401
|
Abstract
BACKGROUND Primary colonic epithelial defects leading to inflammatory responses are considered central to the development of ulcerative colitis (UC). However, a systematic analysis of various colonic subcompartments in the pathogenesis of UC before inflammation remains elusive. Here, we explored changes in colonic subcompartments and their associated niche signals in patient mucosal biopsies and in an animal model of colitis. METHODS Analysis of mucosal biopsies obtained from uninvolved and involved regions of patients with UC and Crohn's disease was performed and compared with normal subjects. Temporal analysis of colonic subcompartments was performed in mice administered with 5% dextran sodium sulphate. Phenotypic enumeration of the crypt subcompartment was complemented with flow cytometric analysis. Members of Notch and Wnt signaling pathways were analyzed by molecular, biochemical, and colocalization studies. RESULTS Phenotypic enumeration of colonocytes' subcompartments from patients revealed significant alterations of the lower crypt, enriched in stem cell and progenitors, independent of inflammation. These changes, unique to UC, were confirmed by immunohistochemistry and molecular analysis. In parallel, a defect in proliferation and Muc2 synthesis was observed. Animal data before inflammation recapitulated human studies. Mechanistic studies revealed that changes in signaling through Wnt primarily affected colonic stem cells, whereas Notch affected progenitor function. CONCLUSIONS Our results thus provide new insights into the development of inflammation and relapse in UC and suggest that the stem cell niche in the colon may influence pathogenesis of the disease.
Collapse
|
402
|
Gregorieff A, Liu Y, Inanlou MR, Khomchuk Y, Wrana JL. Yap-dependent reprogramming of Lgr5(+) stem cells drives intestinal regeneration and cancer. Nature 2015; 526:715-8. [PMID: 26503053 DOI: 10.1038/nature15382] [Citation(s) in RCA: 467] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 08/07/2015] [Indexed: 12/15/2022]
Abstract
The gut epithelium has remarkable self-renewal capacity that under homeostatic conditions is driven by Wnt signalling in Lgr5(+) intestinal stem cells (ISCs). However, the mechanisms underlying ISC regeneration after injury remain poorly understood. The Hippo signalling pathway mediates tissue growth and is important for regeneration. Here we demonstrate in mice that Yap, a downstream transcriptional effector of Hippo, is critical for recovery of intestinal epithelium after exposure to ionizing radiation. Yap transiently reprograms Lgr5(+) ISCs by suppressing Wnt signalling and excessive Paneth cell differentiation, while promoting cell survival and inducing a regenerative program that includes Egf pathway activation. Accordingly, growth of Yap-deficient organoids is rescued by the Egfr ligand epiregulin, and we find that non-cell-autonomous production of stromal epiregulin may compensate for Yap loss in vivo. Consistent with key roles for regenerative signalling in tumorigenesis, we further demonstrate that Yap inactivation abolishes adenomas in the Apc(Min) mouse model of colon cancer, and that Yap-driven expansion of Apc(-/-) organoids requires the Egfr module of the Yap regenerative program. Finally, we show that in vivo Yap is required for progression of early Apc mutant tumour-initiating cells, suppresses their differentiation into Paneth cells, and induces a regenerative program and Egfr signalling. Our studies reveal that upon tissue injury, Yap reprograms Lgr5(+) ISCs by inhibiting the Wnt homeostatic program, while inducing a regenerative program that includes activation of Egfr signalling. Moreover, our findings reveal a key role for the Yap regenerative pathway in driving cancer initiation.
Collapse
Affiliation(s)
- Alex Gregorieff
- Centre for Systems Biology, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Yu Liu
- Centre for Systems Biology, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada.,Department of Molecular Genetics, University of Toronto, Ontario M5S 1A8, Canada
| | - Mohammad R Inanlou
- Centre for Systems Biology, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Yuliya Khomchuk
- Centre for Systems Biology, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Jeffrey L Wrana
- Centre for Systems Biology, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada.,Department of Molecular Genetics, University of Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
403
|
Biswas S, Davis H, Irshad S, Sandberg T, Worthley D, Leedham S. Microenvironmental control of stem cell fate in intestinal homeostasis and disease. J Pathol 2015; 237:135-45. [PMID: 25974319 PMCID: PMC4744721 DOI: 10.1002/path.4563] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 05/07/2015] [Accepted: 05/08/2015] [Indexed: 12/27/2022]
Abstract
The conventional model of intestinal epithelial architecture describes a unidirectional tissue organizational hierarchy with stem cells situated at the crypt base and daughter cells proliferating and terminally differentiating as they progress along the vertical (crypt-luminal) axis. In this model, the fate of a cell that has left the niche is determined and its lifespan limited. Evidence is accumulating to suggest that stem cell control and daughter cell fate determination is not solely an intrinsic, cell autonomous property but is heavily influenced by the microenvironment including paracrine, mesenchymal, and endogenous epithelial morphogen gradients. Recent research suggests that in intestinal homeostasis, stem cells transit reversibly between states of variable competence in the niche. Furthermore, selective pressures that disrupt the homeostatic balance, such as intestinal inflammation or morphogen dysregulation, can cause committed progenitor cells and even some differentiated cells to regain stem cell properties. Importantly, it has been recently shown that this disruption of cell fate determination can lead to somatic mutation and neoplastic transformation of cells situated outside the crypt base stem cell niche. This paper reviews the exciting developments in the study of stem cell dynamics in homeostasis, intestinal regeneration, and carcinogenesis, and explores the implications for human disease and cancer therapies.
Collapse
Affiliation(s)
- Sujata Biswas
- Gastrointestinal Stem Cell Biology Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
- Translational Gastroenterology Unit, Experimental Medicine Division, Nuffield Department of Clinical Medicine, John Radcliffe Hospital, Headington, Oxford, UK
| | - Hayley Davis
- Gastrointestinal Stem Cell Biology Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Shazia Irshad
- Gastrointestinal Stem Cell Biology Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Tessa Sandberg
- Molecular and Population Genetics Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Daniel Worthley
- South Australian Health and Medical Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Simon Leedham
- Gastrointestinal Stem Cell Biology Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
- Translational Gastroenterology Unit, Experimental Medicine Division, Nuffield Department of Clinical Medicine, John Radcliffe Hospital, Headington, Oxford, UK
| |
Collapse
|
404
|
Pollom EL, Deng L, Pai RK, Brown JM, Giaccia A, Loo BW, Shultz DB, Le QT, Koong AC, Chang DT. Gastrointestinal Toxicities With Combined Antiangiogenic and Stereotactic Body Radiation Therapy. Int J Radiat Oncol Biol Phys 2015; 92:568-76. [PMID: 26068491 DOI: 10.1016/j.ijrobp.2015.02.016] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 02/03/2015] [Accepted: 02/09/2015] [Indexed: 12/14/2022]
Abstract
Combining the latest targeted biologic agents with the most advanced radiation technologies has been an exciting development in the treatment of cancer patients. Stereotactic body radiation therapy (SBRT) is an ablative radiation approach that has become established for the treatment of a variety of malignancies, and it has been increasingly used in combination with biologic agents, including those targeting angiogenesis-specific pathways. Multiple reports have emerged describing unanticipated toxicities arising from the combination of SBRT and angiogenesis-targeting agents, particularly of late luminal gastrointestinal toxicities. In this review, we summarize the literature describing these toxicities, explore the biological mechanism of action of toxicity with the combined use of antiangiogenic therapies, and discuss areas of future research, so that this combination of treatment modalities can continue to be used in broader clinical contexts.
Collapse
Affiliation(s)
- Erqi L Pollom
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Lei Deng
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Reetesh K Pai
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - J Martin Brown
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Amato Giaccia
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Billy W Loo
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - David B Shultz
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Quynh Thu Le
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Albert C Koong
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Daniel T Chang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
405
|
Myant K, Qiao X, Halonen T, Come C, Laine A, Janghorban M, Partanen JI, Cassidy J, Ogg EL, Cammareri P, Laiterä T, Okkeri J, Klefström J, Sears RC, Sansom OJ, Westermarck J. Serine 62-Phosphorylated MYC Associates with Nuclear Lamins and Its Regulation by CIP2A Is Essential for Regenerative Proliferation. Cell Rep 2015; 12:1019-31. [PMID: 26235622 PMCID: PMC4535171 DOI: 10.1016/j.celrep.2015.07.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 04/24/2015] [Accepted: 07/01/2015] [Indexed: 02/07/2023] Open
Abstract
An understanding of the mechanisms determining MYC's transcriptional and proliferation-promoting activities in vivo could facilitate approaches for MYC targeting. However, post-translational mechanisms that control MYC function in vivo are poorly understood. Here, we demonstrate that MYC phosphorylation at serine 62 enhances MYC accumulation on Lamin A/C-associated nuclear structures and that the protein phosphatase 2A (PP2A) inhibitor protein CIP2A is required for this process. CIP2A is also critical for serum-induced MYC phosphorylation and for MYC-elicited proliferation induction in vitro. Complementary transgenic approaches and an intestinal regeneration model further demonstrated the in vivo importance of CIP2A and serine 62 phosphorylation for MYC activity upon DNA damage. However, targeting of CIP2A did not influence the normal function of intestinal crypt cells. These data underline the importance of nuclear organization in the regulation of MYC phosphorylation, leading to an in vivo demonstration of a strategy for inhibiting MYC activity without detrimental physiological effects.
Collapse
Affiliation(s)
- Kevin Myant
- The Beatson Institute for Cancer Research, Glasgow G61 1BD, UK
| | - Xi Qiao
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Department of Pathology, University of Turku, 20520 Turku, Finland
| | - Tuuli Halonen
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Christophe Come
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Anni Laine
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Mahnaz Janghorban
- Department of Molecular and Medical Genetics and Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Johanna I Partanen
- Research Programs Unit, Translational Cancer Biology and Institute of Biomedicine, University of Helsinki, 00014 Helsinki, Finland
| | - John Cassidy
- The Beatson Institute for Cancer Research, Glasgow G61 1BD, UK
| | - Erinn-Lee Ogg
- The Beatson Institute for Cancer Research, Glasgow G61 1BD, UK
| | | | - Tiina Laiterä
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Juha Okkeri
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Juha Klefström
- Research Programs Unit, Translational Cancer Biology and Institute of Biomedicine, University of Helsinki, 00014 Helsinki, Finland
| | - Rosalie C Sears
- Department of Molecular and Medical Genetics and Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Owen J Sansom
- The Beatson Institute for Cancer Research, Glasgow G61 1BD, UK.
| | - Jukka Westermarck
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Department of Pathology, University of Turku, 20520 Turku, Finland.
| |
Collapse
|
406
|
Chang PY, Qu YQ, Wang J, Dong LH. The potential of mesenchymal stem cells in the management of radiation enteropathy. Cell Death Dis 2015; 6:e1840. [PMID: 26247725 PMCID: PMC4558492 DOI: 10.1038/cddis.2015.189] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/02/2015] [Accepted: 06/08/2015] [Indexed: 12/20/2022]
Abstract
Although radiotherapy is effective in managing abdominal and pelvic malignant tumors, radiation enteropathy is still unavoidable. This disease severely affects the quality of life of cancer patients due to some refractory lesions, such as intestinal ischemia, mucositis, ulcer, necrosis or even perforation. Current drugs or prevailing therapies are committed to alleviating the symptoms induced by above lesions. But the efficacies achieved by these interventions are still not satisfactory, because the milieus for tissue regeneration are not distinctly improved. In recent years, regenerative therapy for radiation enteropathy by using mesenchymal stem cells is of public interests. Relevant results of preclinical and clinical studies suggest that this regenerative therapy will become an attractive tool in managing radiation enteropathy, because mesenchymal stem cells exhibit their pro-regenerative potentials for healing the injuries in both epithelium and endothelium, minimizing inflammation and protecting irradiated intestine against fibrogenesis through activating intrinsic repair actions. In spite of these encouraging results, whether mesenchymal stem cells promote tumor growth is still an issue of debate. On this basis, we will discuss the advances in anticancer therapy by using mesenchymal stem cells in this review after analyzing the pathogenesis of radiation enteropathy, introducing the advances in managing radiation enteropathy using regenerative therapy and exploring the putative actions by which mesenchymal stem cells repair intestinal injuries. At last, insights gained from the potential risks of mesenchymal stem cell-based therapy for radiation enteropathy patients may provide clinicians with an improved awareness in carrying out their studies.
Collapse
Affiliation(s)
- P-Y Chang
- 1] Department of Radiation Oncology, The First Bethune Hospital of Jilin University, Changchun 130021, China [2] Electrochemical State Key Laboratory, Changchun Institute of Applied Chemistry Academy of Science, Changchun 130021, China
| | - Y-Q Qu
- Department of Radiation Oncology, The First Bethune Hospital of Jilin University, Changchun 130021, China
| | - J Wang
- Electrochemical State Key Laboratory, Changchun Institute of Applied Chemistry Academy of Science, Changchun 130021, China
| | - L-H Dong
- Department of Radiation Oncology, The First Bethune Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
407
|
Seiler KM, Schenhals EL, von Furstenberg RJ, Allena BK, Smith BJ, Scaria D, Bresler MN, Dekaney CM, Henning SJ. Tissue underlying the intestinal epithelium elicits proliferation of intestinal stem cells following cytotoxic damage. Cell Tissue Res 2015; 361:427-38. [PMID: 25693894 PMCID: PMC4530061 DOI: 10.1007/s00441-015-2111-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 12/21/2014] [Indexed: 12/16/2022]
Abstract
The goals of this study were to document the proliferative response of intestinal stem cells (ISCs) during regeneration after damage from doxorubicin (DXR), and to characterize the signals responsible for ISC activation. To this end, jejuni from DXR-treated mice were harvested for histology, assessment of ISC numbers and proliferation by flow cytometry, crypt culture, and RNA analyses. Histology showed that crypt depth and width were increased 4 days after DXR. At this time point, flow cytometry on tissue collected 1 h after EdU administration revealed increased numbers of CD24(lo)UEA(-) ISCs and increased percentage of ISCs cycling. In culture, crypts harvested from DXR-treated mice were equally proliferative as those of control mice. Addition of subepithelial intestinal tissue (SET) collected 4 days after DXR elicited increased budding (1.4 ± 0.3 vs. 5.1 ± 1.0 buds per enteroid). Microarray analysis of SET collected 4 days after DXR revealed 1030 differentially expressed transcripts. Cross-comparison of Gene Ontology terms considered relevant to ISC activation pointed to 10 candidate genes. Of these, the epidermal growth factor (EGF) family member amphiregulin and the BMP antagonist chordin-like 2 were chosen for further study. In crypt culture, amphiregulin alone did not elicit significant budding, but amphiregulin in combination with BMP antagonism showed marked synergism (yielding 6.3 ± 0.5 buds per enteroid). These data suggest a critical role for underlying tissue in regulating ISC behavior after damage, and point to synergism between amphiregulin and chordin-like 2 as factors which may account for activation of ISCs in the regenerative phase.
Collapse
Affiliation(s)
- Kristen M Seiler
- Department of Medicine and Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, 4341 Medical Biomolecular Research Building (MBRB), CB# 7032, Chapel Hill, NC, 27599-7032, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
408
|
Zhao DY, Jacobs KM, Hallahan DE, Thotala D. Silencing Egr1 Attenuates Radiation-Induced Apoptosis in Normal Tissues while Killing Cancer Cells and Delaying Tumor Growth. Mol Cancer Ther 2015. [PMID: 26206332 DOI: 10.1158/1535-7163.mct-14-1051] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Normal tissue toxicity reduces the therapeutic index of radiotherapy and decreases the quality of life for cancer survivors. Apoptosis is a key element of the radiation response in normal tissues like the hippocampus and small intestine, resulting in neurocognitive disorders and intestinal malabsorption. The Early Growth Response 1 (Egr1) transcription factor mediates radiation-induced apoptosis by activating the transcription of proapoptosis genes in response to ionizing radiation (IR). Therefore, we hypothesized that the genetic abrogation of Egr1 and the pharmacologic inhibition of its transcriptional activity could attenuate radiation-induced apoptosis in normal tissues. We demonstrated that Egr1-null mice had less apoptosis in the hippocampus and intestine following irradiation as compared with their wild-type littermates. A similar result was achieved using Mithramycin A (MMA) to prevent binding of Egr1 to target promoters in the mouse intestine. Abolishing Egr1 expression using shRNA dampened apoptosis and enhanced the clonogenic survival of irradiated HT22 hippocampal neuronal cells and IEC6 intestinal epithelial cells. Mechanistically, these events involved an abrogation of p53 induction by IR and an increase in the ratio of Bcl-2/Bax expression. In contrast, targeted silencing of Egr1 in two cancer cell lines (GL261 glioma cells and HCT116 colorectal cancer cells) was not radioprotective, since it reduced their growth while also sensitizing them to radiation-induced death. Further, Egr1 depletion delayed the growth of heterotopically implanted GL261 and HCT116 tumors. These results support the potential of silencing Egr1 in order to minimize the normal tissue complications associated with radiotherapy while enhancing tumor control.
Collapse
Affiliation(s)
- Diana Yi Zhao
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Keith M Jacobs
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Dennis E Hallahan
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, Missouri. Siteman Cancer Center, Washington University School of Medicine in St. Louis, St. Louis, Missouri. Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Dinesh Thotala
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, Missouri. Siteman Cancer Center, Washington University School of Medicine in St. Louis, St. Louis, Missouri.
| |
Collapse
|
409
|
Mills JC, Sansom OJ. Reserve stem cells: Differentiated cells reprogram to fuel repair, metaplasia, and neoplasia in the adult gastrointestinal tract. Sci Signal 2015; 8:re8. [PMID: 26175494 PMCID: PMC4858190 DOI: 10.1126/scisignal.aaa7540] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It has long been known that differentiated cells can switch fates, especially in vitro, but only recently has there been a critical mass of publications describing the mechanisms adult, postmitotic cells use in vivo to reverse their differentiation state. We propose that this sort of cellular reprogramming is a fundamental cellular process akin to apoptosis or mitosis. Because reprogramming can invoke regenerative cells from mature cells, it is critical to the long-term maintenance of tissues like the pancreas, which encounter large insults during adulthood but lack constitutively active adult stem cells to repair the damage. However, even in tissues with adult stem cells, like the stomach and intestine, reprogramming may allow mature cells to serve as reserve ("quiescent") stem cells when normal stem cells are compromised. We propose that the potential downside to reprogramming is that it increases risk for cancers that occur late in adulthood. Mature, long-lived cells may have years of exposure to mutagens. Mutations that affect the physiological function of differentiated, postmitotic cells may lead to apoptosis, but mutations in genes that govern proliferation might not be selected against. Hence, reprogramming with reentry into the cell cycle might unmask those mutations, causing an irreversible progenitor-like, proliferative state. We review recent evidence showing that reprogramming fuels irreversible metaplastic and precancerous proliferation in the stomach and pancreas. Finally, we illustrate how we think reprogrammed differentiated cells are likely candidates as cells of origin for cancers of the intestine.
Collapse
Affiliation(s)
- Jason C Mills
- Division of Gastroenterology, Departments of Medicine, Pathology & Immunology, and Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK.
| |
Collapse
|
410
|
Otsuka K, Iwasaki T. Effects of dose rates on radiation-induced replenishment of intestinal stem cells determined by Lgr5 lineage tracing. JOURNAL OF RADIATION RESEARCH 2015; 56:615-22. [PMID: 25832104 PMCID: PMC4497386 DOI: 10.1093/jrr/rrv012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 02/16/2015] [Indexed: 05/05/2023]
Abstract
An understanding of the dynamics of intestinal Lgr5(+) stem cells is important for elucidating the mechanism of colonic cancer development. We previously established a method for evaluating Lgr5(+) stem cells by tamoxifen-dependent Lgr5-lineage tracing and showed that high-dose-rate radiation stimulated replenishment of colonic stem cells. In this study, we evaluated the effects of low-dose-rate radiation on stem cell maintenance. Tamoxifen (4OHT)-injected Lgr5-EGFP-IRES-Cre(ERT2) × ROSA-LSL-LacZ mice were used, LacZ-labeled colonic crypts were enumerated, and the loss of LacZ(+) crypts under low-dose-rate radiation was estimated. After 4OHT treatment, the number of LacZ-labeled Lgr5(+) stem cells was higher in the colon of infant mice than in adult mice. The percentage of LacZ-labeled crypts in infant mice rapidly decreased after 4OHT treatment. However, the percentage of labeled crypts plateaued at ∼2% at 4 weeks post-treatment and remained unchanged for up to 7 months. Thus, it will be advantageous to evaluate the long-term effects of low-dose-rate radiation. Next, we determined the percentages of LacZ-labeled crypts irradiated with 1 Gy administered at different dose rates. As reported in our previous study, mice exposed to high-dose-rate radiation (30 Gy/h) showed a marked replenishment (P = 0.04). However, mice exposed to low-dose-rate radiation (0.003 Gy/h) did not exhibit accelerated stem-cell replenishment (P = 0.47). These findings suggest the percentage of labeled crypts can serve as a useful indicator of the effects of dose rate on the stem cell pool.
Collapse
Affiliation(s)
- Kensuke Otsuka
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 2-11-1 Iwado-kita, Komae, Tokyo 201-8511, Japan
| | - Toshiyasu Iwasaki
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 2-11-1 Iwado-kita, Komae, Tokyo 201-8511, Japan
| |
Collapse
|
411
|
Huels DJ, Sansom OJ. Stem vs non-stem cell origin of colorectal cancer. Br J Cancer 2015; 113:1-5. [PMID: 26110974 PMCID: PMC4647531 DOI: 10.1038/bjc.2015.214] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 05/07/2015] [Accepted: 05/13/2015] [Indexed: 01/06/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers in the western world and is characterised by deregulation of the Wnt signalling pathway. Mutation of the adenomatous polyposis coli (APC) tumour suppressor gene, which encodes a protein that negatively regulates this pathway, occurs in almost 80% of CRC cases. The progression of this cancer from an early adenoma to carcinoma is accompanied by a well-characterised set of mutations including KRAS, SMAD4 and TP53. Using elegant genetic models the current paradigm is that the intestinal stem cell is the origin of CRC. However, human histology and recent studies, showing marked plasticity within the intestinal epithelium, may point to other cells of origin. Here we will review these latest studies and place these in context to provide an up-to-date view of the cell of origin of CRC.
Collapse
Affiliation(s)
- D J Huels
- CR-UK Beatson Institute for Cancer Research, Garscube Estate, Glasgow G61 1BD, UK
| | - O J Sansom
- CR-UK Beatson Institute for Cancer Research, Garscube Estate, Glasgow G61 1BD, UK
| |
Collapse
|
412
|
Asfaha S, Hayakawa Y, Muley A, Stokes S, Graham TA, Ericksen RE, Westphalen CB, von Burstin J, Mastracci TL, Worthley DL, Guha C, Quante M, Rustgi AK, Wang TC. Krt19(+)/Lgr5(-) Cells Are Radioresistant Cancer-Initiating Stem Cells in the Colon and Intestine. Cell Stem Cell 2015; 16:627-38. [PMID: 26046762 PMCID: PMC4457942 DOI: 10.1016/j.stem.2015.04.013] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 02/12/2015] [Accepted: 04/22/2015] [Indexed: 01/17/2023]
Abstract
Epithelium of the colon and intestine are renewed every 3 days. In the intestine there are at least two principal stem cell pools. The first contains rapid cycling crypt-based columnar (CBC) Lgr5(+) cells, and the second is composed of slower cycling Bmi1-expressing cells at the +4 position above the crypt base. In the colon, however, the identification of Lgr5(-) stem cell pools has proven more challenging. Here, we demonstrate that the intermediate filament keratin-19 (Krt19) marks long-lived, radiation-resistant cells above the crypt base that generate Lgr5(+) CBCs in the colon and intestine. In colorectal cancer models, Krt19(+) cancer-initiating cells are also radioresistant, while Lgr5(+) stem cells are radiosensitive. Moreover, Lgr5(+) stem cells are dispensable in both the normal and neoplastic colonic epithelium, as ablation of Lgr5(+) stem cells results in their regeneration from Krt19-expressing cells. Thus, Krt19(+) stem cells are a discrete target relevant for cancer therapy.
Collapse
Affiliation(s)
- Samuel Asfaha
- Division of Digestive and Liver Diseases, Department of Medicine, Irving Cancer Research Center, Columbia University, New York, NY 10032, USA; Department of Medicine, University of Western Ontario, London, ON N6A 5W9, Canada
| | - Yoku Hayakawa
- Division of Digestive and Liver Diseases, Department of Medicine, Irving Cancer Research Center, Columbia University, New York, NY 10032, USA
| | - Ashlesha Muley
- Division of Digestive and Liver Diseases, Department of Medicine, Irving Cancer Research Center, Columbia University, New York, NY 10032, USA
| | - Sarah Stokes
- Division of Digestive and Liver Diseases, Department of Medicine, Irving Cancer Research Center, Columbia University, New York, NY 10032, USA
| | - Trevor A Graham
- Centre for Tumour Biology, Barts Cancer Institute, London EC1M 6BQ, UK
| | - Russell E Ericksen
- Division of Digestive and Liver Diseases, Department of Medicine, Irving Cancer Research Center, Columbia University, New York, NY 10032, USA
| | - Christoph B Westphalen
- Division of Digestive and Liver Diseases, Department of Medicine, Irving Cancer Research Center, Columbia University, New York, NY 10032, USA
| | - Johannes von Burstin
- II. Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Teresa L Mastracci
- Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | - Daniel L Worthley
- Division of Digestive and Liver Diseases, Department of Medicine, Irving Cancer Research Center, Columbia University, New York, NY 10032, USA
| | - Chandhan Guha
- Department of Radiation Oncology, Albert Einstein College of Medicine, New York, NY 10467, USA
| | - Michael Quante
- II. Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Anil K Rustgi
- Division of Gastroenterology, Department of Medicine, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Timothy C Wang
- Division of Digestive and Liver Diseases, Department of Medicine, Irving Cancer Research Center, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
413
|
Wang X, Yamamoto Y, Wilson LH, Zhang T, Howitt BE, Farrow MA, Kern F, Ning G, Hong Y, Khor CC, Chevalier B, Bertrand D, Wu L, Nagarajan N, Sylvester FA, Hyams JS, Devers T, Bronson R, Lacy DB, Ho KY, Crum CP, McKeon F, Xian W. Cloning and variation of ground state intestinal stem cells. Nature 2015; 522:173-8. [PMID: 26040716 PMCID: PMC4853906 DOI: 10.1038/nature14484] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 04/14/2015] [Indexed: 12/18/2022]
Abstract
Stem cells of the gastrointestinal tract, pancreas, liver, and other columnar epithelia collectively resist cloning in their elemental states. Here we demonstrate the cloning and propagation of highly clonogenic, “ground state” stem cells of the human intestine and colon. We show that derived stem cell pedigrees sustain limited copy number and sequence variation despite extensive serial passaging and display exquisitely precise, cell-autonomous commitment to epithelial differentiation consistent with their origins along the intestinal tract. This developmentally patterned and epigenetically maintained commitment of stem cells likely enforces the functional specificity of the adult intestinal tract. Using clonally-derived colonic epithelia, we show that toxins A or B of the enteric pathogen C. difficile recapitulate the salient features of pseudomembranous colitis. The stability of the epigenetic commitment programs of these stem cells, coupled with their unlimited replicative expansion and maintained clonogenicity, suggests certain advantages for their use in disease modeling and regenerative medicine.
Collapse
Affiliation(s)
- Xia Wang
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032, USA
| | - Yusuke Yamamoto
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032, USA
| | - Lane H Wilson
- 1] The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032, USA [2] Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut 06032, USA
| | - Ting Zhang
- Genome Institute of Singapore, Agency for Science, Technology and Research, 138672 Singapore
| | - Brooke E Howitt
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02118, USA
| | - Melissa A Farrow
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Florian Kern
- Genome Institute of Singapore, Agency for Science, Technology and Research, 138672 Singapore
| | - Gang Ning
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032, USA
| | - Yue Hong
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032, USA
| | - Chiea Chuen Khor
- 1] Genome Institute of Singapore, Agency for Science, Technology and Research, 138672 Singapore [2] Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore
| | - Benoit Chevalier
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032, USA
| | - Denis Bertrand
- Genome Institute of Singapore, Agency for Science, Technology and Research, 138672 Singapore
| | - Lingyan Wu
- Genome Institute of Singapore, Agency for Science, Technology and Research, 138672 Singapore
| | - Niranjan Nagarajan
- Genome Institute of Singapore, Agency for Science, Technology and Research, 138672 Singapore
| | - Francisco A Sylvester
- Department of Pediatrics, Division of Gastroenterology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Jeffrey S Hyams
- Division of Digestive Diseases, Hepatology, and Nutrition, Connecticut Children's Medical Center, Hartford, Connecticut 06106, USA
| | - Thomas Devers
- Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut 06032, USA
| | - Roderick Bronson
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - D Borden Lacy
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Khek Yu Ho
- Department of Medicine, National University of Singapore, 119228 Singapore
| | - Christopher P Crum
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02118, USA
| | - Frank McKeon
- 1] The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032, USA [2] Genome Institute of Singapore, Agency for Science, Technology and Research, 138672 Singapore [3] Department of Medicine, National University of Singapore, 119228 Singapore [4] Multiclonal Therapeutics, Inc., Farmington, Connecticut 06032, USA
| | - Wa Xian
- 1] The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032, USA [2] Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut 06032, USA [3] Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02118, USA [4] Department of Medicine, National University of Singapore, 119228 Singapore [5] Multiclonal Therapeutics, Inc., Farmington, Connecticut 06032, USA
| |
Collapse
|
414
|
Gehart H, Clevers H. Repairing organs: lessons from intestine and liver. Trends Genet 2015; 31:344-51. [DOI: 10.1016/j.tig.2015.04.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 04/09/2015] [Accepted: 04/10/2015] [Indexed: 12/11/2022]
|
415
|
Flanagan DJ, Phesse TJ, Barker N, Schwab RHM, Amin N, Malaterre J, Stange DE, Nowell CJ, Currie SA, Saw JTS, Beuchert E, Ramsay RG, Sansom OJ, Ernst M, Clevers H, Vincan E. Frizzled7 functions as a Wnt receptor in intestinal epithelial Lgr5(+) stem cells. Stem Cell Reports 2015; 4:759-67. [PMID: 25892522 PMCID: PMC4437483 DOI: 10.1016/j.stemcr.2015.03.003] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 03/18/2015] [Accepted: 03/20/2015] [Indexed: 12/14/2022] Open
Abstract
The mammalian adult small intestinal epithelium is a rapidly self-renewing tissue that is maintained by a pool of cycling stem cells intermingled with Paneth cells at the base of crypts. These crypt base stem cells exclusively express Lgr5 and require Wnt3 or, in its absence, Wnt2b. However, the Frizzled (Fzd) receptor that transmits these Wnt signals is unknown. We determined the expression profile of Fzd receptors in Lgr5(+) stem cells, their immediate daughter cells, and Paneth cells. Here we show Fzd7 is enriched in Lgr5(+) stem cells and binds Wnt3 and Wnt2b. Conditional deletion of the Fzd7 gene in adult intestinal epithelium leads to stem cell loss in vivo and organoid death in vitro. Crypts of conventional Fzd7 knockout mice show decreased basal Wnt signaling and impaired capacity to regenerate the epithelium following deleterious insult. These observations indicate that Fzd7 is required for robust Wnt-dependent processes in Lgr5(+) intestinal stem cells.
Collapse
Affiliation(s)
- Dustin J Flanagan
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, VIC 3010, Australia; Victorian Infectious Diseases Reference Laboratory, Melbourne, VIC 3000, Australia
| | - Toby J Phesse
- Walter and Eliza Hall Institute and Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Nick Barker
- Institute of Medical Biology, Singapore 138648, Singapore; MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH8 9YL, UK
| | - Renate H M Schwab
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, VIC 3010, Australia; Victorian Infectious Diseases Reference Laboratory, Melbourne, VIC 3000, Australia
| | - Nancy Amin
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, VIC 3010, Australia; Victorian Infectious Diseases Reference Laboratory, Melbourne, VIC 3000, Australia
| | - Jordane Malaterre
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Daniel E Stange
- Hubrecht Institute for Developmental Biology and Stem Cell Research, 3584CT Utrecht, the Netherlands
| | - Cameron J Nowell
- Walter and Eliza Hall Institute and Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Scott A Currie
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, VIC 3010, Australia; Victorian Infectious Diseases Reference Laboratory, Melbourne, VIC 3000, Australia
| | - Jarel T S Saw
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, VIC 3010, Australia; Victorian Infectious Diseases Reference Laboratory, Melbourne, VIC 3000, Australia
| | - Eva Beuchert
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, VIC 3010, Australia; Victorian Infectious Diseases Reference Laboratory, Melbourne, VIC 3000, Australia
| | - Robert G Ramsay
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK
| | - Matthias Ernst
- Walter and Eliza Hall Institute and Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Hans Clevers
- Hubrecht Institute for Developmental Biology and Stem Cell Research, 3584CT Utrecht, the Netherlands
| | - Elizabeth Vincan
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, VIC 3010, Australia; Victorian Infectious Diseases Reference Laboratory, Melbourne, VIC 3000, Australia; Curtin University, Perth, WA 6845, Australia.
| |
Collapse
|
416
|
Sancho R, Cremona CA, Behrens A. Stem cell and progenitor fate in the mammalian intestine: Notch and lateral inhibition in homeostasis and disease. EMBO Rep 2015; 16:571-81. [PMID: 25855643 PMCID: PMC4428041 DOI: 10.15252/embr.201540188] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/10/2015] [Accepted: 03/11/2015] [Indexed: 01/17/2023] Open
Abstract
The control of cell fate decisions is vital to build functional organs and maintain normal tissue homeostasis, and many pathways and processes cooperate to direct cells to an appropriate final identity. Because of its continuously renewing state and its carefully organised hierarchy, the mammalian intestine has become a powerful model to dissect these pathways in health and disease. One of the signalling pathways that is key to maintaining the balance between proliferation and differentiation in the intestinal epithelium is the Notch pathway, most famous for specifying distinct cell fates in adjacent cells via the evolutionarily conserved process of lateral inhibition. Here, we will review recent discoveries that advance our understanding of how cell fate in the mammalian intestine is decided by Notch and lateral inhibition, focusing on the molecular determinants that regulate protein turnover, transcriptional control and epigenetic regulation.
Collapse
Affiliation(s)
- Rocio Sancho
- Mammalian Genetics Laboratory, Cancer Research UK London Research Institute, Lincoln's Inn Fields Laboratories, London, UK
| | - Catherine A Cremona
- Mammalian Genetics Laboratory, Cancer Research UK London Research Institute, Lincoln's Inn Fields Laboratories, London, UK
| | - Axel Behrens
- Mammalian Genetics Laboratory, Cancer Research UK London Research Institute, Lincoln's Inn Fields Laboratories, London, UK School of Medicine, King's College London, London, UK
| |
Collapse
|
417
|
Liu CY, Dubé PE, Girish N, Reddy AT, Polk DB. Optical reconstruction of murine colorectal mucosa at cellular resolution. Am J Physiol Gastrointest Liver Physiol 2015; 308:G721-35. [PMID: 25721303 PMCID: PMC4421015 DOI: 10.1152/ajpgi.00310.2014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 02/18/2015] [Indexed: 02/07/2023]
Abstract
The mucosal layer of the colon is a unique and dynamic site where host cells interface with one another and the microbiome, with major implications for physiology and disease. However, the cellular mechanisms mediating colonic regeneration, inflammation, dysplasia, and dysbiosis remain undercharacterized, partly because the use of thin tissue sections in many studies removes important volumetric context. To address these challenges in visualization, we have developed the deep mucosal imaging (DMI) method to reconstruct continuous extended volumes of mouse colorectal mucosa at cellular resolution. Use of ScaleA2 and SeeDB clearing agents enabled full visualization of the colonic crypt, the fundamental unit of adult colon. Confocal imaging of large colorectal expanses revealed epithelial structures involved in repair, inflammation, tumorigenesis, and stem cell function, in fluorescent protein-labeled, immunostained, paraffin-embedded, or human biopsy samples. We provide freely available software to reconstruct and explore on computers with standard memory allocations the large DMI datasets containing in toto representations of distal colonic mucosal volume. Extended-volume imaging of colonic mucosa through the novel, extensible, and readily adopted DMI approach will expedite mechanistic investigations of intestinal physiology and pathophysiology at intracrypt to multicrypt length scales.
Collapse
Affiliation(s)
- Cambrian Y. Liu
- 1The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California; ,2Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California; and
| | - Philip E. Dubé
- 1The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California; ,2Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California; and
| | - Nandini Girish
- 1The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California; ,2Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California; and
| | - Ajay T. Reddy
- 1The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California; ,2Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California; and
| | - D. Brent Polk
- 1The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California; ,2Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California; and ,3Department of Biochemistry and Molecular Biology, University of Southern California Keck School of Medicine, Los Angeles, California
| |
Collapse
|
418
|
Goodell MA, Nguyen H, Shroyer N. Somatic stem cell heterogeneity: diversity in the blood, skin and intestinal stem cell compartments. Nat Rev Mol Cell Biol 2015; 16:299-309. [PMID: 25907613 PMCID: PMC5317203 DOI: 10.1038/nrm3980] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Somatic stem cells replenish many tissues throughout life to repair damage and to maintain tissue homeostasis. Stem cell function is frequently described as following a hierarchical model in which a single master cell undergoes self-renewal and differentiation into multiple cell types and is responsible for most regenerative activity. However, recent data from studies on blood, skin and intestinal epithelium all point to the concomitant action of multiple types of stem cells with distinct everyday roles. Under stress conditions such as acute injury, the surprising developmental flexibility of these stem cells enables them to adapt to diverse roles and to acquire different regeneration capabilities. This paradigm shift raises many new questions about the developmental origins, inter-relationships and molecular regulation of these multiple stem cell types.
Collapse
Affiliation(s)
- Margaret A Goodell
- Stem Cells and Regenerative Medicine Center and Departments of Pediatrics, Molecular and Cellular Biology, and Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Hoang Nguyen
- Stem Cells and Regenerative Medicine Center and Departments of Pediatrics, Molecular and Cellular Biology, and Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Noah Shroyer
- Stem Cells and Regenerative Medicine Center and Departments of Pediatrics, Molecular and Cellular Biology, and Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| |
Collapse
|
419
|
Abstract
Recent lineage-tracing studies based on inducible genetic labelling have emphasized a crucial role for stochasticity in the maintenance and regeneration of cycling adult tissues. These studies have revealed that stem cells are frequently lost through differentiation and that this is compensated for by the duplication of neighbours, leading to the consolidation of clonal diversity. Through the combination of long-term lineage-tracing assays with short-term in vivo live imaging, the cellular basis of this stochastic stem cell loss and replacement has begun to be resolved. With a focus on mammalian spermatogenesis, intestinal maintenance and the hair cycle, we review the role of dynamic heterogeneity in the regulation of adult stem cell populations.
Collapse
Affiliation(s)
- Teresa Krieger
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK Cavendish Laboratory, Department of Physics, J. J. Thomson Avenue, University of Cambridge, Cambridge CB3 0HE, UK
| | - Benjamin D Simons
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK Cavendish Laboratory, Department of Physics, J. J. Thomson Avenue, University of Cambridge, Cambridge CB3 0HE, UK Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK
| |
Collapse
|
420
|
Wang X, Wei L, Cramer JM, Leibowitz BJ, Judge C, Epperly M, Greenberger J, Wang F, Li L, Stelzner MG, Dunn JCY, Martin MG, Lagasse E, Zhang L, Yu J. Pharmacologically blocking p53-dependent apoptosis protects intestinal stem cells and mice from radiation. Sci Rep 2015; 5:8566. [PMID: 25858503 PMCID: PMC4392360 DOI: 10.1038/srep08566] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 01/27/2015] [Indexed: 12/22/2022] Open
Abstract
Exposure to high levels of ionizing radiation (IR) leads to debilitating and dose-limiting gastrointestinal (GI) toxicity. Using three-dimensional mouse crypt culture, we demonstrated that p53 target PUMA mediates radiation-induced apoptosis via a cell-intrinsic mechanism, and identified the GSK-3 inhibitor CHIR99021 as a potent radioprotector. CHIR99021 treatment improved Lgr5+ cell survival and crypt regeneration after radiation in culture and mice. CHIR99021 treatment specifically blocked apoptosis and PUMA induction and K120 acetylation of p53 mediated by acetyl-transferase Tip60, while it had no effect on p53 stabilization, phosphorylation or p21 induction. CHIR99021 also protected human intestinal cultures from radiation by PUMA but not p21 suppression. These results demonstrate that p53 posttranslational modifications play a key role in the pathological and apoptotic response of the intestinal stem cells to radiation and can be targeted pharmacologically.
Collapse
Affiliation(s)
- Xinwei Wang
- Department of Pathology, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA 15213
- University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Pittsburgh, PA 15213
| | - Liang Wei
- Department of Pathology, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA 15213
- University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Pittsburgh, PA 15213
| | - Julie M. Cramer
- Department of Pathology, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA 15213
| | - Brian J. Leibowitz
- Department of Pathology, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA 15213
- University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Pittsburgh, PA 15213
| | - Colleen Judge
- Department of Pathology, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA 15213
- University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Pittsburgh, PA 15213
| | - Michael Epperly
- University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Pittsburgh, PA 15213
- Department of Radiation Oncology, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA 15213
| | - Joel Greenberger
- University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Pittsburgh, PA 15213
- Department of Radiation Oncology, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA 15213
| | - Fengchao Wang
- Department of Pathology, University of Kansas Medical Center, Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MS 64110
| | - Linheng Li
- Department of Pathology, University of Kansas Medical Center, Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MS 64110
| | - Matthias G. Stelzner
- Department of Surgery, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073
| | - James C. Y. Dunn
- Departments of Surgery and Pediatrics, David Geffen School of Medicine, University of California, 10833 Le Conte Ave, Los Angeles, CA 90095
| | - Martin G. Martin
- Departments of Surgery and Pediatrics, David Geffen School of Medicine, University of California, 10833 Le Conte Ave, Los Angeles, CA 90095
| | - Eric Lagasse
- Department of Pathology, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA 15213
| | - Lin Zhang
- University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Pittsburgh, PA 15213
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA 15213
| | - Jian Yu
- Department of Pathology, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA 15213
- University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Pittsburgh, PA 15213
- Department of Radiation Oncology, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA 15213
| |
Collapse
|
421
|
Horvay K, Jardé T, Casagranda F, Perreau VM, Haigh K, Nefzger CM, Akhtar R, Gridley T, Berx G, Haigh JJ, Barker N, Polo JM, Hime GR, Abud HE. Snai1 regulates cell lineage allocation and stem cell maintenance in the mouse intestinal epithelium. EMBO J 2015; 34:1319-35. [PMID: 25759216 DOI: 10.15252/embj.201490881] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 02/02/2015] [Indexed: 12/17/2022] Open
Abstract
Snail family members regulate epithelial-to-mesenchymal transition (EMT) during invasion of intestinal tumours, but their role in normal intestinal homeostasis is unknown. Studies in breast and skin epithelia indicate that Snail proteins promote an undifferentiated state. Here, we demonstrate that conditional knockout of Snai1 in the intestinal epithelium results in apoptotic loss of crypt base columnar stem cells and bias towards differentiation of secretory lineages. In vitro organoid cultures derived from Snai1 conditional knockout mice also undergo apoptosis when Snai1 is deleted. Conversely, ectopic expression of Snai1 in the intestinal epithelium in vivo results in the expansion of the crypt base columnar cell pool and a decrease in secretory enteroendocrine and Paneth cells. Following conditional deletion of Snai1, the intestinal epithelium fails to produce a proliferative response following radiation-induced damage indicating a fundamental requirement for Snai1 in epithelial regeneration. These results demonstrate that Snai1 is required for regulation of lineage choice, maintenance of CBC stem cells and regeneration of the intestinal epithelium following damage.
Collapse
Affiliation(s)
- Katja Horvay
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Vic., Australia
| | - Thierry Jardé
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Vic., Australia
| | - Franca Casagranda
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Vic., Australia
| | - Victoria M Perreau
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Vic., Australia
| | - Katharina Haigh
- Australian Centre for Blood Diseases, Monash University & Alfred Health, Melbourne, Vic., Australia Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Christian M Nefzger
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Vic., Australia Australian Regenerative Medicine Institute, Monash University, Clayton, Vic., Australia
| | - Reyhan Akhtar
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Vic., Australia
| | - Thomas Gridley
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, USA
| | - Geert Berx
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium Molecular and Cellular Oncology, Inflammation Research Center, VIB, Ghent, Belgium
| | - Jody J Haigh
- Australian Centre for Blood Diseases, Monash University & Alfred Health, Melbourne, Vic., Australia Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Nick Barker
- A*STAR Institute of Medical Biology, Singapore City, Singapore
| | - Jose M Polo
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Vic., Australia Australian Regenerative Medicine Institute, Monash University, Clayton, Vic., Australia
| | - Gary R Hime
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Vic., Australia
| | - Helen E Abud
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Vic., Australia
| |
Collapse
|
422
|
Liu W, Chen Q, Wu S, Xia X, Wu A, Cui F, Gu YP, Zhang X, Cao J. Radioprotector WR-2721 and mitigating peptidoglycan synergistically promote mouse survival through the amelioration of intestinal and bone marrow damage. JOURNAL OF RADIATION RESEARCH 2015; 56:278-86. [PMID: 25617317 PMCID: PMC4380048 DOI: 10.1093/jrr/rru100] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 09/25/2014] [Accepted: 09/29/2014] [Indexed: 05/24/2023]
Abstract
The identification of an agent effective for the treatment of intestinal and bone marrow injury following radiation exposure remains a major issue in radiological medicine. In this study, we evaluated the therapeutic impact of single agent or combination treatments with 2-(3-aminopropylamino) ethylsulphanyl phosphonic acid (WR-2721) and peptidoglycan (PGN, a toll-like receptor 2 (TLR-2) agonist) on radiation-induced injury of the intestine and bone marrow in lethally irradiated male C57BL/6 mice. A dose of 3 mg of WR-2721 per mouse (167 mg/kg, intraperitoneally) was given 30 min before irradiation, and 30 μg of PGN per mouse (1.7 mg/kg) was injected intraperitoneally 24 h after 10 Gy irradiation. Bone marrow cluster of differentiation (CD)45(+) and CD34(+) markers of multiple haematopoietic lineages, number of granulocyte-erythroid-macrophage-megakaryocyte (GEMM) progenitor colonies, bone marrow histopathology, leucine-rich repeat-containing G-protein-coupled receptor 5 (Lgr5) expression in the intestines, xylose absorption and intestinal histopathology were all assessed at various time-points after irradiation. Furthermore, nuclear factor kappa B (NF-κB) p65 protein in the ileum was stained by immunofluorescent labelling. PGN-treated irradiated mice showed an increase in CD45(+)CD34(+) cells compared with untreated mice 1.25 days after 10 Gy ionizing radiation (IR) (P < 0.05). Furthermore, combined PGN and WR-2721 treatment had an obviously synergistic radio-protective effect in nucleated cells in the bone marrow, including GEMM progenitors and CD45(+)CD34(+) cells 4 days after 10 Gy IR. Single agent PGN or WR-2721 treatment after 10 Gy IR clearly increased Lgr5-positive pit cells (P < 0.05) and xylose absorption (P < 0.05). However only PGN and WR-2721 combination treatment markedly increased villus height (P < 0.05), number of crypts (P < 0.05) and whole-body weights after 10 Gy whole-body irradiation (WBI). The NF-κB p65 subunit was translocated to the nucleus, and phosphate-IκBα (Ser32/Ser36) was detected after stimulation with either PGN or WR-2721, which indicates that these two agents act synergistically through the activation of the NF-κB pathway. Administration of PGN in combination with WR-2721 was demonstrated to have a synergistic effect on the increase in haematopoietic cells and intestinal reconstitution, as well as improved survival in lethally irradiated mice, but resulted in some degree of an immune disorder.
Collapse
Affiliation(s)
- Wei Liu
- School of Radiation Medicine and Protection, Soochow University, No. 199 Ren'ai Road, Suzhou 215123, PR China
| | - Qiu Chen
- School of Radiation Medicine and Protection, Soochow University, No. 199 Ren'ai Road, Suzhou 215123, PR China Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China
| | - Shu Wu
- School of Radiation Medicine and Protection, Soochow University, No. 199 Ren'ai Road, Suzhou 215123, PR China
| | - Xiaochun Xia
- School of Radiation Medicine and Protection, Soochow University, No. 199 Ren'ai Road, Suzhou 215123, PR China
| | - Anqing Wu
- School of Radiation Medicine and Protection, Soochow University, No. 199 Ren'ai Road, Suzhou 215123, PR China
| | - Fengmei Cui
- School of Radiation Medicine and Protection, Soochow University, No. 199 Ren'ai Road, Suzhou 215123, PR China Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China
| | - Yong-Ping Gu
- Experimental Centre of Medical College, Soochow University, Suzhou 215123, PR China
| | - Xueguang Zhang
- Stem Cell Research Laboratory of Jiangsu Province, Suzhou 215007, PR China Jiangsu Institute of Clinical Immunology, Suzhou 215007, PR China
| | - Jianping Cao
- School of Radiation Medicine and Protection, Soochow University, No. 199 Ren'ai Road, Suzhou 215123, PR China Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China
| |
Collapse
|
423
|
Tetteh PW, Farin HF, Clevers H. Plasticity within stem cell hierarchies in mammalian epithelia. Trends Cell Biol 2015; 25:100-8. [DOI: 10.1016/j.tcb.2014.09.003] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/08/2014] [Accepted: 09/12/2014] [Indexed: 12/20/2022]
|
424
|
Tao S, Tang D, Morita Y, Sperka T, Omrani O, Lechel A, Sakk V, Kraus J, Kestler HA, Kühl M, Rudolph KL. Wnt activity and basal niche position sensitize intestinal stem and progenitor cells to DNA damage. EMBO J 2015; 34:624-40. [PMID: 25609789 PMCID: PMC4365032 DOI: 10.15252/embj.201490700] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aging and carcinogenesis coincide with the accumulation of DNA damage and mutations in stem and progenitor cells. Molecular mechanisms that influence responses of stem and progenitor cells to DNA damage remain to be delineated. Here, we show that niche positioning and Wnt signaling activity modulate the sensitivity of intestinal stem and progenitor cells (ISPCs) to DNA damage. ISPCs at the crypt bottom with high Wnt/β-catenin activity are more sensitive to DNA damage compared to ISPCs in position 4 with low Wnt activity. These differences are not induced by differences in cell cycle activity but relate to DNA damage-dependent activation of Wnt signaling, which in turn amplifies DNA damage checkpoint activation. The study shows that instructed enhancement of Wnt signaling increases radio-sensitivity of ISPCs, while inhibition of Wnt signaling decreases it. These results provide a proof of concept that cell intrinsic levels of Wnt signaling modulate the sensitivity of ISPCs to DNA damage and heterogeneity in Wnt activation in the stem cell niche contributes to the selection of ISPCs in the context of DNA damage.
Collapse
Affiliation(s)
- Si Tao
- Leibniz Institute for Age Research - Fritz Lipmann Institute e.V. (FLI), Jena, Germany Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany International Graduate School in Molecular Medicine Ulm, Ulm University, Ulm, Germany
| | - Duozhuang Tang
- Leibniz Institute for Age Research - Fritz Lipmann Institute e.V. (FLI), Jena, Germany
| | - Yohei Morita
- Leibniz Institute for Age Research - Fritz Lipmann Institute e.V. (FLI), Jena, Germany
| | - Tobias Sperka
- Leibniz Institute for Age Research - Fritz Lipmann Institute e.V. (FLI), Jena, Germany
| | - Omid Omrani
- Leibniz Institute for Age Research - Fritz Lipmann Institute e.V. (FLI), Jena, Germany
| | - André Lechel
- Cooperation Group between the Leibniz Institute for Age Research, Ulm University, Ulm, Germany
| | - Vadim Sakk
- Cooperation Group between the Leibniz Institute for Age Research, Ulm University, Ulm, Germany
| | - Johann Kraus
- Medical Systems Biology Unit, Ulm University, Ulm, Germany
| | - Hans A Kestler
- Leibniz Institute for Age Research - Fritz Lipmann Institute e.V. (FLI), Jena, Germany Medical Systems Biology Unit, Ulm University, Ulm, Germany
| | - Michael Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Karl Lenhard Rudolph
- Leibniz Institute for Age Research - Fritz Lipmann Institute e.V. (FLI), Jena, Germany Research Group on Stem Cell Aging, Jena University Hospital (UKJ), Jena, Germany
| |
Collapse
|
425
|
Abstract
Distinct stem cell populations in intestinal crypts mediate tissue homeostasis and responses to epithelial damage such as radiation. Now in Cell Stem Cell, Metcalfe et al. (2014) demonstrate that homeostatic, proliferative Lrg5(+) cells are necessary to regenerate the epithelium after radiation, whereas quiescent Lgr5(-) reserve stem cells are surprisingly radiosensitive.
Collapse
Affiliation(s)
- Ramesh A Shivdasani
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham & Women's Hospital, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
426
|
Gilbert S, Nivarthi H, Mayhew CN, Lo YH, Noah TK, Vallance J, Rülicke T, Müller M, Jegga AG, Tang W, Zhang D, Helmrath M, Shroyer N, Moriggl R, Han X. Activated STAT5 confers resistance to intestinal injury by increasing intestinal stem cell proliferation and regeneration. Stem Cell Reports 2015; 4:209-25. [PMID: 25579133 PMCID: PMC4325270 DOI: 10.1016/j.stemcr.2014.12.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 12/04/2014] [Accepted: 12/04/2014] [Indexed: 01/06/2023] Open
Abstract
Intestinal epithelial stem cells (IESCs) control the intestinal homeostatic response to inflammation and regeneration. The underlying mechanisms are unclear. Cytokine-STAT5 signaling regulates intestinal epithelial homeostasis and responses to injury. We link STAT5 signaling to IESC replenishment upon injury by depletion or activation of Stat5 transcription factor. We found that depletion of Stat5 led to deregulation of IESC marker expression and decreased LGR5(+) IESC proliferation. STAT5-deficient mice exhibited worse intestinal histology and impaired crypt regeneration after γ-irradiation. We generated a transgenic mouse model with inducible expression of constitutively active Stat5. In contrast to Stat5 depletion, activation of STAT5 increased IESC proliferation, accelerated crypt regeneration, and conferred resistance to intestinal injury. Furthermore, ectopic activation of STAT5 in mouse or human stem cells promoted LGR5(+) IESC self-renewal. Accordingly, STAT5 promotes IESC proliferation and regeneration to mitigate intestinal inflammation. STAT5 is a functional therapeutic target to improve the IESC regenerative response to gut injury.
Collapse
Affiliation(s)
- Shila Gilbert
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Harini Nivarthi
- Institute of Animal Breeding and Genetics, Biomodels Austria, Institute of Laboratory Animal Science, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Christopher N Mayhew
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Yuan-Hung Lo
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Taeko K Noah
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jefferson Vallance
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Thomas Rülicke
- Institute of Animal Breeding and Genetics, Biomodels Austria, Institute of Laboratory Animal Science, University of Veterinary Medicine, 1210 Vienna, Austria; Medical University of Vienna, 1090 Vienna, Austria
| | - Mathias Müller
- Institute of Animal Breeding and Genetics, Biomodels Austria, Institute of Laboratory Animal Science, University of Veterinary Medicine, 1210 Vienna, Austria; Medical University of Vienna, 1090 Vienna, Austria
| | - Anil G Jegga
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Wenjuan Tang
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Dongsheng Zhang
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Michael Helmrath
- Division of Pediatric Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Noah Shroyer
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Richard Moriggl
- Ludwig Boltzmann Institute for Cancer Research, 1090 Vienna, Austria; Institute of Animal Breeding and Genetics, Biomodels Austria, Institute of Laboratory Animal Science, University of Veterinary Medicine, 1210 Vienna, Austria; Medical University of Vienna, 1090 Vienna, Austria
| | - Xiaonan Han
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
427
|
Abstract
The single-cell thick intestinal epithelial cell (IEC) lining with its protective layer of mucus is the primary barrier protecting the organism from the harsh environment of the intestinal lumen. Today it is clear that the balancing act necessary to maintain intestinal homeostasis is dependent on the coordinated action of all cell types of the IEC, and that there are no passive bystanders to gut immunity solely acting as absorptive or regenerative cells: Mucin and antimicrobial peptides on the epithelial surface are continually being replenished by goblet and Paneth's cells. Luminal antigens are being sensed by pattern recognition receptors on the enterocytes. The enteroendocrine cells sense the environment and coordinate the intestinal function by releasing neuropeptides acting both on IEC and inflammatory cells. All this while cells are continuously and rapidly being regenerated from a limited number of stem cells close to the intestinal crypt base. This review seeks to describe the cell types and structures of the intestinal epithelial barrier supporting intestinal homeostasis, and how disturbance in these systems might relate to inflammatory bowel disease.
Collapse
Affiliation(s)
- Rasmus Goll
- Medical Clinic, Section of Gastroenterology, University Hospital of North Norway , Tromsø , Norway
| | | |
Collapse
|
428
|
Taniguchi CM, Miao YR, Diep AN, Wu C, Rankin EB, Atwood TF, Xing L, Giaccia AJ. PHD inhibition mitigates and protects against radiation-induced gastrointestinal toxicity via HIF2. Sci Transl Med 2014; 6:236ra64. [PMID: 24828078 DOI: 10.1126/scitranslmed.3008523] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Radiation-induced gastrointestinal (GI) toxicity can be a major source of morbidity and mortality after radiation exposure. There is an unmet need for effective preventative or mitigative treatments against the potentially fatal diarrhea and water loss induced by radiation damage to the GI tract. We report that prolyl hydroxylase inhibition by genetic knockout or pharmacologic inhibition of all PHD (prolyl hydroxylase domain) isoforms by the small-molecule dimethyloxallyl glycine (DMOG) increases hypoxia-inducible factor (HIF) expression, improves epithelial integrity, reduces apoptosis, and increases intestinal angiogenesis, all of which are essential for radioprotection. HIF2, but not HIF1, is both necessary and sufficient to prevent radiation-induced GI toxicity and death. Increased vascular endothelial growth factor (VEGF) expression contributes to the protective effects of HIF2, because inhibition of VEGF function reversed the radioprotection and radiomitigation afforded by DMOG. Additionally, mortality from abdominal or total body irradiation was reduced even when DMOG was given 24 hours after exposure. Thus, prolyl hydroxylase inhibition represents a treatment strategy to protect against and mitigate GI toxicity from both therapeutic radiation and potentially lethal radiation exposures.
Collapse
Affiliation(s)
- Cullen M Taniguchi
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Yu Rebecca Miao
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Anh N Diep
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Colleen Wu
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Erinn B Rankin
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Todd F Atwood
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Lei Xing
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Amato J Giaccia
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
429
|
Abstract
Deletion of prolyl hydroxylase domain proteins or overexpression of hypoxia-inducible factor 2α (HIF2α) in the gastrointestinal epithelium improves survival of mice after abdominal irradiation (Taniguchi et al., this issue).
Collapse
Affiliation(s)
- Chang-Lung Lee
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - Everett J Moding
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - David G Kirsch
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA. Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
430
|
Philpott A, Winton DJ. Lineage selection and plasticity in the intestinal crypt. Curr Opin Cell Biol 2014; 31:39-45. [PMID: 25083805 PMCID: PMC4238899 DOI: 10.1016/j.ceb.2014.07.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 07/06/2014] [Accepted: 07/11/2014] [Indexed: 12/21/2022]
Abstract
We know more about the repertoire of cellular behaviours that define the stem and progenitor cells maintaining the intestinal epithelium than any other renewing tissue. Highly dynamic and stochastic processes define cell renewal. Historically the commitment step in differentiation is viewed as a ratchet, irreversibly promoting a given fate and corresponding to a programme imposed at the point of cell division. However, the emerging view of intestinal self-renewal is one of plasticity in which a stem cell state is easily reacquired. The pathway mediators of lineage selection are largely known but how they interface within highly dynamic populations to promote different lineages and yet permit plasticity is not. Advances in understanding gene regulation in the nervous system suggest possible mechanisms.
Collapse
Affiliation(s)
- Anna Philpott
- Department of Oncology, University of Cambridge, Hutchison/Medical Research Council (MRC) Research Centre, Cambridge CB2 0XZ, UK
| | - Douglas J Winton
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK.
| |
Collapse
|
431
|
Scheeren FA, Kuo AH, van Weele LJ, Cai S, Glykofridis I, Sikandar SS, Zabala M, Qian D, Lam JS, Johnston D, Volkmer JP, Sahoo D, van de Rijn M, Dirbas FM, Somlo G, Kalisky T, Rothenberg ME, Quake SR, Clarke MF. A cell-intrinsic role for TLR2–MYD88 in intestinal and breast epithelia and oncogenesis. Nat Cell Biol 2014; 16:1238-48. [DOI: 10.1038/ncb3058] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 09/29/2014] [Indexed: 12/13/2022]
|
432
|
Single-cell analysis of proxy reporter allele-marked epithelial cells establishes intestinal stem cell hierarchy. Stem Cell Reports 2014; 3:876-91. [PMID: 25418730 PMCID: PMC4235148 DOI: 10.1016/j.stemcr.2014.09.011] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/10/2014] [Accepted: 09/11/2014] [Indexed: 01/17/2023] Open
Abstract
The recent development of targeted murine reporter alleles as proxies for intestinal stem cell activity has led to significant advances in our understanding of somatic stem cell hierarchies and dynamics. Analysis of these reporters has led to a model in which an indispensable reserve stem cell at the top of the hierarchy (marked by Bmi1 and Hopx reporters) gives rise to active intestinal stem cells (marked by an Lgr5 reporter). Despite these advances, controversy exists regarding the specificity and fidelity with which these alleles distinguish intestinal stem cell populations. Here, we undertake a comprehensive comparison of widely used proxy reporters including both CreERT2 and EGFP cassettes targeted to the Lgr5, Bmi1, and Hopx loci. Single-cell transcriptional profiling of these populations and their progeny reveals that reserve and active intestinal stem cells are molecularly and functionally distinct, supporting a two-stem-cell model for intestinal self-renewal. Proxy intestinal stem cell reporter alleles often mark heterogeneous populations Discrepancies exist between proxy reporter activity and endogenous transcripts Reserve and active intestinal stem cells are molecularly distinct Reserve intestinal stem cells give rise to active stem cells during homeostasis
Collapse
|
433
|
Chibly AM, Querin L, Harris Z, Limesand KH. Label-retaining cells in the adult murine salivary glands possess characteristics of adult progenitor cells. PLoS One 2014; 9:e107893. [PMID: 25238060 PMCID: PMC4169596 DOI: 10.1371/journal.pone.0107893] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 08/12/2014] [Indexed: 11/18/2022] Open
Abstract
Radiotherapy is the primary treatment for patients with head and neck cancer, which account for roughly 500,000 annual cases worldwide. Dysfunction of the salivary glands and associated conditions like xerostomia and dysphagia are often developed by these patients, greatly diminishing their life quality. Current preventative and palliative care fail to deliver an improvement in the quality of life, thus accentuating the need for regenerative therapies. In this study, a model of label retaining cells (LRCs) in murine salivary glands was developed, in which LRCs demonstrated proliferative potential and possessed markers of putative salivary progenitors. Mice were labeled with 5-Ethynyl-2′-deoxyuridine (EdU) at postnatal day 10 and chased for 8 weeks. Tissue sections from salivary glands obtained at the end of chase demonstrated co-localization between LRCs and the salivary progenitor markers keratin 5 and keratin 14, as well as kit mRNA, indicating that LRCs encompass a heterogeneous population of salivary progenitors. Proliferative potential of LRCs was demonstrated by a sphere assay, in which LRCs were found in primary and secondary spheres and they co-localized with the proliferation marker Ki67 throughout sphere formation. Surprisingly, LRCs were shown to be radio-resistant and evade apoptosis following radiation treatment. The clinical significance of these findings lie in the potential of this model to study the mechanisms that prevent salivary progenitors from maintaining homeostasis upon exposure to radiation, which will in turn facilitate the development of regenerative therapies for salivary gland dysfunction.
Collapse
Affiliation(s)
- Alejandro M. Chibly
- The University of Arizona, Cancer Biology Graduate Program, Tucson, Arizona, United States of America
| | - Lauren Querin
- The University of Arizona, Department of Nutritional Sciences, Tucson, Arizona, United States of America
| | - Zoey Harris
- The University of Arizona, Department of Nutritional Sciences, Tucson, Arizona, United States of America
| | - Kirsten H. Limesand
- The University of Arizona, Cancer Biology Graduate Program, Tucson, Arizona, United States of America
- The University of Arizona, Department of Nutritional Sciences, Tucson, Arizona, United States of America
- * E-mail:
| |
Collapse
|
434
|
Bolden JE, Tasdemir N, Dow LE, van Es JH, Wilkinson JE, Zhao Z, Clevers H, Lowe SW. Inducible in vivo silencing of Brd4 identifies potential toxicities of sustained BET protein inhibition. Cell Rep 2014; 8:1919-1929. [PMID: 25242322 PMCID: PMC4234106 DOI: 10.1016/j.celrep.2014.08.025] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 06/30/2014] [Accepted: 08/12/2014] [Indexed: 12/20/2022] Open
Abstract
BET family proteins are novel therapeutic targets for cancer and inflammation and represent the first chromatin readers against which small-molecule inhibitors have been developed. First-generation BET inhibitors have shown therapeutic efficacy in preclinical models, but the consequences of sustained BET protein inhibition in normal tissues remain poorly characterized. Using an inducible and reversible transgenic RNAi mouse model, we show that strong suppression of the BET protein Brd4 in adult animals has dramatic effects in multiple tissues. Brd4-depleted mice display reversible epidermal hyperplasia, alopecia, and decreased cellular diversity and stem cell depletion in the small intestine. Furthermore, Brd4-suppressed intestines are sensitive to organ stress and show impaired regeneration following irradiation, suggesting that concurrent Brd4 suppression and certain cytotoxic therapies may induce undesirable synergistic effects. These findings provide important insight into Brd4 function in normal tissues and, importantly, predict several potential outcomes associated with potent and sustained BET protein inhibition.
Collapse
Affiliation(s)
| | - Nilgun Tasdemir
- Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA; Watson School of Biological Sciences, Cold Spring Harbor, NY 11724, USA; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Lukas E Dow
- Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Johan H van Es
- Hubrecht Institute/KNAW, Uppsalalaan 8, Utrecht 3584 CT, the Netherlands
| | - John E Wilkinson
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Zhen Zhao
- Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Hans Clevers
- Hubrecht Institute/KNAW, Uppsalalaan 8, Utrecht 3584 CT, the Netherlands; University Medical Center Utrecht, Uppsalalaan 8, Utrecht 3584 CT, the Netherlands
| | - Scott W Lowe
- Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA; Howard Hughes Medical Institute, New York, NY 10065, USA.
| |
Collapse
|
435
|
Wiener Z, Högström J, Hyvönen V, Band A, Kallio P, Holopainen T, Dufva O, Haglund C, Kruuna O, Oliver G, Ben-Neriah Y, Alitalo K. Prox1 Promotes Expansion of the Colorectal Cancer Stem Cell Population to Fuel Tumor Growth and Ischemia Resistance. Cell Rep 2014; 8:1943-1956. [DOI: 10.1016/j.celrep.2014.08.034] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 01/14/2014] [Accepted: 08/17/2014] [Indexed: 12/25/2022] Open
|
436
|
Hauer-Jensen M, Denham JW, Andreyev HJN. Radiation enteropathy--pathogenesis, treatment and prevention. Nat Rev Gastroenterol Hepatol 2014; 11:470-9. [PMID: 24686268 PMCID: PMC4346191 DOI: 10.1038/nrgastro.2014.46] [Citation(s) in RCA: 302] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Changes in cancer incidence and mortality have been modest during the past several decades, but the number of cancer survivors has almost tripled during the same period. With an increasing cohort of cancer survivors, efforts to prevent, diagnose and manage adverse effects of cancer therapy, in general, and those of radiation therapy specifically, have intensified. Many cancer survivors have undergone radiation therapy of tumours in the pelvis or abdomen, thus rendering the bowel at risk of injury. In fact, the current prevalence of patients who have long-term radiation-induced intestinal adverse effects exceeds that of IBD. Considerable progress towards reducing toxicity of radiation therapy has been made by the introduction of so-called dose-sculpting treatment techniques, which enable precise delivery of the radiation beam. Moreover, new insights into the underlying pathophysiology have resulted in an improved understanding of mechanisms of radiation-induced bowel toxicity and in development of new diagnostic strategies and management opportunities. This Review discusses the pathogenesis of early and delayed radiation-induced bowel toxicity, presents current management options and outlines priorities for future research. By adding insight into molecular and cellular mechanisms of related bowel disorders, gastroenterologists can substantially strengthen these efforts.
Collapse
Affiliation(s)
- Martin Hauer-Jensen
- Surgical Service, Central Arkansas Veterans Healthcare System and Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - James W. Denham
- Department of Radiation Oncology, University of Newcastle, Newcastle, NSW, Australia
| | | |
Collapse
|
437
|
Abstract
Limited pools of resident adult stem cells are critical effectors of epithelial renewal in the intestine throughout life. Recently, significant progress has been made regarding the isolation and in vitro propagation of fetal and adult intestinal stem cells in mammals. It is now possible to generate ever-expanding, three-dimensional epithelial structures in culture that closely parallel the in vivo epithelium of the intestine. Growing such organotypic epithelium ex vivo facilitates a detailed description of endogenous niche factors or stem-cell characteristics, as they can be monitored in real time. Accordingly, this technology has already greatly contributed to our understanding of intestinal adult stem-cell renewal and differentiation. Transplanted organoids have also been proven to readily integrate into, and effect the long-term repair of, mouse colonic epithelia in vivo, establishing the organoid culture as a promising tool for adult stem cell/gene therapy. In another exciting development, novel genome-editing techniques have been successfully employed to functionally repair disease loci in cultured intestinal stem cells from human patients with a hereditary defect. It is anticipated that this technology will be instrumental in exploiting the regenerative medicine potential of human intestinal stem cells for treating human disorders in the intestinal tract and for creating near-physiological ex vivo models of human gastrointestinal disease.
Collapse
Affiliation(s)
| | - Nick Barker
- A*STAR Institute of Medical Biology, Singapore Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
438
|
Gracz AD, Magness ST. Defining hierarchies of stemness in the intestine: evidence from biomarkers and regulatory pathways. Am J Physiol Gastrointest Liver Physiol 2014; 307:G260-73. [PMID: 24924746 PMCID: PMC4121637 DOI: 10.1152/ajpgi.00066.2014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
For decades, the rapid proliferation and well-defined cellular lineages of the small intestinal epithelium have driven an interest in the biology of the intestinal stem cells (ISCs) and progenitors that produce the functional cells of the epithelium. Recent and significant advances in ISC biomarker discovery have established the small intestinal epithelium as a powerful model system for studying general paradigms in somatic stem cell biology and facilitated elegant genetic and functional studies of stemness in the intestine. However, this newfound wealth of ISC biomarkers raises important questions of marker specificity. Furthermore, the ISC field must now begin to reconcile biomarker status with functional stemness, a challenge that is made more complex by emerging evidence that cellular hierarchies in the intestinal epithelium are more plastic than previously imagined, with some progenitor populations capable of dedifferentiating and functioning as ISCs following damage. In this review, we discuss the state of the ISC field in terms of biomarkers, tissue dynamics, and cellular hierarchies, and how these processes might be informed by earlier studies into signaling networks in the small intestine.
Collapse
Affiliation(s)
- A. D. Gracz
- 1Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; ,2Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and
| | - S. T. Magness
- 1Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; ,2Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and ,3Joint Department of Biomedical Engineering, University of North Carolina/North Carolina State University, Chapel Hill, North Carolina
| |
Collapse
|
439
|
Kabiri Z, Greicius G, Madan B, Biechele S, Zhong Z, Zaribafzadeh H, Aliyev J, Wu Y, Bunte R, Williams BO, Rossant J, Virshup DM. Stroma provides an intestinal stem cell niche in the absence of epithelial Wnts. Development 2014; 141:2206-15. [PMID: 24821987 DOI: 10.1242/dev.104976] [Citation(s) in RCA: 274] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Wnt/β-catenin signaling supports intestinal homeostasis by regulating proliferation in the crypt. Multiple Wnts are expressed in Paneth cells as well as other intestinal epithelial and stromal cells. Ex vivo, Wnts secreted by Paneth cells can support intestinal stem cells when Wnt signaling is enhanced with supplemental R-Spondin 1 (RSPO1). However, in vivo, the source of Wnts in the stem cell niche is less clear. Genetic ablation of Porcn, an endoplasmic reticulum resident O-acyltransferase that is essential for the secretion and activity of all vertebrate Wnts, confirmed the role of intestinal epithelial Wnts in ex vivo culture. Unexpectedly, mice lacking epithelial Wnt activity (Porcn(Del)/Villin-Cre mice) had normal intestinal proliferation and differentiation, as well as successful regeneration after radiation injury, indicating that epithelial Wnts are dispensable for these processes. Consistent with a key role for stroma in the crypt niche, intestinal stromal cells endogenously expressing Wnts and Rspo3 support the growth of Porcn(Del) organoids ex vivo without RSPO1 supplementation. Conversely, increasing pharmacologic PORCN inhibition, affecting both stroma and epithelium, reduced Lgr5 intestinal stem cells, inhibited recovery from radiation injury, and at the highest dose fully blocked intestinal proliferation. We conclude that epithelial Wnts are dispensable and that stromal production of Wnts can fully support normal murine intestinal homeostasis.
Collapse
|
440
|
Cordero JB, Ridgway RA, Valeri N, Nixon C, Frame MC, Muller WJ, Vidal M, Sansom OJ. c-Src drives intestinal regeneration and transformation. EMBO J 2014; 33:1474-91. [PMID: 24788409 PMCID: PMC4194090 DOI: 10.1002/embj.201387454] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 03/11/2014] [Accepted: 04/08/2014] [Indexed: 12/11/2022] Open
Abstract
The non-receptor tyrosine kinase c-Src, hereafter referred to as Src, is overexpressed or activated in multiple human malignancies. There has been much speculation about the functional role of Src in colorectal cancer (CRC), with Src amplification and potential activating mutations in up to 20% of the human tumours, although this has never been addressed due to multiple redundant family members. Here, we have used the adult Drosophila and mouse intestinal epithelium as paradigms to define a role for Src during tissue homeostasis, damage-induced regeneration and hyperplasia. Through genetic gain and loss of function experiments, we demonstrate that Src is necessary and sufficient to drive intestinal stem cell (ISC) proliferation during tissue self-renewal, regeneration and tumourigenesis. Surprisingly, Src plays a non-redundant role in the mouse intestine, which cannot be substituted by the other family kinases Fyn and Yes. Mechanistically, we show that Src drives ISC proliferation through upregulation of EGFR and activation of Ras/MAPK and Stat3 signalling. Therefore, we demonstrate a novel essential role for Src in intestinal stem/progenitor cell proliferation and tumourigenesis initiation in vivo.
Collapse
Affiliation(s)
- Julia B Cordero
- The Beatson Institute for Cancer Research, Bearsden Glasgow, UK
| | | | | | - Colin Nixon
- The Beatson Institute for Cancer Research, Bearsden Glasgow, UK
| | - Margaret C Frame
- Edinburgh Cancer Research Centre Institute of Genetics & Molecular Medicine University of Edinburgh, Edinburgh, UK
| | - William J Muller
- Goodman Cancer Research Center McGill University, Montreal, QC, Canada
| | - Marcos Vidal
- The Beatson Institute for Cancer Research, Bearsden Glasgow, UK
| | - Owen J Sansom
- The Beatson Institute for Cancer Research, Bearsden Glasgow, UK
| |
Collapse
|
441
|
Abstract
Intestinal stem cells (ISCs) and colorectal cancer (CRC) biology are tightly linked in many aspects. It is generally thought that ISCs are the cells of origin for a large proportion of CRCs and crucial ISC-associated signalling pathways are often affected in CRCs. Moreover, CRCs are thought to retain a cellular hierarchy that is reminiscent of the intestinal epithelium. Recent studies offer quantitative insights into the dynamics of ISC behaviour that govern homeostasis and thereby provide the necessary baseline parameters to begin to apply these analyses during the various stages of tumour development.
Collapse
Affiliation(s)
- Louis Vermeulen
- 1] Laboratory for Experimental Oncology and Radiobiology, Center for Experimental Molecular Medicine, Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands. [2] Cancer Research UK - Cambridge Institute, University of Cambridge, Robinson Way, CB2 0RE, Cambridge, UK
| | - Hugo J Snippert
- Molecular Cancer Research and Cancer Genomics Netherlands, Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
442
|
Blanpain C, Fuchs E. Stem cell plasticity. Plasticity of epithelial stem cells in tissue regeneration. Science 2014; 344:1242281. [PMID: 24926024 DOI: 10.1126/science.1242281] [Citation(s) in RCA: 431] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Tissues rely upon stem cells for homeostasis and repair. Recent studies show that the fate and multilineage potential of epithelial stem cells can change depending on whether a stem cell exists within its resident niche and responds to normal tissue homeostasis, whether it is mobilized to repair a wound, or whether it is taken from its niche and challenged to de novo tissue morphogenesis after transplantation. In this Review, we discuss how different populations of naturally lineage-restricted stem cells and committed progenitors can display remarkable plasticity and reversibility and reacquire long-term self-renewing capacities and multilineage differentiation potential during physiological and regenerative conditions. We also discuss the implications of cellular plasticity for regenerative medicine and for cancer.
Collapse
Affiliation(s)
- Cédric Blanpain
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles, Brussels B-1070, Belgium. Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Université Libre de Bruxelles (ULB), Brussels B-1070, Belgium.
| | - Elaine Fuchs
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
443
|
Foulke-Abel J, In J, Kovbasnjuk O, Zachos NC, Ettayebi K, Blutt SE, Hyser JM, Zeng XL, Crawford SE, Broughman JR, Estes MK, Donowitz M. Human enteroids as an ex-vivo model of host-pathogen interactions in the gastrointestinal tract. Exp Biol Med (Maywood) 2014; 239:1124-34. [PMID: 24719375 DOI: 10.1177/1535370214529398] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Currently, 9 out of 10 experimental drugs fail in clinical studies. This has caused a 40% plunge in the number of drugs approved by the US Food and Drug Administration (FDA) since 2005. It has been suggested that the mechanistic differences between human diseases modeled in animals (mostly rodents) and the pathophysiology of human diseases might be one of the critical factors that contribute to drug failure in clinical trials. Rapid progress in the field of human stem cell technology has allowed the in-vitro recreation of human tissue that should complement and expand upon the limitations of cell and animal models currently used to study human diseases and drug toxicity. Recent success in the identification and isolation of human intestinal epithelial stem cells (Lgr5(+)) from the small intestine and colon has led to culture of functional intestinal epithelial units termed organoids or enteroids. Intestinal enteroids are comprised of all four types of normal epithelial cells and develop a crypt-villus differentiation axis. They demonstrate major intestinal physiologic functions, including Na(+) absorption and Cl(-) secretion. This review discusses the recent progress in establishing human enteroids as a model of infectious diarrheal diseases such as cholera, rotavirus, and enterohemorrhagic Escherichia coli, and use of the enteroids to determine ways to correct the diarrhea-induced ion transport abnormalities via drug therapy.
Collapse
Affiliation(s)
- Jennifer Foulke-Abel
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Julie In
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Olga Kovbasnjuk
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nicholas C Zachos
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Khalil Ettayebi
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sarah E Blutt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Joseph M Hyser
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xi-Lei Zeng
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sue E Crawford
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - James R Broughman
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mark Donowitz
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
444
|
Chibly AM, Nguyen T, Limesand KH. Palliative Care for Salivary Gland Dysfunction Highlights the Need for Regenerative Therapies: A Review on Radiation and Salivary Gland Stem Cells. ACTA ACUST UNITED AC 2014; 4. [PMID: 26693098 DOI: 10.4172/2165-7386.1000180] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Radiotherapy remains the major course of treatment for Head and Neck cancer patients. A common consequence of radiation treatment is dysfunction of the salivary glands, which leads to a number of oral complications including xerostomia and dysphagia, for which there is no existent cure. Here, we briefly describe the current palliative treatments available for patients undergoing these conditions, such as oral lubricants, saliva substitutes, and saliva stimulants. None of these options achieves restoration of normal quality of life due to their limited effectiveness, and in some cases, adverse side effects of their own. Other therapies under development, such as acupuncture and electrostimulation have also yielded mixed results in clinical trials. Due to the ineffectiveness of palliative care to restore quality of life, it is reasonable to aim for the development of regenerative therapies that allow restoration of function of the salivary epithelium following radiation treatment. Adult stem cells are a necessary component of wound healing, and play important roles in preserving normal function of adult tissues. Thus, the present review mainly focuses on the effects of radiation on adult stem cells in a variety of tissues, which may be at play in the response of salivary glands to radiation treatment. This is of clinical importance because progenitor cells of the salivary glands have shown partial regenerative potential in mouse transplantation assays. Therefore, understanding how these progenitor cells are affected by radiation offers potential for development of new therapies for patients with xerostomia.
Collapse
Affiliation(s)
| | - Thao Nguyen
- The University of Arizona Nutritional Sciences Graduate Program, Tucson, AZ 85721, USA
| | - Kirsten H Limesand
- The University of Arizona Nutritional Sciences Graduate Program, Tucson, AZ 85721, USA
| |
Collapse
|