401
|
Brunet C, Antoine R, Allouche AR, Dugourd P, Canon F, Giuliani A, Nahon L. Gas phase photo-formation and vacuum UV photofragmentation spectroscopy of tryptophan and tyrosine radical-containing peptides. J Phys Chem A 2011; 115:8933-9. [PMID: 21744817 DOI: 10.1021/jp205617x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Tryptophan (Trp(•)) and tyrosyl (Tyr(•)) radical containing peptides were produced by UV laser-induced electron detachment from a suitable precursor. Vacuum ultraviolet (VUV) action spectra of these radical peptides were recorded with synchrotron radiation in the 4.5-16 eV range, from which fragmentation pathways and yields are measured as a function of the VUV photon energy. An enhancement in photofragmentation yields of radical species by 1 order of magnitude with respect to nonradical peptides is demonstrated here for the first time. Photofragmentation spectra are compared with absorption spectra for model chromophores calculated in the frame of the time-dependent density functional theory (TDDFT). A qualitative agreement in the position of bands in the 6-8 eV region is observed between experimental photofragmentation and calculated absorption spectra. Photofragmentation spectra of peptide radicals can be useful to better assess the complex deactivation pathways that occur following the absorption of a VUV photon in biomolecular radical anions.
Collapse
Affiliation(s)
- Claire Brunet
- Université de Lyon , F-69622, Lyon, France, Université Lyon 1, 69622 Villeurbanne Cedex, France
| | | | | | | | | | | | | |
Collapse
|
402
|
Romano CA, Sontz PA, Barton JK. Mutants of the base excision repair glycosylase, endonuclease III: DNA charge transport as a first step in lesion detection. Biochemistry 2011; 50:6133-45. [PMID: 21651304 PMCID: PMC3134277 DOI: 10.1021/bi2003179] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Endonuclease III (EndoIII) is a base excision repair glycosylase that targets damaged pyrimidines and contains a [4Fe-4S] cluster. We have proposed a model where BER proteins that contain redox-active [4Fe-4S] clusters utilize DNA charge transport (CT) as a first step in the detection of DNA lesions. Here, several mutants of EndoIII were prepared to probe their efficiency of DNA/protein charge transport. Cyclic voltammetry experiments on DNA-modified electrodes show that aromatic residues F30, Y55, Y75, and Y82 help mediate charge transport between DNA and the [4Fe-4S] cluster. On the basis of circular dichroism studies to measure protein stability, mutations at residues W178 and Y185 are found to destabilize the protein; these residues may function to protect the [4Fe-4S] cluster. Atomic force microscopy studies furthermore reveal a correlation in the ability of mutants to carry out protein/DNA CT and their ability to relocalize onto DNA strands containing a single base mismatch; EndoIII mutants that are defective in carrying out DNA/protein CT do not redistribute onto mismatch-containing strands, consistent with our model. These results demonstrate a link between the ability of the repair protein to carry out DNA CT and its ability to relocalize near lesions, thus pointing to DNA CT as a key first step in the detection of base damage in the genome.
Collapse
Affiliation(s)
| | | | - Jacqueline K. Barton
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125
| |
Collapse
|
403
|
Minnihan EC, Seyedsayamdost MR, Uhlin U, Stubbe J. Kinetics of radical intermediate formation and deoxynucleotide production in 3-aminotyrosine-substituted Escherichia coli ribonucleotide reductases. J Am Chem Soc 2011; 133:9430-40. [PMID: 21612216 PMCID: PMC3125130 DOI: 10.1021/ja201640n] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Escherichia coli ribonucleotide reductase is an α2β2 complex and catalyzes the conversion of nucleoside 5'-diphosphates (NDPs) to 2'-deoxynucleotides (dNDPs). The reaction is initiated by the transient oxidation of an active-site cysteine (C(439)) in α2 by a stable diferric tyrosyl radical (Y(122)•) cofactor in β2. This oxidation occurs by a mechanism of long-range proton-coupled electron transfer (PCET) over 35 Å through a specific pathway of residues: Y(122)•→ W(48)→ Y(356) in β2 to Y(731)→ Y(730)→ C(439) in α2. To study the details of this process, 3-aminotyrosine (NH(2)Y) has been site-specifically incorporated in place of Y(356) of β. The resulting protein, Y(356)NH(2)Y-β2, and the previously generated proteins Y(731)NH(2)Y-α2 and Y(730)NH(2)Y-α2 (NH(2)Y-RNRs) are shown to catalyze dNDP production in the presence of the second subunit, substrate (S), and allosteric effector (E) with turnover numbers of 0.2-0.7 s(-1). Evidence acquired by three different methods indicates that the catalytic activity is inherent to NH(2)Y-RNRs and not the result of copurifying wt enzyme. The kinetics of formation of 3-aminotyrosyl radical (NH(2)Y•) at position 356, 731, and 730 have been measured with all S/E pairs. In all cases, NH(2)Y• formation is biphasic (k(fast) of 9-46 s(-1) and k(slow) of 1.5-5.0 s(-1)) and kinetically competent to be an intermediate in nucleotide reduction. The slow phase is proposed to report on the conformational gating of NH(2)Y• formation, while the k(cat) of ~0.5 s(-1) is proposed to be associated with rate-limiting oxidation by NH(2)Y• of the subsequent amino acid on the pathway during forward PCET. The X-ray crystal structures of Y(730)NH(2)Y-α2 and Y(731)NH(2)Y-α2 have been solved and indicate minimal structural changes relative to wt-α2. From the data, a kinetic model for PCET along the radical propagation pathway is proposed.
Collapse
Affiliation(s)
- Ellen C. Minnihan
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - Mohammad R. Seyedsayamdost
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - Ulla Uhlin
- Department of Molecular Biology, Swedish University of Agricultural Science, Uppsala Biomedical Center, Box 590, SE-75124 Uppsala, Sweden
| | - JoAnne Stubbe
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| |
Collapse
|
404
|
Das D, Eser BE, Han J, Sciore A, Marsh ENG. Oxygen-Independent Decarbonylation of Aldehydes by Cyanobacterial Aldehyde Decarbonylase: A New Reaction of Diiron Enzymes. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201101552] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
405
|
Cárdenas DJ, Cuerva JM, Alías M, Buñuel E, Campaña AG. Water-based hydrogen-atom wires as mediators in long-range proton-coupled electron transfer in enzymes: a new twist on water reactivity. Chemistry 2011; 17:8318-23. [PMID: 21671300 DOI: 10.1002/chem.201100964] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 04/27/2011] [Indexed: 12/31/2022]
Affiliation(s)
- Diego J Cárdenas
- Departamento de Química Orgánica, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049-Madrid, Spain.
| | | | | | | | | |
Collapse
|
406
|
Warren JJ, Mayer JM. Proton-coupled electron transfer reactions at a heme-propionate in an iron-protoporphyrin-IX model compound. J Am Chem Soc 2011; 133:8544-51. [PMID: 21524059 PMCID: PMC3113656 DOI: 10.1021/ja201663p] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A heme model system has been developed in which the heme-propionate is the only proton donating/accepting site, using protoporphyrin IX-monomethyl esters (PPIX(MME)) and N-methylimidazole (MeIm). Proton-coupled electron transfer (PCET) reactions of these model compounds have been examined in acetonitrile solvent. (PPIX(MME))Fe(III)(MeIm)(2)-propionate (Fe(III)~CO(2)) is readily reduced by the ascorbate derivative 5,6-isopropylidine ascorbate to give (PPIX(MME))Fe(II)(MeIm)(2)-propionic acid (Fe(II)~CO(2)H). An excess of the hydroxylamine TEMPOH or of hydroquinone similarly reduces Fe(III)~CO(2), and TEMPO and benzoquinone oxidize Fe(II)~CO(2)H to return to Fe(III)~CO(2). The measured equilibrium constants, and the determined pK(a) and E(1/2) values, indicate that Fe(II)~CO(2)H has an effective bond dissociation free energy (BDFE) of 67.8 ± 0.6 kcal mol(-1). In these PPIX models, electron transfer occurs at the iron center and proton transfer occurs at the remote heme propionate. According to thermochemical and other arguments, the TEMPOH reaction occurs by concerted proton-electron transfer (CPET), and a similar pathway is indicated for the ascorbate derivative. Based on these results, heme propionates should be considered as potential key components of PCET/CPET active sites in heme proteins.
Collapse
Affiliation(s)
- Jeffrey J Warren
- Beckman Institute, California Institute of Technology, MC 139-74, Pasadena, California 91125-0001, USA.
| | | |
Collapse
|
407
|
Blanco-Rodríguez AM, Towrie M, Sýkora J, Záliš S, Vlček A. Photoinduced Intramolecular Tryptophan Oxidation and Excited-State Behavior of [Re(L-AA)(CO)3(α-diimine)]+ (L = Pyridine or Imidazole, AA = Tryptophan, Tyrosine, Phenylalanine). Inorg Chem 2011; 50:6122-34. [DOI: 10.1021/ic200252z] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ana María Blanco-Rodríguez
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Mike Towrie
- Central Laser Facility, Research Complex at Harwell, STFC, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - J. Sýkora
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, CZ-182 23 Prague, Czech Republic
| | - Stanislav Záliš
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, CZ-182 23 Prague, Czech Republic
| | - Antonín Vlček
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, CZ-182 23 Prague, Czech Republic
| |
Collapse
|
408
|
Cowley RE, Eckert NA, Vaddadi S, Figg TM, Cundari TR, Holland PL. Selectivity and Mechanism of Hydrogen Atom Transfer by an Isolable Imidoiron(III) Complex. J Am Chem Soc 2011; 133:9796-811. [DOI: 10.1021/ja2005303] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Ryan E. Cowley
- Department of Chemistry, University of Rochester, Rochester, New York, 14627, United States
| | - Nathan A. Eckert
- Department of Chemistry, University of Rochester, Rochester, New York, 14627, United States
| | - Sridhar Vaddadi
- Department of Chemistry and Center for Advanced Scientific Computing and Modeling, University of North Texas, Denton, Texas, 76203, United States
| | - Travis M. Figg
- Department of Chemistry and Center for Advanced Scientific Computing and Modeling, University of North Texas, Denton, Texas, 76203, United States
| | - Thomas R. Cundari
- Department of Chemistry and Center for Advanced Scientific Computing and Modeling, University of North Texas, Denton, Texas, 76203, United States
| | - Patrick L. Holland
- Department of Chemistry, University of Rochester, Rochester, New York, 14627, United States
| |
Collapse
|
409
|
Clofarabine 5'-di and -triphosphates inhibit human ribonucleotide reductase by altering the quaternary structure of its large subunit. Proc Natl Acad Sci U S A 2011; 108:9815-20. [PMID: 21628579 DOI: 10.1073/pnas.1013274108] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human ribonucleotide reductases (hRNRs) catalyze the conversion of nucleotides to deoxynucleotides and are composed of α- and β-subunits that form active α(n)β(m) (n, m = 2 or 6) complexes. α binds NDP substrates (CDP, UDP, ADP, and GDP, C site) as well as ATP and dNTPs (dATP, dGTP, TTP) allosteric effectors that control enzyme activity (A site) and substrate specificity (S site). Clofarabine (ClF), an adenosine analog, is used in the treatment of refractory leukemias. Its mode of cytotoxicity is thought to be associated in part with the triphosphate functioning as an allosteric inhibitor of hRNR. Studies on the mechanism of inhibition of hRNR by ClF di- and triphosphates (ClFDP and ClFTP) are presented. ClFTP is a reversible inhibitor (K(i) = 40 nM) that rapidly inactivates hRNR. However, with time, 50% of the activity is recovered. D57N-α, a mutant with an altered A site, prevents inhibition by ClFTP, suggesting its A site binding. ClFDP is a slow-binding, reversible inhibitor ( K(i)*; t(1/2) = 23 min). CDP protects α from its inhibition. The altered off-rate of ClFDP from E•ClFDP* by ClFTP (A site) or dGTP (S site) and its inhibition of D57N-α together implicate its C site binding. Size exclusion chromatography of hRNR or α alone with ClFDP or ClFTP, ± ATP or dGTP, reveals in each case that α forms a kinetically stable hexameric state. This is the first example of hexamerization of α induced by an NDP analog that reversibly binds at the active site.
Collapse
|
410
|
Yew SY, Shekhawat G, Wangoo N, Mhaisalkar S, Suri CR, Dravid VP, Lam YM. Design of single peptides for self-assembled conduction channels. NANOTECHNOLOGY 2011; 22:215606. [PMID: 21451229 DOI: 10.1088/0957-4484/22/21/215606] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Self-assembly of peptides provides the possibility of achieving relatively long range order on surfaces. These ordered peptides can also form channels that can be used as conduction channels. In the past, studies were focused on electron conduction through the secondary structure and amine bond of peptides and these restrict conduction of electrons over a short range (a few nanometers). In this work, we demonstrate the realization of electron conduction over a longer range of a few hundred nanometers via π-π stacking of the phenyl groups in the tyrosine residue of a single peptide. The peptide used in this work was designed with a phenyl ring for π-π stacking at one end and a carboxylic group at the other end for binding to aminopropyltriethoxysilane (APTES) treated silicon wafer. The distance between the peptides is controlled by a disulfide bond formed between neighboring cysteine residue and also by the amine groups of aminopropyltriethoxysilane. We demonstrate that the self-assembled peptide is conducting in the dry state over hundreds of nanometers, realizing the possibility of using peptide as a molecular wire.
Collapse
Affiliation(s)
- Sok Yee Yew
- School of Materials Science and Engineering, Nanyang Technological University, Block N4.1, 50 Nanyang Avenue, 639798, Singapore
| | | | | | | | | | | | | |
Collapse
|
411
|
Fielding AJ, Brodhun F, Koch C, Pievo R, Denysenkov V, Feussner I, Bennati M. Multifrequency electron paramagnetic resonance characterization of PpoA, a CYP450 fusion protein that catalyzes fatty acid dioxygenation. J Am Chem Soc 2011; 133:9052-62. [PMID: 21548577 DOI: 10.1021/ja202207t] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PpoA is a fungal dioxygenase that produces hydroxylated fatty acids involved in the regulation of the life cycle and secondary metabolism of Aspergillus nidulans . It was recently proposed that this novel enzyme employs two different heme domains to catalyze two separate reactions: within a heme peroxidase domain, linoleic acid is oxidized to (8R)-hydroperoxyoctadecadienoic acid [(8R)-HPODE]; in the second reaction step (8R)-HPODE is isomerized within a P450 heme thiolate domain to 5,8-dihydroxyoctadecadienoic acid. In the present study, pulsed EPR methods were applied to find spectroscopic evidence for the reaction mechanism, thought to involve paramagnetic intermediates. We observe EPR resonances of two distinct heme centers with g-values typical for Fe(III) S = (5)/(2) high-spin (HS) and Fe(III) S = (1)/(2) low-spin (LS) hemes. (14)N ENDOR spectroscopy on the S = (5)/(2) signal reveals resonances consistent with an axial histidine ligation. Reaction of PpoA with the substrate leads to the formation of an amino acid radical on the early millisecond time scale concomitant to a substantial reduction of the S = (5)/(2) heme signal. High-frequency EPR (95- and 180-GHz) unambiguously identifies the new radical as a tyrosyl, based on g-values and hyperfine couplings from spectral simulations. The radical displays enhanced T(1)-spin-lattice relaxation due to the proximity of the heme centers. Further, EPR distance measurements revealed that the radical is distributed among the monomeric subunits of the tetrameric enzyme at a distance of approximately 5 nm. The identification of three active paramagnetic centers involved in the reaction of PpoA supports the previously proposed reaction mechanism based on radical chemistry.
Collapse
|
412
|
Offenbacher AR, Chen J, Barry BA. Perturbations of aromatic amino acids are associated with iron cluster assembly in ribonucleotide reductase. J Am Chem Soc 2011; 133:6978-88. [PMID: 21486062 PMCID: PMC3164833 DOI: 10.1021/ja107918g] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The β2 subunit of class Ia ribonucleotide reductases (RNR) contains an antiferromagnetically coupled μ-oxo bridged diiron cluster and a tyrosyl radical (Y122•). In this study, an ultraviolet resonance Raman (UVRR) difference technique describes the structural changes induced by the assembly of the iron cluster and by the reduction of the tyrosyl radical. Spectral contributions from aromatic amino acids are observed through UV resonance enhancement at 229 nm. Vibrational bands are assigned by comparison to histidine, phenylalanine, tyrosine, tryptophan, and 3-methylindole model compound data and by isotopic labeling of histidine in the β2 subunit. Reduction of the tyrosyl radical reveals Y122• Raman bands at 1499 and 1556 cm(-1) and Y122 Raman bands at 1170, 1199, and 1608 cm(-1). There is little perturbation of other aromatic amino acids when Y122• is reduced. Assembly of the iron cluster is shown to be accompanied by deprotonation of histidine. A p(2)H titration study supports the assignment of an elevated pK for the histidine. In addition, structural perturbations of tyrosine and tryptophan are detected. For tryptophan, comparison to model compound data suggests an increase in hydrogen bonding and a change in conformation when the iron cluster is removed. pH and (2)H(2)O studies imply that the perturbed tryptophan is in a low dielectric environment that is close to the metal center and protected from solvent exchange. Tyrosine contributions are attributed to a conformational or hydrogen-bonding change. In summary, our work shows that electrostatic and conformational perturbations of aromatic amino acids are associated with metal cluster assembly in RNR. These conformational changes may contribute to the allosteric effects, which regulate metal binding.
Collapse
Affiliation(s)
- Adam R Offenbacher
- Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | | | |
Collapse
|
413
|
Auer B, Fernandez LE, Hammes-Schiffer S. Theoretical Analysis of Proton Relays in Electrochemical Proton-Coupled Electron Transfer. J Am Chem Soc 2011; 133:8282-92. [DOI: 10.1021/ja201560v] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Benjamin Auer
- Department of Chemistry, 104 Chemistry Building, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Laura E. Fernandez
- Department of Chemistry, 104 Chemistry Building, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, 104 Chemistry Building, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
414
|
Zieba AA, Richardson C, Lucero C, Dieng SD, Gindt YM, Schelvis JPM. Evidence for concerted electron proton transfer in charge recombination between FADH- and 306Trp• in Escherichia coli photolyase. J Am Chem Soc 2011; 133:7824-36. [PMID: 21534528 DOI: 10.1021/ja2001488] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Proton-coupled electron-transfer (PCET) is a mechanism of great importance in protein electron transfer and enzyme catalysis, and the involvement of aromatic amino acids in this process is of much interest. The DNA repair enzyme photolyase provides a natural system that allows for the study of PCET using a neutral radical tryptophan (Trp(•)). In Escherichia coli photolyase, photoreduction of the flavin adenine dinucleotide (FAD) cofactor in its neutral radical semiquinone form (FADH(•)) results in the formation of FADH(-) and (306)Trp(•). Charge recombination between these two intermediates requires the uptake of a proton by (306)Trp(•). The rate constant of charge recombination has been measured as a function of temperature in the pH range from 5.5 to 10.0, and the data are analyzed with both classical Marcus and semi-classical Hopfield electron transfer theory. The reorganization energy associated with the charge recombination process shows a pH dependence ranging from 2.3 eV at pH ≤ 7 and 1.2 eV at pH(D) 10.0. These findings indicate that at least two mechanisms are involved in the charge recombination reaction. Global analysis of the data supports the hypothesis that PCET during charge recombination can follow two different mechanisms with an apparent switch around pH 6.5. At lower pH, concerted electron proton transfer (CEPT) is the favorable mechanism with a reorganization energy of 2.1-2.3 eV. At higher pH, a sequential mechanism becomes dominant with rate-limiting electron-transfer followed by proton uptake which has a reorganization energy of 1.0-1.3 eV. The observed 'inverse' deuterium isotope effect at pH < 8 can be explained by a solvent isotope effect that affects the free energy change of the reaction and masks the normal, mass-related kinetic isotope effect that is expected for a CEPT mechanism. To the best of our knowledge, this is the first time that a switch in PCET mechanism has been observed in a protein.
Collapse
Affiliation(s)
- Agnieszka A Zieba
- Department of Chemistry and Biochemistry, Montclair State University, 1 Normal Avenue, Montclair, New Jersey 07043, USA
| | | | | | | | | | | |
Collapse
|
415
|
Dzik WI, Zhang XP, de Bruin B. Redox noninnocence of carbene ligands: carbene radicals in (catalytic) C-C bond formation. Inorg Chem 2011; 50:9896-903. [PMID: 21520926 DOI: 10.1021/ic200043a] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this Forum contribution, we highlight the radical-type reactivities of one-electron-reduced Fischer-type carbenes. Carbene complexes of group 6 transition metals (Cr, Mo, and W) can be relatively easily reduced by an external reducing agent, leading to one-electron reduction of the carbene ligand moiety. This leads to the formation of "carbene-radical" ligands, showing typical radical-type reactivities. Fischer-type carbene ligands are thus clearly redox-active and can behave as so-called "redox noninnocent ligands". The "redox noninnocence" of Fischer-type carbene ligands is most clearly illustrated at group 9 transition metals in the oxidation state II+ (Co(II), Rh(II), and Ir(II)). In such carbene complexes, the metal effectively reduces the carbene ligand by one electron in an intramolecular redox process. As a result, the thus formed "carbene radicals" undergo a variety of radical-type C-C and C-H bond formations. The redox noninnocence of Fischer-type carbene ligands is not just a chemical curiosity but, in fact, plays an essential role in catalytic cyclopropanation reactions by cobalt(II) porphyrins. This has led to the successful development of new chiral cobalt(II) porphyrins as highly effective catalysts for asymmetric cyclopropanation with unprecedented reactivity and stereocontrol. The redox noninnocence of the carbene intermediates results in the formation of carbene-radical ligands with nucleophilic character, which explains their effectiveness in the cyclopropanation of electron-deficient olefins and their reduced tendency to mediate carbene dimerization. To the best of our knowledge, this represents the first example in which the redox noninnocence of a reacting ligand plays a key role in a catalytic organometallic reaction. This Forum contribution ends with an outlook on further potential applications of one-electron-activated Fischer-type carbenes in new catalytic reactions.
Collapse
Affiliation(s)
- Wojciech I Dzik
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | | | | |
Collapse
|
416
|
Zhang MT, Hammarström L. Proton-coupled electron transfer from tryptophan: a concerted mechanism with water as proton acceptor. J Am Chem Soc 2011; 133:8806-9. [PMID: 21500853 DOI: 10.1021/ja201536b] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mechanism of proton-coupled electron transfer (PCET) from tyrosine in enzymes and synthetic model complexes is under intense discussion, in particular the pH dependence of the PCET rate with water as proton acceptor. Here we report on the intramolecular oxidation kinetics of tryptophan derivatives linked to [Ru(bpy)(3)](2+) units with water as proton acceptor, using laser flash-quench methods. It is shown that tryptophan oxidation can proceed not only via a stepwise electron-proton transfer (ETPT) mechanism that naturally shows a pH-independent rate, but also via another mechanism with a pH-dependent rate and higher kinetic isotope effect that is assigned to concerted electron-proton transfer (CEP). This is in contrast to current theoretical models, which predict that CEP from tryptophan with water as proton acceptor can never compete with ETPT because of the energetically unfavorable PT part (pK(a)(Trp(•)H(+)) = 4.7 ≫ pK(a)(H(3)O(+)) ≈ -1.5). The moderate pH dependence we observe for CEP cannot be explained by first-order reactions with OH(-) or the buffers and is similar to what has been demonstrated for intramolecular PCET in [Ru(bpy)(3)](3+)-tyrosine complexes (Sjödin, M.; et al. J. Am. Chem. Soc.2000, 122, 3932. Irebo, T.; et al. J. Am. Chem. Soc.2007, 129, 15462). Our results suggest that CEP with water as the proton acceptor proves a general feature of amino acid oxidation, and provide further experimental support for understanding of the PCET process in detail.
Collapse
Affiliation(s)
- Ming-Tian Zhang
- Department of Photochemistry and Molecular Science, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden
| | | |
Collapse
|
417
|
Abhayawardhana AD, Sutherland TC. Heterogeneous proton-coupled electron transfer of a hydroxy-anthraquinone self-assembled monolayer. J Electroanal Chem (Lausanne) 2011. [DOI: 10.1016/j.jelechem.2011.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
418
|
Stubbe J, Cotruvo JA. Control of metallation and active cofactor assembly in the class Ia and Ib ribonucleotide reductases: diiron or dimanganese? Curr Opin Chem Biol 2011; 15:284-90. [PMID: 21216656 PMCID: PMC3074109 DOI: 10.1016/j.cbpa.2010.12.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 11/27/2010] [Accepted: 12/01/2010] [Indexed: 12/28/2022]
Abstract
Ribonucleotide reductases (RNRs) convert nucleotides to deoxynucleotides in all organisms. Activity of the class Ia and Ib RNRs requires a stable tyrosyl radical (Yⁱ), which can be generated by the reaction of O2 with a diferrous cluster on the β subunit to form active diferric-Yⁱ cofactor. Recent experiments have demonstrated, however, that in vivo the class Ib RNR contains an active dimanganese(III)-Yⁱ cofactor. The similar metal binding sites of the class Ia and Ib RNRs, their ability to bind both MnII and FeII, and the activity of the class Ib RNR with both diferric-Yⁱ and dimanganese(III)-Y cofactors raise the intriguing question of how the cell prevents mismetallation of these essential enzymes. The presence of the class Ib RNR in numerous pathogenic bacteria also highlights the importance of manganese for these organisms' growth and virulence.
Collapse
Affiliation(s)
- JoAnne Stubbe
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.
| | | |
Collapse
|
419
|
Abstract
Theoretical studies of charge transport in deoxyribonucleic acid (DNA) and peptide nucleic acid (PNA) indicate that structure and dynamics modulate the charge transfer rates, and that different members of a structural ensemble support different charge transport mechanisms. Here, we review the influences of nucleobase geometry, electronic structure, solvent environment, and thermal conformational fluctuations on the charge transfer mechanism. We describe an emerging framework for understanding the diversity of charge transport mechanisms seen in nucleic acids.
Collapse
Affiliation(s)
| | - Shahar Keinan
- Department of Chemistry, Duke University, Durham, North Carolina 27708
| | - Alexander Balaeff
- Department of Chemistry, Duke University, Durham, North Carolina 27708
| | | |
Collapse
|
420
|
Theil EC. Ferritin protein nanocages use ion channels, catalytic sites, and nucleation channels to manage iron/oxygen chemistry. Curr Opin Chem Biol 2011; 15:304-11. [PMID: 21296609 PMCID: PMC3074017 DOI: 10.1016/j.cbpa.2011.01.004] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 12/23/2010] [Accepted: 01/04/2011] [Indexed: 01/27/2023]
Abstract
The ferritin superfamily is composed of ancient, nanocage proteins with an internal cavity, 60% of total volume, that reversibly synthesize solid minerals of hydrated ferric oxide; the minerals are iron concentrates for cell nutrition as well as antioxidants due to ferrous and oxygen consumption during mineralization. The cages have multiple iron entry/exit channels, oxidoreductase enzyme sites, and, in eukaryotes, Fe(III)O nucleation channels with clustered exits that extend protein activity to include facilitated mineral growth. Ferritin protein cage differences include size, amino acid sequence, and location of the active sites, oxidant substrate and crystallinity of the iron mineral. Genetic regulation depends on iron and oxygen signals, which in animals includes direct ferrous signaling to RNA to release and to ubiquitin-ligases to degrade the protein repressors. Ferritin biosynthesis forms, with DNA, mRNA and the protein product, a feedback loop where the genetic signals are also protein substrates. The ferritin protein nanocages, which are required for normal iron homeostasis and are finding current use in the delivery of nanodrugs, novel nanomaterials, and nanocatalysts, are likely contributors to survival and success during the transition from anaerobic to aerobic life.
Collapse
Affiliation(s)
- Elizabeth C Theil
- CHORI Children's Hospital Oakland Research Institute, 5700 Martin Luther King, Jr. Way, Oakland, CA 94609, USA.
| |
Collapse
|
421
|
Krebs C, Bollinger JM, Booker SJ. Cyanobacterial alkane biosynthesis further expands the catalytic repertoire of the ferritin-like 'di-iron-carboxylate' proteins. Curr Opin Chem Biol 2011; 15:291-303. [PMID: 21440485 PMCID: PMC3113506 DOI: 10.1016/j.cbpa.2011.02.019] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 02/01/2011] [Accepted: 02/21/2011] [Indexed: 01/19/2023]
Abstract
Enzymes that activate dioxygen at carboxylate-bridged non-heme diiron clusters residing within ferritin-like, four-helix-bundle protein architectures have crucial roles in, among other processes, the global carbon cycle (e.g. soluble methane monooxygenase), fatty acid biosynthesis [plant fatty acyl-acyl carrier protein (ACP) desaturases], DNA biosynthesis [the R2 or β2 subunits of class Ia ribonucleotide reductases (RNRs)], and cellular iron trafficking (ferritins). Classic studies on class Ia RNRs showed long ago how this obligatorily oxidative di-iron/O2 chemistry can be used to activate an enzyme for even a reduction reaction, and more recent investigations of class Ib and Ic RNRs, coupled with earlier studies on dimanganese catalases, have shown that members of this protein family can also incorporate either one or two Mn ions and use them in place of iron for redox catalysis. These two strategies--oxidative activation for non-oxidative reactions and use of alternative metal ions--expand the catalytic repertoire of the family, probably to include activities that remain to be discovered. Indeed, a recent study has suggested that fatty aldehyde decarbonylases (ADs) from cyanobacteria, purported to catalyze a redox-neutral cleavage of a Cn aldehyde to the Cn-1 alkane (or alkene) and CO, also belong to this enzyme family and are most similar in structure to two other members with heterodinuclear (Mn-Fe) cofactors. Here, we first briefly review both the chemical principles underlying the O2-dependent oxidative chemistry of the 'classical' di-iron-carboxylate proteins and the two aforementioned strategies that have expanded their functional range, and then consider what metal ion(s) and what chemical mechanism(s) might be employed by the newly discovered cyanobacterial ADs.
Collapse
Affiliation(s)
- Carsten Krebs
- Department of Chemistry and Department of Biochemistry and Molecular Biology, Penn State University, 332 Chemistry Building, University Park, PA, 16802, USA
| | - J. Martin Bollinger
- Department of Chemistry and Department of Biochemistry and Molecular Biology, Penn State University, 336 Chemistry Building, University Park, PA, 16802, USA
| | - Squire J. Booker
- Department of Chemistry and Department of Biochemistry and Molecular Biology, Penn State University, 302 Chemistry Building, University Park, PA, 16802, USA
| |
Collapse
|
422
|
Kurakin A. The self-organizing fractal theory as a universal discovery method: the phenomenon of life. Theor Biol Med Model 2011; 8:4. [PMID: 21447162 PMCID: PMC3080324 DOI: 10.1186/1742-4682-8-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 03/29/2011] [Indexed: 12/15/2022] Open
Abstract
A universal discovery method potentially applicable to all disciplines studying organizational phenomena has been developed. This method takes advantage of a new form of global symmetry, namely, scale-invariance of self-organizational dynamics of energy/matter at all levels of organizational hierarchy, from elementary particles through cells and organisms to the Universe as a whole. The method is based on an alternative conceptualization of physical reality postulating that the energy/matter comprising the Universe is far from equilibrium, that it exists as a flow, and that it develops via self-organization in accordance with the empirical laws of nonequilibrium thermodynamics. It is postulated that the energy/matter flowing through and comprising the Universe evolves as a multiscale, self-similar structure-process, i.e., as a self-organizing fractal. This means that certain organizational structures and processes are scale-invariant and are reproduced at all levels of the organizational hierarchy. Being a form of symmetry, scale-invariance naturally lends itself to a new discovery method that allows for the deduction of missing information by comparing scale-invariant organizational patterns across different levels of the organizational hierarchy.An application of the new discovery method to life sciences reveals that moving electrons represent a keystone physical force (flux) that powers, animates, informs, and binds all living structures-processes into a planetary-wide, multiscale system of electron flow/circulation, and that all living organisms and their larger-scale organizations emerge to function as electron transport networks that are supported by and, at the same time, support the flow of electrons down the Earth's redox gradient maintained along the core-mantle-crust-ocean-atmosphere axis of the planet. The presented findings lead to a radically new perspective on the nature and origin of life, suggesting that living matter is an organizational state/phase of nonliving matter and a natural consequence of the evolution and self-organization of nonliving matter.The presented paradigm opens doors for explosive advances in many disciplines, by uniting them within a single conceptual framework and providing a discovery method that allows for the systematic generation of knowledge through comparison and complementation of empirical data across different sciences and disciplines.
Collapse
Affiliation(s)
- Alexei Kurakin
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
423
|
Han WG, Noodleman L. DFT calculations for intermediate and active states of the diiron center with a tryptophan or tyrosine radical in Escherichia coli ribonucleotide reductase. Inorg Chem 2011; 50:2302-20. [PMID: 21322584 PMCID: PMC3059405 DOI: 10.1021/ic1020127] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Class Ia ribonucleotide reductase subunit R2 contains a diiron active site. In this paper, active-site models for the intermediate X-Trp48(•+) and X-Tyr122(•), the active Fe(III)Fe(III)-Tyr122(•), and the met Fe(III)Fe(III) states of Escherichia coli R2 are studied, using broken-symmetry density functional theory incorporated with the conductor-like screening solvation model. Different structural isomers and different protonation states have been explored. Calculated geometric, energetic, Mössbauer, hyperfine, and redox properties are compared with available experimental data. Feasible detailed structures of these intermediate and active states are proposed. Asp84 and Trp48 are most likely the main contributing residues to the result that the transient Fe(IV)Fe(IV) state is not observed in wild-type class Ia E. coli R2. Asp84 is proposed to serve as a proton-transfer conduit between the diiron cluster and Tyr122 in both the tyrosine radical activation pathway and the first steps of the catalytic proton-coupled electron-transfer pathway. Proton-coupled and simple redox potential calculations show that the kinetic control of proton transfer to Tyr122(•) plays a critical role in preventing reduction from the active Fe(III)Fe(III)-Tyr122(•) state to the met state, which is potentially the reason why Tyr122(•) in the active state can be stable over a very long period.
Collapse
Affiliation(s)
- Wen-Ge Han
- Department of Molecular Biology, TPC15, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Louis Noodleman
- Department of Molecular Biology, TPC15, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| |
Collapse
|
424
|
Dzik WI, Fuente Arruga L, Siegler MA, Spek AL, Reek JNH, de Bruin B. Open-Shell Organometallic [MII(dbcot(bislutidylamine)]2+ Complexes (M = Rh, Ir): Unexpected Base-Assisted Reduction of the Metal Instead of Amine Ligand Deprotonation. Organometallics 2011. [DOI: 10.1021/om101157r] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wojciech I. Dzik
- Van ‘t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Luis Fuente Arruga
- Van ‘t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Maxime A. Siegler
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Anthony L. Spek
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Joost N. H. Reek
- Van ‘t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Bas de Bruin
- Van ‘t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
425
|
Murakami H, Esaka Y, Nakayama T, Uno B. Oxidation of Guanosine to the Imidazolone Derivative via Proton-coupled Electron Transfer to Hydroperoxy Radical Derived from Superoxide. CHEM LETT 2011. [DOI: 10.1246/cl.2011.268] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
426
|
Seyedsayamdost MR, Yee CS, Stubbe J. Use of 2,3,5-F(3)Y-β2 and 3-NH(2)Y-α2 to study proton-coupled electron transfer in Escherichia coli ribonucleotide reductase. Biochemistry 2011; 50:1403-11. [PMID: 21182280 PMCID: PMC3076197 DOI: 10.1021/bi101319v] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Escherichia coli ribonucleotide reductase is an α2β2 complex that catalyzes the conversion of nucleoside 5'-diphosphates (NDPs) to deoxynucleotides (dNDPs). The active site for NDP reduction resides in α2, and the essential diferric-tyrosyl radical (Y(122)(•)) cofactor that initiates transfer of the radical to the active site cysteine in α2 (C(439)), 35 Å removed, is in β2. The oxidation is proposed to involve a hopping mechanism through aromatic amino acids (Y(122) → W(48) → Y(356) in β2 to Y(731) → Y(730) → C(439) in α2) and reversible proton-coupled electron transfer (PCET). Recently, 2,3,5-F(3)Y (F(3)Y) was site-specifically incorporated in place of Y(356) in β2 and 3-NH(2)Y (NH(2)Y) in place of Y(731) and Y(730) in α2. A pH-rate profile with F(3)Y(356)-β2 suggested that as the pH is elevated, the rate-determining step of RNR can be altered from a conformational change to PCET and that the altered driving force for F(3)Y oxidation, by residues adjacent to it in the pathway, is responsible for this change. Studies with NH(2)Y(731(730))-α2, β2, CDP, and ATP resulted in detection of NH(2)Y radical (NH(2)Y(•)) intermediates capable of dNDP formation. In this study, the reaction of F(3)Y(356)-β2, α2, CDP, and ATP has been examined by stopped-flow (SF) absorption and rapid freeze quench electron paramagnetic resonance spectroscopy and has failed to reveal any radical intermediates. The reaction of F(3)Y(356)-β2, CDP, and ATP has also been examined with NH(2)Y(731)-α2 (or NH(2)Y(730)-α2) by SF kinetics from pH 6.5 to 9.2 and exhibited rate constants for NH(2)Y(•) formation that support a change in the rate-limiting step at elevated pH. The results together with kinetic simulations provide a guide for future studies to detect radical intermediates in the pathway.
Collapse
Affiliation(s)
- Mohammad R. Seyedsayamdost
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139–4307
| | - Cyril S. Yee
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139–4307
| | - JoAnne Stubbe
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139–4307
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139–4307
| |
Collapse
|
427
|
Donoli A, Marcuzzo V, Moretto A, Toniolo C, Cardena R, Bisello A, Santi S. Charge mapping in 3(10)-helical peptide chains by oxidation of the terminal ferrocenyl group. Org Lett 2011; 13:1282-5. [PMID: 21341757 DOI: 10.1021/ol102864s] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Two series of 3(10)-helical peptides of different lengths and rigidity, based on the strongly foldameric α-aminoisobutyric acid and containing a terminal ferrocenyl unit, have been synthesized. Oxidation-state sensitive spectroscopic tags of helical peptides, the N-H groups, allowed mapping of the charge delocalization triggered by oxidation of the terminal ferrocenyl moiety and were monitored by IR spectroelectrochemistry.
Collapse
Affiliation(s)
- Alessandro Donoli
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy
| | | | | | | | | | | | | |
Collapse
|
428
|
|
429
|
Ly T, Zhang X, Sun Q, Moore B, Tao Y, Julian RR. Rapid, quantitative, and site specific synthesis of biomolecular radicals from a simple photocaged precursor. Chem Commun (Camb) 2011; 47:2835-7. [PMID: 21258679 DOI: 10.1039/c0cc03363d] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel p-iodobenzoate-based labelling reagents are shown to be effective photocaged precursors for synthesizing biomolecular radicals site-selectively in the gaseous and condensed phases. In vacuo, a single pulse of UV photons (266 nm) is sufficient to quantitatively photolyse the C-I bond. In aqueous solutions, the photolysis half-life is estimated to be 2.5 minutes when irradiating with a 15 W compact fluorescent lamp (254 nm).
Collapse
Affiliation(s)
- Tony Ly
- Department of Chemistry, University of California, Riverside, Riverside, CA, USA.
| | | | | | | | | | | |
Collapse
|
430
|
Gao J, Müller P, Wang M, Eckhardt S, Lauz M, Fromm KM, Giese B. Elektronentransfer in Peptiden: der Einfluss geladener Aminosäuren. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201003389] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
431
|
Gao J, Müller P, Wang M, Eckhardt S, Lauz M, Fromm KM, Giese B. Electron transfer in peptides: the influence of charged amino acids. Angew Chem Int Ed Engl 2011; 50:1926-30. [PMID: 21328672 DOI: 10.1002/anie.201003389] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 10/26/2010] [Indexed: 11/11/2022]
Affiliation(s)
- Jian Gao
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
432
|
Högbom M. Metal use in ribonucleotide reductase R2, di-iron, di-manganese and heterodinuclear—an intricate bioinorganic workaround to use different metals for the same reaction. Metallomics 2011; 3:110-20. [DOI: 10.1039/c0mt00095g] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
433
|
Zats GM, Arora H, Lavi R, Yufit D, Benisvy L. Phenolate and phenoxyl radical complexes of Cu(ii) and Co(iii), bearing a new redox active N,O-phenol-pyrazole ligand. Dalton Trans 2011; 40:10889-96. [DOI: 10.1039/c1dt10615e] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
434
|
Knör G, Monkowius U. Photosensitization and photocatalysis in bioinorganic, bio-organometallic and biomimetic systems. ADVANCES IN INORGANIC CHEMISTRY 2011. [DOI: 10.1016/b978-0-12-385904-4.00005-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
435
|
Zelenka K, Brandl H, Spingler B, Zelder F. Coordination chemistry and biological activity of 5′-OH modified quinoline–B12 derivatives. Dalton Trans 2011; 40:9665-7. [DOI: 10.1039/c1dt11161b] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
436
|
Bernini C, Pogni R, Ruiz-Dueñas FJ, Martínez AT, Basosi R, Sinicropi A. EPR parameters of amino acid radicals in P. eryngii versatile peroxidase and its W164Y variant computed at the QM/MM level. Phys Chem Chem Phys 2011; 13:5078-98. [DOI: 10.1039/c0cp02151b] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
437
|
|
438
|
|
439
|
Wasylenko DJ, Ganesamoorthy C, Borau-Garcia J, Berlinguette CP. Electrochemical evidence for catalytic water oxidation mediated by a high-valent cobalt complex. Chem Commun (Camb) 2011; 47:4249-51. [DOI: 10.1039/c0cc05522k] [Citation(s) in RCA: 318] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
440
|
Warren JJ, Tronic TA, Mayer JM. Thermochemistry of proton-coupled electron transfer reagents and its implications. Chem Rev 2010; 110:6961-7001. [PMID: 20925411 PMCID: PMC3006073 DOI: 10.1021/cr100085k] [Citation(s) in RCA: 1275] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jeffrey J. Warren
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195-1700
| | - Tristan A. Tronic
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195-1700
| | - James M. Mayer
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195-1700
| |
Collapse
|
441
|
Kumar A, Sevilla MD. Proton-coupled electron transfer in DNA on formation of radiation-produced ion radicals. Chem Rev 2010; 110:7002-23. [PMID: 20443634 PMCID: PMC2947616 DOI: 10.1021/cr100023g] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Anil Kumar
- Department of Chemistry, Oakland University, Rochester, MI 48309
| | | |
Collapse
|
442
|
Affiliation(s)
- Jillian L. Dempsey
- Beckman Institute, California Institute of Technology, Pasadena, CA 91125
| | - Jay R. Winkler
- Beckman Institute, California Institute of Technology, Pasadena, CA 91125
| | - Harry B. Gray
- Beckman Institute, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
443
|
Yokoyama K, Uhlin U, Stubbe J. A hot oxidant, 3-NO2Y122 radical, unmasks conformational gating in ribonucleotide reductase. J Am Chem Soc 2010; 132:15368-79. [PMID: 20929229 PMCID: PMC3005585 DOI: 10.1021/ja1069344] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Escherichia coli ribonucleotide reductase is an α2β2 complex that catalyzes the conversion of nucleotides to deoxynucleotides and requires a diferric-tyrosyl radical (Y(•)) cofactor to initiate catalysis. The initiation process requires long-range proton-coupled electron transfer (PCET) over 35 Å between the two subunits by a specific pathway (Y(122)(•)→W(48)→Y(356) within β to Y(731)→Y(730)→C(439) within α). The rate-limiting step in nucleotide reduction is the conformational gating of the PCET process, which masks the chemistry of radical propagation. 3-Nitrotyrosine (NO(2)Y) has recently been incorporated site-specifically in place of Y(122) in β2. The protein as isolated contained a diferric cluster but no nitrotyrosyl radical (NO(2)Y(•)) and was inactive. In the present paper we show that incubation of apo-Y(122)NO(2)Y-β2 with Fe(2+) and O(2) generates a diferric-NO(2)Y(•) that has a half-life of 40 s at 25 °C. Sequential mixing experiments, in which the cofactor is assembled to 1.2 NO(2)Y(•)/β2 and then mixed with α2, CDP, and ATP, have been analyzed by stopped-flow absorption spectroscopy, rapid freeze quench EPR spectroscopy, and rapid chemical quench methods. These studies have, for the first time, unmasked the conformational gating. They reveal that the NO(2)Y(•) is reduced to the nitrotyrosinate with biphasic kinetics (283 and 67 s(-1)), that dCDP is produced at 107 s(-1), and that a new Y(•) is produced at 97 s(-1). Studies with pathway mutants suggest that the new Y(•) is predominantly located at 356 in β2. In consideration of these data and the crystal structure of Y(122)NO(2)Y-β2, a mechanism for PCET uncoupling in NO(2)Y(•)-RNR is proposed.
Collapse
Affiliation(s)
- Kenichi Yokoyama
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139–4307
| | - Ulla Uhlin
- Department of Molecular Biology, Swedish University of Agricultural Science, Uppsala Biomedical Center, Box 590, SE-75124 Uppsala, Sweden
| | - JoAnne Stubbe
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139–4307
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139–4307
| |
Collapse
|
444
|
Yoon ZS, Chan YT, Li S, Newkome GR, Goodson T. Ultrafast Time-Resolved Spectroscopy of Self-Assembled Cyclic Fe(II)−Bisterpyridine Complexes. J Phys Chem B 2010; 114:11731-6. [DOI: 10.1021/jp104836k] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zin Seok Yoon
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, and Department of Chemistry, University of Akron, Akron, Ohio 44325
| | - Yi-Tsu Chan
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, and Department of Chemistry, University of Akron, Akron, Ohio 44325
| | - Sinan Li
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, and Department of Chemistry, University of Akron, Akron, Ohio 44325
| | - George R. Newkome
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, and Department of Chemistry, University of Akron, Akron, Ohio 44325
| | - Theodore Goodson
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, and Department of Chemistry, University of Akron, Akron, Ohio 44325
| |
Collapse
|
445
|
Siegbahn PEM, Blomberg MRA. Quantum Chemical Studies of Proton-Coupled Electron Transfer in Metalloenzymes. Chem Rev 2010; 110:7040-61. [DOI: 10.1021/cr100070p] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Per E. M. Siegbahn
- Department of Physics, AlbaNova University Center and Department of Biochemistry and Biophysics, Arrhenius Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Margareta R. A. Blomberg
- Department of Physics, AlbaNova University Center and Department of Biochemistry and Biophysics, Arrhenius Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden
| |
Collapse
|
446
|
Friedle S, Reisner E, Lippard SJ. Current challenges of modeling diiron enzyme active sites for dioxygen activation by biomimetic synthetic complexes. Chem Soc Rev 2010; 39:2768-79. [PMID: 20485834 PMCID: PMC2909375 DOI: 10.1039/c003079c] [Citation(s) in RCA: 232] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This tutorial review describes recent progress in modeling the active sites of carboxylate-rich non-heme diiron enzymes that activate dioxygen to carry out several key reactions in Nature. The chemistry of soluble methane monooxygenase, which catalyzes the selective oxidation of methane to methanol, is of particular interest for (bio)technological applications. Novel synthetic diiron complexes that mimic structural, and, to a lesser extent, functional features of these diiron enzymes are discussed. The chemistry of the enzymes is also briefly summarized. A particular focus of this review is on models that mimic characteristics of the diiron systems that were previously not emphasized, including systems that contain (i) aqua ligands, (ii) different substrates tethered to the ligand framework, (iii) dendrimers attached to carboxylates to mimic the protein environment, (iv) two N-donors in a syn-orientation with respect to the iron-iron vector, and (v) a N-rich ligand environment capable of accessing oxygenated high-valent diiron intermediates.
Collapse
Affiliation(s)
- Simone Friedle
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Erwin Reisner
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- School of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Stephen J. Lippard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
447
|
Cox N, Ogata H, Stolle P, Reijerse E, Auling G, Lubitz W. A Tyrosyl−Dimanganese Coupled Spin System is the Native Metalloradical Cofactor of the R2F Subunit of the Ribonucleotide Reductase of Corynebacterium ammoniagenes. J Am Chem Soc 2010; 132:11197-213. [DOI: 10.1021/ja1036995] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nicholas Cox
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470 Mülheim (Ruhr), Germany, and Institut für Mikrobiologie, Leibniz Universität Hannover, Schneiderberg 50, D-30167 Hannover, Germany
| | - Hideaki Ogata
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470 Mülheim (Ruhr), Germany, and Institut für Mikrobiologie, Leibniz Universität Hannover, Schneiderberg 50, D-30167 Hannover, Germany
| | - Patrick Stolle
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470 Mülheim (Ruhr), Germany, and Institut für Mikrobiologie, Leibniz Universität Hannover, Schneiderberg 50, D-30167 Hannover, Germany
| | - Edward Reijerse
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470 Mülheim (Ruhr), Germany, and Institut für Mikrobiologie, Leibniz Universität Hannover, Schneiderberg 50, D-30167 Hannover, Germany
| | - Georg Auling
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470 Mülheim (Ruhr), Germany, and Institut für Mikrobiologie, Leibniz Universität Hannover, Schneiderberg 50, D-30167 Hannover, Germany
| | - Wolfgang Lubitz
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470 Mülheim (Ruhr), Germany, and Institut für Mikrobiologie, Leibniz Universität Hannover, Schneiderberg 50, D-30167 Hannover, Germany
| |
Collapse
|
448
|
Kim M, Marsh ENG, Kim SU, Han J. Conversion of (3S,4R)-tetrahydrodaidzein to (3S)-equol by THD reductase: proposed mechanism involving a radical intermediate. Biochemistry 2010; 49:5582-7. [PMID: 20515029 DOI: 10.1021/bi100465y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To elucidate the mechanism of (3S)-equol biosynthesis, (2,3,4-d(3))-trans-THD was synthesized and converted to (3S)-equol by THD reductase in Eggerthella strain Julong 732. The position of the deuterium atoms in (3S)-equol was determined by (1)H NMR and (2)H NMR spectroscopy, and the product was identified as (2,3,4(alpha)-d(3))-(3S)-equol. All the deuterium atoms were retained, while the OH group at C-4 was replaced by a hydrogen atom with retention of configuration. To explain the deuterium retention in this stereospecific reduction, we propose a mechanism involving radical intermediates.
Collapse
Affiliation(s)
- Mihyang Kim
- Metalloenzyme Research Group and Department of Biotechnology, Chung-Ang University, Anseong 456-756, Korea
| | | | | | | |
Collapse
|
449
|
Shin S, Tarboush NA, Davidson VL. Long-range electron transfer reactions between hemes of MauG and different forms of tryptophan tryptophylquinone of methylamine dehydrogenase. Biochemistry 2010; 49:5810-6. [PMID: 20540536 PMCID: PMC2913433 DOI: 10.1021/bi1004969] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The diheme enzyme MauG catalyzes the post-translational modification of a precursor protein of methylamine dehydrogenase (preMADH) to complete the biosynthesis of its protein-derived tryptophan tryptophylquinone (TTQ) cofactor. This six-electron oxidation of preMADH requires long-range electron transfer (ET) as the structure of the MauG-preMADH complex reveals that the shortest distance between the modified residues of preMADH and the nearest heme of MauG is 14.0 A [Jensen, L. M. R., Sanishvili, R., Davidson, V. L., and Wilmot, C. M. (2010) Science 327, 1392-1394]. The kinetics of two ET reactions between MADH and MauG have been analyzed. Interprotein ET from quinol MADH to the high-valent bis-Fe(IV) form of MauG exhibits a K(d) of 11.2 microM and a rate constant of 20 s(-1). ET from diferrous MauG to oxidized TTQ of MADH exhibits a K(d) of 10.1 microM and a rate constant of 0.07 s(-1). These similar K(d) values are much greater than that for the MauG-preMADH complex, indicating that the extent of TTQ maturity rather than its redox state influences complex formation. The difference in rate constants is consistent with a larger driving force for the faster reaction. Analysis of the structure of the MauG-preMADH complex in the context of ET theory and these results suggests that direct electron tunneling between the residues that form TTQ and the five-coordinate oxygen-binding heme is not possible, and that ET requires electron hopping via the six-coordinate heme.
Collapse
Affiliation(s)
- Sooim Shin
- Department of Biochemistry, The University of Mississippi Medical Center, Jackson, Mississippi 39216
| | - Nafez Abu Tarboush
- Department of Biochemistry, The University of Mississippi Medical Center, Jackson, Mississippi 39216
| | | |
Collapse
|
450
|
Affiliation(s)
- Zai-Qun Liu
- Department of Organic Chemistry, College of Chemistry, Jilin University, Changchun 130021, China
| |
Collapse
|