401
|
Cockcroft S, Garner K. Potential role for phosphatidylinositol transfer protein (PITP) family in lipid transfer during phospholipase C signalling. Adv Biol Regul 2013; 53:280-291. [PMID: 23916246 DOI: 10.1016/j.jbior.2013.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 07/11/2013] [Accepted: 07/12/2013] [Indexed: 06/02/2023]
Abstract
The hallmark of mammalian phosphatidylinositol transfer proteins (PITPs) is to transfer phosphatidylinositol between membrane compartments. In the mammalian genome, there are three genes that code for soluble PITP proteins, PITPα, PITPβ and RdgBβ and two genes that code for membrane-associated multi-domain proteins (RdgBαI and II) containing a PITP domain. PITPα and PITPβ constitute Class I PITPs whilst the RdgB proteins constitute Class II proteins based on sequence analysis. The PITP domain of both Class I and II can sequester one molecule of phosphatidylinositol (PI) in its hydrophobic cavity. Therefore, in principle, PITPs are therefore ideally poised to couple phosphatidylinositol delivery to the PI kinases for substrate provision for phospholipases C during cell activation. Since phosphatidylinositol (4,5)bisphosphate plays critical roles in cells, particularly at the plasma membrane, where it is a substrate for both phospholipase C and phosphoinositide-3-kinases as well as required as an intact lipid to regulate ion channels and the actin cytoskeleton, homeostatic mechanisms to maintain phosphatidylinositol(4,5)bisphosphate levels are vital. To maintain phosphatidylinositol levels, phospholipase C activation inevitably leads to the resynthesis of PI at the endoplasmic reticulum where the enzymes are located. Phosphatidic acid generated at the plasma membrane during phospholipase C activation needs to move to the ER for conversion to PI and here we provide evidence that Class II PITPs are also able to bind and transport phosphatidic acid. Thus RdgB proteins could couple PA and PI transport bidirectionally during phospholipase C signalling.
Collapse
Affiliation(s)
- Shamshad Cockcroft
- Dept. of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London WC1E 6JJ, UK.
| | | |
Collapse
|
402
|
Abstract
Junctions that connect the endoplasmic reticulum (ER) and the plasma membrane (PM) are unique yet ubiquitous subcellular compartments. Giordano et al. now report that extended synaptotagmins (E-Syts) promote their formation, providing fundamental insight into the molecular machinery controlling ER and plasma membrane crosstalk.
Collapse
Affiliation(s)
- Seth Malmersjö
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
403
|
Giordano F, Saheki Y, Idevall-Hagren O, Colombo SF, Pirruccello M, Milosevic I, Gracheva EO, Bagriantsev SN, Borgese N, De Camilli P. PI(4,5)P(2)-dependent and Ca(2+)-regulated ER-PM interactions mediated by the extended synaptotagmins. Cell 2013; 153:1494-509. [PMID: 23791178 DOI: 10.1016/j.cell.2013.05.026] [Citation(s) in RCA: 449] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 04/24/2013] [Accepted: 05/10/2013] [Indexed: 12/28/2022]
Abstract
Most available information on endoplasmic reticulum (ER)-plasma membrane (PM) contacts in cells of higher eukaryotes concerns proteins implicated in the regulation of Ca(2+) entry. However, growing evidence suggests that such contacts play more general roles in cell physiology, pointing to the existence of additionally ubiquitously expressed ER-PM tethers. Here, we show that the three extended synaptotagmins (E-Syts) are ER proteins that participate in such tethering function via C2 domain-dependent interactions with the PM that require PI(4,5)P2 in the case of E-Syt2 and E-Syt3 and also elevation of cytosolic Ca(2+) in the case of E-Syt1. As they form heteromeric complexes, the E-Syts confer cytosolic Ca(2+) regulation to ER-PM contact formation. E-Syts-dependent contacts, however, are not required for store-operated Ca(2+) entry. Thus, the ER-PM tethering function of the E-Syts (tricalbins in yeast) mediates the formation of ER-PM contacts sites, which are functionally distinct from those mediated by STIM1 and Orai1.
Collapse
Affiliation(s)
- Francesca Giordano
- Department of Cell Biology, Program in Cellular Neuroscience, Neurodegeneration, and Repair, and Howard Hughes Medical Institute, Yale School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
404
|
Jin X, Shah S, Liu Y, Zhang H, Lees M, Fu Z, Lippiat JD, Beech DJ, Sivaprasadarao A, Baldwin SA, Zhang H, Gamper N. Activation of the Cl- channel ANO1 by localized calcium signals in nociceptive sensory neurons requires coupling with the IP3 receptor. Sci Signal 2013; 6:ra73. [PMID: 23982204 DOI: 10.1126/scisignal.2004184] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We report that anoctamin 1 (ANO1; also known as TMEM16A) Ca(2+)-activated Cl(-) channels in small neurons from dorsal root ganglia are preferentially activated by particular pools of intracellular Ca(2+). These ANO1 channels can be selectively activated by the G protein-coupled receptor (GPCR)-induced release of Ca(2+) from intracellular stores but not by Ca(2+) influx through voltage-gated Ca(2+) channels. This ability to discriminate between Ca(2+) pools was achieved by the tethering of ANO1-containing plasma membrane domains, which also contained GPCRs such as bradykinin receptor 2 and protease-activated receptor 2, to juxtamembrane regions of the endoplasmic reticulum. Interaction of the carboxyl terminus and the first intracellular loop of ANO1 with IP3R1 (inositol 1,4,5-trisphosphate receptor 1) contributed to the tethering. Disruption of membrane microdomains blocked the ANO1 and IP3R1 interaction and resulted in the loss of coupling between GPCR signaling and ANO1. The junctional signaling complex enabled ANO1-mediated excitation in response to specific Ca(2+)signals rather than to global changes in intracellular Ca(2+).
Collapse
Affiliation(s)
- Xin Jin
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
405
|
Protrudin binds atlastins and endoplasmic reticulum-shaping proteins and regulates network formation. Proc Natl Acad Sci U S A 2013; 110:14954-9. [PMID: 23969831 DOI: 10.1073/pnas.1307391110] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Hereditary spastic paraplegias are inherited neurological disorders characterized by progressive lower-limb spasticity and weakness. Although more than 50 genetic loci are known [spastic gait (SPG)1 to -57], over half of hereditary spastic paraplegia cases are caused by pathogenic mutations in four genes encoding proteins that function in tubular endoplasmic reticulum (ER) network formation: atlastin-1 (SPG3A), spastin (SPG4), reticulon 2 (SPG12), and receptor expression-enhancing protein 1 (SPG31). Here, we show that the SPG33 protein protrudin contains hydrophobic, intramembrane hairpin domains, interacts with tubular ER proteins, and functions in ER morphogenesis by regulating the sheet-to-tubule balance and possibly the density of tubule interconnections. Protrudin also interacts with KIF5 and harbors a Rab-binding domain, a noncanonical FYVE (Fab-1, YGL023, Vps27, and EEA1) domain, and a two phenylalanines in an acidic tract (FFAT) domain and, thus, may also function in the distribution of ER tubules via ER contacts with the plasma membrane or other organelles.
Collapse
|
406
|
Li X, Ferro-Novick S, Novick P. Different polarisome components play distinct roles in Slt2p-regulated cortical ER inheritance in Saccharomyces cerevisiae. Mol Biol Cell 2013; 24:3145-54. [PMID: 23924898 PMCID: PMC3784387 DOI: 10.1091/mbc.e13-05-0268] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Slt2p kinase activity controls cortical ER inheritance by regulating the association of the ER with the actin-based cytoskeleton. The polarisome complex affects ER inheritance through its effects on Slt2p, with different components playing distinct roles: some are required for Slt2p retention at the bud tip, whereas others affect Slt2p activation. Ptc1p, a type 2C protein phosphatase, is required for a late step in cortical endoplasmic reticulum (cER) inheritance in Saccharomyces cerevisiae. In ptc1Δ cells, ER tubules migrate from the mother cell and contact the bud tip, yet fail to spread around the bud cortex. This defect results from the failure to inactivate a bud tip–associated pool of the cell wall integrity mitogen-activated protein kinase, Slt2p. Here we report that the polarisome complex affects cER inheritance through its effects on Slt2p, with different components playing distinct roles: Spa2p and Pea2p are required for Slt2p retention at the bud tip, whereas Bni1p, Bud6p, and Sph1p affect the level of Slt2p activation. Depolymerization of actin relieves the ptc1Δ cER inheritance defect, suggesting that in this mutant the ER becomes trapped on the cytoskeleton. Loss of Sec3p also blocks ER inheritance, and, as in ptc1Δ cells, this block is accompanied by activation of Slt2p and is reversed by depolymerization of actin. Our results point to a common mechanism for the regulation of ER inheritance in which Slt2p activity at the bud tip controls the association of the ER with the actin-based cytoskeleton.
Collapse
Affiliation(s)
- Xia Li
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0644 Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093-0644
| | | | | |
Collapse
|
407
|
Interorganellar membrane microdomains: dynamic platforms in the control of calcium signaling and apoptosis. Cells 2013; 2:574-90. [PMID: 24709798 PMCID: PMC3972666 DOI: 10.3390/cells2030574] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 07/23/2013] [Accepted: 07/26/2013] [Indexed: 11/16/2022] Open
Abstract
The dynamic interplay among intracellular organelles occurs at specific membrane tethering sites, where two organellar membranes come in close apposition but do not fuse. Such membrane microdomains allow for rapid and efficient interorganelle communication that contributes to the maintenance of cell physiology. Pathological conditions that interfere with the proper composition, number, and physical vicinity of the apposing membranes initiate a cascade of events resulting in cell death. Membrane contact sites have now been identified that tether the extensive network of the endoplasmic reticulum (ER) membranes with the mitochondria, the plasma membrane (PM), the Golgi and the endosomes/lysosomes. Thus far, the most extensively studied are the MAMs, or mitochondria associated ER membranes, and the ER-PM junctions that share functional properties and crosstalk to one another. Specific molecular components that define these microdomains have been shown to promote the interaction in trans between these intracellular compartments and the transfer or exchange of Ca2+ ions, lipids, and metabolic signaling molecules that determine the fate of the cell.
Collapse
|
408
|
Abstract
The endoplasmic reticulum (ER) Ca(2+) sensor STIM1 recruits and activates the plasma membrane (PM) Ca(2+) channel Orai1 at ER-PM junctions for store-operated Ca(2+) entry (SOCE). Reporting in Nature, Sharma et al. (2013) showed that septins are necessary for Orai1 recruitment and SOCE, implicating these scaffolding proteins in signaling at ER-PM junctions.
Collapse
Affiliation(s)
- Jen Liou
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | | |
Collapse
|
409
|
Abstract
Phosphoinositides (PIs) make up only a small fraction of cellular phospholipids, yet they control almost all aspects of a cell's life and death. These lipids gained tremendous research interest as plasma membrane signaling molecules when discovered in the 1970s and 1980s. Research in the last 15 years has added a wide range of biological processes regulated by PIs, turning these lipids into one of the most universal signaling entities in eukaryotic cells. PIs control organelle biology by regulating vesicular trafficking, but they also modulate lipid distribution and metabolism via their close relationship with lipid transfer proteins. PIs regulate ion channels, pumps, and transporters and control both endocytic and exocytic processes. The nuclear phosphoinositides have grown from being an epiphenomenon to a research area of its own. As expected from such pleiotropic regulators, derangements of phosphoinositide metabolism are responsible for a number of human diseases ranging from rare genetic disorders to the most common ones such as cancer, obesity, and diabetes. Moreover, it is increasingly evident that a number of infectious agents hijack the PI regulatory systems of host cells for their intracellular movements, replication, and assembly. As a result, PI converting enzymes began to be noticed by pharmaceutical companies as potential therapeutic targets. This review is an attempt to give an overview of this enormous research field focusing on major developments in diverse areas of basic science linked to cellular physiology and disease.
Collapse
Affiliation(s)
- Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
410
|
Kuijpers M, van Dis V, Haasdijk ED, Harterink M, Vocking K, Post JA, Scheper W, Hoogenraad CC, Jaarsma D. Amyotrophic lateral sclerosis (ALS)-associated VAPB-P56S inclusions represent an ER quality control compartment. Acta Neuropathol Commun 2013; 1:24. [PMID: 24252306 PMCID: PMC3893532 DOI: 10.1186/2051-5960-1-24] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 06/01/2013] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Protein aggregation and the formation of intracellular inclusions are a central feature of many neurodegenerative disorders, but precise knowledge about their pathogenic role is lacking in most instances. Here we have characterized inclusions formed in transgenic mice carrying the P56S mutant form of VAPB that causes various motor neuron syndromes including ALS8. RESULTS Inclusions in motor neurons of VAPB-P56S transgenic mice are characterized by the presence of smooth ER-like tubular profiles, and are immunoreactive for factors that operate in the ER associated degradation (ERAD) pathway, including p97/VCP, Derlin-1, and the ER membrane chaperone BAP31. The presence of these inclusions does not correlate with signs of axonal and neuronal degeneration, and axotomy leads to their gradual disappearance, indicating that they represent reversible structures. Inhibition of the proteasome and knockdown of the ER membrane chaperone BAP31 increased the size of mutant VAPB inclusions in primary neuron cultures, while knockdown of TEB4, an ERAD ubiquitin-protein ligase, reduced their size. Mutant VAPB did not codistribute with mutant forms of seipin that are associated with an autosomal dominant motor neuron disease, and accumulate in a protective ER derived compartment termed ERPO (ER protective organelle) in neurons. CONCLUSIONS The data indicate that the VAPB-P56S inclusions represent a novel reversible ER quality control compartment that is formed when the amount of mutant VAPB exceeds the capacity of the ERAD pathway and that isolates misfolded and aggregated VAPB from the rest of the ER. The presence of this quality control compartment reveals an additional level of flexibility of neurons to cope with misfolded protein stress in the ER.
Collapse
|
411
|
Kim YJ, Hernandez MLG, Balla T. Inositol lipid regulation of lipid transfer in specialized membrane domains. Trends Cell Biol 2013; 23:270-8. [PMID: 23489878 PMCID: PMC3665726 DOI: 10.1016/j.tcb.2013.01.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 01/22/2013] [Accepted: 01/31/2013] [Indexed: 11/22/2022]
Abstract
The highly dynamic membranous network of eukaryotic cells allows spatial organization of biochemical reactions to suit the complex metabolic needs of the cell. The unique lipid composition of organelle membranes in the face of dynamic membrane activities assumes that lipid gradients are constantly generated and maintained. Important advances have been made in identifying specialized membrane compartments and lipid transfer mechanisms that are critical for generating and maintaining lipid gradients. Remarkably, one class of minor phospholipids--the phosphoinositides--is emerging as important regulators of these processes. Here, we summarize several lines of research that have led to our current understanding of the connection between phosphoinositides and the transport of structural lipids and offer some thoughts on general principles possibly governing these processes.
Collapse
Affiliation(s)
- Yeun Ju Kim
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Maria-Luisa Guzman Hernandez
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
412
|
Lagace TA, Ridgway ND. The role of phospholipids in the biological activity and structure of the endoplasmic reticulum. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2499-510. [PMID: 23711956 DOI: 10.1016/j.bbamcr.2013.05.018] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 05/09/2013] [Accepted: 05/15/2013] [Indexed: 01/22/2023]
Abstract
The endoplasmic reticulum (ER) is an interconnected network of tubular and planar membranes that supports the synthesis and export of proteins, carbohydrates and lipids. Phospholipids, in particular phosphatidylcholine (PC), are synthesized in the ER where they have essential functions including provision of membranes required for protein synthesis and export, cholesterol homeostasis, and triacylglycerol storage and secretion. Coordination of these biological processes is essential, as highlighted by findings that link phospholipid metabolism in the ER with perturbations in lipid storage/secretion and stress responses, ultimately contributing to obesity/diabetes, atherosclerosis and neurological disorders. Phospholipid synthesis is not uniformly distributed in the ER but is localized at membrane interfaces or contact zones with other organelles, and in dynamic, proliferating ER membranes. The topology of phospholipid synthesis is an important consideration when establishing the etiology of diseases that arise from ER dysfunction. This review will highlight our current understanding of the contribution of phospholipid synthesis to proper ER function, and how alterations contribute to aberrant stress responses and disease. This article is part of a Special Issue entitled: Functional and structural diversity of endoplasmic reticulum.
Collapse
Affiliation(s)
- Thomas A Lagace
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada.
| | | |
Collapse
|
413
|
Miller VJ, Stephens DJ. Membrane contact sites--an interesting species, an interesting mix. EMBO Rep 2013; 14:396-7. [PMID: 23559068 DOI: 10.1038/embor.2013.43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
414
|
Plasma membrane--endoplasmic reticulum contact sites regulate phosphatidylcholine synthesis. EMBO Rep 2013; 14:434-40. [PMID: 23519169 DOI: 10.1038/embor.2013.36] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 02/08/2013] [Accepted: 03/01/2013] [Indexed: 11/08/2022] Open
Abstract
Synthesis of phospholipids, sterols and sphingolipids is thought to occur at contact sites between the endoplasmic reticulum (ER) and other organelles because many lipid-synthesizing enzymes are enriched in these contacts. In only a few cases have the enzymes been localized to contacts in vivo and in no instances have the contacts been demonstrated to be required for enzyme function. Here, we show that plasma membrane (PM)--ER contact sites in yeast are required for phosphatidylcholine synthesis and regulate the activity of the phosphatidylethanolamine N-methyltransferase enzyme, Opi3. Opi3 activity requires Osh3, which localizes to PM-ER contacts where it might facilitate in trans catalysis by Opi3. Thus, membrane contact sites provide a structural mechanism to regulate lipid synthesis.
Collapse
|
415
|
Stefan CJ, Manford AG, Emr SD. ER-PM connections: sites of information transfer and inter-organelle communication. Curr Opin Cell Biol 2013; 25:434-42. [PMID: 23522446 DOI: 10.1016/j.ceb.2013.02.020] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 02/25/2013] [Accepted: 02/28/2013] [Indexed: 11/18/2022]
Abstract
Eukaryotic cells are divided into distinct membrane-bound organelles with unique identities and specialized metabolic functions. Communication between organelles must take place to regulate the size, shape, and composition of individual organelles, as well as to coordinate transport between organelles. The endoplasmic reticulum (ER) forms an expansive membrane network that contacts and participates in crosstalk with several other organelles in the cell, most notably the plasma membrane (PM). ER-PM junctions have well-established functions in the movement of small molecules, such as lipids and ions, between the ER and PM. Recent discoveries have revealed additional exciting roles for ER-PM junctions in the regulation of cell signaling, ER shape and architecture, and PM domain organization.
Collapse
Affiliation(s)
- Christopher J Stefan
- Weill Institute for Cell & Molecular Biology, Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY 14853, United States.
| | | | | |
Collapse
|
416
|
Forrest S, Chai A, Sanhueza M, Marescotti M, Parry K, Georgiev A, Sahota V, Mendez-Castro R, Pennetta G. Increased levels of phosphoinositides cause neurodegeneration in a Drosophila model of amyotrophic lateral sclerosis. Hum Mol Genet 2013; 22:2689-704. [PMID: 23492670 PMCID: PMC3674808 DOI: 10.1093/hmg/ddt118] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Vesicle-associated membrane protein (VAMP)-Associated Protein B (VAPB) is the causative gene of amyotrophic lateral sclerosis 8 (ALS8) in humans. Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by selective death of motor neurons leading to spasticity, muscle atrophy and paralysis. VAP proteins have been implicated in various cellular processes, including intercellular signalling, synaptic remodelling, lipid transport and membrane trafficking and yet, the molecular mechanisms underlying ALS8 pathogenesis remain poorly understood. We identified the conserved phosphoinositide phosphatase Sac1 as a Drosophila VAP (DVAP)-binding partner and showed that DVAP is required to maintain normal levels of phosphoinositides. Downregulating either Sac1 or DVAP disrupts axonal transport, synaptic growth, synaptic microtubule integrity and the localization of several postsynaptic components. Expression of the disease-causing allele (DVAP-P58S) in a fly model for ALS8 induces neurodegeneration, elicits synaptic defects similar to those of DVAP or Sac1 downregulation and increases phosphoinositide levels. Consistent with a role for Sac1-mediated increase of phosphoinositide levels in ALS8 pathogenesis, we found that Sac1 downregulation induces neurodegeneration in a dosage-dependent manner. In addition, we report that Sac1 is sequestered into the DVAP-P58S-induced aggregates and that reducing phosphoinositide levels rescues the neurodegeneration and suppresses the synaptic phenotypes associated with DVAP-P58S transgenic expression. These data underscore the importance of DVAP–Sac1 interaction in controlling phosphoinositide metabolism and provide mechanistic evidence for a crucial role of phosphoinositide levels in VAP-induced ALS.
Collapse
Affiliation(s)
- Stuart Forrest
- Center for Integrative Physiology and Euan MacDonald Center for Motor Neuron Disease Research, School of Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
417
|
|