401
|
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by expanded polyglutamine (polyQ)-encoding repeats in the Huntingtin (HTT) gene. Traditionally, HD cellular models consisted of either patient cells not affected by disease or rodent neurons expressing expanded polyQ repeats in HTT. As these models can be limited in their disease manifestation or proper genetic context, respectively, human HD pluripotent stem cells (PSCs) are currently under investigation as a way to model disease in patient-derived neurons and other neural cell types. This chapter reviews embryonic stem cell (ESC) and induced pluripotent stem cell (iPSC) models of disease, including published differentiation paradigms for neurons and their associated phenotypes, as well as current challenges to the field such as validation of the PSCs and PSC-derived cells. Highlighted are potential future technical advances to HD PSC modeling, including transdifferentiation, complex in vitro multiorgan/system reconstruction, and personalized medicine. Using a human HD patient model of the central nervous system, hopefully one day researchers can tease out the consequences of mutant HTT (mHTT) expression on specific cell types within the brain in order to identify and test novel therapies for disease.
Collapse
|
402
|
P Rothenbücher TS, Martínez-Serrano A. Human cerebral organoids and neural 3D tissues in basic research, and their application to study neurological diseases. FUTURE NEUROLOGY 2019. [DOI: 10.2217/fnl-2018-0043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Theresa S P Rothenbücher
- Department of Molecular Biology, Univ. Autónoma de Madrid; & Department of Molecular Neuropathology, Center of Molecular Biology Severo Ochoa (CBMSO, UAM-CSIC), Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Alberto Martínez-Serrano
- Department of Molecular Biology, Univ. Autónoma de Madrid; & Department of Molecular Neuropathology, Center of Molecular Biology Severo Ochoa (CBMSO, UAM-CSIC), Nicolás Cabrera 1, 28049 Madrid, Spain
| |
Collapse
|
403
|
Karzbrun E, Reiner O. Brain Organoids-A Bottom-Up Approach for Studying Human Neurodevelopment. Bioengineering (Basel) 2019; 6:E9. [PMID: 30669275 PMCID: PMC6466401 DOI: 10.3390/bioengineering6010009] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/08/2019] [Accepted: 01/11/2019] [Indexed: 12/25/2022] Open
Abstract
Brain organoids have recently emerged as a three-dimensional tissue culture platform to study the principles of neurodevelopment and morphogenesis. Importantly, brain organoids can be derived from human stem cells, and thus offer a model system for early human brain development and human specific disorders. However, there are still major differences between the in vitro systems and in vivo development. This is in part due to the challenge of engineering a suitable culture platform that will support proper development. In this review, we discuss the similarities and differences of human brain organoid systems in comparison to embryonic development. We then describe how organoids are used to model neurodevelopmental diseases. Finally, we describe challenges in organoid systems and how to approach these challenges using complementary bioengineering techniques.
Collapse
Affiliation(s)
- Eyal Karzbrun
- Kavli Institute for Theoretical Physics and Department of Physics, University of California, Santa Barbara, CA 93106, USA.
| | - Orly Reiner
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
404
|
|
405
|
Buchsbaum IY, Cappello S. Neuronal migration in the CNS during development and disease: insights from in vivo and in vitro models. Development 2019; 146:146/1/dev163766. [DOI: 10.1242/dev.163766] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ABSTRACT
Neuronal migration is a fundamental process that governs embryonic brain development. As such, mutations that affect essential neuronal migration processes lead to severe brain malformations, which can cause complex and heterogeneous developmental and neuronal migration disorders. Our fragmented knowledge about the aetiology of these disorders raises numerous issues. However, many of these can now be addressed through studies of in vivo and in vitro models that attempt to recapitulate human-specific mechanisms of cortical development. In this Review, we discuss the advantages and limitations of these model systems and suggest that a complementary approach, using combinations of in vivo and in vitro models, will broaden our knowledge of the molecular and cellular mechanisms that underlie defective neuronal positioning in the human cerebral cortex.
Collapse
Affiliation(s)
- Isabel Yasmin Buchsbaum
- Developmental Neurobiology, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, 82152 Planegg, Germany
| | - Silvia Cappello
- Developmental Neurobiology, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| |
Collapse
|
406
|
Khong ZJ, Hor JH, Ng SY. Spinal cord organoids add an extra dimension to traditional motor neuron cultures. Neural Regen Res 2019; 14:1515-1516. [PMID: 31089045 PMCID: PMC6557099 DOI: 10.4103/1673-5374.255966] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Affiliation(s)
-
- Institute of Molecular and Cell Biology, A*STAR Research Entities, Singapore
| | - Zi-Jian Khong
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Jin-Hui Hor
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Shi-Yan Ng
- Yong Loo Lin School of Medicine (Physiology), National University of Singapore, National Neuroscience Institute, Singapore, Singapore; The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
407
|
Chen HI, Song H, Ming GL. Applications of Human Brain Organoids to Clinical Problems. Dev Dyn 2019; 248:53-64. [PMID: 30091290 PMCID: PMC6312736 DOI: 10.1002/dvdy.24662] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/30/2018] [Accepted: 08/01/2018] [Indexed: 12/13/2022] Open
Abstract
Brain organoids are an exciting new technology with the potential to significantly change how diseases of the brain are understood and treated. These three-dimensional neural tissues are derived from the self-organization of pluripotent stem cells, and they recapitulate the developmental process of the human brain, including progenitor zones and rudimentary cortical layers. Brain organoids have been valuable in investigating different aspects of developmental neurobiology and comparative biology. Several characteristics of organoids also make them attractive as models of brain disorders. Data generated from human organoids are more generalizable to patients because of the match in species background. Personalized organoids also can be generated from patient-derived induced pluripotent stem cells. Furthermore, the three-dimensionality of brain organoids supports cellular, mechanical, and topographical cues that are lacking in planar systems. In this review, we discuss the translational potential of brain organoids, using the examples of Zika virus, autism-spectrum disorder, and glioblastoma multiforme to consider how they could contribute to disease modeling, personalized medicine, and testing of therapeutics. We then discuss areas of improvement in organoid technology that will enhance the translational potential of brain organoids, as well as the possibility of their use as substrates for repairing cerebral circuitry after injury. Developmental Dynamics 248:53-64, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- H. Isaac Chen
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Hongjun Song
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Guo-li Ming
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
408
|
Yakoub AM. Cerebral organoids exhibit mature neurons and astrocytes and recapitulate electrophysiological activity of the human brain. Neural Regen Res 2019; 14:757-761. [PMID: 30688257 PMCID: PMC6375034 DOI: 10.4103/1673-5374.249283] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Multiple protocols have been devised to generate cerebral organoids that recapitulate features of the developing human brain, including the presence of a large, multi-layered, cortical-like neuronal zone. However, the central question is whether these organoids truly present mature, functional neurons and astrocytes, which may qualify the system for in-depth molecular neuroscience studies focused at neuronal and synaptic functions. Here, we demonstrate that cerebral organoids derived under optimal differentiation conditions exhibit mature, fully functional neurons and astrocytes, as validated by immunohistological, gene expression, and electrophysiological, analyses. Neurons in cerebral organoids showed gene expression profiles and electrophysiological properties similar to those reported for fetal human brain. These important findings indicate that cerebral organoids recapitulate the developing human brain and may enhance use of cerebral organoids in modeling human brain development or investigating neural deficits that underlie neurodevelopmental and neuropsychiatric conditions, such as autism or intellectual disorders.
Collapse
Affiliation(s)
- Abraam M Yakoub
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
| |
Collapse
|
409
|
Abstract
Epigenetic mechanisms, including DNA and histone modifications, are pivotal for normal brain development and functions by modulating spatial and temporal gene expression. Dysregulation of the epigenetic machinery can serve as a causal role in numerous brain disorders. Proper mammalian brain development and functions depend on the precise expression of neuronal-specific genes, transcription factors and epigenetic modifications. Antagonistic polycomb and trithorax proteins form multimeric complexes and play important roles in these processes by epigenetically controlling gene repression or activation through various molecular mechanisms. Aberrant expression or disruption of either protein group can contribute to neurodegenerative diseases. This review focus on the current progress of Polycomb and Trithorax complexes in brain development and disease, and provides a future outlook of the field.
Collapse
|
410
|
Vaez Ghaemi R, Co IL, McFee MC, Yadav VG. Brain Organoids: A New, Transformative Investigational Tool for Neuroscience Research. ACTA ACUST UNITED AC 2019; 3:e1800174. [PMID: 32627343 DOI: 10.1002/adbi.201800174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/27/2018] [Indexed: 12/22/2022]
Abstract
Brain organoids are self-assembled, three-dimensionally structured tissues that are typically derived from pluripotent stem cells. They are multicellular aggregates that more accurately recapitulate the tissue microenvironment compared to the other cell culture systems and can also reproduce organ function. They are promising models for evaluating drug leads, particularly those that target neurodegeneration, since they are genetically and phenotypically stable over prolonged durations of culturing and they reasonably reproduce critical physiological phenomena such as biochemical gradients and responses by the native tissue to stimuli. Beyond drug discovery, the use of brain organoids could also be extended to investigating early brain development and identifying the mechanisms that elicit neurodegeneration. Herein, the current state of the fabrication and use of brain organoids in drug development and medical research is summarized. Although the use of brain organoids represents a quantum leap over existing investigational tools used by the pharmaceutical industry, they are nonetheless imperfect systems that could be greatly improved through bioengineering. To this end, some key scientific challenges that would need to be addressed in order to enhance the relevance of brain organoids as model tissue are listed. Potential solutions to these challenges, including the use of bioprinting, are highlighted thereafter.
Collapse
Affiliation(s)
- Roza Vaez Ghaemi
- Department of Chemical & Biological Engineering & School of Biomedical Engineering, The University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Ileana L Co
- Department of Chemical & Biological Engineering & School of Biomedical Engineering, The University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Matthew C McFee
- Department of Chemical & Biological Engineering & School of Biomedical Engineering, The University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Vikramaditya G Yadav
- Department of Chemical & Biological Engineering & School of Biomedical Engineering, The University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| |
Collapse
|
411
|
Liu F, Huang J, Liu Z. Vincristine Impairs Microtubules and Causes Neurotoxicity in Cerebral Organoids. Neuroscience 2018; 404:530-540. [PMID: 30599272 DOI: 10.1016/j.neuroscience.2018.12.047] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 12/21/2018] [Accepted: 12/26/2018] [Indexed: 12/14/2022]
Abstract
The advance of nanotechnology in drug delivery systems has allowed central nervous system (CNS) accumulation of several anti-tumor agents with poor brain penetration but also lead to concerns about central neurotoxicity. Vincristine is commonly administered as an effective anti-brain tumor drug. It is known to act by interfering with microtubule dynamics, but models for detailed elucidation of its mechanism of neurotoxicity are limited. Here we generated cerebral organoids using human-induced pluripotent stem cells (iPSCs) for evaluation of neurotoxic mechanisms. Cerebral organoids were treated with different concentrations of vincristine for 48 h and their expansion was measured. We also assayed various cell markers, microtubule associated proteins, and matrix metalloproteinases (MMP) in cerebral organoids. After treatment for 48 h, we observed dose-dependent neurotoxicity, including reduced neuron and astrocyte numbers at high concentration. Vincristine treatment also impaired the microtubule-associated protein tubulin, and fibronectin, and downregulated MMP10 activity. Further analysis using the STRING database found that, both MMP10 and fibronectin bind with MMP9 experimentally, and text-mining indicated an interaction between MMP10 and fibronectin. Our organoid model system allowed quantitative investigation of the effects of vincristine treatment. Our findings indicated vincristine exhibited dose-dependent neurotoxicity, inhibited fibronectin, tubulin, and MMP10 expression in cerebral organoids.
Collapse
Affiliation(s)
- Fangkun Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), Changsha, China
| | - Jing Huang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Mental Health Institute of the Second Xiangya Hospital, Central South University, Chinese National Clinical Research Center on Mental Disorders (xiangya), Chinese National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410011, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), Changsha, China.
| |
Collapse
|
412
|
Liu F, Huang J, Zhang L, Chen J, Zeng Y, Tang Y, Liu Z. Advances in Cerebral Organoid Systems and their Application in Disease Modeling. Neuroscience 2018; 399:28-38. [PMID: 30578974 DOI: 10.1016/j.neuroscience.2018.12.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/08/2018] [Accepted: 12/12/2018] [Indexed: 01/09/2023]
Abstract
Processes associated with human brain development and function are exceedingly complex, limiting our capacity to investigate disease status and potential treatment strategies in vitro. Recent advancements in human cerebral organoid systems-which replicate early stage neural tube formation, neuroepithelium differentiation, and whole-brain regional differentiation-have allowed researchers to generate more accurate models of brain development and disease. The generation of region-specific cerebral organoids also allows for the direct investigation of the etiology and pathological processes associated with inherited and acquired brain diseases, drug discovery, and drug toxicity. In this review, we provide an overview of various neural differentiation technologies, as well as a critical analysis of their strengths and limitations. We primarily focus on the generation of three-dimensional brain organoid systems and their application in infectious disease modeling, high-throughput compound screening, and neurodevelopmental disease modeling.
Collapse
Affiliation(s)
- Fangkun Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), Changsha, China
| | - Jing Huang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Mental Health Institute of the Second Xiangya Hospital, Central South University, Chinese National Clinical Research Center on Mental Disorders (xiangya), Chinese National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410011, China
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), Changsha, China
| | - Jindong Chen
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Mental Health Institute of the Second Xiangya Hospital, Central South University, Chinese National Clinical Research Center on Mental Disorders (xiangya), Chinese National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410011, China
| | - Yu Zeng
- Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), Changsha, China
| | - Yongjian Tang
- Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), Changsha, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), Changsha, China.
| |
Collapse
|
413
|
Bejoy J, Wang Z, Bijonowski B, Yang M, Ma T, Sang QX, Li Y. Differential Effects of Heparin and Hyaluronic Acid on Neural Patterning of Human Induced Pluripotent Stem Cells. ACS Biomater Sci Eng 2018; 4:4354-4366. [PMID: 31572767 PMCID: PMC6768405 DOI: 10.1021/acsbiomaterials.8b01142] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A lack of well-established animal models that can efficiently represent human brain pathology has led to the development of human induced pluripotent stem cell (hiPSC)-derived brain tissues. Brain organoids have enhanced our ability to understand the developing human brain and brain disorders (e.g., Schizophrenia, microcephaly), but the organoids still do not accurately recapitulate the anatomical organization of the human brain. Therefore, it is important to evaluate and optimize induction and signaling factors in order to engineer the next generation of brain organoids. In this study, the impact of hyaluronic acid (HA), a major brain extracellular matrix (ECM) component that interacts with cells through ligand-binding receptors, on the patterning of brain organoids from hiPSCs was evaluated. To mediate HA- binding capacity of signaling molecules, heparin was added in addition to HA or conjugated to HA to form hydrogels (with two different moduli). The neural cortical spheroids derived from hiPSCs were treated with either HA or heparin plus HA (Hep- HA) and were analyzed for ECM impacts on neural patterning. The results indicate that Hep-HA has a caudalizing effect on hiPSC-derived neural spheroids, in particular for stiff Hep-HA hydrogels. Wnt and Hippo/Yes-associated protein (YAP) signaling was modulated (using Wnt inhibitor IWP4 or actin disruption agent Cytochalasin D respectively) to understand the underlying mechanism. IWP4 and cytochalasin D promote forebrain identity. The results from this study should enhance the understanding of influence of biomimetic ECM factors for brain organoid generation.
Collapse
Affiliation(s)
- Julie Bejoy
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, United States
| | - Zhe Wang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, United States
| | - Brent Bijonowski
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, United States
| | - Mo Yang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, United States
| | - Teng Ma
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, United States
| | - Qing-Xiang Sang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, United States
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, United States
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States
| |
Collapse
|
414
|
Trujillo CA, Muotri AR. Brain Organoids and the Study of Neurodevelopment. Trends Mol Med 2018; 24:982-990. [PMID: 30377071 PMCID: PMC6289846 DOI: 10.1016/j.molmed.2018.09.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 09/27/2018] [Accepted: 09/28/2018] [Indexed: 12/31/2022]
Abstract
Brain organoids are 3D self-assembled structures composed of hundreds of thousands to millions of cells that resemble the cellular organization and transcriptional and epigenetic signature of a developing human brain. Advancements using brain organoids have been made to elucidate the genetic basis of certain neurodevelopmental disorders, such as microcephaly and autism; and to investigate the impact of environmental factors to the brain, such as during Zika virus infection. It remains to be explored how far brain organoids can functionally mature and process external information. An improved brain organoid model might reproduce important aspects of the human brain in a more reproducible and high-throughput fashion. This novel and complementary approach in the neuroscience toolbox opens perspectives to understand the fundamental features of the human neurodevelopment, with implications to personalize therapeutic opportunities for neurological disorders.
Collapse
Affiliation(s)
- Cleber A Trujillo
- Department of Pediatrics/Rady Children's Hospital San Diego, School of Medicine, University of California San Diego, San Diego, CA 92037-0695, USA
| | - Alysson R Muotri
- Department of Pediatrics/Rady Children's Hospital San Diego, School of Medicine, University of California San Diego, San Diego, CA 92037-0695, USA; Department of Cellular & Molecular Medicine, Stem Cell Program, Center for Academic Research and Training in Anthropogeny (CARTA), Kavli Institute for Brain and Mind, La Jolla, CA 92037-0695, USA.
| |
Collapse
|
415
|
Oksdath M, Perrin SL, Bardy C, Hilder EF, DeForest CA, Arrua RD, Gomez GA. Review: Synthetic scaffolds to control the biochemical, mechanical, and geometrical environment of stem cell-derived brain organoids. APL Bioeng 2018; 2:041501. [PMID: 31069322 PMCID: PMC6481728 DOI: 10.1063/1.5045124] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 10/31/2018] [Indexed: 01/16/2023] Open
Abstract
Stem cell-derived brain organoids provide a powerful platform for systematic studies of tissue functional architecture and the development of personalized therapies. Here, we review key advances at the interface of soft matter and stem cell biology on synthetic alternatives to extracellular matrices. We emphasize recent biomaterial-based strategies that have been proven advantageous towards optimizing organoid growth and controlling the geometrical, biomechanical, and biochemical properties of the organoid's three-dimensional environment. We highlight systems that have the potential to increase the translational value of region-specific brain organoid models suitable for different types of manipulations and high-throughput applications.
Collapse
Affiliation(s)
- Mariana Oksdath
- Centre for Cancer Biology, South Australia Pathology and University of South Australia, Adelaide 5001, Australia
| | - Sally L. Perrin
- Centre for Cancer Biology, South Australia Pathology and University of South Australia, Adelaide 5001, Australia
| | | | - Emily F. Hilder
- Future Industries Institute, University of South Australia, Mawson Lakes 5095, Australia
| | - Cole A. DeForest
- Department of Chemical Engineering and Department of Bioengineering, University of Washington, Seattle, Washington 98195-1750, USA
| | - R. Dario Arrua
- Future Industries Institute, University of South Australia, Mawson Lakes 5095, Australia
| | - Guillermo A. Gomez
- Centre for Cancer Biology, South Australia Pathology and University of South Australia, Adelaide 5001, Australia
| |
Collapse
|
416
|
Seto Y, Eiraku M. Human brain development and its in vitro recapitulation. Neurosci Res 2018; 138:33-42. [PMID: 30326251 DOI: 10.1016/j.neures.2018.09.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 06/29/2018] [Accepted: 08/28/2018] [Indexed: 12/13/2022]
Abstract
Humans have a large and gyrencephalic brain. The higher intellectual ability of humans is dependent on the proper development of the brain. Brain malformation is often associated with cognitive dysfunction. It is thus important to know how our brain grows during development. Several animal species have been used as models to understand the mechanisms of brain development, and have provided us with basic information in this regard. It has been revealed that mammalian brain development basically proceeds through a similar process by common mechanisms, including neural stem cell proliferation and neurogenesis. However, humans also display species-specific features in these processes. These differences seem to be important for building the proper human brain structure. Analysis of these human-specific features requires human brain samples, which are difficult to obtain due to both ethical and practical reasons. Nevertheless, brain organoids derived from human pluripotent stem cells can be used as models to study human brain development and pathology because such organoids can partly recapitulate human fetal developmental processes. In this review, we will review some human-specific features during brain development and discuss brain organoid technology as a model system. We will especially focusing on neocortical development.
Collapse
Affiliation(s)
- Yusuke Seto
- Laboratory of Developmental Systems, Institute for Frontier Life and Medical Sciences, Kyoto University, Japan
| | - Mototsugu Eiraku
- Laboratory of Developmental Systems, Institute for Frontier Life and Medical Sciences, Kyoto University, Japan.
| |
Collapse
|
417
|
Kim S, Cho AN, Min S, Kim S, Cho SW. Organoids for Advanced Therapeutics and Disease Models. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800087] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Suran Kim
- Department of Biotechnology; Yonsei University; Seoul 03722 Republic of Korea
| | - Ann-Na Cho
- Department of Biotechnology; Yonsei University; Seoul 03722 Republic of Korea
| | - Sungjin Min
- Department of Biotechnology; Yonsei University; Seoul 03722 Republic of Korea
| | - Sooyeon Kim
- Department of Biotechnology; Yonsei University; Seoul 03722 Republic of Korea
| | - Seung-Woo Cho
- Department of Biotechnology; Yonsei University; Seoul 03722 Republic of Korea
| |
Collapse
|
418
|
Xiang Y, Yoshiaki T, Patterson B, Cakir B, Kim KY, Cho YS, Park IH. Generation and Fusion of Human Cortical and Medial Ganglionic Eminence Brain Organoids. ACTA ACUST UNITED AC 2018; 47. [PMID: 30854156 DOI: 10.1002/cpsc.61] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Three-dimensional (3D) brain organoid culture has become an essential tool for investigating human brain development and modeling neurological disorders during the past few years. Given the specific regionalization during brain development, it is important to produce distinct brain organoids that reproduce different brain regions and their interaction. The authors' laboratory recently established the platform to generate brain organoids resembling the medial ganglionic eminence (MGE), a specific brain region responsible for interneurogenesis, and found when fusing with organoid resembling the cortex, the fused organoids enabled modeling of interneuron migration in the brain. This unit describes four basic protocols that have been successfully applied in the authors' laboratory, covering the generation of embryonic body (EB) with neuroectodermal fate, the production of MGE organoids (hMGEOs) and cortical organoids (hCOs), and the fusion of the two organoids.
Collapse
Affiliation(s)
- Yangfei Xiang
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Tanaka Yoshiaki
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Benjamin Patterson
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Bilal Cakir
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Kun-Yong Kim
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Yee Sook Cho
- Regenerative Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 305-806, ROK
| | - In-Hyun Park
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
419
|
Prytkova I, Goate A, Hart RP, Slesinger PA. Genetics of Alcohol Use Disorder: A Role for Induced Pluripotent Stem Cells? Alcohol Clin Exp Res 2018; 42:1572-1590. [PMID: 29897633 PMCID: PMC6120805 DOI: 10.1111/acer.13811] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/04/2018] [Indexed: 12/13/2022]
Abstract
Alcohol use disorder (AUD) affects millions of people and costs nearly 250 billion dollars annually. Few effective FDA-approved treatments exist, and more are needed. AUDs have a strong heritability, but only a few genes have been identified with a large effect size on disease phenotype. Genomewide association studies (GWASs) have identified common variants with low effect sizes, most of which are in noncoding regions of the genome. Animal models frequently fail to recapitulate key molecular features of neuropsychiatric disease due to the polygenic nature of the disease, partial conservation of coding regions, and significant disparity in noncoding regions. By contrast, human induced pluripotent stem cells (hiPSCs) derived from patients provide a powerful platform for evaluating genes identified by GWAS and modeling complex interactions in the human genome. hiPSCs can be differentiated into a wide variety of human cells, including neurons, glia, and hepatic cells, which are compatible with numerous functional assays and genome editing techniques. In this review, we focus on current applications and future directions of patient hiPSC-derived central nervous system cells for modeling AUDs in addition to highlighting successful applications of hiPSCs in polygenic neuropsychiatric diseases.
Collapse
Affiliation(s)
- Iya Prytkova
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Alison Goate
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- Ronald M. Loeb Center for Alzheimer’s disease, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Ronald P. Hart
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway NJ 08854, USA
| | - Paul A. Slesinger
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| |
Collapse
|
420
|
Induction of myelinating oligodendrocytes in human cortical spheroids. Nat Methods 2018; 15:700-706. [PMID: 30046099 PMCID: PMC6508550 DOI: 10.1038/s41592-018-0081-4] [Citation(s) in RCA: 218] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/02/2018] [Indexed: 01/07/2023]
Abstract
Organoid technologies provide an accessible system to examine cellular composition, interactions, and organization in the developing human brain, but previously have lacked oligodendrocytes, the myelinating glia of the central nervous system. Here we reproducibly generate oligodendrocytes and myelin in human pluripotent stem cell-derived “oligocortical spheroids”. Transcriptional, immunohistochemical, and electron microscopy analyses demonstrate molecular features consistent with maturing oligodendrocytes by 20 weeks in culture, including expression of MYRF, PLP1, and MBP proteins and initial myelin wrapping of axons, with maturation to longitudinal wrapping and compact myelin by 30 weeks. Promyelinating drugs enhance the rate and extent of oligodendrocyte generation and myelination, while oligocortical spheroids generated from patients with a genetic myelin disorder recapitulate human disease phenotypes. Oligocortical spheroids provide a versatile platform to observe and dissect the complex interactions required for myelination of the developing central nervous system and offer new opportunities for disease modeling and therapeutic development in human tissue.
Collapse
|
421
|
Single-cell trajectory analysis of human homogenous neurons carrying a rare RELN variant. Transl Psychiatry 2018; 8:129. [PMID: 30022058 PMCID: PMC6052151 DOI: 10.1038/s41398-018-0177-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/08/2018] [Indexed: 11/08/2022] Open
Abstract
Reelin is a protein encoded by the RELN gene that controls neuronal migration in the developing brain. Human genetic studies suggest that rare RELN variants confer susceptibility to mental disorders such as schizophrenia. However, it remains unknown what effects rare RELN variants have on human neuronal cells. To this end, the analysis of human neuronal dynamics at the single-cell level is necessary. In this study, we generated human-induced pluripotent stem cells carrying a rare RELN variant (RELN-del) using targeted genome editing; cells were further differentiated into highly homogeneous dopaminergic neurons. Our results indicated that RELN-del triggered an impaired reelin signal and decreased the expression levels of genes relevant for cell movement in human neurons. Single-cell trajectory analysis revealed that control neurons possessed directional migration even in vitro, while RELN-del neurons demonstrated a wandering type of migration. We further confirmed these phenotypes in neurons derived from a patient carrying the congenital RELN-del. To our knowledge, this is the first report of the biological significance of a rare RELN variant in human neurons based on individual neuron dynamics. Collectively, our approach should be useful for studying reelin function and evaluating mental disorder susceptibility, focusing on individual human neuronal migration.
Collapse
|
422
|
Brain organoids as models to study human neocortex development and evolution. Curr Opin Cell Biol 2018; 55:8-16. [PMID: 30006054 DOI: 10.1016/j.ceb.2018.06.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/11/2018] [Accepted: 06/14/2018] [Indexed: 11/20/2022]
Abstract
Since their recent development, organoids that emulate human brain tissue have allowed in vitro neural development studies to go beyond the limits of monolayer culture systems, such as neural rosettes. We present here a review of organoid studies that focuses on cortical wall development, starting with a technical comparison between pre-patterning and self-patterning brain organoid protocols. We then follow neocortex development in space and time and list those aspects where organoids have succeeded in emulating in vivo development, as well as those aspects that continue to be pending tasks. Finally, we present a summary of medical and evolutionary insight made possible by organoid technology.
Collapse
|
423
|
Wang H. Modeling Neurological Diseases With Human Brain Organoids. Front Synaptic Neurosci 2018; 10:15. [PMID: 29937727 PMCID: PMC6002496 DOI: 10.3389/fnsyn.2018.00015] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 05/22/2018] [Indexed: 12/18/2022] Open
Abstract
The complexity and delicacy of human brain make it challenging to recapitulate its development, function and disorders. Brain organoids derived from human pluripotent stem cells (PSCs) provide a new tool to model both normal and pathological human brain, and greatly enhance our ability to study brain biology and diseases. Currently, human brain organoids are increasingly used in modeling neurological disorders and relative therapeutic discovery. This review article focuses on recent advances in human brain organoid system and its application in disease modeling. It also discusses the limitations and future perspective of human brain organoids in modeling neurological diseases.
Collapse
Affiliation(s)
- Hansen Wang
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
424
|
Marsoner F, Koch P, Ladewig J. Cortical organoids: why all this hype? Curr Opin Genet Dev 2018; 52:22-28. [PMID: 29807351 DOI: 10.1016/j.gde.2018.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/17/2018] [Accepted: 04/30/2018] [Indexed: 01/07/2023]
Abstract
The development of organoids derived from human pluripotent stem cells heralded a new area in studying human organ development and pathology outside of the human body. Triggered by the seminal work of pioneers in the field such as Yoshiki Sasai or Hans Clevers, organoid research has become one of the most rapidly developing fields in cell biology. The potential applications are manifold reaching from developmental studies to tissue regeneration and drug screening. In this review, we will concentrate on brain organoids of cortical identity. We will describe the 'state of the art' in generating cortical organoids and discuss potential applications. Finally, we will provide future perspectives including suggestions how further innovations can broaden the application of brain organoids.
Collapse
Affiliation(s)
- Fabio Marsoner
- Central Institute of Mental Health (ZI), University of Heidelberg/Medical Faculty Mannheim, Mannheim, Germany; Hector Institute for Translational Brain Research (HITBR gGmbH), Heidelberg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Institute of Reconstructive Neurobiology, University of Bonn Medical Center, Bonn, Germany
| | - Philipp Koch
- Central Institute of Mental Health (ZI), University of Heidelberg/Medical Faculty Mannheim, Mannheim, Germany; Hector Institute for Translational Brain Research (HITBR gGmbH), Heidelberg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Julia Ladewig
- Central Institute of Mental Health (ZI), University of Heidelberg/Medical Faculty Mannheim, Mannheim, Germany; Hector Institute for Translational Brain Research (HITBR gGmbH), Heidelberg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Institute of Reconstructive Neurobiology, University of Bonn Medical Center, Bonn, Germany.
| |
Collapse
|
425
|
Pașca SP. The rise of three-dimensional human brain cultures. Nature 2018; 553:437-445. [PMID: 29364288 DOI: 10.1038/nature25032] [Citation(s) in RCA: 318] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/14/2017] [Indexed: 12/30/2022]
Abstract
Pluripotent stem cells show a remarkable ability to self-organize and differentiate in vitro in three-dimensional aggregates, known as organoids or organ spheroids, and to recapitulate aspects of human brain development and function. Region-specific 3D brain cultures can be derived from any individual and assembled to model complex cell-cell interactions and to generate circuits in human brain assembloids. Here I discuss how this approach can be used to understand unique features of the human brain and to gain insights into neuropsychiatric disorders. In addition, I consider the challenges faced by researchers in further improving and developing methods to probe and manipulate patient-derived 3D brain cultures.
Collapse
Affiliation(s)
- Sergiu P Pașca
- 1Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, USA
| |
Collapse
|
426
|
Studying the Brain in a Dish: 3D Cell Culture Models of Human Brain Development and Disease. Curr Top Dev Biol 2018; 129:99-122. [PMID: 29801532 DOI: 10.1016/bs.ctdb.2018.03.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The study of the cellular and molecular processes of the developing human brain has been hindered by access to suitable models of living human brain tissue. Recently developed 3D cell culture models offer the promise of studying fundamental brain processes in the context of human genetic background and species-specific developmental mechanisms. Here, we review the current state of 3D human brain organoid models and consider their potential to enable investigation of complex aspects of human brain development and the underpinning of human neurological disease.
Collapse
|
427
|
Shnaider TA. Cerebral organoids: a promising model in cellular technologies. Vavilovskii Zhurnal Genet Selektsii 2018. [DOI: 10.18699/vj18.344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The development of the human brain is a complex multi-stage process including the formation of various types of neural cells and their interactions. Many fundamental mechanisms of neurogenesis have been established due to the studying of model animals. However, significant differences in the brain structure compared to other animals do not allow considering all aspects of the human brain formation, which could play the main role in the development of unique cognitive abilities for human. Four years ago, Lancaster’s group elaborated human pluripotent stem cell-derived three-dimensional cerebral organoid technology, which opened a unique opportunity for researchers to model early stages of human neurogenesis in vitro. Cerebral organoids closely remodel many endogenous brain regions with specific cell composition like ventricular zone with radial glia, choroid plexus, and cortical plate with upper and deeper-layer neurons. Moreover, human brain development includes interactions between different brain regions. Generation of hybrid three-dimensional cerebral organoids with different brain region identity allows remodeling some of them, including long-distance neuronal migration or formation of major axonal tracts. In this review, we consider the technology of obtaining human pluripotent stem cell-derived three-dimensional cerebral organoids with different modifications and with different brain region identity. In addition, we discuss successful implementation of this technology in fundamental and applied research like modeling of different neurodevelopmental disorders and drug screening. Finally, we regard existing problems and prospects for development of human pluripotent stem cell-derived threedimensional cerebral organoid technology.
Collapse
|
428
|
da Silva B, Mathew RK, Polson ES, Williams J, Wurdak H. Spontaneous Glioblastoma Spheroid Infiltration of Early-Stage Cerebral Organoids Models Brain Tumor Invasion. SLAS DISCOVERY 2018. [PMID: 29543559 DOI: 10.1177/2472555218764623] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Organoid methodology provides a platform for the ex vivo investigation of the cellular and molecular mechanisms underlying brain development and disease. The high-grade brain tumor glioblastoma multiforme (GBM) is considered a cancer of unmet clinical need, in part due to GBM cell infiltration into healthy brain parenchyma, making complete surgical resection improbable. Modeling the process of GBM invasion in real time is challenging as it requires both tumor and neural tissue compartments. Here, we demonstrate that human GBM spheroids possess the ability to spontaneously infiltrate early-stage cerebral organoids (eCOs). The resulting formation of hybrid organoids demonstrated an invasive tumor phenotype that was distinct from noncancerous adult neural progenitor (NP) spheroid incorporation into eCOs. These findings provide a basis for the modeling and quantification of the GBM infiltration process using a stem-cell-based organoid approach, and may be used for the identification of anti-GBM invasion strategies.
Collapse
Affiliation(s)
- Bárbara da Silva
- 1 Stem Cells and Brain Tumour Group, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Ryan K Mathew
- 1 Stem Cells and Brain Tumour Group, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK.,2 Department of Neurosurgery, Leeds General Infirmary, Leeds, UK
| | - Euan S Polson
- 1 Stem Cells and Brain Tumour Group, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Jennifer Williams
- 1 Stem Cells and Brain Tumour Group, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Heiko Wurdak
- 1 Stem Cells and Brain Tumour Group, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| |
Collapse
|
429
|
Qian X, Jacob F, Song MM, Nguyen HN, Song H, Ming GL. Generation of human brain region-specific organoids using a miniaturized spinning bioreactor. Nat Protoc 2018; 13:565-580. [PMID: 29470464 PMCID: PMC6241211 DOI: 10.1038/nprot.2017.152] [Citation(s) in RCA: 310] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human brain organoids, 3D self-assembled neural tissues derived from pluripotent stem cells, are important tools for studying human brain development and related disorders. Suspension cultures maintained by spinning bioreactors allow for the growth of large organoids despite the lack of vasculature, but commercially available spinning bioreactors are bulky in size and have low throughput. Here, we describe the procedures for building the miniaturized multiwell spinning bioreactor SpinΩ from 3D-printed parts and commercially available hardware. We also describe how to use SpinΩ to generate forebrain, midbrain and hypothalamus organoids from human induced pluripotent stem cells (hiPSCs). These organoids recapitulate key dynamic features of the developing human brain at the molecular, cellular and structural levels. The reduction in culture volume, increase in throughput and reproducibility achieved using our bioreactor and region-specific differentiation protocols enable quantitative modeling of brain disorders and compound testing. This protocol takes 14-84 d to complete (depending on the type of brain region-specific organoids and desired developmental stages), and organoids can be further maintained over 200 d. Competence with hiPSC culture is required for optimal results.
Collapse
Affiliation(s)
- Xuyu Qian
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Biomedical Engineering Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Fadi Jacob
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mingxi Max Song
- Department of Biology, Brandeis University, Waltham, Massachusetts, USA
| | - Ha Nam Nguyen
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- The Institute for Regenerative Medicine, Perelman School for Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- The Institute for Regenerative Medicine, Perelman School for Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
430
|
Yan Y, Song L, Bejoy J, Zhao J, Kanekiyo T, Bu G, Zhou Y, Li Y. Modeling Neurodegenerative Microenvironment Using Cortical Organoids Derived from Human Stem Cells. Tissue Eng Part A 2018; 24:1125-1137. [PMID: 29361890 DOI: 10.1089/ten.tea.2017.0423] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative disorders and causes cognitive impairment and memory deficits of the patients. The mechanism of AD is not well known, due to lack of human brain models. Recently, mini-brain tissues called organoids have been derived from human induced pluripotent stem cells (hiPSCs) for modeling human brain development and neurological diseases. Thus, the objective of this research is to model and characterize neural degeneration microenvironment using three-dimensional (3D) forebrain cortical organoids derived from hiPSCs and study the response to the drug treatment. It is hypothesized that the 3D forebrain organoids derived from hiPSCs with AD-associated genetic background may partially recapitulate the extracellular microenvironment in neural degeneration. To test this hypothesis, AD-patient derived hiPSCs with presenilin-1 mutation were used for cortical organoid generation. AD-related inflammatory responses, matrix remodeling and the responses to DAPT, heparin (completes with heparan sulfate proteoglycans [HSPGs] to bind Aβ42), and heparinase (digests HSPGs) treatments were investigated. The results indicate that the cortical organoids derived from AD-associated hiPSCs exhibit a high level of Aβ42 comparing with healthy control. In addition, the AD-derived organoids result in an elevated gene expression of proinflammatory cytokines interleukin-6 and tumor necrosis factor-α, upregulate syndecan-3, and alter matrix remodeling protein expression. Our study demonstrates the capacity of hiPSC-derived organoids for modeling the changes of extracellular microenvironment and provides a potential approach for AD-related drug screening.
Collapse
Affiliation(s)
- Yuanwei Yan
- 1 Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University , Tallahassee, Florida
| | - Liqing Song
- 1 Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University , Tallahassee, Florida
| | - Julie Bejoy
- 1 Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University , Tallahassee, Florida
| | - Jing Zhao
- 2 Department of Neuroscience, Alzheimer's Disease Research Center , Mayo Clinic, Jacksonville, Florida
| | - Takahisa Kanekiyo
- 2 Department of Neuroscience, Alzheimer's Disease Research Center , Mayo Clinic, Jacksonville, Florida
| | - Guojun Bu
- 2 Department of Neuroscience, Alzheimer's Disease Research Center , Mayo Clinic, Jacksonville, Florida
| | - Yi Zhou
- 3 Department of Biomedical Sciences, College of Medicine, Florida State University , Tallahassee, Florida
| | - Yan Li
- 1 Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University , Tallahassee, Florida
| |
Collapse
|
431
|
White MD, Zhao ZW, Plachta N. In Vivo Imaging of Single Mammalian Cells in Development and Disease. Trends Mol Med 2018; 24:278-293. [PMID: 29439932 DOI: 10.1016/j.molmed.2018.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/05/2018] [Accepted: 01/14/2018] [Indexed: 12/14/2022]
Abstract
Live imaging has transformed biomedical sciences by enabling visualization and analysis of dynamic cellular processes as they occur in their native contexts. Here, we review key recent efforts applying in vivo optical imaging with single-cell resolution to mammalian systems ranging from embryos to adult tissues and organs. We highlight insights into active processes regulating cell fate and morphogenesis during embryonic development, how neuronal circuitry and non-neuronal cell types contribute to neurological functions, and how novel imaging-based approaches enable the dissection of neurological disorders and cancer with high spatio-temporal resolution. The convergence of technical advancements in accessing, visualizing, and manipulating individual cells provides an unprecedented lens to probe mammalian cellular dynamics in vivo in both physiological and pathological states.
Collapse
Affiliation(s)
- Melanie D White
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore; These authors contributed equally to this work
| | - Ziqing W Zhao
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore; These authors contributed equally to this work
| | - Nicolas Plachta
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore.
| |
Collapse
|
432
|
Pamies D, Block K, Lau P, Gribaldo L, Pardo CA, Barreras P, Smirnova L, Wiersma D, Zhao L, Harris G, Hartung T, Hogberg HT. Rotenone exerts developmental neurotoxicity in a human brain spheroid model. Toxicol Appl Pharmacol 2018; 354:101-114. [PMID: 29428530 DOI: 10.1016/j.taap.2018.02.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 01/22/2018] [Accepted: 02/02/2018] [Indexed: 12/21/2022]
Abstract
Growing concern suggests that some chemicals exert (developmental) neurotoxicity (DNT and NT) and are linked to the increase in incidence of autism, attention deficit and hyperactivity disorders. The high cost of routine tests for DNT and NT assessment make it difficult to test the high numbers of existing chemicals. Thus, more cost effective neurodevelopmental models are needed. The use of induced pluripotent stem cells (iPSC) in combination with the emerging human 3D tissue culture platforms, present a novel tool to predict and study human toxicity. By combining these technologies, we generated multicellular brain spheroids (BrainSpheres) from human iPSC. The model has previously shown to be reproducible and recapitulates several neurodevelopmental features. Our results indicate, rotenone's toxic potency varies depending on the differentiation status of the cells, showing higher reactive oxygen species (ROS) and higher mitochondrial dysfunction during early than later differentiation stages. Immuno-fluorescence morphology analysis after rotenone exposure indicated dopaminergic-neuron selective toxicity at non-cytotoxic concentrations (1 μM), while astrocytes and other neuronal cell types were affected at (general) cytotoxic concentrations (25 μM). Omics analysis showed changes in key pathways necessary for brain development, indicating rotenone as a developmental neurotoxicant and show a possible link between previously shown effects on neurite outgrowth and presently observed effects on Ca2+ reabsorption, synaptogenesis and PPAR pathway disruption. In conclusion, our BrainSpheres model has shown to be a reproducible and novel tool to study neurotoxicity and developmental neurotoxicity. Results presented here support the idea that rotenone can potentially be a developmental neurotoxicant.
Collapse
Affiliation(s)
- David Pamies
- Center for Alternative to Animal Testing (CAAT), Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD 21205, USA
| | - Katharina Block
- Center for Alternative to Animal Testing (CAAT), Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD 21205, USA
| | - Pierre Lau
- European Commission, Joint Research Centre, European Reference Laboratory - European Centre for the Validation of Alternative Methods (EURL ECVAM), Via Enrico Fermi 2749, Ispra, VA 21027, Italy
| | - Laura Gribaldo
- European Commission, Joint Research Centre, European Reference Laboratory - European Centre for the Validation of Alternative Methods (EURL ECVAM), Via Enrico Fermi 2749, Ispra, VA 21027, Italy
| | - Carlos A Pardo
- Department of Neurology, Johns Hopkins University, 600 N Wolfe Street, Baltimore, MD 21287, USA
| | - Paula Barreras
- Department of Neurology, Johns Hopkins University, 600 N Wolfe Street, Baltimore, MD 21287, USA
| | - Lena Smirnova
- Center for Alternative to Animal Testing (CAAT), Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD 21205, USA
| | - Daphne Wiersma
- Center for Alternative to Animal Testing (CAAT), Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD 21205, USA
| | - Liang Zhao
- Center for Alternative to Animal Testing (CAAT), Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD 21205, USA; Bloomberg-Kimmel Institute for Cancer Immunotherapy, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, 650 Orleans Street, CRB1, Rm 464, Baltimore, MD 21287, USA
| | - Georgina Harris
- Center for Alternative to Animal Testing (CAAT), Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD 21205, USA
| | - Thomas Hartung
- Center for Alternative to Animal Testing (CAAT), Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD 21205, USA; University of Konstanz, CAAT-Europe, Universitätsstr. 10, Konstanz 78464, Germany
| | - Helena T Hogberg
- Center for Alternative to Animal Testing (CAAT), Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
433
|
Sun AX, Ng HH, Tan EK. Translational potential of human brain organoids. Ann Clin Transl Neurol 2018; 5:226-235. [PMID: 29468184 PMCID: PMC5817829 DOI: 10.1002/acn3.505] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/07/2017] [Accepted: 10/21/2017] [Indexed: 12/11/2022] Open
Abstract
The recent technology of 3D cultures of cellular aggregates derived from human stem cells have led to the emergence of tissue‐like structures of various organs including the brain. Brain organoids bear molecular and structural resemblance with developing human brains, and have been demonstrated to recapitulate several physiological and pathological functions of the brain. Here we provide an overview of the development of brain organoids for the clinical community, focusing on the current status of the field with an critical evaluation of its translational value.
Collapse
Affiliation(s)
- Alfred X Sun
- Stem Cell and Regenerative Biology Genome Institute of Singapore 60 Biopolis
Street Singapore 138672 Singapore.,Department of Neurology National Neuroscience Institute 20 College Road Singapore 169856 Singapore
| | - Huck-Hui Ng
- Stem Cell and Regenerative Biology Genome Institute of Singapore 60 Biopolis
Street Singapore 138672 Singapore.,Graduate School for integrative Sciences and Engineering National University of Singapore Singapore 117456 Singapore
| | - Eng-King Tan
- Department of Neurology National Neuroscience Institute 20 College Road Singapore 169856 Singapore
| |
Collapse
|
434
|
Forsberg SL, Ilieva M, Maria Michel T. Epigenetics and cerebral organoids: promising directions in autism spectrum disorders. Transl Psychiatry 2018; 8:14. [PMID: 29317608 PMCID: PMC5802583 DOI: 10.1038/s41398-017-0062-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/26/2017] [Indexed: 01/04/2023] Open
Abstract
Autism spectrum disorders (ASD) affect 1 in 68 children in the US according to the Centers for Disease Control and Prevention (CDC). It is characterized by impairments in social interactions and communication, restrictive and repetitive patterns of behaviors, and interests. Owing to disease complexity, only a limited number of treatment options are available mainly for children that alleviate but do not cure the debilitating symptoms. Studies confirm a genetic link, but environmental factors, such as medications, toxins, and maternal infection during pregnancy, as well as birth complications also play a role. Some studies indicate a set of candidate genes with different DNA methylation profiles in ASD compared to healthy individuals. Thus epigenetic alterations could help bridging the gene-environment gap in deciphering the underlying neurobiology of autism. However, epigenome-wide association studies (EWAS) have mainly included a very limited number of postmortem brain samples. Hence, cellular models mimicking brain development in vitro will be of great importance to study the critical epigenetic alterations and when they might happen. This review will give an overview of the state of the art concerning knowledge on epigenetic changes in autism and how new, cutting edge expertise based on three-dimensional (3D) stem cell technology models (brain organoids) can contribute in elucidating the multiple aspects of disease mechanisms.
Collapse
Affiliation(s)
- Sheena Louise Forsberg
- Department of Psychiatry, Institute for Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Mirolyuba Ilieva
- Department of Psychiatry, Institute for Clinical Research, University of Southern Denmark, Odense, Denmark.
| | - Tanja Maria Michel
- Department of Psychiatry, Institute for Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Psychiatry, Psychiatry in the region of Southern Denmark, Odense, Denmark
- Odense Center for Applied Neuroscience BRIDGE, University of Southern Denmark, Psychiatry in the Region of Southern Denmark, Odense University Hospital, Odense, Denmark
| |
Collapse
|
435
|
Krencik R, Seo K, van Asperen JV, Basu N, Cvetkovic C, Barlas S, Chen R, Ludwig C, Wang C, Ward ME, Gan L, Horner PJ, Rowitch DH, Ullian EM. Systematic Three-Dimensional Coculture Rapidly Recapitulates Interactions between Human Neurons and Astrocytes. Stem Cell Reports 2017; 9:1745-1753. [PMID: 29198827 PMCID: PMC5785708 DOI: 10.1016/j.stemcr.2017.10.026] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 10/26/2017] [Accepted: 10/27/2017] [Indexed: 12/19/2022] Open
Abstract
Human astrocytes network with neurons in dynamic ways that are still poorly defined. Our ability to model this relationship is hampered by the lack of relevant and convenient tools to recapitulate this complex interaction. To address this barrier, we have devised efficient coculture systems utilizing 3D organoid-like spheres, termed asteroids, containing pre-differentiated human pluripotent stem cell (hPSC)-derived astrocytes (hAstros) combined with neurons generated from hPSC-derived neural stem cells (hNeurons) or directly induced via Neurogenin 2 overexpression (iNeurons). Our systematic methods rapidly produce structurally complex hAstros and synapses in high-density coculture with iNeurons in precise numbers, allowing for improved studies of neural circuit function, disease modeling, and drug screening. We conclude that these bioengineered neural circuit model systems are reliable and scalable tools to accurately study aspects of human astrocyte-neuron functional properties while being easily accessible for cell-type-specific manipulations and observations.
Collapse
Affiliation(s)
- Robert Krencik
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Ophthalmology, University of California, San Francisco, CA 94143, USA.
| | - Kyounghee Seo
- Department of Ophthalmology, University of California, San Francisco, CA 94143, USA
| | - Jessy V van Asperen
- Department of Ophthalmology, University of California, San Francisco, CA 94143, USA
| | - Nupur Basu
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Caroline Cvetkovic
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Saba Barlas
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Robert Chen
- Gladstone Institutes of Neurological Disease, Department of Neurology, Neuroscience Graduate Program, University of California, San Francisco, CA 94158, USA
| | - Connor Ludwig
- Gladstone Institutes of Neurological Disease, Department of Neurology, Neuroscience Graduate Program, University of California, San Francisco, CA 94158, USA
| | - Chao Wang
- Gladstone Institutes of Neurological Disease, Department of Neurology, Neuroscience Graduate Program, University of California, San Francisco, CA 94158, USA
| | - Michael E Ward
- Gladstone Institutes of Neurological Disease, Department of Neurology, Neuroscience Graduate Program, University of California, San Francisco, CA 94158, USA; National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Li Gan
- Gladstone Institutes of Neurological Disease, Department of Neurology, Neuroscience Graduate Program, University of California, San Francisco, CA 94158, USA
| | - Philip J Horner
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - David H Rowitch
- Department of Pediatrics, Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, CA 94143, USA
| | - Erik M Ullian
- Department of Ophthalmology, University of California, San Francisco, CA 94143, USA; Department of Physiology, University of California, San Francisco, CA 94143, USA
| |
Collapse
|