechanisms in chemoreception: 'chance or design'? EMBO Rep 2010; 11:173-9. [PMID: 20111052 DOI: 10.1038/embor.2010.8] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Accepted: 01/07/2010] [Indexed: 12/29/2022] Open
Abstract
Chemosensory receptors convert an enormous diversity of chemical signals from the external world into a common language of electrical activity in the brain. Mammals and insects use several families of transmembrane receptor proteins to recognize distinct classes of volatile and non-volatile chemicals that are produced by conspecifics or other environmental sources. A comparison of the signalling mechanisms of mammalian and insect receptors has revealed an unexpected functional distinction: mammals rely almost exclusively on metabotropic ligand-binding receptors, which use second messenger signalling cascades to indirectly activate ion channels, whereas insects use ionotropic receptors, which are gated directly by chemical stimuli, thereby leading to neuronal depolarization. In this review, we consider possible reasons for this dichotomy, taking into account biophysical, cell biological, ecological and evolutionary influences on how information is extracted from chemosensory cues by these animal classes.
Collapse
|
434
|
Leiss F, Groh C, Butcher NJ, Meinertzhagen IA, Tavosanis G. Synaptic organization in the adult Drosophila mushroom body calyx. J Comp Neurol 2010; 517:808-24. [PMID: 19844895 DOI: 10.1002/cne.22184] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Insect mushroom bodies are critical for olfactory associative learning. We have carried out an extensive quantitative description of the synaptic organization of the calyx of adult Drosophila melanogaster, the main olfactory input region of the mushroom body. By using high-resolution confocal microscopy, electron microscopy-based three-dimensional reconstructions, and genetic labeling of the neuronal populations contributing to the calyx, we resolved the precise connections between large cholinergic boutons of antennal lobe projection neurons and the dendrites of Kenyon cells, the mushroom body intrinsic neurons. Throughout the calyx, these elements constitute synaptic complexes called microglomeruli. By single-cell labeling, we show that each Kenyon cell's claw-like dendritic specialization is highly enriched in filamentous actin, suggesting that this might be a site of plastic reorganization. In fact, Lim kinase (LimK) overexpression in the Kenyon cells modifies the shape of the microglomeruli. Confocal and electron microscopy indicate that each Kenyon cell claw enwraps a single bouton of a projection neuron. Each bouton is contacted by a number of such claw-like specializations as well as profiles of gamma-aminobutyric acid-positive neurons. The dendrites of distinct populations of Kenyon cells involved in different types of memory are partially segregated within the calyx and contribute to different subsets of microglomeruli. Our analysis suggests, though, that projection neuron boutons can contact more than one type of Kenyon cell. These findings represent an important basis for the functional analysis of the olfactory pathway, including the formation of associative olfactory memories.
Collapse
Affiliation(s)
- Florian Leiss
- Department of Molecular Neurobiology, Max Planck Institute of Neurobiology, 82152 Munich, Germany
| | | | | | | | | |
Collapse
|
435
|
Wanner KW, Nichols AS, Allen JE, Bunger PL, Garczynski SF, Linn CE, Robertson HM, Luetje CW. Sex pheromone receptor specificity in the European corn borer moth, Ostrinia nubilalis. PLoS One 2010; 5:e8685. [PMID: 20084285 PMCID: PMC2801615 DOI: 10.1371/journal.pone.0008685] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 11/30/2009] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The European corn borer (ECB), Ostrinia nubilalis (Hubner), exists as two separate sex pheromone races. ECB(Z) females produce a 97ratio3 blend of Z11- and E11-tetradecenyl acetate whereas ECB(E) females produce an opposite 1ratio99 ratio of the Z and E isomers. Males of each race respond specifically to their conspecific female's blend. A closely related species, the Asian corn borer (ACB), O. furnacalis, uses a 3ratio2 blend of Z12- and E12-tetradecenyl acetate, and is believed to have evolved from an ECB-like ancestor. To further knowledge of the molecular mechanisms of pheromone detection and its evolution among closely related species we identified and characterized sex pheromone receptors from ECB(Z). METHODOLOGY Homology-dependent (degenerate PCR primers designed to conserved amino acid motifs) and homology-independent (pyrophosphate sequencing of antennal cDNA) approaches were used to identify candidate sex pheromone transcripts. Expression in male and female antennae was assayed by quantitative real-time PCR. Two-electrode voltage clamp electrophysiology was used to functionally characterize candidate receptors expressed in Xenopus oocytes. CONCLUSION We characterized five sex pheromone receptors, OnOrs1 and 3-6. Their transcripts were 14-100 times more abundant in male compared to female antennae. OnOr6 was highly selective for Z11-tetradecenyl acetate (EC(50) = 0.86+/-0.27 microM) and was at least three orders of magnitude less responsive to E11-tetradecenyl acetate. Surprisingly, OnOr1, 3 and 5 responded to all four pheromones tested (Z11- and E11-tetradecenyl acetate, and Z12- and E12-tetradecenyl acetate) and to Z9-tetradecenyl acetate, a behavioral antagonist. OnOr1 was selective for E12-tetradecenyl acetate based on an efficacy that was at least 5-fold greater compared to the other four components. This combination of specifically- and broadly-responsive pheromone receptors corresponds to published results of sensory neuron activity in vivo. Receptors broadly-responsive to a class of pheromone components may provide a mechanism for variation in the male moth response that enables population level shifts in pheromone blend use.
Collapse
Affiliation(s)
- Kevin W Wanner
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, Montana, USA.
| | | | | | | | | | | | | | | |
Collapse
|
436
|
Chakraborty TS, Goswami SP, Siddiqi O. Sensory correlates of imaginal conditioning in Drosophila melanogaster. J Neurogenet 2010; 23:210-9. [PMID: 19058083 DOI: 10.1080/01677060802491559] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Chemotactic responses of Drosophila to certain esters and alcohols are experience dependent. When the flies are exposed after eclosion to these chemicals, the odorants become strongly attractive. We show that behavioral conditioning is accompanied by an increase in the electrophysiological responses of single neurons in sensilla basiconica. Sensitization involves odorants that act on a common olfactory receptor. The possible mechanism of imaginal conditioning and its ecological and evolutionary significance are discussed.
Collapse
|
437
|
Schwarz D, Robertson HM, Feder JL, Varala K, Hudson ME, Ragland GJ, Hahn DA, Berlocher SH. Sympatric ecological speciation meets pyrosequencing: sampling the transcriptome of the apple maggot Rhagoletis pomonella. BMC Genomics 2009; 10:633. [PMID: 20035631 PMCID: PMC2807884 DOI: 10.1186/1471-2164-10-633] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Accepted: 12/27/2009] [Indexed: 01/09/2023] Open
Abstract
Background The full power of modern genetics has been applied to the study of speciation in only a small handful of genetic model species - all of which speciated allopatrically. Here we report the first large expressed sequence tag (EST) study of a candidate for ecological sympatric speciation, the apple maggot Rhagoletis pomonella, using massively parallel pyrosequencing on the Roche 454-FLX platform. To maximize transcript diversity we created and sequenced separate libraries from larvae, pupae, adult heads, and headless adult bodies. Results We obtained 239,531 sequences which assembled into 24,373 contigs. A total of 6810 unique protein coding genes were identified among the contigs and long singletons, corresponding to 48% of all known Drosophila melanogaster protein-coding genes. Their distribution across GO classes suggests that we have obtained a representative sample of the transcriptome. Among these sequences are many candidates for potential R. pomonella "speciation genes" (or "barrier genes") such as those controlling chemosensory and life-history timing processes. Furthermore, we identified important marker loci including more than 40,000 single nucleotide polymorphisms (SNPs) and over 100 microsatellites. An initial search for SNPs at which the apple and hawthorn host races differ suggested at least 75 loci warranting further work. We also determined that developmental expression differences remained even after normalization; transcripts expected to show different expression levels between larvae and pupae in D. melanogaster also did so in R. pomonella. Preliminary comparative analysis of transcript presences and absences revealed evidence of gene loss in Drosophila and gain in the higher dipteran clade Schizophora. Conclusions These data provide a much needed resource for exploring mechanisms of divergence in this important model for sympatric ecological speciation. Our description of ESTs from a substantial portion of the R. pomonella transcriptome will facilitate future functional studies of candidate genes for olfaction and diapause-related life history timing, and will enable large scale expression studies. Similarly, the identification of new SNP and microsatellite markers will facilitate future population and quantitative genetic studies of divergence between the apple and hawthorn-infesting host races.
Collapse
Affiliation(s)
- Dietmar Schwarz
- Department of Entomology, University of Illinois, 320 Morrill Hall, 505 S, Goodwin Ave, Urbana, Illinois 61801, USA.
| | | | | | | | | | | | | | | |
Collapse
|
438
|
Towards plant-odor-related olfactory neuroethology in Drosophila. CHEMOECOLOGY 2009; 20:51-61. [PMID: 20461131 PMCID: PMC2864897 DOI: 10.1007/s00049-009-0033-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Accepted: 11/25/2009] [Indexed: 02/01/2023]
Abstract
Drosophila melanogaster is today one of the three foremost models in olfactory research, paralleled only by the mouse and the nematode. In the last years, immense progress has been achieved by combining neurogenetic tools with neurophysiology, anatomy, chemistry, and behavioral assays. One of the most important tasks for a fruit fly is to find a substrate for eating and laying eggs. To perform this task the fly is dependent on olfactory cues emitted by suitable substrates as e.g. decaying fruit. In addition, in this area, considerable progress has been made during the last years, and more and more natural and behaviorally active ligands have been identified. The future challenge is to tie the progress in different fields together to give us a better understanding of how a fly really behaves. Not in a test tube, but in nature. Here, we review our present state of knowledge regarding Drosophila plant-odor-related olfactory neuroethology to provide a basis for new progress.
Collapse
|
439
|
Abstract
In both insect and vertebrate olfactory systems only two synapses separate the sensory periphery from brain areas required for memory formation and the organisation of behaviour. In the Drosophila olfactory system, which is anatomically very similar to its vertebrate counterpart, there has been substantial recent progress in understanding the flow of information from experiments using molecular genetic, electrophysiological and optical imaging techniques. In this review, we shall focus on how olfactory information is processed and transformed in order to extract behaviourally relevant information. We follow the progress from olfactory receptor neurons, through the first processing area, the antennal lobe, to higher olfactory centres. We address both the underlying anatomy and mechanisms that govern the transformation of neural activity. We emphasise our emerging understanding of how different elementary computations, including signal averaging, gain control, decorrelation and integration, may be mapped onto different circuit elements.
Collapse
Affiliation(s)
- Nicolas Y Masse
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | | |
Collapse
|
440
|
Chatterjee A, Roman G, Hardin PE. Go contributes to olfactory reception in Drosophila melanogaster. BMC PHYSIOLOGY 2009; 9:22. [PMID: 19943954 PMCID: PMC2789035 DOI: 10.1186/1472-6793-9-22] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 11/28/2009] [Indexed: 11/11/2022]
Abstract
Background Seven-transmembrane receptors typically mediate olfactory signal transduction by coupling to G-proteins. Although insect odorant receptors have seven transmembrane domains like G-protein coupled receptors, they have an inverted membrane topology and function as ligand-gated cation channels. Consequently, the involvement of cyclic nucleotides and G proteins in insect odor reception is controversial. Since the heterotrimeric Goα subunit is expressed in Drosophila olfactory receptor neurons, we reasoned that Go acts together with insect odorant receptor cation channels to mediate odor-induced physiological responses. Results To test whether Go dependent signaling is involved in mediating olfactory responses in Drosophila, we analyzed electroantennogram and single-sensillum recording from flies that conditionally express pertussis toxin, a specific inhibitor of Go in Drosophila. Pertussis toxin expression in olfactory receptor neurons reversibly reduced the amplitude and hastened the termination of electroantennogram responses induced by ethyl acetate. The frequency of odor-induced spike firing from individual sensory neurons was also reduced by pertussis toxin. These results demonstrate that Go signaling is involved in increasing sensitivity of olfactory physiology in Drosophila. The effect of pertussis toxin was independent of odorant identity and intensity, indicating a generalized involvement of Go in olfactory reception. Conclusion These results demonstrate that Go is required for maximal physiological responses to multiple odorants in Drosophila, and suggest that OR channel function and G-protein signaling are required for optimal physiological responses to odors.
Collapse
Affiliation(s)
- Abhishek Chatterjee
- Department of Biology and Center for Biological Clock Research, Texas A&M University, College Station, TX 77843, USA.
| | | | | |
Collapse
|
441
|
Abstract
The olfactory system of Drosophila melanogaster is one of the best characterized chemosensory systems. Identification of proteins contained in the third antennal segment, the main olfactory organ, has previously relied primarily on immunohistochemistry, and although such studies and in situ hybridization studies are informative, they focus generally on one or few gene products at a time, and quantification is difficult. In addition, purification of native proteins from the antenna is challenging because it is small and encased in a hard cuticle. Here, we describe a simple method for the large-scale detection of soluble proteins from the Drosophila antenna by chromatographic separation of tryptic peptides followed by tandem mass spectrometry with femtomole detection sensitivities. Examination of the identities of these proteins indicates that they originate both from the extracellular perilymph and from the cytoplasm of disrupted cells. We identified enzymes involved with intermediary metabolism, proteins associated with regulation of gene expression, nucleic acid metabolism and protein metabolism, proteins associated with microtubular transport, 8 odorant-binding proteins, protective enzymes associated with antibacterial defense and defense against oxidative damage, cuticular proteins, and proteins of unknown function, which represented about one-third of all soluble proteins. The procedure described here opens the way for precise quantification of any target protein in the Drosophila antenna and should be readily applicable to antennae from other insects.
Collapse
Affiliation(s)
- Robert R H Anholt
- Department of Biology, North Carolina State University, Raleigh, NC 27695-7617, USA.
| | | |
Collapse
|
442
|
Abstract
Little is known about how individual olfactory receptor neurons (ORNs) select, from among many odor receptor genes, which genes to express. Abnormal chemosensory jump 6 (Acj6) is a POU domain transcription factor essential for the specification of ORN identity and odor receptor (Or) gene expression in the Drosophila maxillary palp, one of the two adult olfactory organs. However, the mechanism by which Acj6 functions in this process has not been investigated. Here, we systematically examine the role of Acj6 in the maxillary palp and in a major subset of antennal ORNs. We define an Acj6 binding site by a reiterative in vitro selection process. The site is found upstream of Or genes regulated by Acj6, and Acj6 binds to the site in Or promoters. Mutational analysis shows that the site is essential for Or regulation in vivo. Surprisingly, a novel ORN class in acj6 adults is found to arise from ectopic expression of a larval Or gene, which is repressed in wild type via an Acj6 binding site. Thus, Acj6 acts directly in the process of receptor gene choice; it plays a dual role, positive and negative, in the logic of the process, and acts in partitioning the larval and adult receptor repertoires.
Collapse
|
443
|
Zhou S, Stone EA, Mackay TFC, Anholt RRH. Plasticity of the chemoreceptor repertoire in Drosophila melanogaster. PLoS Genet 2009; 5:e1000681. [PMID: 19816562 PMCID: PMC2750752 DOI: 10.1371/journal.pgen.1000681] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 09/10/2009] [Indexed: 11/18/2022] Open
Abstract
For most organisms, chemosensation is critical for survival and is mediated by large families of chemoreceptor proteins, whose expression must be tuned appropriately to changes in the chemical environment. We asked whether expression of chemoreceptor genes that are clustered in the genome would be regulated independently; whether expression of certain chemoreceptor genes would be especially sensitive to environmental changes; whether groups of chemoreceptor genes undergo coordinated rexpression; and how plastic the expression of chemoreceptor genes is with regard to sex, development, reproductive state, and social context. To answer these questions we used Drosophila melanogaster, because its chemosensory systems are well characterized and both the genotype and environment can be controlled precisely. Using customized cDNA microarrays, we showed that chemoreceptor genes that are clustered in the genome undergo independent transcriptional regulation at different developmental stages and between sexes. Expression of distinct subgroups of chemoreceptor genes is sensitive to reproductive state and social interactions. Furthermore, exposure of flies only to odor of the opposite sex results in altered transcript abundance of chemoreceptor genes. These genes are distinct from those that show transcriptional plasticity when flies are allowed physical contact with same or opposite sex members. We analyzed covariance in transcript abundance of chemosensory genes across all environmental conditions and found that they segregated into 20 relatively small, biologically relevant modules of highly correlated transcripts. This finely pixilated modular organization of the chemosensory subgenome enables fine tuning of the expression of the chemoreceptor repertoire in response to ecologically relevant environmental and physiological conditions. Rapid adaptation and phenotypic plasticity to the chemical environment are essential prerequisites for survival; and, consequently, large families of genes that mediate the recognition of olfactory and gustatory cues have evolved. We asked how flexible the expression of these genes is in the face of rapidly changing conditions encountered during an individual's lifetime. We used the fruit fly, Drosophila melanogaster, to address this question, since both the genetic composition and environmental rearing conditions can be controlled precisely in this experimentally amenable model organism. By measuring expression levels of all chemosensory genes simultaneously, we identified genes that show altered expression at different developmental stages, during aging, in males and females, following mating, and in different social conditions. We asked whether chemosensory genes are regulated independently or whether their regulation is structured. We found that chemosensory genes that are located in close proximity to one another on the chromosome are often regulated independently. However, statistical analysis showed that groups of chemosensory genes are coordinately expressed in response to a range of environmental conditions, revealing an underlying modular organization of the phenotypic plasticity of the chemosensory receptor repertoire.
Collapse
Affiliation(s)
- Shanshan Zhou
- Department of Biology, North Carolina State University, Raleigh, North Carolina, United States of America
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Eric A. Stone
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina, United States of America
- Department of Statistics, North Carolina State University, Raleigh, North Carolina, United States of America
- Department of Genetics, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Trudy F. C. Mackay
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina, United States of America
- Department of Genetics, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Robert R. H. Anholt
- Department of Biology, North Carolina State University, Raleigh, North Carolina, United States of America
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina, United States of America
- Department of Genetics, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
444
|
Pellegrino M, Nakagawa T. Smelling the difference: controversial ideas in insect olfaction. ACTA ACUST UNITED AC 2009; 212:1973-9. [PMID: 19525421 DOI: 10.1242/jeb.023036] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In animals, the sense of smell is often used as a powerful way to attract potential mates, to find food and to explore the environment. Different animals evolved different systems to detect volatile odorants, tuned to the specific needs of each species. Vertebrates and nematodes have been used extensively as models to study the mechanisms of olfaction: the molecular players are olfactory receptors (ORs) expressed in olfactory sensory neurons (OSNs) where they bind to volatile chemicals, acting as the first relay of olfactory processing. These receptors belong to the G protein-coupled receptor (GPCR) superfamily; binding to odorants induces the production and amplification of second messengers, which lead to the depolarization of the neuron. The anatomical features of the insect olfactory circuit are similar to those of mammals, and until recently it was thought that this similarity extended to the ORs, which were originally annotated as GPCRs. Surprisingly, recent evidence shows that insect ORs can act like ligand-gated ion channels, either completely or partially bypassing the amplification steps connected to the activation of G proteins. Although the involvement of G proteins in insect olfactory signal transduction is still under question, this new discovery raises fascinating new questions regarding the function of the sense of smell in insects, its evolution and potential benefits compared with its mammalian counterpart.
Collapse
Affiliation(s)
- Maurizio Pellegrino
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA
| | | |
Collapse
|
445
|
Birkholz DA, Chou WH, Phistry MM, Britt SG. Disruption of photoreceptor cell patterning in the Drosophila Scutoid mutant. Fly (Austin) 2009; 3:253-62. [PMID: 19949290 DOI: 10.4161/fly.10546] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cell fate determination in many systems is based upon inductive events driven by cell-cell interactions. Inductive signaling regulates many aspects of Drosophila compound eye development. Accumulating evidence suggests that the color sensitivity of the R8 photoreceptor cell within an individual ommatidium is regulated by an inductive signal from the adjacent R7 photoreceptor cell. This signal is thought to control an induced versus default cell-fate switch that coordinates the visual pigment expression and color sensitivities of adjacent R7 and R8 photoreceptor cells. Here we describe a disruption in R7 and R8 cell patterning in Scutoid mutants that is due to inappropriate signals from Rh4-expressing R7 cells inducing Rh5 expression in adjacent R8 cells. This dominant phenotype results from the misexpression of the transcriptional repressor snail, which with the co-repressor C-terminal-Binding-Protein represses rhomboid expression in the developing eye. We show that loss of rhomboid suppresses the Scutoid phenotype. However in contrast to the loss of rhomboid alone, which entirely blocks the normal inductive signal from the R7 to the R8 photoreceptor cell, Scutoid rhomboid double mutants display normal Rh5 and Rh6 expression. Our detailed analysis of this unusual dominant gain-of-function neomorphic phenotype suggests that the induction of Rh5 expression in Scutoid mutants is partially rhomboid independent.
Collapse
Affiliation(s)
- Denise A Birkholz
- Department of Cell and Developmental Biology, University of Colorado Denver, School of Medicine, Aurora, CO, USA
| | | | | | | |
Collapse
|
446
|
Abstract
Remarkable advances in our understanding of olfactory perception have been made in recent years, including the discovery of new mechanisms of olfactory signaling and new principles of olfactory processing. Here, we discuss the insight that has been gained into the receptors, cells, and circuits that underlie the sense of smell.
Collapse
Affiliation(s)
| | | | - John R. Carlson
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven 06520, USA
| |
Collapse
|
447
|
Kaissling KE. Olfactory perireceptor and receptor events in moths: a kinetic model revised. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2009; 195:895-922. [PMID: 19697043 PMCID: PMC2749182 DOI: 10.1007/s00359-009-0461-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 07/09/2009] [Accepted: 07/10/2009] [Indexed: 11/10/2022]
Abstract
Modelling reveals that within about 3 ms after entering the sensillum lymph, 17% of total pheromone is enzymatically degraded while 83% is bound to the pheromone-binding protein (PBP) and thereby largely protected from enzymatic degradation. The latter proceeds within minutes, 20,000-fold more slowly than with the free pheromone. In vivo the complex pheromone-PBP interacts with the receptor molecule. At weak stimulation the half-life of the active complex is 0.8 s due to the postulated pheromone deactivation. Most likely this process is enzymatically catalysed; it changes the PBP into a scavenger form, possibly by interference with the C-terminus. The indirectly determined PBP concentration (3.8 mM) is close to direct measurements. The calculated density of receptor molecules within the plasma membrane of the receptor neuron reaches up to 6,000 units per mum(2). This is compared with the estimated densities of the sensory-neuron membrane protein and of ion channels. The EC(50) of the model pheromone-PBP complex interacting with the receptor molecules is 6.8 muM, as compared with the EC(50) = 1.5 muM of bombykol recently determined using heterologous expression. A possible mechanism widening the range of stimulus intensities covered by the dose-response curve of the receptor-potential is proposed.
Collapse
Affiliation(s)
- Karl-Ernst Kaissling
- Max-Planck-Institut fuer Verhaltensphysiologie/Ornithologie, Seewiesen, 82319, Starnberg, Germany.
| |
Collapse
|
448
|
Abstract
The olfactory system directly interfaces with the environment, and thus changes in the environment or an animal's habits would presumably also lead to changes in the olfactory system. Comparative studies on specialized animals with known generalist ancestors could hence be a way of revealing general processes shaping olfactory systems as well as highlighting the importance and function of specific chemosensory genes. Drosophila sechellia, a close relative of D. melanogaster, and highly specialized towards the use of the toxic Morinda fruit, has been the subject of several studies aimed at pinpointing the consequences of host choice to the chemosensory system, from the molecular level to behavior. This paper highlights some recent (and not so recent) advances in this area and concludes with a brief discussion on the antiquity of the D. sechellia-Morinda connection.
Collapse
Affiliation(s)
- Marcus C Stensmyr
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany.
| |
Collapse
|
449
|
Abstract
Olfaction is a critical sensory modality that allows living things to acquire chemical information from the external world. The olfactory system processes two major classes of stimuli: (a) general odorants, small molecules derived from food or the environment that signal the presence of food, fire, or predators, and (b) pheromones, molecules released from individuals of the same species that convey social or sexual cues. Chemosensory receptors are broadly classified, by the ligands that activate them, into odorant or pheromone receptors. Peripheral sensory neurons expressing either odorant or pheromone receptors send signals to separate odor- and pheromone-processing centers in the brain to elicit distinct behavioral and neuroendocrinological outputs. General odorants activate receptors in a combinatorial fashion, whereas pheromones activate narrowly tuned receptors that activate sexually dimorphic neural circuits in the brain. We review recent progress on chemosensory receptor structure, function, and circuitry in vertebrates and invertebrates from the point of view of the molecular biology and physiology of these sensory systems.
Collapse
Affiliation(s)
- Kazushige Touhara
- Department of Integrated Biosciences, The University of Tokyo, Chiba, 277-8562 Japan.
| | | |
Collapse
|
450
|
Characterization of an enantioselective odorant receptor in the yellow fever mosquito Aedes aegypti. PLoS One 2009; 4:e7032. [PMID: 19753115 PMCID: PMC2737144 DOI: 10.1371/journal.pone.0007032] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 08/17/2009] [Indexed: 11/19/2022] Open
Abstract
Enantiomers differ only in the left or right handedness (chirality) of their orientations and exhibit identical chemical and physical properties. In chemical communication systems, enantiomers can be differentially active at the physiological and behavioral levels. Only recently were enantioselective odorant receptors demonstrated in mammals while their existence in insects has remained hypothetical. Using the two-microelectrode voltage clamp of Xenopus oocytes, we show that the yellow fever mosquito, Aedes aegypti, odorant receptor 8 (AaOR8) acts as a chiral selective receptor for the (R)-(-)-enantiomer of 1-octen-3-ol, which in the presence of other kairomones is an attractant used by blood-sucking insects to locate their hosts. In addition to steric constraints, chain length and degree of unsaturation play important roles in this recognition process. This is the first characterization of an enantioselective odorant receptor in insects and the results demonstrate that an OR alone, without helper proteins, can account for chiral specificity exhibited by olfactory sensory neurons (OSNs).
Collapse
|