401
|
Brain fuel uptake during aging and in Alzheimer's disease: A positron emission tomography and MRI study comparing glucose and a new ketone tracer – 11C-acetoacetate. Proc Nutr Soc 2013. [DOI: 10.1017/s0029665113001225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
402
|
Candeias E, Duarte AI, Carvalho C, Correia SC, Cardoso S, Santos RX, Plácido AI, Perry G, Moreira PI. The impairment of insulin signaling in Alzheimer's disease. IUBMB Life 2012; 64:951-7. [PMID: 23129399 DOI: 10.1002/iub.1098] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 09/19/2012] [Indexed: 01/07/2023]
Abstract
Alterations of the insulin signaling cascade underlie cognitive decline and the development of several neurodegenerative diseases. In recent years, a great interest has been put in studying the interaction between diabetes and Alzheimer's disease (AD). In fact, evidence shows that both diseases present several biochemical similarities including defects in the insulin signaling pathway. Here, we give an overview of the main functions of insulin in the central nervous system. The impact of insulin signaling impairment in brain aging and AD is also discussed. Finally, we present evidence supporting the notion that insulin is a link between diabetes and AD.
Collapse
Affiliation(s)
- Emanuel Candeias
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
403
|
Su Y, Jono H, Misumi Y, Senokuchi T, Guo J, Ueda M, Shinriki S, Tasaki M, Shono M, Obayashi K, Yamagata K, Araki E, Ando Y. Novel function of transthyretin in pancreatic alpha cells. FEBS Lett 2012; 586:4215-22. [PMID: 23108050 DOI: 10.1016/j.febslet.2012.10.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 10/04/2012] [Accepted: 10/16/2012] [Indexed: 10/27/2022]
Abstract
Although transthyretin (TTR) is expressed in pancreatic alpha (glucagon) cells in the islets of Langerhans, the function of TTR in pancreatic alpha cells remains unknown. In this study, by using TTR knockout (TTR KO) mice, we determined the novel role of TTR in glucose homeostasis. We demonstrated that TTR KO mice evidenced impaired recovery of blood glucose and glucagon levels. Lack of TTR induced significantly lower levels of glucagon in the islets of Langerhans. These results suggest that TTR expressed in pancreatic alpha cells may play important roles in glucose homeostasis via regulating the expression of glucagon.
Collapse
Affiliation(s)
- Yu Su
- Department of Diagnostic Medicine, Graduate School of Medical Sciences, Kumamoto University Hospital, Kumamoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
404
|
Roy M, Nugent S, Tremblay-Mercier J, Tremblay S, Courchesne-Loyer A, Beaudoin JF, Tremblay L, Descoteaux M, Lecomte R, Cunnane SC. The ketogenic diet increases brain glucose and ketone uptake in aged rats: a dual tracer PET and volumetric MRI study. Brain Res 2012; 1488:14-23. [PMID: 23063891 DOI: 10.1016/j.brainres.2012.10.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 10/04/2012] [Indexed: 10/27/2022]
Abstract
Despite decades of study, it is still unclear whether regional brain glucose uptake is lower in the cognitively healthy elderly. Whether regional brain uptake of ketones (β-hydroxybutyrate and acetoacetate [AcAc]), the main alternative brain fuel to glucose, changes with age is unknown. We used a sequential, dual tracer positron emission tomography (PET) protocol to quantify brain (18)F-fluorodeoxyglucose ((18)F-FDG) and (11)C-AcAc uptake in two studies with healthy, male Sprague-Dawley rats: (i) Aged (21 months; 21M) versus young (4 months; 4M) rats, and (ii) The effect of a 14 day high-fat ketogenic diet (KD) on brain (18)F-FDG and (11)C-AcAc uptake in 24 month old rats (24M). Similar whole brain volumes assessed by magnetic resonance imaging, were observed in aged 21M versus 4M rats, but the lateral ventricles were 30% larger in the 21M rats (p=0.001). Whole brain cerebral metabolic rates of AcAc (CMR(AcAc)) and glucose (CMR(glc)) did not differ between 21M and 4M rats, but were 28% and 44% higher, respectively, in 24M-KD compared to 24M rats. The region-to-whole brain ratio of CMR(glc) was 37-41% lower in the cortex and 40-45% lower in the cerebellum compared to CMR(AcAc) in 4M and 21M rats. We conclude that a quantitative measure of uptake of the brain's two principal exogenous fuels was generally similar in healthy aged and young rats, that the % of distribution across brain regions differed between ketones and glucose, and that brain uptake of both fuels was stimulated by mild, experimental ketonemia.
Collapse
Affiliation(s)
- Maggie Roy
- Research Center on Aging, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
405
|
Methylene blue as a cerebral metabolic and hemodynamic enhancer. PLoS One 2012; 7:e46585. [PMID: 23056355 PMCID: PMC3467226 DOI: 10.1371/journal.pone.0046585] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 09/03/2012] [Indexed: 12/04/2022] Open
Abstract
By restoring mitochondrial function, methylene blue (MB) is an effective neuroprotectant in many neurological disorders (e.g., Parkinson’s and Alzheimer’s diseases). MB has also been proposed as a brain metabolic enhancer because of its action on mitochondrial cytochrome c oxidase. We used in vitro and in vivo approaches to determine how MB affects brain metabolism and hemodynamics. For in vitro, we evaluated the effect of MB on brain mitochondrial function, oxygen consumption, and glucose uptake. For in vivo, we applied neuroimaging and intravenous measurements to determine MB’s effect on glucose uptake, cerebral blood flow (CBF), and cerebral metabolic rate of oxygen (CMRO2) under normoxic and hypoxic conditions in rats. MB significantly increases mitochondrial complex I–III activity in isolated mitochondria and enhances oxygen consumption and glucose uptake in HT-22 cells. Using positron emission tomography and magnetic resonance imaging (MRI), we observed significant increases in brain glucose uptake, CBF, and CMRO2 under both normoxic and hypoxic conditions. Further, MRI revealed that MB dramatically increased CBF in the hippocampus and in the cingulate, motor, and frontoparietal cortices, areas of the brain affected by Alzheimer’s and Parkinson’s diseases. Our results suggest that MB can enhance brain metabolism and hemodynamics, and multimetric neuroimaging systems offer a noninvasive, nondestructive way to evaluate treatment efficacy.
Collapse
|
406
|
Abstract
The occurrence of altered brain glucose metabolism has long been suggested in both diabetes and Alzheimer’s diseases. However, the preceding mechanism to altered glucose metabolism has not been well understood. Glucose enters the brain via glucose transporters primarily present at the blood-brain barrier. Any changes in glucose transporter function and expression dramatically affects brain glucose homeostasis and function. In the brains of both diabetic and Alzheimer’s disease patients, changes in glucose transporter function and expression have been observed, but a possible link between the altered glucose transporter function and disease progress is missing. Future recognition of the role of new glucose transporter isoforms in the brain may provide a better understanding of brain glucose metabolism in normal and disease states. Elucidation of clinical pathological mechanisms related to glucose transport and metabolism may provide common links to the etiology of these two diseases. Considering these facts, in this review we provide a current understanding of the vital roles of a variety of glucose transporters in the normal, diabetic and Alzheimer’s disease brain.
Collapse
Affiliation(s)
- Kaushik Shah
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S. Coulter Street, Amarillo, TX 79106, USA.
| | | | | |
Collapse
|
407
|
Shah K, Desilva S, Abbruscato T. The role of glucose transporters in brain disease: diabetes and Alzheimer’s Disease. Int J Mol Sci 2012. [PMID: 23202918 DOI: 10.3390/ijms13101262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Abstract
The occurrence of altered brain glucose metabolism has long been suggested in both diabetes and Alzheimer’s diseases. However, the preceding mechanism to altered glucose metabolism has not been well understood. Glucose enters the brain via glucose transporters primarily present at the blood-brain barrier. Any changes in glucose transporter function and expression dramatically affects brain glucose homeostasis and function. In the brains of both diabetic and Alzheimer’s disease patients, changes in glucose transporter function and expression have been observed, but a possible link between the altered glucose transporter function and disease progress is missing. Future recognition of the role of new glucose transporter isoforms in the brain may provide a better understanding of brain glucose metabolism in normal and disease states. Elucidation of clinical pathological mechanisms related to glucose transport and metabolism may provide common links to the etiology of these two diseases. Considering these facts, in this review we provide a current understanding of the vital roles of a variety of glucose transporters in the normal, diabetic and Alzheimer’s disease brain.
Collapse
Affiliation(s)
- Kaushik Shah
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S. Coulter Street, Amarillo, TX 79106, USA.
| | | | | |
Collapse
|
408
|
Newington JT, Rappon T, Albers S, Wong DY, Rylett RJ, Cumming RC. Overexpression of pyruvate dehydrogenase kinase 1 and lactate dehydrogenase A in nerve cells confers resistance to amyloid β and other toxins by decreasing mitochondrial respiration and reactive oxygen species production. J Biol Chem 2012; 287:37245-58. [PMID: 22948140 DOI: 10.1074/jbc.m112.366195] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
We previously demonstrated that nerve cell lines selected for resistance to amyloid β (Aβ) peptide exhibit elevated aerobic glycolysis in part due to increased expression of pyruvate dehydrogenase kinase 1 (PDK1) and lactate dehydrogenase A (LDHA). Here, we show that overexpression of either PDK1 or LDHA in a rat CNS cell line (B12) confers resistance to Aβ and other neurotoxins. Treatment of Aβ-sensitive cells with various toxins resulted in mitochondrial hyperpolarization, immediately followed by rapid depolarization and cell death, events accompanied by increased production of cellular reactive oxygen species (ROS). In contrast, cells expressing either PDK1 or LDHA maintained a lower mitochondrial membrane potential and decreased ROS production with or without exposure to toxins. Additionally, PDK1- and LDHA-overexpressing cells exhibited decreased oxygen consumption but maintained levels of ATP under both normal culture conditions and following Aβ treatment. Interestingly, immunoblot analysis of wild type mouse primary cortical neurons treated with Aβ or cortical tissue extracts from 12-month-old APPswe/PS1dE9 transgenic mice showed decreased expression of LDHA and PDK1 when compared with controls. Additionally, post-mortem brain extracts from patients with Alzheimer disease exhibited a decrease in PDK1 expression compared with nondemented patients. Collectively, these findings indicate that key Warburg effect enzymes play a central role in mediating neuronal resistance to Αβ or other neurotoxins by decreasing mitochondrial activity and subsequent ROS production. Maintenance of PDK1 or LDHA expression in certain regions of the brain may explain why some individuals tolerate high levels of Aβ deposition without developing Alzheimer disease.
Collapse
Affiliation(s)
- Jordan T Newington
- Department of Biology, University of Western Ontario, London, Ontario N6A 5B7, Canada
| | | | | | | | | | | |
Collapse
|
409
|
Abstract
Molecular mechanisms underlying brain structure and function are affected by nutrition throughout the life cycle, with profound implications for health and disease. Responses to nutrition are in turn influenced by individual differences in multiple target genes. Recent advances in genomics and epigenomics are increasing understanding of mechanisms by which nutrition and genes interact. This review starts with a short account of current knowledge on nutrition-gene interactions, focusing on the significance of epigenetics to nutritional regulation of gene expression, and the roles of SNP and copy number variants (CNV) in determining individual responses to nutrition. A critical assessment is then provided of recent advances in nutrition-gene interactions, and especially energy status, in three related areas: (i) mental health and well-being, (ii) mental disorders and schizophrenia, (iii) neurological (neurodevelopmental and neurodegenerative) disorders and Alzheimer's disease. Optimal energy status, including physical activity, has a positive role in mental health. By contrast, sub-optimal energy status, including undernutrition and overnutrition, is implicated in many disorders of mental health and neurology. These actions are mediated by changes in energy metabolism and multiple signalling molecules, e.g. brain-derived neurotrophic factor (BDNF). They often involve epigenetic mechanisms, including DNA methylation and histone modifications. Recent advances show that many brain disorders result from a sophisticated network of interactions between numerous environmental and genetic factors. Personal, social and economic costs of sub-optimal brain health are immense. Future advances in understanding the complex interactions between nutrition, genes and the brain should help to reduce these costs and enhance quality of life.
Collapse
|
410
|
York B, Reineke EL, Sagen JV, Nikolai BC, Zhou S, Louet JF, Chopra AR, Chen X, Reed G, Noebels J, Adesina AM, Yu H, Wong LJC, Tsimelzon A, Hilsenbeck S, Stevens RD, Wenner BR, Ilkayeva O, Xu J, Newgard CB, O'Malley BW. Ablation of steroid receptor coactivator-3 resembles the human CACT metabolic myopathy. Cell Metab 2012; 15:752-63. [PMID: 22560224 PMCID: PMC3349072 DOI: 10.1016/j.cmet.2012.03.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 01/18/2012] [Accepted: 03/27/2012] [Indexed: 10/28/2022]
Abstract
Oxidation of lipid substrates is essential for survival in fasting and other catabolic conditions, sparing glucose for the brain and other glucose-dependent tissues. Here we show Steroid Receptor Coactivator-3 (SRC-3) plays a central role in long chain fatty acid metabolism by directly regulating carnitine/acyl-carnitine translocase (CACT) gene expression. Genetic deficiency of CACT in humans is accompanied by a constellation of metabolic and toxicity phenotypes including hypoketonemia, hypoglycemia, hyperammonemia, and impaired neurologic, cardiac and skeletal muscle performance, each of which is apparent in mice lacking SRC-3 expression. Consistent with human cases of CACT deficiency, dietary rescue with short chain fatty acids drastically attenuates the clinical hallmarks of the disease in mice devoid of SRC-3. Collectively, our results position SRC-3 as a key regulator of β-oxidation. Moreover, these findings allow us to consider platform coactivators such as the SRCs as potential contributors to syndromes such as CACT deficiency, previously considered as monogenic.
Collapse
Affiliation(s)
- Brian York
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
411
|
Nicotinamide, NAD(P)(H), and Methyl-Group Homeostasis Evolved and Became a Determinant of Ageing Diseases: Hypotheses and Lessons from Pellagra. Curr Gerontol Geriatr Res 2012; 2012:302875. [PMID: 22536229 PMCID: PMC3318212 DOI: 10.1155/2012/302875] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 12/19/2011] [Indexed: 01/22/2023] Open
Abstract
Compartmentalized redox faults are common to ageing diseases. Dietary constituents are catabolized to NAD(H) donating electrons producing proton-based bioenergy in coevolved, cross-species and cross-organ networks. Nicotinamide and NAD deficiency from poor diet or high expenditure causes pellagra, an ageing and dementing disorder with lost robustness to infection and stress. Nicotinamide and stress induce Nicotinamide-N-methyltransferase (NNMT) improving choline retention but consume methyl groups. High NNMT activity is linked to Parkinson's, cancers, and diseases of affluence. Optimising nicotinamide and choline/methyl group availability is important for brain development and increased during our evolution raising metabolic and methylome ceilings through dietary/metabolic symbiotic means but strict energy constraints remain and life-history tradeoffs are the rule. An optimal energy, NAD and methyl group supply, avoiding hypo and hyper-vitaminoses nicotinamide and choline, is important to healthy ageing and avoids utilising double-edged symbionts or uncontrolled autophagy or reversions to fermentation reactions in inflammatory and cancerous tissue that all redistribute NAD(P)(H), but incur high allostatic costs.
Collapse
|
412
|
Nugent S, Croteau E, Pifferi F, Fortier M, Tremblay S, Turcotte E, Cunnane SC. Brain and systemic glucose metabolism in the healthy elderly following fish oil supplementation. Prostaglandins Leukot Essent Fatty Acids 2011; 85:287-91. [PMID: 21795034 DOI: 10.1016/j.plefa.2011.04.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Cerebral metabolic rate of glucose (CMRg) is lower in individuals affected by cognitive decline and dementia, especially in Alzheimer's disease. However, as yet there is no consensus as to whether CMRg decreases during healthy aging. Epidemiological studies show that weekly consumption of fish abundant in ω3 fatty acids has a protective effect on cognition during aging. Thus, the primary objective of this human study was to use positron emission tomography analysis with (18)F-fluorodeoxyglucose to evaluate whether supplementation with a fish oil rich in ω3 fatty acids increases cerebral glucose metabolism in young or elderly adults. Healthy young (23±5y old; n=5) and elderly (76±3y old; n=6) women and men were included in the study. Semi-quantitative expression of the data as 'standardized uptake values' showed that elderly participants had significantly lower cerebral glucose metabolism compared with the young group. However, when expressed quantitatively a CMRg, there was no effect of age or ω3 supplementation on glucose metabolism in any of the brains regions studied. Higher plasma triglyceride levels and higher plasma insulin levels were associated with lower CMRg in several regions, suggesting that a trend towards the metabolic syndrome may be associated with cerebral hypometabolism. We conclude that under these experimental conditions, ω3 supplementation did not affect brain glucose metabolism in the healthy elderly. Future studies in this area should address whether glucose intolerance or other conditions linked to the metabolic syndrome impact negatively on brain glucose metabolism and cognition.
Collapse
Affiliation(s)
- S Nugent
- Research Center on Aging, Université de Sherbrooke, Sherbrooke, Que., Canada J1H 4C4
| | | | | | | | | | | | | |
Collapse
|
413
|
Cerebrovascular disorders: molecular insights and therapeutic opportunities. Nat Neurosci 2011; 14:1390-7. [DOI: 10.1038/nn.2947] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
414
|
Pirchl M, Humpel C. Galactose counteracts hypoglycemia-induced decline of cholinergic neurons at low pH in organotypic rat brain slices of the basal nucleus of Meynert. Pharmacology 2011; 88:245-51. [PMID: 21997669 DOI: 10.1159/000331861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 07/23/2011] [Indexed: 11/19/2022]
Abstract
A growing body of evidence indicates that hypoglycemia and acidosis may contribute to the development of Alzheimer's disease (AD). The cell death of basal forebrain cholinergic neurons constitutes a hallmark of AD and directly correlates with cognitive impairment. The aim of the present study was to investigate, in an organotypic rat brain slice model of the basal nucleus of Meynert, the effects of glucose deprivation on cholinergic neurons under normal and acidic conditions. Furthermore, we were interested to explore whether different saccharides (galactose, fructose, saccharose, lactose) can replace glucose under low pH conditions. Our data show a pH-dependent survival of cholinergic neurons at a high (37.1 mmol/l) glucose level, which was markedly decreased at a low (5.6 mmol/l) glucose level. Galactose (+31.5 mmol/l) significantly counteracted the loss of choline acetyltransferase-positive neurons in low-glucose-treated slices, while fructose, lactose and saccharose only partly protected cholinergic neurons. In conclusion, our results indicate that replacement of glucose with different saccharides, but most potently with galactose, protects cholinergic neurons against hypoglycemia at a low pH.
Collapse
Affiliation(s)
- Michael Pirchl
- Laboratory of Psychiatry and Experimental Alzheimer's Research, Department of Psychiatry and Psychotherapy, Innsbruck Medical University, Innsbruck, Austria
| | | |
Collapse
|
415
|
Henderson ST, Poirier J. Pharmacogenetic analysis of the effects of polymorphisms in APOE, IDE and IL1B on a ketone body based therapeutic on cognition in mild to moderate Alzheimer's disease; a randomized, double-blind, placebo-controlled study. BMC MEDICAL GENETICS 2011; 12:137. [PMID: 21992747 PMCID: PMC3213220 DOI: 10.1186/1471-2350-12-137] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 10/12/2011] [Indexed: 12/31/2022]
Abstract
Background To examine the effect of genetic variation in APOE, IDE and IL1B on the response to induced ketosis in the Alzheimer's Disease Assessment Scale-Cognitive subscale (ADAS-Cog) in subjects with mild to moderate Alzheimer's disease (AD). Methods Genotype effects on ADAS-Cog scores from a randomized, double-blind, placebo-controlled study in mild to moderate AD were examined by an overall two way analysis of variance. In addition, interactions with the carriage status of the epsilon 4 allele of the APOE gene (APOE4) were examined. Results Significant differences in response to induced ketosis were found among non-carriers of putative gain-of-function polymorphisms in rs1143627 and rs16944 in the IL1B gene and among variants of the polymorphism rs2251101 in the IDE gene. Significant differences were found among non-carriers of the APOE4 gene, with notable improvement among the E3/E3 genotype group. Conclusions Variants in APOE, IL1B and IDE may influence the cognitive response to induced ketosis in patients with mild to moderate AD. Trial registration This trial was registered with ClinicalTrials.gov, registry number NCT00142805.
Collapse
|
416
|
Oh HM, Kim SH, Kang SG, Park SJ, Song SW. The Relationship between Metabolic Syndrome and Cognitive Function. Korean J Fam Med 2011; 32:358-66. [PMID: 22745874 PMCID: PMC3383144 DOI: 10.4082/kjfm.2011.32.6.358] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 09/09/2011] [Indexed: 01/21/2023] Open
Abstract
Background Metabolic syndrome has been reported to have adverse effects on cognitive function, although the results are conflicting. The purpose of this study was to examine the relationship between metabolic syndrome and cognitive function in elderly Korean participants older than 60 years. Methods We examined elderly participants who visited the health promotion center in Gyeonggi-do province. We categorized the participants into two groups based on the presence of metabolic syndrome (48 participants in the metabolic syndrome group and 45 in the control group). Cognitive function was assessed in all participants using the Korean version of the Consortium to Establish a Registry for Alzheimer's Disease (CERAD-K). Results Compared with those without metabolic syndrome, participants with metabolic syndrome had lower mean total CERAD-K scores (64.2 ± 11.1 vs. 69.8 ± 9.2, P = 0.010). In the comparison of CERAD-K items, significantly lower scores were observed in the verbal fluency test, the construction recall test, the word list learning test, and trail making B in the group with metabolic syndrome. After controlling age, sex, education, smoking, alcohol, physical activity and the Korean version of the Short Geriatric Depression Scale of Korean, multiple regression analysis showed that metabolic syndrome was independently associated with cognitive function (P = 0.014). Alcohol intake (P = 0.002) and education years (P = 0.001) were also contributing factors to cognitive function. Conclusion This study found a significant relationship between cognitive function and metabolic syndrome. It will be necessary to perform a prospective study to determine whether metabolic syndrome causes cognitive dysfunction or if the correction of metabolic syndrome can improve cognitive function.
Collapse
Affiliation(s)
- Hye-Mi Oh
- Department of Family Medicine, St. Vincent's Hospital, The Catholic University of Korea School of Medicine, Suwon, Korea
| | | | | | | | | |
Collapse
|
417
|
Pifferi F, Tremblay S, Croteau E, Fortier M, Tremblay-Mercier J, Lecomte R, Cunnane SC. Mild experimental ketosis increases brain uptake of 11C-acetoacetate and 18F-fluorodeoxyglucose: a dual-tracer PET imaging study in rats. Nutr Neurosci 2011; 14:51-8. [PMID: 21605500 DOI: 10.1179/1476830510y.0000000001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Brain glucose and ketone uptake was investigated in Fisher rats subjected to mild experimental ketonemia induced by a ketogenic diet (KD) or by 48 hours fasting (F). Two tracers were used, (11)C-acetoacetate ((11)C-AcAc) for ketones and (18)F-fluorodeoxyglucose for glucose, in a dual-tracer format for each animal. Thus, each animal was its own control, starting first on the normal diet, then undergoing 48 hours F, followed by 2 weeks on the KD. In separate rats on the same diet conditions, expression of the transporters of glucose and ketones (glucose transporter 1 (GLUT1) and monocarboxylic acid transporter (MCT1)) was measured in brain microvessel preparations. Compared to controls, uptake of (11)C-AcAc increased more than 2-fold while on the KD or after 48 hours F (P < 0.05). Similar trends were observed for (18)FDG uptake with a 1.9-2.6 times increase on the KD and F, respectively (P < 0.05). Compared to controls, MCT1 expression increased 2-fold on the KD (P < 0.05) but did not change during F. No significant difference was observed across groups for GLUT1 expression. Significant differences across the three groups were observed for plasma beta-hydroxybutyrate (beta-HB), AcAc, glucose, triglycerides, glycerol, and cholesterol (P < 0.05), but no significant differences were observed for free fatty acids, insulin, or lactate. Although the mechanism by which mild ketonemia increases brain glucose uptake remains unclear, the KD clearly increased both the blood-brain barrier expression of MCT1 and stimulated brain (11)C-AcAc uptake. The present dual-tracer positron emission tomography approach may be particularly interesting in neurodegenerative pathologies such as Alzheimer's disease where brain energy supply appears to decline critically.
Collapse
Affiliation(s)
- Fabien Pifferi
- Research Center on Aging, Sherbrooke University Geriatric Institute, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
418
|
Abdul Muneer PM, Alikunju S, Szlachetka AM, Murrin LC, Haorah J. Impairment of brain endothelial glucose transporter by methamphetamine causes blood-brain barrier dysfunction. Mol Neurodegener 2011; 6:23. [PMID: 21426580 PMCID: PMC3073895 DOI: 10.1186/1750-1326-6-23] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Accepted: 03/22/2011] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Methamphetamine (METH), an addictive psycho-stimulant drug with euphoric effect is known to cause neurotoxicity due to oxidative stress, dopamine accumulation and glial cell activation. Here we hypothesized that METH-induced interference of glucose uptake and transport at the endothelium can disrupt the energy requirement of the blood-brain barrier (BBB) function and integrity. We undertake this study because there is no report of METH effects on glucose uptake and transport across the blood-brain barrier (BBB) to date. RESULTS In this study, we demonstrate that METH-induced disruption of glucose uptake by endothelium lead to BBB dysfunction. Our data indicate that a low concentration of METH (20 μM) increased the expression of glucose transporter protein-1 (GLUT1) in primary human brain endothelial cell (hBEC, main component of BBB) without affecting the glucose uptake. A high concentration of 200 μM of METH decreased both the glucose uptake and GLUT1 protein levels in hBEC culture. Transcription process appeared to regulate the changes in METH-induced GLUT1 expression. METH-induced decrease in GLUT1 protein level was associated with reduction in BBB tight junction protein occludin and zonula occludens-1. Functional assessment of the trans-endothelial electrical resistance of the cell monolayers and permeability of dye tracers in animal model validated the pharmacokinetics and molecular findings that inhibition of glucose uptake by GLUT1 inhibitor cytochalasin B (CB) aggravated the METH-induced disruption of the BBB integrity. Application of acetyl-L-carnitine suppressed the effects of METH on glucose uptake and BBB function. CONCLUSION Our findings suggest that impairment of GLUT1 at the brain endothelium by METH may contribute to energy-associated disruption of tight junction assembly and loss of BBB integrity.
Collapse
Affiliation(s)
- P M Abdul Muneer
- Laboratory of Neurovascular Oxidative Injury, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | | | | | | | | |
Collapse
|
419
|
Mazzio EA, Close F, Soliman KFA. The biochemical and cellular basis for nutraceutical strategies to attenuate neurodegeneration in Parkinson's disease. Int J Mol Sci 2011; 12:506-69. [PMID: 21340000 PMCID: PMC3039966 DOI: 10.3390/ijms12010506] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 01/05/2011] [Accepted: 01/14/2011] [Indexed: 12/19/2022] Open
Abstract
Future therapeutic intervention that could effectively decelerate the rate of degeneration within the substantia nigra pars compacta (SNc) could add years of mobility and reduce morbidity associated with Parkinson’s disease (PD). Neurodegenerative decline associated with PD is distinguished by extensive damage to SNc dopaminergic (DAergic) neurons and decay of the striatal tract. While genetic mutations or environmental toxins can precipitate pathology, progressive degenerative succession involves a gradual decline in DA neurotransmission/synaptic uptake, impaired oxidative glucose consumption, a rise in striatal lactate and chronic inflammation. Nutraceuticals play a fundamental role in energy metabolism and signaling transduction pathways that control neurotransmission and inflammation. However, the use of nutritional supplements to slow the progression of PD has met with considerable challenge and has thus far proven unsuccessful. This review re-examines precipitating factors and insults involved in PD and how nutraceuticals can affect each of these biological targets. Discussed are disease dynamics (Sections 1 and 2) and natural substances, vitamins and minerals that could impact disease processes (Section 3). Topics include nutritional influences on α-synuclein aggregation, ubiquitin proteasome function, mTOR signaling/lysosomal-autophagy, energy failure, faulty catecholamine trafficking, DA oxidation, synthesis of toxic DA-quinones, o-semiquinones, benzothiazolines, hyperhomocyseinemia, methylation, inflammation and irreversible oxidation of neuromelanin. In summary, it is clear that future research will be required to consider the multi-faceted nature of this disease and re-examine how and why the use of nutritional multi-vitamin-mineral and plant-based combinations could be used to slow the progression of PD, if possible.
Collapse
Affiliation(s)
- Elizabeth A Mazzio
- Florida A&M University, College of Pharmacy and Pharmaceutical Sciences, Tallahassee, FL 32307, USA; E-Mails: (E.A.M.); (F.C.)
| | | | | |
Collapse
|
420
|
Pluta R. Unresolved questions concerning etiology of Alzheimer's disease: hypometabolism. Nutrition 2010; 27:1-2. [PMID: 20869210 DOI: 10.1016/j.nut.2010.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 07/22/2010] [Indexed: 10/19/2022]
Affiliation(s)
- Ryszard Pluta
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|