401
|
Suppression of allograft rejection by Tim-1-Fc through cross-linking with a novel Tim-1 binding partner on T cells. PLoS One 2011; 6:e21697. [PMID: 21750723 PMCID: PMC3130052 DOI: 10.1371/journal.pone.0021697] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 06/08/2011] [Indexed: 12/14/2022] Open
Abstract
Engagement of T-cell immunoglobulin mucin (Tim)-1 on T cells with its ligand, Tim-4, on antigen presenting cells delivers positive costimulatory signals to T cells. However, the molecular mechanisms for Tim-1-mediated regulation of T-cell activation and differentiation are relatively poorly understood. Here we investigated the role of Tim-1 in T-cell responses and allograft rejection using recombinant human Tim-1 extracellular domain and IgG1-Fc fusion proteins (Tim-1-Fc). In vitro assays confirmed that Tim-1-Fc selectively binds to CD4+ effector T cells, but not dendritic cells or natural regulatory T cells (nTregs). Tim-1-Fc was able to inhibit the responses of purified CD4+ T cells that do not express Tim-4 to stimulation by anti-CD3/CD28 mAbs, and this inhibition was associated with reduced AKT and ERK1/2 phosphorylation, but it had no influence on nTregs. Moreover, Tim-1-Fc inhibited the proliferation of CD4+ T cells stimulated by allogeneic dendritic cells. Treatment of recipient mice with Tim-1-Fc significantly prolonged cardiac allograft survival in a fully MHC-mismatched strain combination, which was associated with impaired Th1 response and preserved Th2 and nTregs function. Importantly, the frequency of Foxp3+ cells in splenic CD4+ T cells was increased, thus shifting the balance toward regulators, even though Tim-1-Fc did not induce Foxp3 expression in CD4+CD25− T cells directly. These results indicate that Tim-1-Fc can inhibit T-cell responses through an unknown Tim-1 binding partner on T cells, and it is a promising immunosuppressive agent for preventing allograft rejection.
Collapse
|
402
|
Hoves S, Sutton VR, Haynes NM, Hawkins ED, Fernández Ruiz D, Baschuk N, Sedelies KA, Schnurr M, Stagg J, Andrews DM, Villadangos JA, Trapani JA. A critical role for granzymes in antigen cross-presentation through regulating phagocytosis of killed tumor cells. THE JOURNAL OF IMMUNOLOGY 2011; 187:1166-75. [PMID: 21709155 DOI: 10.4049/jimmunol.1001670] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Granzymes A and B (GrAB) are known principally for their role in mediating perforin-dependent death of virus-infected or malignant cells targeted by CTL. In this study, we show that granzymes also play a critical role as inducers of Ag cross-presentation by dendritic cells (DC). This was demonstrated by the markedly reduced priming of naive CD8(+) T cells specific for the model Ag OVA both in vitro and in vivo in response to tumor cells killed in the absence of granzymes. Reduced cross-priming was due to impairment of phagocytosis of tumor cell corpses by CD8α(+) DC but not CD8α(-) DC, demonstrating the importance of granzymes in inducing the exposure of prophagocytic "eat-me" signals on the dying target cell. Our data reveal a critical and previously unsuspected role for granzymes A and B in dictating immunogenicity by influencing the mode of tumor cell death and indicate that granzymes contribute to the efficient generation of immune effector pathways in addition to their well-known role in apoptosis induction.
Collapse
Affiliation(s)
- Sabine Hoves
- Cancer Cell Death Laboratory, Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3002, Victoria, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
403
|
Sakuishi K, Jayaraman P, Behar SM, Anderson AC, Kuchroo VK. Emerging Tim-3 functions in antimicrobial and tumor immunity. Trends Immunol 2011; 32:345-9. [PMID: 21697013 DOI: 10.1016/j.it.2011.05.003] [Citation(s) in RCA: 189] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 05/11/2011] [Accepted: 05/12/2011] [Indexed: 01/09/2023]
Abstract
T cell immunoglobulin-3 (Tim-3) has been identified as a marker of differentiated interferon-γ-producing CD4(+) T helper type 1 and CD8(+) T cytotoxic type 1 cells. The interaction of Tim-3 with its ligand, galectin-9 (Gal-9), induces cell death, and in vivo blockade of this interaction results in exacerbated autoimmunity and abrogation of tolerance in experimental models, establishing Tim-3 as a negative regulatory molecule. Recent studies have uncovered additional mechanisms by which Tim-3 negatively regulates T cell responses, such as promoting the development of CD8(+) T cell exhaustion and inducing expansion of myeloid-derived suppressor cells. In contrast to this inhibitory effect on T cells, Tim-3-Gal-9 interaction promotes macrophage clearance of intracellular pathogens. Here, we focus on the emerging role for Tim-3 in tumor and antimicrobial immunity.
Collapse
Affiliation(s)
- Kaori Sakuishi
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
404
|
Sakuishi K, Jayaraman P, Behar SM, Anderson AC, Kuchroo VK. Emerging Tim-3 functions in antimicrobial and tumor immunity. Trends Immunol 2011. [PMID: 21697013 DOI: 10.10 16/j.it.2011.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
T cell immunoglobulin-3 (Tim-3) has been identified as a marker of differentiated interferon-γ-producing CD4(+) T helper type 1 and CD8(+) T cytotoxic type 1 cells. The interaction of Tim-3 with its ligand, galectin-9 (Gal-9), induces cell death, and in vivo blockade of this interaction results in exacerbated autoimmunity and abrogation of tolerance in experimental models, establishing Tim-3 as a negative regulatory molecule. Recent studies have uncovered additional mechanisms by which Tim-3 negatively regulates T cell responses, such as promoting the development of CD8(+) T cell exhaustion and inducing expansion of myeloid-derived suppressor cells. In contrast to this inhibitory effect on T cells, Tim-3-Gal-9 interaction promotes macrophage clearance of intracellular pathogens. Here, we focus on the emerging role for Tim-3 in tumor and antimicrobial immunity.
Collapse
Affiliation(s)
- Kaori Sakuishi
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
405
|
Doffek K, Chen X, Sugg SL, Shilyansky J. Phosphatidylserine inhibits NFκB and p38 MAPK activation in human monocyte derived dendritic cells. Mol Immunol 2011; 48:1771-7. [PMID: 21628073 DOI: 10.1016/j.molimm.2011.04.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 04/05/2011] [Accepted: 04/25/2011] [Indexed: 01/01/2023]
Abstract
Phosphatidylserine (PS) is an anionic phospholipid restricted to the inner surface of the plasma membrane. PS translocates to the cell surface during early apoptosis where it serves as a marker for rapid uptake by phagocytes. PS is also thought to regulate immune responses. Dendritic cells (DC) are the most potent antigen presenting cells. Previous studies demonstrated that PS inhibits the expression of MHC and co-stimulatory molecules, the secretion of IL-12p70, and the ability to activate T cells by human monocyte derived DCs. However, the cell signaling mechanisms by which PS regulated DCs are not well described. In the current study we tested the effects of PS on signal transduction pathways thought to regulate human myeloid DC maturation and IL-12p70 production. We showed that PS inhibited the activation of nuclear factor-κB (NFκB) in response to LPS by preventing IκBα phosphorylation and degradation. PS also increased the total IκBα levels in immature DCs and inhibited p38 mitogen activated protein kinase (MAPK) phosphorylation and activation. The findings suggest a possible mechanism for regulating the immunostimulatory function of DCs by PS.
Collapse
Affiliation(s)
- Kara Doffek
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | | | | | | |
Collapse
|
406
|
Xiao S, Zhu B, Jin H, Zhu C, Umetsu DT, DeKruyff RH, Kuchroo VK. Tim-1 stimulation of dendritic cells regulates the balance between effector and regulatory T cells. Eur J Immunol 2011; 41:1539-49. [PMID: 21469101 DOI: 10.1002/eji.201040993] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 01/17/2011] [Accepted: 03/11/2011] [Indexed: 12/25/2022]
Abstract
We show that the T-cell immunoglobalin mucin, Tim-1, initially reported to be expressed on CD4(+) T cells, is constitutively expressed on dendritic cells (DCs) and that its expression further increases after DC maturation. Tim-1 signaling into DCs upregulates costimulatory molecule expression and proinflammatory cytokine production, thereby promoting effector T-cell responses, while inhibiting Foxp3(+) Treg responses. By contrast, Tim-1 signaling in T cells only regulates Th2 responses. Using a high-avidity/agonistic anti-Tim-1 antibody as a co-adjuvant enhances the immunogenic function of DCs, decreases the suppressive function of Tregs, and substantially increases proinflammatory Th17 responses in vivo. The treatment with high- but not low-avidity anti-Tim-1 not only worsens experimental autoimmune encephalomyelitis (EAE) in susceptible mice but also breaks tolerance and induces EAE in a genetically resistant strain of mice. These findings indicate that Tim-1 has an important role in regulating DC function and thus shifts the balance between effector and regulatory T cells towards an enhanced immune response. By understanding the mechanisms by which Tim-1 regulates DC and T-cell responses, we may clarify the potential utility of Tim-1 as a target of therapy against autoimmunity, cancer, and infectious diseases.
Collapse
Affiliation(s)
- Sheng Xiao
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
407
|
Huang X, Ye D, Thorpe PE. Enhancing the potency of a whole-cell breast cancer vaccine in mice with an antibody-IL-2 immunocytokine that targets exposed phosphatidylserine. Vaccine 2011; 29:4785-93. [PMID: 21557977 DOI: 10.1016/j.vaccine.2011.04.082] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 04/20/2011] [Accepted: 04/21/2011] [Indexed: 01/22/2023]
Abstract
Phosphatidylserine (PS), an anionic phospholipid normally restricted to the inner leaflet of the plasma membrane, is immunosuppressive when externalized on the outside of cell membranes. Exposed PS inhibits the maturation and function of dendritic cells (DCs), and induces the production of multiple immunosuppressive mediators. In the present study, we determined whether blocking these effects of PS while simultaneously introducing interleukin-2 (IL-2) could improve the immunogenicity of a whole-cell cancer vaccine. An immunocytokine (2aG4-IL2) was made by genetically linking IL-2 with a PS targeting antibody, 2aG4, that can block the immunosuppressive effects of PS. The 2aG4-IL2/4T1 vaccine was generated by coating the PS exposed on irradiated 4T1 cells with 2aG4-IL2. Tumor growth, spontaneous metastasis, and survival of vaccinated mice challenged with live 4T1 tumor cells were assessed. Eighty percent of mice inoculated with 2aG4-IL2/4T1 vaccine survived free of tumor, as compared with 20% in the 2aG4/4T1 group, 20% in the C44-IL2/4T1 group, and none in the C44/4T1 control group (P=0.001 for 2aG4-IL2/4T1 versus all others groups). The incidence, number of spontaneous lung metastases was significantly lower in the 2aG4-IL2/4T1 vaccinated group than in the other groups. Splenocytes from 2aG4-IL2/4T1 vaccinated mice had significantly higher 4T1 specific cytotoxicity and ability to secrete interferon-gamma (IFNγ) than did splenocytes from mice in the other groups. These results demonstrate that a potent whole-cell vaccine can be created by coating irradiated tumor cells with 2aG4-IL2. Such vaccine could potentially be an effective treatment modality for patients with residual disease or at "high-risk" for recurrence.
Collapse
Affiliation(s)
- Xianming Huang
- Simmons Comprehensive Cancer Center, the Department of Pharmacology, the University of Texas Southwestern Medical Center, Dallas, TX 75390-9041, USA
| | | | | |
Collapse
|
408
|
T-cell immunoglobulin and mucin domain 1 (TIM-1) is a receptor for Zaire Ebolavirus and Lake Victoria Marburgvirus. Proc Natl Acad Sci U S A 2011; 108:8426-31. [PMID: 21536871 DOI: 10.1073/pnas.1019030108] [Citation(s) in RCA: 285] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The glycoproteins (GP) of enveloped viruses facilitate entry into the host cell by interacting with specific cellular receptors. Despite extensive study, a cellular receptor for the deadly filoviruses Ebolavirus and Marburgvirus has yet to be identified and characterized. Here, we show that T-cell Ig and mucin domain 1 (TIM-1) binds to the receptor binding domain of the Zaire Ebola virus (EBOV) glycoprotein, and ectopic TIM-1 expression in poorly permissive cells enhances EBOV infection by 10- to 30-fold. Conversely, reduction of cell-surface expression of TIM-1 by RNAi decreased infection of highly permissive Vero cells. TIM-1 expression within the human body is broader than previously appreciated, with expression on mucosal epithelia from the trachea, cornea, and conjunctiva--tissues believed to be important during in vivo transmission of filoviruses. Recognition that TIM-1 serves as a receptor for filoviruses on these mucosal epithelial surfaces provides a mechanistic understanding of routes of entry into the human body via inhalation of aerosol particles or hand-to-eye contact. ARD5, a monoclonal antibody against the IgV domain of TIM-1, blocked EBOV binding and infection, suggesting that antibodies or small molecules directed against this cellular receptor may provide effective filovirus antivirals.
Collapse
|
409
|
Nurtanio N, Yang PC. Role of TIM-4 in innate or adaptive immune response. NORTH AMERICAN JOURNAL OF MEDICAL SCIENCES 2011; 3:217-21. [PMID: 22558597 PMCID: PMC3337740 DOI: 10.4297/najms.2011.3217] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Human being living in constant contact with microbes and pathogen and in the process has developed a recognition pattern of pathogenic structure in the immune cells. The gut lumen has high density of microbes thus the immune response is slightly tolerable to certain microbes, known as commensal flora. These microbes along with other innocuous agents do not cause any inflammation response normally, and are considered as harmless by the immune cells. In immune hypersensitivity condition, such as colitis or food allergy, this mechanism is disturbed. T cell immunoglobulin and mucin domain (TIM)-4 is a phosphatidylserine receptor expressed in mature antigen presenting cells. It is shown that TIM-4 and its ligand TIM-1 are associated in intestinal immune response. However the characteristic of TIM-4 sometimes seems to be two-faced and there is a possibility that TIM-4 also bind to other ligands.
Collapse
Affiliation(s)
- Natasha Nurtanio
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Ping-Chang Yang
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
410
|
Curtiss ML, Hostager BS, Stepniak E, Singh M, Manhica N, Knisz J, Traver G, Rennert PD, Colgan JD, Rothman PB. Fyn binds to and phosphorylates T cell immunoglobulin and mucin domain-1 (Tim-1). Mol Immunol 2011; 48:1424-31. [PMID: 21513984 DOI: 10.1016/j.molimm.2011.03.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 03/25/2011] [Accepted: 03/28/2011] [Indexed: 12/30/2022]
Abstract
The gene encoding T cell immunoglobulin and mucin domain-1 (Tim-1) is linked to atopy and asthma susceptibility in mice and humans. Tim-1 is a transmembrane protein expressed on activated lymphocytes and appears to have a role as a co-stimulatory receptor in T cells. The protein has not been shown to have enzymatic activity but contains a site within its cytoplasmic tail predicted to be a target for tyrosine kinases. Here, we show that Tim-1 can associate with the kinase Fyn, a member of the Src family of tyrosine kinases. This association does not require Fyn's kinase activity and is independent of the phosphorylation of a conserved tyrosine present within the cytoplasmic tail of Tim-1. Fyn is necessary for phosphorylation of this tyrosine in Tim-1 and the phosphorylation of Tim-1 varies with the levels of Fyn present in cells. These data suggest a role for Fyn in the signaling downstream of Tim-1.
Collapse
Affiliation(s)
- Miranda L Curtiss
- Department of Internal Medicine, University of Iowa Carver College of Medicine. 200 Hawkins Drive, Iowa City, IA 52242, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
411
|
Jang WH, Lim KM, Kim K, Noh JY, Kang S, Chang YK, Chung JH. Low level of lead can induce phosphatidylserine exposure and erythrophagocytosis: a new mechanism underlying lead-associated anemia. Toxicol Sci 2011; 122:177-84. [PMID: 21482638 DOI: 10.1093/toxsci/kfr079] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Anemia is probably one of the most well-known toxic effects of lead. Previously, lead-induced anemia was considered to be from the inhibition of δ-aminolevulinic acid dehydratase participating in the heme biosynthesis. However, little is known whether lead could affect the destruction of erythrocyte, another important factor for anemia. In the present study, we demonstrated that lead could accelerate the splenic sequestration of erythrocytes through phosphatidylserine (PS) exposure and subsequently increased erythrophagocytosis. In freshly isolated human erythrocytes, Pb(2+)- induced PS exposure at relatively low concentrations (∼0.1 μM) by inhibiting flippase, a key aminophospholipid translocase for the maintenance of PS asymmetry and adenosine triphosphate depletion appeared to underlie this phenomenon. Abnormal shape changes of erythrocytes and microvesicle generation and other triggers for the erythrophagocytosis were also observed in the Pb(2+)-exposed erythrocytes. In vitro data showed that human macrophage indeed recognized and phagocytosis PS-exposed erythrocytes. In good accordance with these in vitro results, the oral administration of Pb(2+) increased PS exposure on erythrocytes in rat in vivo. In addition, reduction of hematocrit and hemoglobin and increased spleen weight were observed along with enhanced splenic sequestration of erythrocytes in the rats exposed to Pb(2+) subchronically for 4 weeks through drinking water. In conclusion, these results suggest that Pb(2+)-induced anemia may be explained at least in part by increased PS exposure on erythrocytes, erythrophagocytosis, and splenic sequestration.
Collapse
Affiliation(s)
- Won-Hee Jang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
412
|
Yang HM, Zheng PY, Liu ZQ, Li FG, Wang XT. TIM4 modulates antigen-specific Th2 cell differentiation in mice with food allergy. Shijie Huaren Xiaohua Zazhi 2011; 19:940-945. [DOI: 10.11569/wcjd.v19.i9.940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the modulatory effect of microbial products on the expression of T cell immunoglobulin and mucin domain 4 (TIM4) in dendritic cells (DCs) and to determine the role of TIM4 in modulating CD4+ T cell activation in allergic response induced by exposure to microbial products.
METHODS: Bone marrow-derived DCs were isolated from Balb/c mice and cultured in vitro. Cultured DCs were divided into control group and Staphylococcal enterotoxin B (SEB)-stimulated group. The expression of TIM4 mRNA in different groups of DCs was measured by reverse transcription-polymerase chain reaction (RT-PCR). The expression of CD11c, MHC-II and CD86 on DCs were measured by flow cytometry. DCs co-cultured with CD4+ T cells in vitro were divided into five groups: control group, SEB group, OVA group, SEB plus ovalbumin (OVA) group, and anti-TIM4 antibody plus SEB and OVA group. Different sets of DCs were co-cultured for 48 h with CD4+ T cells that were obtained from the spleen of allergic mice. Levels of interleukin-4 (IL-4) and interferon-γ (IFN-γ) in culture medium were evaluated by enzyme-linked immunosorbent assay (ELISA).
RESULTS: Compared with the control group, the expression of TIM4 mRNA in DCs was increased significantly in the SEB-stimulated group (0.941 ± 0.018 vs 0.422 ± 0.083, P < 0.05), and SEB up-regulated the expression of TIM-4 in a dose-dependent manner. SEB stimulation also significantly increased the expression of MHC-II and the costimulatory molecule CD86 on DCs compared with control cells (MHC-II: 76.684% ± 3.1803% vs 52.984% ± 3.6026%, P = 0.000; CD86: 89.746% ± 2.113% vs 67.558% ± 0.4341%, P = 0.000). Compared with control DCs co-cultured with CD4+ T cells, the level of IL-4 in culture medium increased significantly (295.834 ± 20.408 vs 78.335 ± 13.109, P < 0.05) and that of IFN-γ decreased significantly (362.109 ± 92.271 vs 761.897 ± 102.967, P < 0.05) in the SEB plus OVA group. The levels of IL-4 and IFN-γ in the SEB group and OVA group showed no significant differences with those in the control group. In contrast, the expression level of IL-4 was significantly lower and that of IFN-γ was significantly higher in the anti-TIM4 antibody group than in the SEB plus OVA group (P < 0.05). The levels of IL-4 and IFN-γ in the anti-TIM4 antibody group showed no significant differences with those in the control group, SEB group and OVA group (90.511 ± 15.500 vs 295.834 ± 20.408; 807.734 ± 95.436 vs 362.109 ± 92.271, both P < 0.05).
CONCLUSION: TIM4 is involved in the pathogenesis of food allergy induced by concurrent exposure to microbial products and food antigen. Inhibition of TIM4 expression can significantly inhibit Th2 cell polarization, effectively correct Th1/Th2 imbalance and thereby prevent the development of allergic reaction.
Collapse
|
413
|
Receptor for advanced glycation end products binds to phosphatidylserine and assists in the clearance of apoptotic cells. EMBO Rep 2011; 12:358-64. [PMID: 21399623 DOI: 10.1038/embor.2011.28] [Citation(s) in RCA: 175] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 01/24/2011] [Accepted: 01/27/2011] [Indexed: 01/13/2023] Open
Abstract
Clearance of apoptotic cells is necessary for tissue development, homeostasis and resolution of inflammation. The uptake of apoptotic cells is initiated by an 'eat-me' signal, such as phosphatidylserine, on the cell surface and phagocytes recognize the signal by using specific receptors. In this study, we show that the soluble form of the receptor for advanced glycation end products (RAGE) binds to phosphatidylserine as well as to the apoptotic thymocytes. RAGE-deficient (Rage(-/-)) alveolar macrophages showed impaired phagocytosis of apoptotic thymocytes and defective clearance of apoptotic neutrophils in Rage(-/-) mice. Our results indicate that RAGE functions as a phosphatidylserine receptor and assists in the clearance of apoptotic cells.
Collapse
|
414
|
Shao WH, Cohen PL. Disturbances of apoptotic cell clearance in systemic lupus erythematosus. Arthritis Res Ther 2011; 13:202. [PMID: 21371352 PMCID: PMC3157636 DOI: 10.1186/ar3206] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Systemic lupus erythematosus is a multifactorial autoimmune disease with an as yet unknown etiopathogenesis. It is widely thought that self-immunization in systemic lupus is driven by defective clearance of dead and dying cells. In lupus patients, large numbers of apoptotic cells accumulate in various tissues including germinal centers. In the present review, we discuss the danger signals released by apoptotic cells, their triggering of inflammatory responses, and the breakdown of B-cell tolerance. We also review the pathogenic role of apoptotic cell clearance in systemic lupus erythematosus.
Collapse
Affiliation(s)
- Wen-Hai Shao
- Department of Medicine, Temple University, Philadelphia, PA 19140, USA
| | | |
Collapse
|
415
|
Rong S, Park JK, Kirsch T, Yagita H, Akiba H, Boenisch O, Haller H, Najafian N, Habicht A. The TIM-1:TIM-4 pathway enhances renal ischemia-reperfusion injury. J Am Soc Nephrol 2011; 22:484-95. [PMID: 21355054 DOI: 10.1681/asn.2010030321] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
CD4+ T cells contribute to the pathogenesis of ischemia-reperfusion injury, which is the primary cause of delayed graft failure after kidney transplantation. The TIM-1:TIM-4 pathway participates in the activation/differentiation of CD4+ T cells, suggesting that it may modulate ischemia-reperfusion injury. Here, we studied the role of TIM-1 in a murine uninephrectomized renal ischemia-reperfusion injury model. Blocking the TIM-1:TIM-4 pathway with an antagonistic monoclonal antibody protected renal function and diminished reperfusion injury resulting from 30 minutes of ischemia. Histologic examination showed significantly less evidence of renal damage as evidenced by diminished tubular necrosis, preservation of the brush border, fewer cast formations, and less tubular dilation. Blocking TIM-1 also reduced the number of apoptotic cells and diminished local inflammation within ischemic kidneys, the latter shown by decreased recruitment of macrophages, neutrophils, and CD4+ T cells and by reduced local production of proinflammatory cytokines. Furthermore, TIM-1 blockade significantly improved survival after ischemia-reperfusion injury. Taken together, these data suggest that the TIM-1:TIM-4 pathway enhances injury after renal ischemia-reperfusion injury and may be a therapeutic target.
Collapse
Affiliation(s)
- Song Rong
- Transplant Center, University Hospital Munich, Marchioninistrasse 15, Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
416
|
Kim HY, Eyheramonho MB, Pichavant M, Gonzalez Cambaceres C, Matangkasombut P, Cervio G, Kuperman S, Moreiro R, Konduru K, Manangeeswaran M, Freeman GJ, Kaplan GG, DeKruyff RH, Umetsu DT, Rosenzweig SD. A polymorphism in TIM1 is associated with susceptibility to severe hepatitis A virus infection in humans. J Clin Invest 2011; 121:1111-8. [PMID: 21339644 DOI: 10.1172/jci44182] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 12/22/2010] [Indexed: 02/06/2023] Open
Abstract
During infection with the hepatitis A virus (HAV), most patients develop mild or asymptomatic disease. However, a small number of patients develop serious, life-threatening hepatitis. We investigated this variability in disease severity by examining 30 Argentinean patients with HAV-induced acute liver failure in a case-control, cross-sectional, observational study. We found that HAV-induced severe liver disease was associated with a 6-amino-acid insertion in TIM1/HAVCR1 (157insMTTTVP), the gene encoding the HAV receptor. This polymorphism was previously shown to be associated with protection against asthma and allergic diseases and with HIV progression. In binding assays, the TIM-1 protein containing the 157insMTTTVP insertion polymorphism bound HAV more efficiently. When expressed by human natural killer T (NKT) cells, this long form resulted in greater NKT cell cytolytic activity against HAV-infected liver cells, compared with the shorter TIM-1 protein without the polymorphism. To our knowledge, the 157insMTTTVP polymorphism in TIM1 is the first genetic susceptibility factor shown to predispose to HAV-induced acute liver failure. Furthermore, these results suggest that HAV infection has driven the natural selection of shorter forms of the TIM-1 protein, which binds HAV less efficiently, thereby protecting against severe HAV-induced disease, but which may predispose toward inflammation associated with asthma and allergy.
Collapse
Affiliation(s)
- Hye Young Kim
- Division of Immunology, Children's Hospital Boston, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
417
|
Ma J, Usui Y, Takeda K, Harada N, Yagita H, Okumura K, Akiba H. TIM-1 signaling in B cells regulates antibody production. Biochem Biophys Res Commun 2011; 406:223-8. [PMID: 21303660 DOI: 10.1016/j.bbrc.2011.02.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 02/03/2011] [Indexed: 10/18/2022]
Abstract
Members of the T cell Ig and mucin (TIM) family have recently been implicated in the control of T cell-mediated immune responses. In this study, we found TIM-1 expression on anti-IgM- or anti-CD40-stimulated splenic B cells, which was further up-regulated by the combination of anti-IgM and anti-CD40 Abs. On the other hand, TIM-1 ligand was constitutively expressed on B cells and inducible on anti-CD3(+) anti-CD28-stimulated CD4(+) T cells. In vitro stimulation of activated B cells by anti-TIM-1 mAb enhanced proliferation and expression of a plasma cell marker syndecan-1 (CD138). We further examined the effect of TIM-1 signaling on antibody production in vitro and in vivo. Higher levels of IgG2b and IgG3 secretion were detected in the culture supernatants of the anti-TIM-1-stimulated B cells as compared with the control IgG-stimulated B cells. When immunized with T-independent antigen TNP-Ficoll, TNP-specific IgG1, IgG2b, and IgG3 Abs were slightly increased in the anti-TIM-1-treated mice. When immunized with T-dependent antigen OVA, serum levels of OVA-specific IgG2b, IgG3, and IgE Abs were significantly increased in the anti-TIM-1-treated mice as compared with the control IgG-treated mice. These results suggest that TIM-1 signaling in B cells augments antibody production by enhancing B cell proliferation and differentiation.
Collapse
Affiliation(s)
- Juan Ma
- Department of Immunology, Juntendo University, 2-1-1 Hongo, Tokyo 113-8421, Japan
| | | | | | | | | | | | | |
Collapse
|
418
|
Brereton CF, Blander JM. The unexpected link between infection-induced apoptosis and a TH17 immune response. J Leukoc Biol 2011; 89:565-76. [PMID: 21248151 DOI: 10.1189/jlb.0710421] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Microbial pathogens can initiate MOMP in host cells and as such, initiate the mitochondrial pathway of apoptosis. Innate immune recognition of cells dying in this way by infection-induced apoptosis would involve recognition of ligands derived from the apoptotic host cell simultaneously with those derived from the infecting pathogen. The resultant signal transduction pathways engaged direct DCs to concomitantly synthesize TGF-β and IL-6, two cytokines that subsequently favor the differentiation of naïve CD4 T cells into T(h)17 cells. Citrobacter rodentium is one rodent pathogen that targets mitochondria and induces apoptosis, and blockade of apoptosis during enteric Citrobacter infection impairs the characteristic T(h)17 response in the intestinal LP. Here, we review these original findings. We discuss microbial infections other than Citrobacter that have been shown to induce T(h)17 responses, and we examine what is known about the ability of those pathogens to induce apoptosis. We also consider types of cell death other than apoptosis that can be triggered by microbial infection, and we highlight how little we know about the impact of various forms of cell death on the ensuing adaptive immune response.
Collapse
Affiliation(s)
- Corinna F Brereton
- Mount Sinai School of Medicine, Immunology Institute, Department of Medicine, 1425 Madison Ave., 12-20D, New York, NY 10029, USA
| | | |
Collapse
|
419
|
Schutters K, Reutelingsperger C. Phosphatidylserine targeting for diagnosis and treatment of human diseases. Apoptosis 2010; 15:1072-82. [PMID: 20440562 PMCID: PMC2929432 DOI: 10.1007/s10495-010-0503-y] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cells are able to execute apoptosis by activating series of specific biochemical reactions. One of the most prominent characteristics of cell death is the externalization of phosphatidylserine (PS), which in healthy cells resides predominantly in the inner leaflet of the plasma membrane. These features have made PS-externalization a well-explored phenomenon to image cell death for diagnostic purposes. In addition, it was demonstrated that under certain conditions viable cells express PS at their surface such as endothelial cells of tumor blood vessels, stressed tumor cells and hypoxic cardiomyocytes. Hence, PS has become a potential target for therapeutic strategies aiming at Targeted Drug Delivery. In this review we highlight the biomarker PS and various PS-binding compounds that have been employed to target PS for diagnostic purposes. We emphasize the 35 kD human protein annexin A5, that has been developed as a Molecular Imaging agent to measure cell death in vitro, and non-invasively in vivo in animal models and in patients with cardiovascular diseases and cancer. Recently focus has shifted from diagnostic towards therapeutic applications employing annexin A5 in strategies to deliver drugs to cells that express PS at their surface.
Collapse
Affiliation(s)
- Kristof Schutters
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands.
| | | |
Collapse
|
420
|
Mechanisms of failed apoptotic cell clearance by phagocyte subsets in cardiovascular disease. Apoptosis 2010; 15:1124-36. [PMID: 20552278 DOI: 10.1007/s10495-010-0516-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recent evidence in humans indicate that defective phagocytic clearance of dying cells is linked to progression of advanced atherosclerotic lesions, the precursor to atherothrombosis, ischemic heart disease, and leading cause of death in the industrialized world. During atherogenesis, apoptotic cell turnover in the vascular wall is counterbalanced by neighboring phagocytes with high clearance efficiency, thereby limiting cellularity and maintaining lesion integrity. However, as lesions mature, phagocytic removal of apoptotic cells (efferocytosis) becomes defective, leading to secondary necrosis, expansion of plaque necrotic cores, and susceptibility to rupture. Recent genetic causation studies in experimental rodents have implicated key molecular regulators of efferocytosis in atherosclerotic progression. These include MER tyrosine kinase (MERTK), milk fat globule-EGF factor 8 (MFGE8), and complement C1q. At the cellular level, atheromata are infiltrated by a heterogenous population of professional phagocytes, comprised of monocytes, differentiated macrophages, and CD11c(+) dendritic-like cells. Each cell type is characterized by disparate clearance efficiencies and varying activities of key phagocytic signaling molecules. It is in this context that we outline a working model whereby plaque necrosis and destabilization is jointly promoted by (1) direct inhibition of core phagocytic signaling pathways and (2) expansion of phagocyte subsets with poor clearance capacity. Towards identifying targets for promoting efficient apoptotic cell clearance and resolving inflammation in atherosclerosis and during ischemic heart disease and post myocardial infarction, this review will discuss potential in vivo suppressors of efferocytosis at each stage of clearance and how these putative interventional targets may differentially affect uptake at the level of vascular phagocyte subsets.
Collapse
|
421
|
Kinchen JM. A model to die for: signaling to apoptotic cell removal in worm, fly and mouse. Apoptosis 2010; 15:998-1006. [PMID: 20461556 DOI: 10.1007/s10495-010-0509-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Programmed cell death is used during developmental morphogenesis to eliminate superfluous cells or cells with inappropriate developmental potential (e.g., self-reactive immune cells, tumorigenic cells). Recent work in genetic models has led to a number of key observations, revealing signal transduction pathways and identifying new roles for genes previously studied in corpse removal (e.g., removal of broken synapses in the nervous system). Further, studies using mouse models have suggested a role for removal of apoptotic cells in the establishment or maintenance of immune tolerance. In this review, we survey current knowledge of phagocytic pathways derived from studies in the nematode (Caenorhabditis elegans), the fly (Drosophila melanogaster), and mouse (Mus musculus) model systems.
Collapse
Affiliation(s)
- Jason M Kinchen
- Department of Microbiology, Center for Cell Clearance, University of Virginia, Charlottesville, 22908, USA.
| |
Collapse
|
422
|
Abstract
The apoptosis program of physiological cell death elicits a range of non-phlogistic homeostatic mechanisms-"recognition, response and removal"-that regulate the microenvironments of normal and diseased tissues via multiple modalities operating over short and long distances. The molecular mechanisms mediate intercellular signaling through direct contact with neighboring cells, release of soluble factors and production of membrane-delimited fragments (apoptotic bodies, blebs and microparticles) that allow for interaction with host cells over long distances. These processes effect the selective recruitment of mononuclear phagocytes and the specific activation of both phagocytic and non-phagocytic cells. While much evidence is available concerning the mechanisms underlying the recognition and responses of phagocytes that culminate in the engulfment and removal of apoptotic cell bodies, relatively little is yet known about the non-phagocytic cellular responses to the apoptosis program. These responses regulate inflammatory and immune cell activation as well as cell fate decisions of proliferation, differentiation and death. Here, we review current knowledge of these processes, considering especially how apoptotic cells condition the microenvironments of normal and malignant tissues. We also discuss how apoptotic cells that persist in the absence of phagocytic clearance exert inhibitory effects over their viable neighbors, paying particular attention to the specific case of cell cultures and highlighting how new cell-corpse-clearance devices-Dead-Cert Nanoparticles-can significantly improve the efficacy of cell cultures through effective removal of non-viable cells in the absence of phagocytes in vitro.
Collapse
|
423
|
Abstract
The Tyro3, Axl, and Mer (TAM) receptor tyrosine kinases and their ligands Gas6 and Protein S are required for the optimal phagocytosis of apoptotic cells in the mature immune, nervous, and reproductive systems. Genetic analyses in mice, rats, and humans reveal that this receptor-ligand system plays an especially important role in the phagocytosis that is triggered by the "eat-me" signal phosphatidylserine. Deficiencies in TAM signaling lead to human retinal dystrophies and may contribute to lupus and other human autoimmune diseases. The TAM system appears to interact and cooperate with several other phagocytic networks, including scavenger receptor and integrin-based systems, and may serve as a signaling hub that integrates these systems.
Collapse
Affiliation(s)
- Greg Lemke
- The Salk Institute, La Jolla, California 92037, USA.
| | | |
Collapse
|
424
|
Abstract
Two of the critical cytokines required for the differentiation of T helper 17 (T(H)17) cells from naive CD4 T cells are transforming growth factor-beta (TGF-β) and interleukin-6 (IL-6). Innate recognition of apoptotic cells in the presence of Toll-like receptor engagement directs the simultaneous synthesis of these cytokines by antigen-presenting cells (APCs), and as such provides a cytokine milieu that favors T(H)17 cell induction. In this situation, APCs are activated in response to ligands derived from apoptotic cells, but also to those from the infecting pathogen. Induction of a T(H)17 response against Citrobacter rodentium infection was dependent on the ability of Citrobacter to induce apoptosis of intestinal epithelial cells. In this review, we will discuss how simultaneous activation of inflammatory and noninflammatory pattern recognition receptors on APCs impacts T helper cell differentiation, and what relevance this effect has on the immune response generated against bacterial infections that cause host cell apoptosis.
Collapse
Affiliation(s)
- Corinna F Brereton
- Department of Medicine, Immunology Institute, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | |
Collapse
|
425
|
Albacker LA, Karisola P, Chang YJ, Umetsu SE, Zhou M, Akbari O, Kobayashi N, Baumgarth N, Freeman GJ, Umetsu DT, DeKruyff RH. TIM-4, a receptor for phosphatidylserine, controls adaptive immunity by regulating the removal of antigen-specific T cells. THE JOURNAL OF IMMUNOLOGY 2010; 185:6839-49. [PMID: 21037090 DOI: 10.4049/jimmunol.1001360] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Adaptive immunity is characterized by the expansion of an Ag-specific T cell population following Ag exposure. The precise mechanisms, however, that control the expansion and subsequent contraction in the number of Ag-specific T cells are not fully understood. We show that T cell/transmembrane, Ig, and mucin (TIM)-4, a receptor for phosphatidylserine, a marker of apoptotic cells, regulates adaptive immunity in part by mediating the removal of Ag-specific T cells during the contraction phase of the response. During Ag immunization or during infection with influenza A virus, blockade of TIM-4 on APCs increased the expansion of Ag-specific T cells, resulting in an increase in secondary immune responses. Conversely, overexpression of TIM-4 on APCs in transgenic mice reduced the number of Ag-specific T cells that remained after immunization, resulting in reduced secondary T cell responses. There was no change in the total number of cell divisions that T cells completed, no change in the per cell proliferative capacity of the remaining Ag-specific T cells, and no increase in the development of Ag-specific regulatory T cells in TIM-4 transgenic mice. Thus, TIM-4-expressing cells regulate adaptive immunity by mediating the removal of phosphatidylserine-expressing apoptotic, Ag-specific T cells, thereby controlling the number of Ag-specific T cells that remain after the clearance of Ag or infection.
Collapse
Affiliation(s)
- Lee A Albacker
- Division of Immunology, Children's Hospital Boston, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
426
|
Lee HH, Meyer EH, Goya S, Pichavant M, Kim HY, Bu X, Umetsu SE, Jones JC, Savage PB, Iwakura Y, Casasnovas JM, Kaplan G, Freeman GJ, DeKruyff RH, Umetsu DT. Apoptotic cells activate NKT cells through T cell Ig-like mucin-like-1 resulting in airway hyperreactivity. THE JOURNAL OF IMMUNOLOGY 2010; 185:5225-35. [PMID: 20889552 DOI: 10.4049/jimmunol.1001116] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
T cell Ig-like mucin-like-1 (TIM-1) is an important asthma susceptibility gene, but the immunological mechanisms by which TIM-1 functions remain uncertain. TIM-1 is also a receptor for phosphatidylserine (PtdSer), an important marker of cells undergoing programmed cell death, or apoptosis. We now demonstrate that NKT cells constitutively express TIM-1 and become activated by apoptotic cells expressing PtdSer. TIM-1 recognition of PtdSer induced NKT cell activation, proliferation, and cytokine production. Moreover, the induction of apoptosis in airway epithelial cells activated pulmonary NKT cells and unexpectedly resulted in airway hyperreactivity, a cardinal feature of asthma, in an NKT cell-dependent and TIM-1-dependent fashion. These results suggest that TIM-1 serves as a pattern recognition receptor on NKT cells that senses PtdSer on apoptotic cells as a damage-associated molecular pattern. Furthermore, these results provide evidence for a novel innate pathway that results in airway hyperreactivity and may help to explain how TIM-1 and NKT cells regulate asthma.
Collapse
Affiliation(s)
- Hyun-Hee Lee
- Division of Immunology and Allergy, Department of Pediatrics, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
427
|
Peña-Cruz V, McDonough SM, Diaz-Griffero F, Crum CP, Carrasco RD, Freeman GJ. PD-1 on immature and PD-1 ligands on migratory human Langerhans cells regulate antigen-presenting cell activity. J Invest Dermatol 2010; 130:2222-30. [PMID: 20445553 PMCID: PMC2927196 DOI: 10.1038/jid.2010.127] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Langerhans cells (LCs) are known as "sentinels" of the immune system that function as professional antigen-presenting cells (APCs) after migration to draining lymph node. LCs are proposed to have a role in tolerance and the resolution of cutaneous immune responses. The Programmed Death-1 (PD-1) receptor and its ligands, PD-L1 and PD-L2, are a co-inhibitory pathway that contributes to the negative regulation of T-lymphocyte activation and peripheral tolerance. Surprisingly, we found PD-1 to be expressed on immature LCs (iLCs) in situ. PD-1 engagement on iLCs reduced IL-6 and macrophage inflammatory protein (MIP)-1alpha cytokine production in response to TLR2 signals but had no effect on LC maturation. PD-L1 and PD-L2 were expressed at very low levels on iLCs. Maturation of LCs upon migration from epidermis led to loss of PD-l expression and gain of high expression of PD-L1 and PD-L2 as well as co-stimulatory molecules. Blockade of PD-L1 and/or PD-L2 on migratory LCs (mLCs) and DDCs enhanced T-cell activation, as has been reported for other APCs. Thus the PD-1 pathway is active in iLCs and inhibits iLC activities, but expression of receptor and ligands reverses upon maturation and PD-L1 and PD-L2 on mLC function to inhibit T-cell responses.
Collapse
Affiliation(s)
- Victor Peña-Cruz
- Department of Medical Oncology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Sean M. McDonough
- Department of Medical Oncology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Felipe Diaz-Griffero
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Christopher P. Crum
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Ruben D. Carrasco
- Department of Medical Oncology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Gordon J. Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
428
|
The role of nucleotides in apoptotic cell clearance: implications for disease pathogenesis. J Mol Med (Berl) 2010; 89:13-22. [PMID: 20809090 DOI: 10.1007/s00109-010-0673-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 07/02/2010] [Accepted: 07/29/2010] [Indexed: 12/20/2022]
Abstract
Apoptosis occurs in many tissues, during both normal and pathogenic processes. Normally, apoptotic cells are rapidly cleared, either by neighboring or recruited phagocytes. The prompt clearance of apoptotic cells requires that the apoptotic cells announce their presence through the release of chemotactic factors, known as "find-me" signals, to recruit phagocytes to the site of death, and through the exposure of so-called "eat-me" signals, which are ligands for phagocytic uptake. The importance of prompt apoptotic cell clearance is revealed by findings that decreasing the efficiency of engulfment results in the persistence of apoptotic cells, which is often associated with chronic inflammation and autoimmunity. Additionally, the proper clearance of apoptotic cells is actively anti-inflammatory, which is thought to play a crucial role in immunologic tolerance. Therefore, defects associated with clearance of apoptotic cells may contribute to the pathogenesis of several inflammatory diseases, including autoimmunity and atherosclerosis. Here, we review the role of nucleotides in the apoptotic cell clearance process and discuss their implications for disease pathogenesis.
Collapse
|
429
|
Ravichandran KS. Find-me and eat-me signals in apoptotic cell clearance: progress and conundrums. J Exp Med 2010; 207:1807-17. [PMID: 20805564 PMCID: PMC2931173 DOI: 10.1084/jem.20101157] [Citation(s) in RCA: 409] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 07/12/2010] [Indexed: 01/17/2023] Open
Abstract
Everyday we turnover billions of cells. The quick, efficient, and immunologically silent disposal of the dying cells requires a coordinated orchestration of multiple steps, through which phagocytes selectively recognize and engulf apoptotic cells. Recent studies have suggested an important role for soluble mediators released by apoptotic cells that attract phagocytes ("find-me" signals). New information has also emerged on multiple receptors that can recognize phosphatidylserine, the key "eat-me" signal exposed on the surface of apoptotic cells. This perspective discusses recent exciting progress, gaps in our understanding, and the conflicting issues that arise from the newly acquired knowledge.
Collapse
Affiliation(s)
- Kodi S Ravichandran
- Center for Cell Clearance, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
430
|
Elliott MR, Ravichandran KS. Clearance of apoptotic cells: implications in health and disease. ACTA ACUST UNITED AC 2010; 189:1059-70. [PMID: 20584912 PMCID: PMC2894449 DOI: 10.1083/jcb.201004096] [Citation(s) in RCA: 390] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Recent advances in defining the molecular signaling pathways that regulate the phagocytosis of apoptotic cells have improved our understanding of this complex and evolutionarily conserved process. Studies in mice and humans suggest that the prompt removal of dying cells is crucial for immune tolerance and tissue homeostasis. Failed or defective clearance has emerged as an important contributing factor to a range of disease processes. This review addresses how specific molecular alterations of engulfment pathways are linked to pathogenic states. A better understanding of the apoptotic cell clearance process in healthy and diseased states could offer new therapeutic strategies.
Collapse
Affiliation(s)
- Michael R Elliott
- Center for Cell Clearance and the Department of Microbiology, University of Virginia, Charlottesville, VA 22908, USA
| | | |
Collapse
|
431
|
Freeman GJ, Casasnovas JM, Umetsu DT, DeKruyff RH. TIM genes: a family of cell surface phosphatidylserine receptors that regulate innate and adaptive immunity. Immunol Rev 2010. [PMID: 20536563 DOI: 10.1111/j.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The TIM (T cell/transmembrane, immunoglobulin, and mucin) gene family plays a critical role in regulating immune responses, including allergy, asthma, transplant tolerance, autoimmunity, and the response to viral infections. The unique structure of TIM immunoglobulin variable region domains allows highly specific recognition of phosphatidylserine (PtdSer), exposed on the surface of apoptotic cells. TIM-1, TIM-3, and TIM-4 all recognize PtdSer but differ in expression, suggesting that they have distinct functions in regulating immune responses. TIM-1, an important susceptibility gene for asthma and allergy, is preferentially expressed on T-helper 2 (Th2) cells and functions as a potent costimulatory molecule for T-cell activation. TIM-3 is preferentially expressed on Th1 and Tc1 cells, and generates an inhibitory signal resulting in apoptosis of Th1 and Tc1 cells. TIM-3 is also expressed on some dendritic cells and can mediate phagocytosis of apoptotic cells and cross-presentation of antigen. In contrast, TIM-4 is exclusively expressed on antigen-presenting cells, where it mediates phagocytosis of apoptotic cells and plays an important role in maintaining tolerance. TIM molecules thus provide a functional repertoire for recognition of apoptotic cells, which determines whether apoptotic cell recognition leads to immune activation or tolerance, depending on the TIM molecule engaged and the cell type on which it is expressed.
Collapse
Affiliation(s)
- Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | | | | | | |
Collapse
|
432
|
Freeman GJ, Casasnovas JM, Umetsu DT, DeKruyff RH. TIM genes: a family of cell surface phosphatidylserine receptors that regulate innate and adaptive immunity. Immunol Rev 2010; 235:172-89. [PMID: 20536563 DOI: 10.1111/j.0105-2896.2010.00903.x] [Citation(s) in RCA: 489] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The TIM (T cell/transmembrane, immunoglobulin, and mucin) gene family plays a critical role in regulating immune responses, including allergy, asthma, transplant tolerance, autoimmunity, and the response to viral infections. The unique structure of TIM immunoglobulin variable region domains allows highly specific recognition of phosphatidylserine (PtdSer), exposed on the surface of apoptotic cells. TIM-1, TIM-3, and TIM-4 all recognize PtdSer but differ in expression, suggesting that they have distinct functions in regulating immune responses. TIM-1, an important susceptibility gene for asthma and allergy, is preferentially expressed on T-helper 2 (Th2) cells and functions as a potent costimulatory molecule for T-cell activation. TIM-3 is preferentially expressed on Th1 and Tc1 cells, and generates an inhibitory signal resulting in apoptosis of Th1 and Tc1 cells. TIM-3 is also expressed on some dendritic cells and can mediate phagocytosis of apoptotic cells and cross-presentation of antigen. In contrast, TIM-4 is exclusively expressed on antigen-presenting cells, where it mediates phagocytosis of apoptotic cells and plays an important role in maintaining tolerance. TIM molecules thus provide a functional repertoire for recognition of apoptotic cells, which determines whether apoptotic cell recognition leads to immune activation or tolerance, depending on the TIM molecule engaged and the cell type on which it is expressed.
Collapse
Affiliation(s)
- Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | | | | | | |
Collapse
|
433
|
Dorfman DM, Hornick JL, Shahsafaei A, Freeman GJ. The phosphatidylserine receptors, T cell immunoglobulin mucin proteins 3 and 4, are markers of histiocytic sarcoma and other histiocytic and dendritic cell neoplasms. Hum Pathol 2010; 41:1486-94. [PMID: 20656318 DOI: 10.1016/j.humpath.2010.04.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 04/01/2010] [Accepted: 04/02/2010] [Indexed: 12/11/2022]
Abstract
The T cell immunoglobulin mucin (TIM) proteins are a family of cell surface phosphatidyserine receptors that are important for the recognition and phagocytosis of apoptotic cells. Because TIM-4 is expressed by macrophages and dendritic cells in human tissue, we examined its expression in a range of histiocytic and dendritic cell neoplasms and found moderate to strong immunohistochemical staining in cases of juvenile xanthogranuloma and histiocytic sarcoma, and lower level staining in interdigitating dendritic cell sarcoma, Langerhans cell histiocytosis, acute monocytic leukemia (leukemia cutis), and blastic plasmacytoid dendritic cell neoplasm (hematodermic tumor). TIM-3 was first described on activated T(H)1 cells but was recently shown to also be a phosphatidylserine receptor and mediate phagocytosis. We found TIM-3 was expressed by peritoneal macrophages, monocytes and splenic dendritic cells. We found that it, like TIM-4, is expressed in a range of histiocytic and dendritic cell neoplasms, typically with strong immunohistochemical staining. Cases of diffuse large B cell lymphoma, anaplastic large cell lymphoma, metastatic malignant melanoma, and metastatic poorly differentiated carcinoma generally exhibited negative to minimal heterogenous staining for TIM-4 and TIM-3. We conclude that histiocytic and dendritic cell neoplasms consistently express TIM-3 and TIM-4 and that these molecules are new markers of neoplasms derived from histiocytic and dendritic cells.
Collapse
Affiliation(s)
- David M Dorfman
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
434
|
Everts B, Smits HH, Hokke CH, Yazdanbakhsh M. Helminths and dendritic cells: sensing and regulating via pattern recognition receptors, Th2 and Treg responses. Eur J Immunol 2010; 40:1525-37. [PMID: 20405478 DOI: 10.1002/eji.200940109] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The classical reaction of the host to helminth infections is the induction of Th2 immune responses with a regulatory component. DC, as central players in the induction and maintenance of immune responses, play a prominent role in both these processes, and in recent years considerable progress has been made in elucidating the mechanisms behind the interplay between DC and helminths. It is becoming increasingly clear that helminths modulate DC function not only via direct interactions but also indirectly via host-derived cues. Furthermore, while studies have until recently focused on receptor signaling-mediated DC modulation by helminths, evidence is emerging that DC may also respond to helminth infections by sensing stress signals or tissue damage inflicted by the worms or their products. Here, we will discuss these new insights and will link them to the origin and importance of Th2 and regulatory immune responses with respect to the survival of both parasite and host.
Collapse
Affiliation(s)
- Bart Everts
- Department of Parasitology, Leiden University Medical Centre, ZA Leiden, The Netherlands.
| | | | | | | |
Collapse
|
435
|
Sonar SS, Hsu YM, Conrad ML, Majeau GR, Kilic A, Garber E, Gao Y, Nwankwo C, Willer G, Dudda JC, Kim H, Bailly V, Pagenstecher A, Rennert PD, Renz H. Antagonism of TIM-1 blocks the development of disease in a humanized mouse model of allergic asthma. J Clin Invest 2010; 120:2767-81. [PMID: 20628202 DOI: 10.1172/jci39543] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 05/19/2010] [Indexed: 12/24/2022] Open
Abstract
Studies in mice and humans have revealed that the T cell, immunoglobulin, mucin (TIM) genes are associated with several atopic diseases. TIM-1 is a type I membrane protein that is expressed on T cells upon stimulation and has been shown to modulate their activation. In addition to a recently described interaction with dendritic cells, TIM-1 has also been identified as a phosphatidylserine recognition molecule, and several protein ligands have been proposed. Our understanding of its activity is complicated by the possibility that TIM-1 possesses multiple and diverse binding partners. In order to delineate the function of TIM-1, we generated monoclonal antibodies directed to a cleft formed within the IgV domain of TIM-1. We have shown here that antibodies that bind to this defined cleft antagonize TIM-1 binding to specific ligands and cells. Notably, these antibodies exhibited therapeutic activity in a humanized SCID model of experimental asthma, ameliorating inflammation, and airway hyperresponsiveness. Further experiments demonstrated that the effects of the TIM-1-specific antibodies were mediated via suppression of Th2 cell proliferation and cytokine production. These results demonstrate that modulation of the TIM-1 pathway can critically influence activated T cells in a humanized disease model, suggesting that TIM-1 antagonists may provide potent therapeutic benefit in asthma and other immune-mediated disorders.
Collapse
Affiliation(s)
- Sanchaita Sriwal Sonar
- Department of Clinical Chemistry and Molecular Diagnostics, University of Marburg, Marburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
436
|
Huo W, Zhang K, Nie Z, Li Q, Jin F. Kidney injury molecule-1 (KIM-1): a novel kidney-specific injury molecule playing potential double-edged functions in kidney injury. Transplant Rev (Orlando) 2010; 24:143-6. [DOI: 10.1016/j.trre.2010.02.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 01/31/2010] [Accepted: 02/12/2010] [Indexed: 12/14/2022]
|
437
|
Yamanishi Y, Kitaura J, Izawa K, Kaitani A, Komeno Y, Nakamura M, Yamazaki S, Enomoto Y, Oki T, Akiba H, Abe T, Komori T, Morikawa Y, Kiyonari H, Takai T, Okumura K, Kitamura T. TIM1 is an endogenous ligand for LMIR5/CD300b: LMIR5 deficiency ameliorates mouse kidney ischemia/reperfusion injury. ACTA ACUST UNITED AC 2010; 207:1501-11. [PMID: 20566714 PMCID: PMC2901072 DOI: 10.1084/jem.20090581] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Leukocyte mono-immunoglobulin (Ig)-like receptor 5 (LMIR5)/CD300b is a DAP12-coupled activating receptor predominantly expressed in myeloid cells. The ligands for LMIR have not been reported. We have identified T cell Ig mucin 1 (TIM1) as a possible ligand for LMIR5 by retrovirus-mediated expression cloning. TIM1 interacted only with LMIR5 among the LMIR family, whereas LMIR5 interacted with TIM4 as well as TIM1. The Ig-like domain of LMIR5 bound to TIM1 in the vicinity of the phosphatidylserine (PS)-binding site within the Ig-like domain of TIM1. Unlike its binding to TIM1 or TIM4, LMIR5 failed to bind to PS. LMIR5 binding did not affect TIM1- or TIM4-mediated phagocytosis of apoptotic cells, and stimulation with TIM1 or TIM4 induced LMIR5-mediated activation of mast cells. Notably, LMIR5 deficiency suppressed TIM1-Fc-induced recruitment of neutrophils in the dorsal air pouch, and LMIR5 deficiency attenuated neutrophil accumulation in a model of ischemia/reperfusion injury in the kidneys in which TIM1 expression is up-regulated. In that model, LMIR5 deficiency resulted in ameliorated tubular necrosis and cast formation in the acute phase. Collectively, our results indicate that TIM1 is an endogenous ligand for LMIR5 and that the TIM1-LMIR5 interaction plays a physiological role in immune regulation by myeloid cells.
Collapse
Affiliation(s)
- Yoshinori Yamanishi
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
438
|
Wong SH, Barlow JL, Nabarro S, Fallon PG, McKenzie ANJ. Tim-1 is induced on germinal centre B cells through B-cell receptor signalling but is not essential for the germinal centre response. Immunology 2010; 131:77-88. [PMID: 20518819 DOI: 10.1111/j.1365-2567.2010.03276.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
T-cell immunoglobulin mucin-1 (Tim-1) has been proposed to be an important T-cell immunoregulatory molecule since its expression on activated T cells was discovered. To study the role of Tim-1 on T cells in vitro and in vivo we generated both Tim-1-deficient mice and several lines of Tim-1 transgenic mice with Tim-1 expression on either T cells, or B and T cells. We demonstrate that neither deficiency nor over-expression of Tim-1 on B and T cells results in modulation of their proliferation in vitro. More surprisingly, T helper type 2 cells generated either from Tim-1-deficient mice or Tim-1 transgenic mice did not show enhancement of interleukin-4 (IL-4), IL-5 and IL-10 production. Furthermore, using a Schistosoma mansoni egg challenge as a potent T helper type 2 response inducer we also show that Tim-1 is not essential for T- and B-cell responses in vivo. However, we observe induction of Tim-1 on B cells following B-cell receptor (BCR), but not Toll-like receptor 4 stimulation in vitro. We show that the induction of Tim-1 on B cells following BCR stimulation is phosphoinositide-3 kinase and nuclear factor-kappaB pathway dependent. More importantly, we conclude that Tim-1 is predominantly expressed on germinal centre B cells in vivo although the percentage of germinal centre B cells in wild-type and Tim-1-deficient mice is comparable. Identification of Tim-1 as a marker for germinal centre B cells will contribute to the interpretation and future analysis of the effects of the anti-Tim-1 antibodies in vivo.
Collapse
|
439
|
Umetsu DT, Dekruyff RH. 99th Dahlem conference on infection, inflammation and chronic inflammatory disorders: microbes, apoptosis and TIM-1 in the development of asthma. Clin Exp Immunol 2010; 160:125-9. [PMID: 20415862 DOI: 10.1111/j.1365-2249.2010.04136.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Asthma is a complex disorder which has increased dramatically in prevalence over the past three decades. Current therapies, based on the T helper type 2 (Th2) paradigm, have not been able to control this disease. Epidemiological studies have demonstrated an association between infection with the hepatitis A virus (HAV) and protection against the development of asthma, and genetic studies have shown that the HAV receptor, TIM-1 (T cell, immunoglobulin domain and mucin domain), is an important atopy susceptibility gene. Furthermore, recent studies indicate that TIM-1 is a receptor for phosphatidylserine, an important marker of apoptotic cells. These studies together suggest that HAV and TIM-1 may potently regulate asthma through novel non-Th2-mediated mechanisms. Further study of the immunobiology of TIM-1 and its involvement in the clearance of apoptotic cells is likely to provide important insight into the mechanisms that lead to, and those that protect against, asthma, and how infection affects immunity and the development of asthma.
Collapse
Affiliation(s)
- D T Umetsu
- Harvard Medical School, Children's Hospital Boston, One Blackfan Circle, Boston, MA 02115, USA.
| | | |
Collapse
|
440
|
Schutters K, Reutelingsperger C. Phosphatidylserine targeting for diagnosis and treatment of human diseases. Apoptosis 2010. [PMID: 20440562 DOI: 10.1007/s10495-010�0503-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cells are able to execute apoptosis by activating series of specific biochemical reactions. One of the most prominent characteristics of cell death is the externalization of phosphatidylserine (PS), which in healthy cells resides predominantly in the inner leaflet of the plasma membrane. These features have made PS-externalization a well-explored phenomenon to image cell death for diagnostic purposes. In addition, it was demonstrated that under certain conditions viable cells express PS at their surface such as endothelial cells of tumor blood vessels, stressed tumor cells and hypoxic cardiomyocytes. Hence, PS has become a potential target for therapeutic strategies aiming at Targeted Drug Delivery. In this review we highlight the biomarker PS and various PS-binding compounds that have been employed to target PS for diagnostic purposes. We emphasize the 35 kD human protein annexin A5, that has been developed as a Molecular Imaging agent to measure cell death in vitro, and non-invasively in vivo in animal models and in patients with cardiovascular diseases and cancer. Recently focus has shifted from diagnostic towards therapeutic applications employing annexin A5 in strategies to deliver drugs to cells that express PS at their surface.
Collapse
Affiliation(s)
- Kristof Schutters
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands.
| | | |
Collapse
|
441
|
Kane LP. T cell Ig and mucin domain proteins and immunity. THE JOURNAL OF IMMUNOLOGY 2010; 184:2743-9. [PMID: 20200285 DOI: 10.4049/jimmunol.0902937] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Proteins of the transmembrane (or T cell) Ig and mucin domain (TIM) family are expressed by multiple cell types within the immune systems of rodents and humans. Studies over the last several years have suggested that these proteins may be promising targets for therapeutic manipulation of immune responses. This review discusses the progress that has been made in understanding TIM protein function in the immune system, as well as some of the unresolved issues that remain on the road to eventually targeting TIM proteins for enhancing or inhibiting immunity.
Collapse
Affiliation(s)
- Lawrence P Kane
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| |
Collapse
|
442
|
Phosphatidylserine receptor Tim-4 is essential for the maintenance of the homeostatic state of resident peritoneal macrophages. Proc Natl Acad Sci U S A 2010; 107:8712-7. [PMID: 20421466 DOI: 10.1073/pnas.0910929107] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tim-4 is a phosphatidylserine (PS) receptor that is expressed on various macrophage subsets. It mediates phagocytosis of apoptotic cells by peritoneal macrophages. The in vivo functions of Tim-4 in phagocytosis and immune responses, however, are still unclear. In this study, we show that Tim-4 quickly forms punctate caps on contact with apoptotic cells, in contrast to its normal diffused expression on the surface of phagocytes. Despite its expression in marginal zone and tingible body macrophages, Tim-4 deficiency only minimally affects outcomes of several acute immune challenges, including the trapping of apoptotic cells in the marginal zone, the clearance apoptotic cells by tingible body macrophages, and the formation of germinal centers and elicitation of antibody responses against sheep red blood cells (SRBCs). In addition, Tim-4(-/-) resident peritoneal macrophages (rPMs) phagocytose necrotic cells and other opsonized targets normally. However, their ability to bind and engulf apoptotic cells is significantly compromised both in vitro and in vivo. Most importantly, Tim-4 deficiency results in increased cellularity in the peritoneum. Resting rPMs produce higher TNF-alpha in culture. Their response to LPS, on the contrary, is dampened. Our data support an indispensible role of Tim-4 in maintaining the homeostasis of rPMs.
Collapse
|
443
|
T and B cell hyperactivity and autoimmunity associated with niche-specific defects in apoptotic body clearance in TIM-4-deficient mice. Proc Natl Acad Sci U S A 2010; 107:8706-11. [PMID: 20368430 DOI: 10.1073/pnas.0910359107] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
TIM-4, a member of the TIM family expressed on antigen-presenting cells, binds to phosphatidylserine exposed on the surface of apoptotic bodies. However, the significance of this interaction in vivo remains unknown because other receptors have been implicated in the clearance of apoptotic bodies and could compensate for the TIM-4 deficiency in vivo. In this study, we describe the generation of TIM-4-deficient mice and address whether TIM-4 serves a unique function in vivo. We show that TIM-4(-/-) peritoneal macrophages and B-1 cells do not efficiently engulf apoptotic bodies in vitro, or clear apoptotic bodies in vivo. TIM-4-deficient mice have hyperactive T and B cells, elevated levels of serum Ig, and develop antibodies to double-stranded DNA. Taken together, we show that TIM-4 is critical for the clearance of apoptotic bodies in vivo, and that lack of TIM-4 results in aberrant persistence of apoptotic bodies leading to dysregulated lymphocyte activation and signs of systemic autoimmunity.
Collapse
|
444
|
Infection and apoptosis as a combined inflammatory trigger. Curr Opin Immunol 2010; 22:55-62. [PMID: 20137905 DOI: 10.1016/j.coi.2010.01.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 01/05/2010] [Accepted: 01/15/2010] [Indexed: 01/04/2023]
Abstract
While inflammatory phagocytosis of microbial pathogens and non-inflammatory phagocytosis of apoptotic cells have each been studied extensively, the consequences of innate immune recognition of host cells undergoing apoptosis as a direct result of infection are unclear. In this situation, the innate immune system is confronted with mixed signals, those from apoptotic cells and those from the infecting pathogen. Nuclear receptor activation has been implicated downstream of apoptotic cell recognition while Toll-like receptors are the prototypical inflammatory receptors engaged during infection. When the two signals combine, a new set of events takes place beginning with transrepression of a subset of inflammatory-response genes and ending with the induction of a T helper-17 adaptive immune response. This response is best suited for clearing the infecting pathogen and repairing the damage that occurred to the host tissue during infection.
Collapse
|
445
|
Hsu TY, Wu YC. Engulfment of apoptotic cells in C. elegans is mediated by integrin alpha/SRC signaling. Curr Biol 2010; 20:477-86. [PMID: 20226672 DOI: 10.1016/j.cub.2010.01.062] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Revised: 01/16/2010] [Accepted: 01/28/2010] [Indexed: 11/26/2022]
Abstract
BACKGROUND Engulfment of apoptotic cells is important for cellular homeostasis and the development of multicellular organisms. Previous studies have shown that more than one engulfment receptors act upstream of the conserved signaling module CED-2/CrkII-CED-5/Dock180-CED-12/ELMO for cell corpse removal in C. elegans, but little is known about their identities, except for PSR-1. RESULTS We show that in C. elegans, integrin functions as an engulfment receptor in the recognition and subsequent phagocytosis of apoptotic cells. Mutations in the integrin alpha gene ina-1 result in inefficient engulfment of apoptotic cells. The INA-1 extracellular domain binds to the surface of apoptotic cells in vivo. This binding requires the phospholipid scramblase SCRM-1, which promotes the exposure of phosphatidylserine, a key "eat me" signal in apoptotic cells. Furthermore, we identify an essential role of the nonreceptor tyrosine kinase SRC-1 in INA-1-mediated cell corpse removal. INA-1 and SRC-1 both act in the engulfing cells during the engulfment process and are colocalized in the phagocytic cups extending around apoptotic cells. Finally, our genetic and biochemical data suggest that SRC-1 relays the scrm-1-dependent engulfment signal from INA-1 to the conserved motility-promoting signaling complex CED-2/CrkII-CED-5/Dock180-CED-12/ELMO for CED-10/Rac activation, probably by interactions with CED-2 and the INA-1 cytoplasmic domain, leading to the internalization of apoptotic cells. CONCLUSIONS Our findings provide evidence that integrin functions as an engulfment receptor at the whole-organism level and reveal a nonconventional signaling pathway in which SRC provides a FAK-independent linkage between integrin alpha and the common motility-promoting signaling module CED-2/CrkII-CED-5/Dock180-CED-12/ELMO to promote the internalization of apoptotic cells.
Collapse
Affiliation(s)
- Tsung-Yuan Hsu
- Institute of Molecular and Cellular Biology, National Taiwan University, Number 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
| | | |
Collapse
|
446
|
Kim HS, Kim HS, Lee CW, Chung DH. T cell Ig domain and mucin domain 1 engagement on invariant NKT cells in the presence of TCR stimulation enhances IL-4 production but inhibits IFN-gamma production. THE JOURNAL OF IMMUNOLOGY 2010; 184:4095-106. [PMID: 20220086 DOI: 10.4049/jimmunol.0901991] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The T cell Ig domain and mucin domain (TIM)1 protein expressed on the surface of Th2 cells regulates the immune response by modulating cytokine production. However, the functional roles of TIM1 have not been examined in NKT cells. Therefore, we investigated the immunologic effects of TIM1 on NKT cells. We found that mouse NK1.1(+)TCR-beta(+), alpha-galactosyl ceramide/CD1d dimer(+) NKT, and NKT hybridoma (DN32.D3) cells constitutively express TIM1 and TIM4 on their surface. Engagement of TIM1 on NKT cells by any of several anti-TIM1 mAbs suppressed the production of IFN-gamma in the presence of TCR stimulation in vitro and in vivo, whereas the effects of such engagement on Th2 cytokine production by the NKT cells varied with the particular anti-TIM1 Ab clone. Moreover, in DN32.D3 TIM4-knockdown NKT hybridoma cells, TIM1 engagement by rTIM1 or TIM4 enhanced IL-4 production while inhibiting IFN-gamma production in the presence of alpha-galactosyl ceramide stimulation. TIM1 engagement increased GATA-3 expression but reduced T-bet expression in NKT cells in the presence of TCR engagement. The adoptive transfer of NKT cells preincubated with anti-TIM1 mAbs into Jalpha18(-/-) mice aggravated bleomycin-induced pulmonary fibrosis by suppressing IFN-gamma production. Taken together, these results suggest that TIM1 costimulation on NKT cells enhances the cellular production of IL-4 while inhibiting the production of IFN-gamma. Thus, as a differential regulator of the immune response, TIM1 on NKT cells may be a useful therapeutic target for immune diseases.
Collapse
Affiliation(s)
- Hye Sung Kim
- Department of Pathology, SeoulNational University College of Medicine, Seoul, Korea
| | | | | | | |
Collapse
|
447
|
Ko GJ, Grigoryev DN, Linfert D, Jang HR, Watkins T, Cheadle C, Racusen L, Rabb H. Transcriptional analysis of kidneys during repair from AKI reveals possible roles for NGAL and KIM-1 as biomarkers of AKI-to-CKD transition. Am J Physiol Renal Physiol 2010; 298:F1472-83. [PMID: 20181666 DOI: 10.1152/ajprenal.00619.2009] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Acute kidney injury (AKI) is being increasingly shown to be a risk factor for chronic kidney disease (CKD), but little is known about the possible mechanistic links. We hypothesized that analysis of the genomic signature in the repair stage after AKI would reveal pathways that could link AKI and CKD. Unilateral renal pedicle clamping for 45 min was performed in male C57BL/6J mice. Mice were euthanized at 3, 10, and 28 days after ischemia-reperfusion injury (IRI). Total RNA was isolated from kidney and analyzed using an Illumina mouse array. Among 24,600 tested genes, 242, 146, and 46 genes were upregulated at days 3, 10, and 28 after IRI, and 85, 35, and 0 genes were downregulated, respectively. Gene ontology analysis showed that gene expression changes were primarily related to immune and inflammatory pathways both early and late after AKI. The most highly upregulated genes late after AKI were hepatitis A virus cellular receptor 1 (Havcr1) and lipocalin 2 (Lcn2), which code for kidney injury molecule-1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL), respectively. This was unexpected since they are both primarily potential biomarkers of the early stage of AKI. Furthermore, increases observed in gene expression in amiloride binding protein 1, vascular cell adhesion molecule-1, and endothelin 1 could explain the salt-sensitive hypertension that can follow AKI. These data suggested that 1) persistent inflammation and immune responses late after AKI could contribute to the pathogenesis of CKD, 2) late upregulation of KIM-1 and NGAL could be a useful marker for sustained renal injury after AKI, and 3) hypertension-related gene changes could underlie mechanisms for persistent renal and vascular injury after AKI.
Collapse
Affiliation(s)
- Gang Jee Ko
- Nephrology Division, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
448
|
Noh JY, Park JS, Lim KM, Kim K, Bae ON, Chung SM, Shin S, Chung JH. A naphthoquinone derivative can induce anemia through phosphatidylserine exposure-mediated erythrophagocytosis. J Pharmacol Exp Ther 2010; 333:414-20. [PMID: 20164298 DOI: 10.1124/jpet.109.164608] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A naphthoquinone derivative, beta-lapachone (betaL; 3,4-dihydro-2,2-dimethyl-2H-naphthol[1,2-b]pyran-5,6-dione), is receiving huge attention for its potent therapeutic effects against various diseases. However, during the preclinical safety evaluation, repeated oral treatment of betaL in rats induced anemia, i.e., a significantly decreased erythrocyte count. In this study, in an effort to elucidate the mechanism underlying the betaL-induced anemia, we investigated the effects of betaL on erythrocytes with freshly isolated human erythrocytes in vitro and rat in vivo. betaL did not induce erythrocyte hemolysis, indicating that direct hemotoxicity was not involved in betaL-associated anemia. Meanwhile, phosphatidylserine (PS) exposure along with spherocytic shape change and microvesicle generation, important factors in the facilitation of erythrophagocytosis, were increased significantly by betaL. The PS exposure on erythrocytes was from betaL-induced reactive oxygen species generation and subsequent depletion of reduced glutathione and protein thiol, which culminated in the modified activities of phospholipid translocases, i.e., inhibition of flippase and activation of scramblase. It is important to note that coincubation of macrophage with betaL-treated erythrocyte in vitro showed increased erythrophagocytosis, demonstrating that the removal of erythrocyte by macrophage can be facilitated by betaL-induced PS exposure. In good accordance with these in vitro results, after oral administration of betaL in rats, increased PS exposure and depletion of glutathione were observed along with enhanced splenic sequestration of erythrocytes. In conclusion, these results suggest that betaL-induced anemia might be mediated through the PS exposure and subsequent erythrophagocytosis, providing novel insight into the drug-induced anemia.
Collapse
Affiliation(s)
- Ji-Yoon Noh
- College of Pharmacy, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
449
|
Blume KE, Soeroes S, Waibel M, Keppeler H, Wesselborg S, Herrmann M, Schulze-Osthoff K, Lauber K. Cell surface externalization of annexin A1 as a failsafe mechanism preventing inflammatory responses during secondary necrosis. THE JOURNAL OF IMMUNOLOGY 2010; 183:8138-47. [PMID: 20007579 DOI: 10.4049/jimmunol.0902250] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The engulfment of apoptotic cells is of crucial importance for tissue homeostasis in multicellular organisms. A failure of this process results in secondary necrosis triggering proinflammatory cytokine production and autoimmune disease. In the present study, we investigated the role of annexin A1, an intracellular protein that has been implicated in the efficient removal of apoptotic cells. Consistent with its function as bridging protein in the phagocyte synapse, opsonization of apoptotic cells with purified annexin A1 strongly enhanced their phagocytic uptake. A detailed analysis, however, surprisingly revealed that annexin A1 was hardly exposed to the cell surface of primary apoptotic cells, but was strongly externalized only on secondary necrotic cells. Interestingly, while the exposure of annexin A1 failed to promote the uptake of these late secondary necrotic cells, it efficiently prevented induction of cytokine production in macrophages during engulfment of secondary necrotic cells. Our results therefore suggest that annexin A1 exposure during secondary necrosis provides an important failsafe mechanism counteracting inflammatory responses, even when the timely clearance of apoptotic cells has failed.
Collapse
Affiliation(s)
- Karin E Blume
- Department of Internal Medicine I, University of Tuebingen, Tuebingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
450
|
Giodini A, Albert ML. A whodunit: an appointment with death. Curr Opin Immunol 2010; 22:94-108. [DOI: 10.1016/j.coi.2010.01.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 01/27/2010] [Accepted: 01/28/2010] [Indexed: 01/09/2023]
|