401
|
Park CM, Sun C, Olejniczak ET, Wilson AE, Meadows RP, Betz SF, Elmore SW, Fesik SW. Non-peptidic small molecule inhibitors of XIAP. Bioorg Med Chem Lett 2005; 15:771-5. [PMID: 15664855 DOI: 10.1016/j.bmcl.2004.11.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Revised: 11/02/2004] [Accepted: 11/02/2004] [Indexed: 11/15/2022]
Abstract
Non-peptidic small molecule SMAC mimetics were designed and synthesized that bind to the BIR3 domain of XIAP using structure-based design. Substituted five-membered heterocycles such as thiazoles and imidazoles were identified that serve as replacements for peptide fragments of the lead.
Collapse
Affiliation(s)
- Cheol-Min Park
- Cancer Research, Global Pharmaceutical R and D, Abbott Laboratories, 100 Abbott Park Rd, Abbott Park, IL 60064-6010, USA.
| | | | | | | | | | | | | | | |
Collapse
|
402
|
Zhang X, Chen Y, Jenkins LW, Kochanek PM, Clark RSB. Bench-to-bedside review: Apoptosis/programmed cell death triggered by traumatic brain injury. Crit Care 2005; 9:66-75. [PMID: 15693986 PMCID: PMC1065095 DOI: 10.1186/cc2950] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Apoptosis, or programmed cell death, is a physiological form of cell death that is important for normal embryologic development and cell turnover in adult organisms. Cumulative evidence suggests that apoptosis can also be triggered in tissues without a high rate of cell turnover, including those within the central nervous system (CNS). In fact, a crucial role for apoptosis in delayed neuronal loss after both acute and chronic CNS injury is emerging. In the current review we summarize the growing evidence that apoptosis occurs after traumatic brain injury (TBI), from experimental models to humans. This includes the identification of apoptosis after TBI, initiators of apoptosis, key modulators of apoptosis such as the Bcl-2 family, key executioners of apoptosis such as the caspase family, final pathways of apoptosis, and potential therapeutic interventions for blocking neuronal apoptosis after TBI.
Collapse
Affiliation(s)
- Xiaopeng Zhang
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Safar Center for Resuscitation Research, Pittsburgh, PA, USA
| | | | | | | | | |
Collapse
|
403
|
Desai S, Dworecki BR. Coated microwell plate-based affinity purification of antigens. Anal Biochem 2005; 328:162-5. [PMID: 15113692 DOI: 10.1016/j.ab.2004.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2003] [Indexed: 11/22/2022]
Abstract
Antibody-based affinity capture of antigens is widely used in the isolation of antigens from complex mixtures. Antibody and the corresponding antigen are allowed to interact with each other to form immunocomplexes which are then typically captured by protein A or protein G immobilized on beaded support. Antigen capture performed using this method generally requires multiple centrifugation steps and careful pipetting to avoid loss of the bead-bound complexes. This traditional procedure is tedious and not easily reproducible, especially when working with multiple samples. To address these issues we have demonstrated that antigens can be captured with protein A/G, protein G, and high binding-capacity streptavidin 96-well strip-coated plates. The coated plate method of antigen purification is reproducible, within the same experiment and between experiments, due to the uniform binding capacity of the plates and wells. Here we report the use of coated microwell plates for antigen capture and for protein-protein interaction studies with the well-characterized BIR2-SMAC, transferrin receptor/ transferrin, and other systems.
Collapse
Affiliation(s)
- Surbhi Desai
- Pierce Biotechnology Inc., Rockford, IL 61105, USA.
| | | |
Collapse
|
404
|
Woo KJ, Jeong YJ, Park JW, Kwon TK. Chrysin-induced apoptosis is mediated through caspase activation and Akt inactivation in U937 leukemia cells. Biochem Biophys Res Commun 2005; 325:1215-22. [PMID: 15555556 DOI: 10.1016/j.bbrc.2004.09.225] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2004] [Indexed: 02/08/2023]
Abstract
Chrysin is a natural, biologically active compound extracted from many plants, honey, and propolis. It possesses potent anti-inflammation, anti-cancer, and anti-oxidation properties. The mechanism by which chrysin initiates apoptosis remains poorly understood. In the present report, we investigated the effect of chrysin on the apoptotic pathway in U937 human promonocytic cells. We show that chrysin induces apoptosis in association with the activation of caspase 3 and that Akt signal pathway plays a crucial role in chrysin-induced apoptosis in U937 cells. Furthermore, we have shown that inhibition of Akt phosphorylation in U937 cells by the specific PI3K inhibitor, LY294002 significantly, enhanced apoptosis. Overexpression of a constitutively active Akt (myr-Akt) in U937 cells inhibited the induction of apoptosis, activation of caspase 3, and PLC-gamma1 cleavage by chrysin. Together, these findings suggest that the Akt pathway plays a major role in regulating the apoptotic response of human leukemia cells to chrysin and raise the possibility that combined interruption of chrysin and PI3K/Akt-related pathways may represent a novel therapeutic strategy in hematological malignancies.
Collapse
Affiliation(s)
- Kyung Jin Woo
- Department of Immunology, School of Medicine, Keimyung University, 194 DongSan-Dong Jung-Gu, Taegu 700-712, Republic of Korea.
| | | | | | | |
Collapse
|
405
|
Scott FL, Denault JB, Riedl SJ, Shin H, Renatus M, Salvesen GS. XIAP inhibits caspase-3 and -7 using two binding sites: evolutionarily conserved mechanism of IAPs. EMBO J 2005; 24:645-55. [PMID: 15650747 PMCID: PMC548652 DOI: 10.1038/sj.emboj.7600544] [Citation(s) in RCA: 298] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2003] [Accepted: 12/10/2004] [Indexed: 12/13/2022] Open
Abstract
The X-linked inhibitor of apoptosis protein (XIAP) uses its second baculovirus IAP repeat domain (BIR2) to inhibit the apoptotic executioner caspase-3 and -7. Structural studies have demonstrated that it is not the BIR2 domain itself but a segment N-terminal to it that directly targets the activity of these caspases. These studies failed to demonstrate a role of the BIR2 domain in inhibition. We used site-directed mutagenesis of BIR2 and its linker to determine the mechanism of executioner caspase inhibition by XIAP. We show that the BIR2 domain contributes substantially to inhibition of executioner caspases. A surface groove on BIR2, which also binds to Smac/DIABLO, interacts with a neoepitope generated at the N-terminus of the caspase small subunit following activation. Therefore, BIR2 uses a two-site interaction mechanism to achieve high specificity and potency for inhibition. Moreover, for caspase-7, the precise location of the activating cleavage is critical for subsequent inhibition. Since apical caspases utilize this cleavage site differently, we predict that the origin of the death stimulus should dictate the efficiency of inhibition by XIAP.
Collapse
Affiliation(s)
- Fiona L Scott
- Program in Apoptosis and Cell Death Research, The Burnham Institute, La Jolla, CA, USA
| | - Jean-Bernard Denault
- Program in Apoptosis and Cell Death Research, The Burnham Institute, La Jolla, CA, USA
| | - Stefan J Riedl
- Program in Apoptosis and Cell Death Research, The Burnham Institute, La Jolla, CA, USA
| | - Hwain Shin
- Program in Apoptosis and Cell Death Research, The Burnham Institute, La Jolla, CA, USA
| | - Martin Renatus
- Program in Apoptosis and Cell Death Research, The Burnham Institute, La Jolla, CA, USA
| | - Guy S Salvesen
- Program in Apoptosis and Cell Death Research, The Burnham Institute, La Jolla, CA, USA
- Program for Apoptosis & Cell Death, The Burnham Institute, 10901 N Torrey Pines Road, La Jolla, CA 92037, USA. Tel.: +1 858 646 3114; Fax: +1 858 713 6274; E-mail:
| |
Collapse
|
406
|
Viktorsson K, Lewensohn R, Zhivotovsky B. Apoptotic Pathways and Therapy Resistance in Human Malignancies. Adv Cancer Res 2005; 94:143-96. [PMID: 16096001 DOI: 10.1016/s0065-230x(05)94004-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Apoptosis and necrosis are two morphologically distinct forms of cell death that are important for maintaining of cellular homeostasis. Almost all agents can provoke either response when applied to cells; however, the duration of treatment and the dose of the used agents determine which type of death (apoptosis or necrosis) is initiated. The response of tumors to chemo-, radio-, and hormone therapy or to treatment with biologically active agents may depend at least in part on the propensity of these tumors to undergo cell death. Some tumors, e.g., leukemias, small cell lung cancer, and seminomas, respond quickly to first-line therapy; this fast response is thought to result from induction of apoptosis. Solid tumors, on the other hand, usually respond slowly and less effectively, with cell death characterized not only by apoptosis but also by necrosis, or mitotic catastrophe. It is likely that resistance of tumors to treatment might be associated with defects in, or dysregulation of, different steps of the apoptotic pathways. Several attempts were undertaken to use the knowledge of these defects to design new drugs, which might either activate or re-activate the apoptotic machinery of tumor cells. Here we discuss the apoptotic pathways and their role in therapy resistance of human malignancies. Although such studies are still in progress, they offer great promise for future cancer therapy. We hope that some of these agents will turn out to be valuable additions to the future therapeutic arsenal, which will most probably include a combination of conventional cytotoxic drugs and molecular target-based pro-apoptotic drugs.
Collapse
Affiliation(s)
- Kristina Viktorsson
- Unit of Medical Radiobiology, Department of Oncology/Pathology, Cancer Center Karolinska, Karolinska Institute, S-171 76 Stockholm, Sweden
| | | | | |
Collapse
|
407
|
Inhibitors of Anti-apoptotic Proteins for Cancer Therapy. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2005. [DOI: 10.1016/s0065-7743(05)40016-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
408
|
Abstract
Caspases, which are the executioners of apoptosis, comprise two distinct classes, the initiators and the effectors. Although general structural features are shared between the initiator and the effector caspases, their activation, inhibition and release of inhibition are differentially regulated. Biochemical and structural studies have led to important advances in understanding the underlying molecular mechanisms of caspase regulation. This article reviews these latest advances and describes our present understanding of caspase regulation during apoptosis.
Collapse
Affiliation(s)
- Stefan J Riedl
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey 08544, USA
| | | |
Collapse
|
409
|
Wright KM, Linhoff MW, Potts PR, Deshmukh M. Decreased apoptosome activity with neuronal differentiation sets the threshold for strict IAP regulation of apoptosis. ACTA ACUST UNITED AC 2004; 167:303-13. [PMID: 15504912 PMCID: PMC2172554 DOI: 10.1083/jcb.200406073] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Despite the potential of the inhibitor of apoptosis proteins (IAPs) to block cytochrome c-dependent caspase activation, the critical function of IAPs in regulating mammalian apoptosis remains unclear. We report that the ability of endogenous IAPs to effectively regulate caspase activation depends on the differentiation state of the cell. Despite being expressed at equivalent levels, endogenous IAPs afforded no protection against cytochrome c-induced apoptosis in naive pheochromocytoma (PC12) cells, but were remarkably effective in doing so in neuronally differentiated cells. Neuronal differentiation was also accompanied with a marked reduction in Apaf-1, resulting in a significant decrease in apoptosome activity. Importantly, this decrease in Apaf-1 protein was directly linked to the increased ability of IAPs to stringently regulate apoptosis in neuronally differentiated PC12 and primary cells. These data illustrate specifically how the apoptotic pathway acquires increased regulation with cellular differentiation, and are the first to show that IAP function and apoptosome activity are coupled in cells.
Collapse
Affiliation(s)
- Kevin M Wright
- Curriculum in Neurobiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
410
|
Fuentes-Prior P, Salvesen G. The protein structures that shape caspase activity, specificity, activation and inhibition. Biochem J 2004; 384:201-32. [PMID: 15450003 PMCID: PMC1134104 DOI: 10.1042/bj20041142] [Citation(s) in RCA: 609] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2004] [Revised: 08/31/2004] [Accepted: 09/27/2004] [Indexed: 02/07/2023]
Abstract
The death morphology commonly known as apoptosis results from a post-translational pathway driven largely by specific limited proteolysis. In the last decade the structural basis for apoptosis regulation has moved from nothing to 'quite good', and we now know the fundamental structures of examples from the initiator phase, the pre-mitochondrial regulator phase, the executioner phase, inhibitors and their antagonists, and even the structures of some substrates. The field is as well advanced as the best known of proteolytic pathways, the coagulation cascade. Fundamentally new mechanisms in protease regulation have been disclosed. Structural evidence suggests that caspases have an unusual catalytic mechanism, and that they are activated by apparently unrelated events, depending on which position in the apoptotic pathway they occupy. Some naturally occurring caspase inhibitors have adopted classic inhibition strategies, but other have revealed completely novel mechanisms. All of the structural and mechanistic information can, and is, being applied to drive therapeutic strategies to combat overactivation of apoptosis in degenerative disease, and underactivation in neoplasia. We present a comprehensive review of the caspases, their regulators and inhibitors from a structural and mechanistic point of view, and with an aim to consolidate the many threads that define the rapid growth of this field.
Collapse
Key Words
- apoptosis
- caspase
- inhibitor
- inhibitor of apoptosis protein (iap)
- protease
- zymogen
- alps, autoimmune lymphoproliferative syndrome
- apaf-1, apoptotic protease activating factor-1
- asc/pycard, apoptosis-associated speck-like protein containing a card/pyd- and card-containing molecule
- bir, baculoviral iap repeat
- cad, caspase-activated dnase
- card, caspase-recruitment domain
- carp, caspase-associated ring protein
- ced, cell death-defective
- clarp, caspase-like apoptosis-regulatory protein
- cradd/raidd, caspase-2 and ripk1 domain-containing adaptor with death domain/rip-associated protein with a death domain
- crma, cytokine response modifier a
- dd, death domain
- ded, death effector domain
- dff, dna fragmentation factor
- diablo, direct iap-binding protein with low pi
- diap1, drosophila inhibitor of apoptosis 1
- disc, death-inducing signalling complex
- dronc, drosophila nedd2-like caspase
- fadd, fas (tnfrsf6)-associated via death domain
- flice, fadd-like ice
- flip, flice inhibitory protein
- iap, inhibitor of apoptosis protein
- ibm, iap binding motif
- icad, inhibitor of cad
- ice, interleukin-1β-converting enzyme
- ipaf/clan, ice-protease-activating factor/card, lrr and nacht-containing protein
- lrr, leucine-rich repeat
- nacht, ntpase-domain named after naip, ciita, het-e and tp1
- nalp1, nacht, lrr and pyrin domain containing 1
- nbd, nucleotide-binding domain
- nf-κb, nuclear factor-κb
- nod, nucleotide-binding and oligomerization domain-containing protein
- parp, poly(adp-ribose) polymerase
- pidd, p53-induced protein with a death domain
- rick/cardiak, rip-like interacting clarp kinase/card-containing ice-associated kinase
- ring, really interesting new gene
- rip, receptor-interacting protein
- serpin, serine protease inhibitor
- smac, second mitochondrial activator of caspases
- tfpi, tissue factor pathway inhibitor
- tlr, toll-like receptor
- tnf, tumour necrosis factor
- tradd, tnfrsf1a-associated via death domain
- traf, tnf receptor-associated factor
- trail, tnf-related apoptosis-inducing ligand
- xiap/birc4, x-linked iap/baculoviral iap repeat-containing 4
- p1, p2, …pn and p1′, p2′, …pm′ designate the side chains in substrates and inhibitors in the n- and c-terminal direction respectively from the p1–p1′ scissile peptide bond
- s1, s2, …sn and s1′, s2′, …sm′ refer to the cognate pockets on the protease that accept these side chains [1]
Collapse
Affiliation(s)
- Pablo Fuentes-Prior
- *Abteilung Strukturforschung, Max-Planck-Institut für Biochemie, Am Klopferspitz 18a, D82152, Planegg-Martinsried, Germany and Cardiovascular Research Center, Sant Antoni Ma. Claret 167, 08025 Barcelona, Spain
| | - Guy S. Salvesen
- †The Program in Apoptosis and Cell Death Research, Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, U.S.A
| |
Collapse
|
411
|
Yokokura T, Dresnek D, Huseinovic N, Lisi S, Abdelwahid E, Bangs P, White K. Dissection of DIAP1 Functional Domains via a Mutant Replacement Strategy. J Biol Chem 2004; 279:52603-12. [PMID: 15371434 DOI: 10.1074/jbc.m409691200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inhibitor of apoptosis proteins (IAPs) act as endogenous inhibitors of active caspases. Drosophila IAP1 (DIAP1) activity is required to keep cells from undergoing apoptosis. The central cell death regulators Reaper and Hid induce apoptosis very rapidly by inhibiting DIAP1 function. We have developed a system for replacing endogenous DIAP1 with mutant forms of the protein, allowing us to examine the roles of various domains of the protein in living and dying cells. We found that DIAP1 is cleaved by a caspase early after the initiation of apoptosis. This cleavage is required for DIAP1 degradation, but Rpr and Hid can still initiate apoptosis in the absence of cleavage. The cleavage of DIAP1 promotes DIAP1 degradation in a manner dependent on the function of the ubiquitin ligase function of the DIAP1 ring domain. This ring domain function is required for Hid-induced apoptosis. We propose a model that synthesizes our data with those of other laboratories and provide a consistent model for DIAP1 function in living and dying cells.
Collapse
Affiliation(s)
- Takakazu Yokokura
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | | | | | | | | | | | |
Collapse
|
412
|
Kohli M, Yu J, Seaman C, Bardelli A, Kinzler KW, Vogelstein B, Lengauer C, Zhang L. SMAC/Diablo-dependent apoptosis induced by nonsteroidal antiinflammatory drugs (NSAIDs) in colon cancer cells. Proc Natl Acad Sci U S A 2004; 101:16897-902. [PMID: 15557007 PMCID: PMC534714 DOI: 10.1073/pnas.0403405101] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2004] [Accepted: 10/22/2004] [Indexed: 11/18/2022] Open
Abstract
Nonsteroidal antiinflammatory drugs (NSAIDs) form a paradigm for the chemoprevention of cancer, preventing colonic tumor progression in both experimental animals and humans. However, the mechanisms underlying the antineoplastic effects of NSAIDs are currently unclear. We found that the mitochondrial second mitochondrial-derived activator of caspase (SMAC)/direct inhibitor of apoptosis protein-binding protein with low pI (Diablo) protein translocates into the cytosol during NSAID-induced apoptosis in colon cancer cells. When SMAC/Diablo is disrupted by homologous recombination and RNA interference in these cells, the NSAID-induced apoptosis is abrogated. Biochemical markers of apoptosis, such as caspase activation, cytosolic release of cytochrome c and apoptosis-inducing factor, and mitochondrial membrane potential change, are accordingly decreased. These results establish that SMAC/Diablo is essential for the apoptosis induced by NSAIDs in colon cancer cells.
Collapse
Affiliation(s)
- Manu Kohli
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21231, USA
| | | | | | | | | | | | | | | |
Collapse
|
413
|
SMAC is expressed de novo in a subset of cervical cancer tumors. BMC Cancer 2004; 4:84. [PMID: 15560849 PMCID: PMC535940 DOI: 10.1186/1471-2407-4-84] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Accepted: 11/23/2004] [Indexed: 11/19/2022] Open
Abstract
Background Smac/Diablo is a recently identified protein that is released from mitochondria after apoptotic stimuli. It binds IAPs, allowing caspase activation and cell death. In view of its activity it might participate in carcinogenesis. In the present study, we analyzed Smac expression in a panel of cervical cancer patients. Methods We performed semi quantitative RT-PCR on 41 cervical tumor and 6 normal tissue samples. The study included 8 stage I cases; 16 stage II; 17 stage III; and a control group of 6 samples of normal cervical squamous epithelial tissue. Results Smac mRNA expression was below the detection limit in the normal cervical tissue samples. In contrast, 13 (31.7%) of the 41 cervical cancer biopsies showed detectable levels of this transcript. The samples expressing Smac were distributed equally among the stages (5 in stage I, 4 in stage II and 4 in stage III) with similar expression levels. We found no correlation between the presence of Smac mRNA and histology, menopause, WHO stage or disease status. Conclusions Smac is expressed de novo in a subset of cervical cancer patients, reflecting a possible heterogeneity in the pathways leading to cervical cancer. There was no correlation with any clinical variable.
Collapse
|
414
|
Wang Z, Cuddy M, Samuel T, Welsh K, Schimmer A, Hanaii F, Houghten R, Pinilla C, Reed JC. Cellular, Biochemical, and Genetic Analysis of Mechanism of Small Molecule IAP Inhibitors. J Biol Chem 2004; 279:48168-76. [PMID: 15337764 DOI: 10.1074/jbc.m405022200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
XIAP is member of the IAP family of anti-apoptotic proteins and is known for its ability to bind and suppress caspase family cell death proteases. A phenylurea series of chemical inhibitors of XIAP was recently generated by our laboratories (Schimmer, A. D., Welsh, K., Pinilla, C., Bonneau, M., Wang, Z., Pedersen, I. M., Scott, F. L., Glinsky, G. V., Scudiero, D. A., Sausville, E., Salvesen, G., Nefzi, A., Ostresh, J. M., Houghten, R. A., and Reed, J. C. (2004) Cancer Cell 5, 25-35). We examined the mechanisms of action of these chemical compounds using biochemical, molecular biological, and genetic methods. Active phenylurea-based compounds dissociated effector protease caspase-3 but not initiator protease caspase-9 from XIAP in vitro and restored caspase-3 but not caspase-9 enzymatic activity. When applied to tumor cell lines in culture, active phenylurea-based compounds induced apoptosis in a rapid, concentration-dependent manner, associated with activation of cellular caspases. Apoptosis induced by active phenylurea-based compounds was blocked by chemical inhibitors of caspases, with inhibitors of downstream effector caspases displaying more effective suppression than inhibitors of upstream initiator caspases. Phenylurea-based XIAP antagonists induced apoptosis (defined by annexin V staining) prior to mitochondrial membrane depolarization, in contrast to cytotoxic anticancer drugs. Consistent with these findings, apoptosis induced by phenylurea-based compounds was not altered by genetic alterations in the expression of Bcl-2 family proteins that control mitochondria-dependent cell death pathways, including over-expression of anti-apoptotic proteins Bcl-2 or Bcl-X(L) and genetic ablation of pro-apoptotic proteins Bax and Bak. Conversely, conditional over-expression of an active fragment of XIAP or genetic ablation of XIAP expression altered the apoptosis dose-response of the compounds. Altogether, these findings indicate that phenylurea-based XIAP antagonists block interaction of downstream effector caspases with XIAP, thus inducing apoptosis of tumor cell lines through a caspase-dependent, Bcl-2/Bax-independent mechanism.
Collapse
Affiliation(s)
- Zhiliang Wang
- The Burnham Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
415
|
Qiu XB, Goldberg AL. The membrane-associated inhibitor of apoptosis protein, BRUCE/Apollon, antagonizes both the precursor and mature forms of Smac and caspase-9. J Biol Chem 2004; 280:174-82. [PMID: 15507451 DOI: 10.1074/jbc.m411430200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Smac/DIABLO, HtrA2/Omi, and caspase-9 play key roles in the initiation of apoptosis. The inhibitor of apoptosis proteins (IAPs) are believed to bind to the N-terminal IAP binding motifs of the mature (proteolytically processed) forms of Smac, HtrA2, and caspase-9. However, we show here that BRUCE/Apollon, a 528-kDa IAP whose degradation promotes apoptosis, associates with their precursors as well as the mature forms by binding to regions in addition to the IAP binding motif. Through these associations, BRUCE promotes the degradation of Smac and inhibits the activity of caspase-9 but not the effector caspase, caspase-3. In response to apoptotic stimuli, BRUCE is degraded by proteasomes and/or cleaved by caspases and HtrA2 depending on the specific stimulus and the cell type. These results suggest that the ability of BRUCE to antagonize both the precursor and mature forms of Smac and caspase-9 is an important mechanism for the prevention of apoptosis under normal conditions.
Collapse
Affiliation(s)
- Xiao-Bo Qiu
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
416
|
Papa S, Zazzeroni F, Pham CG, Bubici C, Franzoso G. Linking JNK signaling to NF-kappaB: a key to survival. J Cell Sci 2004; 117:5197-208. [PMID: 15483317 DOI: 10.1242/jcs.01483] [Citation(s) in RCA: 231] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In addition to marshalling immune and inflammatory responses, transcription factors of the NF-kappaB family control cell survival. This control is crucial to a wide range of biological processes, including B and T lymphopoiesis, adaptive immunity, oncogenesis and cancer chemoresistance. During an inflammatory response, NF-kappaB activation antagonizes apoptosis induced by tumor necrosis factor (TNF)-alpha, a protective activity that involves suppression of the Jun N-terminal kinase (JNK) cascade. This suppression can involve upregulation of the Gadd45-family member Gadd45beta/Myd118, which associates with the JNK kinase MKK7/JNKK2 and blocks its catalytic activity. Upregulation of XIAP, A20 and blockers of reactive oxygen species (ROS) appear to be important additional means by which NF-kappaB blunts JNK signaling. These recent findings might open up entirely new avenues for therapeutic intervention in chronic inflammatory diseases and certain cancers; indeed, the Gadd45beta-MKK7 interaction might be a key target for such intervention.
Collapse
Affiliation(s)
- Salvatore Papa
- The Ben May Institute for Cancer Research, The University of Chicago, 924 East 57th Street, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
417
|
Abstract
Apoptosis, or programmed cell death, is involved in development, elimination of damaged cells, and maintenance of cell homeostasis. Deregulation of apoptosis may cause diseases, such as cancers, immune diseases, and neurodegenerative disorders. Apoptosis is executed by a subfamily of cysteine proteases known as caspases. In mammalian cells, a major caspase activation pathway is the cytochrome c-initiated pathway. In this pathway, a variety of apoptotic stimuli cause cytochrome c release from mitochondria, which in turn induces a series of biochemical reactions that result in caspase activation and subsequent cell death. In this review, we focus on the recent progress in understanding the biochemical mechanisms and regulation of the pathway, the roles of the pathway in physiology and disease, and their potential therapeutic values.
Collapse
Affiliation(s)
- Xuejun Jiang
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.
| | | |
Collapse
|
418
|
Li L, Thomas RM, Suzuki H, De Brabander JK, Wang X, Harran PG. A small molecule Smac mimic potentiates TRAIL- and TNFalpha-mediated cell death. Science 2004; 305:1471-4. [PMID: 15353805 DOI: 10.1126/science.1098231] [Citation(s) in RCA: 525] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
We describe the synthesis and properties of a small molecule mimic of Smac, a pro-apoptotic protein that functions by relieving inhibitor-of-apoptosis protein (IAP)-mediated suppression of caspase activity. The compound binds to X chromosome- encoded IAP (XIAP), cellular IAP 1 (cIAP-1), and cellular IAP 2 (cIAP-2) and synergizes with both tumor necrosis factor alpha (TNFalpha) and TNF-related apoptosis-inducing ligand (TRAIL) to potently induce caspase activation and apoptosis in human cancer cells. The molecule has allowed a temporal, unbiased evaluation of the roles that IAP proteins play during signaling from TRAIL and TNF receptors. The compound is also a lead structure for the development of IAP antagonists potentially useful as therapy for cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Lin Li
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA
| | | | | | | | | | | |
Collapse
|
419
|
de Graaf AO, de Witte T, Jansen JH. Inhibitor of apoptosis proteins: new therapeutic targets in hematological cancer? Leukemia 2004; 18:1751-9. [PMID: 15457181 DOI: 10.1038/sj.leu.2403493] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Apoptosis is an essential process for the selection and survival of lymphocytes. Resistance to apoptosis can promote malignant transformation of hematopoietic cells. Proteins that regulate apoptosis may therefore be critically involved in the development of hematological cancer. A delicate balance between pro- and antiapoptotic mechanisms determines whether a cell death signal can activate the execution of the apoptotic cell death program. The family of inhibitor of apoptosis (IAP) proteins is a recently identified, novel category of apoptosis-regulatory proteins. IAPs can inhibit the activation of caspases that are the executioners of apoptosis, activated by both the extrinsic and intrinsic pathway. IAPs may thereby set the threshold for apoptosis-activation and play a key role in the regulation of apoptotic cell death. IAPs themselves are also subject to strict regulation through feedback mechanisms. This paper focuses on the role of IAP family proteins in the regulation of apoptosis and discusses implications for their involvement in cancer and possible use for cancer therapy, especially in leukemias and lymphomas.
Collapse
Affiliation(s)
- A O de Graaf
- Central Hematology Laboratory, University Medical Center Nijmegen, Nijmegen, The Netherlands
| | | | | |
Collapse
|
420
|
Oost TK, Sun C, Armstrong RC, Al-Assaad AS, Betz SF, Deckwerth TL, Ding H, Elmore SW, Meadows RP, Olejniczak ET, Oleksijew A, Oltersdorf T, Rosenberg SH, Shoemaker AR, Tomaselli KJ, Zou H, Fesik SW. Discovery of potent antagonists of the antiapoptotic protein XIAP for the treatment of cancer. J Med Chem 2004; 47:4417-26. [PMID: 15317454 DOI: 10.1021/jm040037k] [Citation(s) in RCA: 300] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inhibitor of apoptosis (IAP) proteins are overexpressed in many cancers and have been implicated in tumor growth, pathogenesis, and resistance to chemo- or radiotherapy. On the basis of the NMR structure of a SMAC peptide complexed with the BIR3 domain of X-linked IAP (XIAP), a novel series of XIAP antagonists was discovered. The most potent compounds in this series bind to the baculovirus IAP repeat 3 (BIR3) domain of XIAP with single-digit nanomolar affinity and promote cell death in several human cancer cell lines. In a MDA-MB-231 breast cancer mouse xenograft model, these XIAP antagonists inhibited the growth of tumors. Close structural analogues that showed only weak binding to the XIAP-BIR3 domain were inactive in the cellular assays and showed only marginal in vivo activity. Our results are consistent with a mechanism in which ligands for the BIR3 domain of XIAP induce apoptosis by freeing up caspases. The present study validates the BIR3 domain of XIAP as a target and supports the use of small molecule XIAP antagonists as a potential therapy for cancers that overexpress XIAP.
Collapse
Affiliation(s)
- Thorsten K Oost
- Cancer Research, Global Pharmaceutical Research and Development, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, Illinois 60064, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
421
|
You L, He B, Xu Z, Uematsu K, Mazieres J, Fujii N, Mikami I, Reguart N, McIntosh JK, Kashani-Sabet M, McCormick F, Jablons DM. An anti-Wnt-2 monoclonal antibody induces apoptosis in malignant melanoma cells and inhibits tumor growth. Cancer Res 2004; 64:5385-9. [PMID: 15289346 DOI: 10.1158/0008-5472.can-04-1227] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Activation of the Wnt/beta-catenin signaling pathway has been associated with human cancers. To test whether Wnt-2 signal is a survival factor in human melanoma cells and thus represents a potential therapeutic target, we investigated the effects of inhibition of Wnt-2 signaling in human melanoma cell lines. We have developed a novel monoclonal antibody against the NH(2) terminus of the human Wnt-2 ligand that induces apoptosis in human melanoma cells overexpressing Wnt-2. Whereas incubation of this antibody with normal cells lacking Wnt-2 expression does not induce apoptosis, Wnt-2 signaling blockade by the ligand-binding antibody is confirmed by down-regulation of Dishevelled and beta-catenin. Wnt-2 small interfering RNA treatment in these cells yielded similar apoptotic effects and downstream changes. Down-regulation of an inhibitor of apoptosis family protein, survivin, was observed in both the Wnt-2 antibody-treated and small interfering RNA-treated melanoma cell lines, suggesting that the antibody induces apoptosis by inactivating survivin. In an in vivo study, this monoclonal anti-Wnt-2 antibody suppresses tumor growth in a xenograft model. These findings suggest that the anti-Wnt-2 monoclonal antibody may be useful for the treatment of patients with malignant melanoma.
Collapse
Affiliation(s)
- Liang You
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California-San Francisco, 1600 Divisadero Street, San Francisco, CA 94143-1674, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
422
|
Wilkinson JC, Cepero E, Boise LH, Duckett CS. Upstream regulatory role for XIAP in receptor-mediated apoptosis. Mol Cell Biol 2004; 24:7003-14. [PMID: 15282301 PMCID: PMC479745 DOI: 10.1128/mcb.24.16.7003-7014.2004] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
X-linked inhibitor of apoptosis (XIAP) is an endogenous inhibitor of cell death that functions by suppressing caspases 3, 7, and 9. Here we describe the establishment of Jurkat-derived cell lines stably overexpressing either full-length XIAP or a truncation mutant of XIAP that can only inhibit caspase 9. Characterization of these cell lines revealed that following CD95 activation full-length XIAP supported both short- and long-term survival as well as proliferative capacity, in contrast to the truncation mutant but similar to Bcl-x(L). Full-length XIAP was also able to inhibit CD95-mediated caspase 3 processing and activation, the mitochondrial release of cytochrome c and Smac/DIABLO, and the loss of mitochondrial membrane potential, whereas the XIAP truncation mutant failed to prevent any of these cell death events. Finally, suppression of XIAP levels by RNA interference sensitized Bcl-x(L)-overexpressing cells to death receptor-induced apoptosis. These data demonstrate for the first time that full-length XIAP inhibits caspase activation required for mitochondrial amplification of death receptor signals and that, by acting upstream of mitochondrial activation, XIAP supports the long-term proliferative capacity of cells following CD95 stimulation.
Collapse
Affiliation(s)
- John C Wilkinson
- Departments of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | |
Collapse
|
423
|
Seong YM, Choi JY, Park HJ, Kim KJ, Ahn SG, Seong GH, Kim IK, Kang S, Rhim H. Autocatalytic Processing of HtrA2/Omi Is Essential for Induction of Caspase-dependent Cell Death through Antagonizing XIAP. J Biol Chem 2004; 279:37588-96. [PMID: 15201285 DOI: 10.1074/jbc.m401408200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A mature form of nuclear-encoded mitochondrial serine protease HtrA2/Omi is pivotal in regulating apoptotic cell death; however, the underlying mechanism of the processing event of HtrA2/Omi and its relevant biological function remain to be clarified. Here, we describe that HtrA2/Omi is autocatalytically processed to the 36-kDa protein fragment, which is required for the cytochrome c-dependent caspase activation along with neutralizing XIAP-mediated inhibition of caspases through interaction with XIAP, eventually promoting apoptotic cell death. We have shown that the autocatalytic processing of HtrA2/Omi occurs via an intermolecular event, demonstrated by incubating an in vitro translated HtrA2/Omi (S306A) mutant with the enzymatically active glutathione S-transferase-HtrA2/Omi protein. Using N-terminal amino acid sequencing and mutational analysis, we identified that the autocatalytic cleavage site is the carboxyl side of alanine 133 of HtrA2/Omi, resulting in exposure of an inhibitor of apoptosis protein binding motif in its N terminus. Our study provides evidence that the autocatalytic processing of HtrA2/Omi is crucial for regulating HtrA2/Omi-mediated apoptotic cell death.
Collapse
Affiliation(s)
- Young-Mo Seong
- Graduate School of Biotechnology, Korea University, Seoul 136-701, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
424
|
Nikolovska-Coleska Z, Wang R, Fang X, Pan H, Tomita Y, Li P, Roller PP, Krajewski K, Saito NG, Stuckey JA, Wang S. Development and optimization of a binding assay for the XIAP BIR3 domain using fluorescence polarization. Anal Biochem 2004; 332:261-73. [PMID: 15325294 DOI: 10.1016/j.ab.2004.05.055] [Citation(s) in RCA: 453] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2004] [Indexed: 12/19/2022]
Abstract
The X-linked inhibitor of apoptosis protein (XIAP) is a potent cellular inhibitor of apoptosis. Designing small-molecule inhibitors that target the BIR3 domain of XIAP, where Smac/DIABLO (second mitochondria-derived activator of caspase/direct IAP-binding protein with low pI) and caspase-9 bind, is a promising strategy for inhibiting the antiapoptotic activity of XIAP and for overcoming apoptosis resistance of cancer cells mediated by XIAP. Herein, we report the development of a homogeneous high-throughput assay based on fluorescence polarization for measuring the binding affinities of small-molecule inhibitors to the BIR3 domain of XIAP. Among four fluorescent probes tested, a mutated N-terminal Smac peptide (AbuRPFK-(5-Fam)-NH(2)) showed the highest affinity (Kd =17.92 nM) and a large dynamic range (deltamP = 231 +/- 0.9), and was selected as the most suitable probe for the binding assay. The binding conditions (DMSO tolerance and stability) have been investigated. Under optimized conditions, a Z' factor of 0.88 was achieved in a 96-well format for high-throughput screening. It was found that the popular Cheng-Prusoff equation is invalid for the calculation of the competitive inhibition constants (Ki values) for inhibitors in the FP-based competitive binding assay conditions, and accordingly, a new mathematical equation was developed, validated, and used to compute the Ki values. An associated Web-based computer program was also developed for this task. Several known Smac peptides with high and low affinities have been evaluated under the assay conditions and the results obtained indicated that the FP-based competitive binding assay performs correctly as designed: it can quantitatively and accurately determine the binding affinities of Smac-based peptide inhibitors with a wide range of affinities, and is suitable for high-throughput screening of inhibitors binding to the XIAP BIR3 domain.
Collapse
Affiliation(s)
- Zaneta Nikolovska-Coleska
- University of Michigan Comprehensive Cancer Center, Departments of Internal Medicine and Medicinal Chemistry, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI 48109-0934, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
425
|
Abstract
Many environmental and therapeutic agents initiate apoptotic cell death by inducing the release of cytochrome c from the mitochondria, which activates Apaf-1 (apoptotic protease-activating factor-1). This large (approximately 130kD) protein is a mammalian homologue of CED-4, an essential protein involved in programmed cell death in the nematode C. elegans. Cytochrome c activates Apaf-1, which oligomerizes to form an approximately 700-1400-kDa caspase-activating complex known as the Apaf-1 apoptosome. Caspase-9, an initiator caspase, is then recruited to the complex by binding to Apaf-1 through CARD-CARD (caspase recruitment domain) interactions to form a holoenzyme complex. Subsequently, the Apaf-1/caspase-9 holoenzyme complex recruits the effector caspase-3 via an interaction between the active site cysteine in caspase-9 and the critical aspartate, which is the cleavage site for generating the large and small subunits of caspase-3 that constitute the activated form of caspase-3. This initiates the caspase cascade that is responsible for the execution phase of apoptosis. Intracellular levels of K+, XIAP an inhibitor of apoptosis protein, and at least two mitochondrial released proteins, Smac/DIABLO and Omi/Htra 2 a serine protease, tightly regulate formation and function of the apoptosome. Thus, a number of physiological mechanisms ensure that the apoptosome complex is only fully assembled and functional when the cell is irrevocably committed to die. It is interesting that more recent studies show that a variety of small molecules can directly activate or inhibit caspase activation by interfering with the formation and function of the apoptosome complex. The cytotoxicity of many conventional chemotherapeutic drugs rests on their ability to induce apoptosome formation and apoptosis. Defects in this pathway can result in drug resistance, and the discovery that small molecules can directly activate or inhibit the apoptosome may provide new alternative treatments for cancer.
Collapse
Affiliation(s)
- Kelvin Cain
- MRC Toxicology Unit, Hodgkin Building, University of Leicester, Leicestershire, Leicester, UK.
| |
Collapse
|
426
|
Hao Y, Sekine K, Kawabata A, Nakamura H, Ishioka T, Ohata H, Katayama R, Hashimoto C, Zhang X, Noda T, Tsuruo T, Naito M. Apollon ubiquitinates SMAC and caspase-9, and has an essential cytoprotection function. Nat Cell Biol 2004; 6:849-60. [PMID: 15300255 DOI: 10.1038/ncb1159] [Citation(s) in RCA: 173] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Accepted: 06/28/2004] [Indexed: 01/07/2023]
Abstract
Apollon (also known as BRUCE or BIRC6) is a large protein containing baculoviral-IAP-repeat (BIR) and ubiquitin-conjugating enzyme (UBC) domains at the amino- and carboxy termini, respectively. Apollon inhibits apoptosis, but its molecular and physiological function remains unclear. Here we report that Apollon binds to, ubiquitinates and facilitates proteasomal degradation of SMAC and caspase-9, which both contain IAP-binding motifs. Targeted disruption of Apollon in mice caused embryonic and neonatal lethality. Notably, SMAC induced apoptosis in Apollon-deficient cells, but not in Apollon-expressing cells. Furthermore, the IAP-binding motif of SMAC was required to induce apoptosis in Apollon-deficient cells. These results suggest that Apollon has an essential function in preventing SMAC-induced apoptosis.
Collapse
Affiliation(s)
- Yanyan Hao
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
427
|
Yoon K, Jang HD, Lee SY. Direct interaction of Smac with NADE promotes TRAIL-induced apoptosis. Biochem Biophys Res Commun 2004; 319:649-54. [PMID: 15178455 DOI: 10.1016/j.bbrc.2004.05.043] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Indexed: 11/28/2022]
Abstract
Second mitochondria-derived activator of caspase (Smac) has been implicated in the activation of apoptosis in response to cell stress. We screened for Smac/DIABLO-binding protein for further understanding of Smac-mediated apoptosis. We identified NADE, previously known as p75NTR-associated cell death executor, as a Smac-binding protein. Smac-NADE interaction was mapped to the N-terminal region of Samc and the C-terminal region of NADE. Co-expression of NADE and Smac promotes TRAIL-induced apoptosis in MCF-7 cells. Interestingly, the co-presence of Smac and NADE inhibits XIAP-mediated Smac ubiquitination. In conclusion, our results provide the first evidence that the interaction between Smac and NADE regulates apoptosis through the inhibition of Smac ubiquitination.
Collapse
Affiliation(s)
- Kwiyeom Yoon
- Division of Molecular Life Sciences and Center for Cell Signaling Research, Ewha Womans University, Seoul 120-750, Republic of Korea
| | | | | |
Collapse
|
428
|
Hasenjäger A, Gillissen B, Müller A, Normand G, Hemmati PG, Schuler M, Dörken B, Daniel PT. Smac induces cytochrome c release and apoptosis independently from Bax/Bcl-x(L) in a strictly caspase-3-dependent manner in human carcinoma cells. Oncogene 2004; 23:4523-35. [PMID: 15064710 DOI: 10.1038/sj.onc.1207594] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The mitochondrial apoptosis pathway mediates cell death through the release of various pro-apoptotic factors including cytochrome c and Smac, the second mitochondrial activator of caspases, into the cytosol. Smac was shown previously to inhibit IAP proteins and to facilitate initiation of the caspase cascade upon cytochrome c release. To investigate Smac function during apoptosis and to explore Smac as an experimental cancer therapeutic, we constructed an expression system based on a single adenoviral vector containing Smac under control of the Tet-off system supplied in cis. Conditional expression of Smac induced apoptosis in human HCT116 and DU145 carcinoma cells regardless of the loss of Bax or overexpression of Bcl-x(L). Nevertheless, apoptosis induced by Smac was associated with cytochrome c release and breakdown of the mitochondrial membrane potential. This indicates that Smac acts independently of Bax and Bcl-x(L) during initiation of apoptosis and triggers a positive feedback loop that results in Bax/Bcl-x(L)-independent activation of mitochondria. In caspase-proficient cells, Smac-induced apoptosis could be inhibited partially by cell-permeable LEHD (caspase-9 inhibitor) and DEVD (caspase-3 inhibitor) peptides. Furthermore, loss of caspase-3 expression in MCF-7 cells carrying a caspase-3 null mutation completely abrogated the sensitivity for Smac-induced apoptotic or nonapoptotic, necrosis-like cell death, while re-expression of caspase-3 conferred sensitivity. Altogether, caspase-3 but not caspase-9 activation was necessary for execution of Smac-induced cell death. Notably, Smac did not induce caspase-9 processing in the absence of caspase-3. Thus, caspase-9 processing occurs secondary to caspase-3 activation during Smac-induced apoptosis. Altogether, Smac is capable of circumventing defects in mitochondrial apoptosis signaling such as loss of Bax or overexpression of Bcl-x(L) that are frequently observed in tumor cells resistant to anticancer therapy. Consequently, Smac appears to be a promising therapeutic target in anticancer treatment.
Collapse
Affiliation(s)
- Anne Hasenjäger
- Department of Hematology Oncology and Tumor Immunology, University Medical Center Charité, Campus Berlin-Buch, Humboldt University, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
429
|
Abstract
Apoptosis plays important roles in many facets of normal physiology in animal species, including programmed cell death associated with fetal development or metamorphosis, tissue homeostasis, immune cell education, and some aspects of aging. Defects in the regulation of apoptosis contribute to multiple diseases associated with either inappropriate cell loss or pathological cell accumulation. Host-pathogen interactions have additionally provided evolutionary pressure for apoptosis as a defense mechanism against viruses and microbes, sometimes linking apoptosis mechanisms with inflammatory responses. To a large extent, the apoptosis machinery can be viewed as a network, with different nodes connected by physical interactions of evolutionarily conserved domains. These domains can serve as signatures for identification of proteins involved in the network. In particular, the caspase recruitment domains (CARDs); death effector domains (DEDs); death domains (DDs); BIR (baculovirus IAP repeat) domains of inhibitor of apoptosis proteins (IAPs); Bcl-2 family proteins; caspase protease domains; and endonuclease-associated CIDE (cell death-inducing DFF45-like effector) domains are found in common in proteins involved in apoptosis. In the genomes of mammals, genes encoding proteins that carry one or more of these signature domains are often present in multiple copies, making up diverse gene families that permit tissue-specific and highly regulated control of cell life and death decisions through combinations of stimulus-specific gene expression and complex protein interaction networks. In this Review, we organize the repertoire of apoptosis proteins of humans into domain families, drawing comparisons with homologs in other vertebrate and invertebrate animal species, and discuss some of the functional implications of these findings.
Collapse
Affiliation(s)
- John C Reed
- The Burnham Institute, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
430
|
Arnt CR, Kaufmann SH. The saintly side of Smac/DIABLO: giving anticancer drug-induced apoptosis a boost. Cell Death Differ 2004; 10:1118-20. [PMID: 14502234 DOI: 10.1038/sj.cdd.4401294] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
431
|
Schliep S, Decker T, Schneller F, Wagner H, Häcker G. Functional evaluation of the role of inhibitor of apoptosis proteins in chronic lymphocytic leukemia. Exp Hematol 2004; 32:556-62. [PMID: 15183896 DOI: 10.1016/j.exphem.2004.03.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2003] [Revised: 02/25/2004] [Accepted: 03/10/2004] [Indexed: 11/28/2022]
Abstract
OBJECTIVE The slow accumulation of malignant cells in chronic lymphocytic leukemia (CLL) suggests a defect in the induction of apoptosis in these cells. Previous studies have found sporadic alterations in the apoptotic apparatus in CLL cells, but a widespread defect has not been detected until now. A crucial checkpoint in the progression of apoptosis is the activity of inhibitor of apoptosis proteins (IAP) that control the activity of caspases upon the release of cytochrome c from mitochondria. The aim of this study was to evaluate the role of IAP in the regulation of apoptosis in CLL cells. MATERIALS AND METHODS Lysates from CLL cells were prepared, and the regular function of components of the cytochrome c-dependent caspase-activating machinery (the apoptosome) was investigated. The effect of IAP in caspase-inhibition was tested using a peptide derived from the mitochondrial IAP antagonist Smac/DIABLO. Regulation of expression as well as inhibitory function of the X-linked IAP (XIAP) by cytokines was analyzed. RESULTS The apoptosome was found to be structurally and functionally competent in CLL. XIAP expression was enhanced by culture in the presence of cytokines. Smac/DIABLO was easily detectable in CLL cells and was released into the cytosol during apoptosis. No inhibitory effect of IAP was detected in CLL, irrespective of XIAP levels and culture conditions. CONCLUSION Although XIAP is present in CLL cells and is up-regulated in conditions where apoptosis is prevented, no caspase-inhibiting anti-apoptotic effect of IAP is detectable. This is likely due to the high expression of Smac/DIABLO in CLL cells that is sufficient to overcome the caspase-inhibiting effect of IAP.
Collapse
Affiliation(s)
- Stefan Schliep
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University Munich, Munich, Germany
| | | | | | | | | |
Collapse
|
432
|
Abstract
Cancer chemopreventive agents are typically natural products or their synthetic analogs that inhibit the transformation of normal cells to premalignant cells or the progression of premalignant cells to malignant cells. These agents are believed to function by modulating processes associated with xenobiotic biotransformation, with the protection of cellular elements from oxidative damage, or with the promotion of a more differentiated phenotype in target cells. However, an increasing number of chemopreventive agents (e.g., certain retinoids, nonsteroidal anti-inflammatory drugs, polyphenols, and vanilloids) have been shown to stimulate apoptosis in premalignant and malignant cells in vitro or in vivo. Apoptosis is arguably the most potent defense against cancer because it is the mechanism used by metazoans to eliminate deleterious cells. Many chemopreventive agents appear to target signaling intermediates in apoptosis-inducing pathways. Inherently, the process of carcinogenesis selects against apoptosis to initiate, promote, and perpetuate the malignant phenotype. Thus, targeting apoptosis pathways in premalignant cells--in which these pathways are still relatively intact--may be an effective method of cancer prevention. In this review, we construct a paradigm supporting apoptosis as a novel target for cancer chemoprevention by highlighting recent studies of several chemopreventive agents that engage apoptosis pathways.
Collapse
Affiliation(s)
- Shi-Yong Sun
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX77030-4095, USA
| | | | | |
Collapse
|
433
|
Guo F, Sigua C, Tao J, Bali P, George P, Li Y, Wittmann S, Moscinski L, Atadja P, Bhalla K. Cotreatment with histone deacetylase inhibitor LAQ824 enhances Apo-2L/tumor necrosis factor-related apoptosis inducing ligand-induced death inducing signaling complex activity and apoptosis of human acute leukemia cells. Cancer Res 2004; 64:2580-9. [PMID: 15059915 DOI: 10.1158/0008-5472.can-03-2629] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Present studies demonstrate that treatment with the histone deacetylases inhibitor LAQ824, a cinnamic acid hydroxamate, increased the acetylation of histones H3 and H4, as well as induced p21(WAF1) in the human T-cell acute leukemia Jurkat, B lymphoblast SKW 6.4, and acute myelogenous leukemia HL-60 cells. This was associated with increased accumulation of the cells in the G(1) phase of the cell cycle, as well as accompanied by the processing and activity of caspase-9 and -3, and apoptosis. Exposure to LAQ824 increased the mRNA and protein expressions of the death receptors DR5 and/or DR4, but reduced the mRNA and protein levels of cellular FLICE-inhibitory protein (c-FLIP). As compared with treatment with Apo-2L/tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) or LAQ824 alone, pretreatment with LAQ824 increased the assembly of Fas-associated death domain and caspase-8, but not of c-FLIP, into the Apo-2L/TRAIL-induced death-inducing signaling complex. This increased the processing of caspase-8 and Bcl-2 interacting domain (BID), augmented cytosolic accumulation of the prodeath molecules cytochrome-c, Smac and Omi, as well as led to increased activity of caspase-3 and apoptosis. Treatment with LAQ824 also down-regulated the levels of Bcl-2, Bcl-x(L), XIAP, and survivin. Partial inhibition of apoptosis due to LAQ824 or Apo-2L/TRAIL exerted by Bcl-2 overexpression was reversed by cotreatment with LAQ824 and Apo-2L/TRAIL. Significantly, cotreatment with LAQ824 increased Apo-2L/TRAIL-induced apoptosis of primary acute myelogenous leukemia blast samples isolated from 10 patients with acute myelogenous leukemia. Taken together, these findings indicate that LAQ824 may have promising activity in augmenting Apo-2L/TRAIL-induced death-inducing signaling complex and apoptosis of human acute leukemia cells.
Collapse
Affiliation(s)
- Fei Guo
- Department of Interdisciplinary Oncology, Moffitt Cancer Center and Research Institute University of South Florida, Tampa, Florida 33612, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
434
|
Salvesen GS, Abrams JM. Caspase activation - stepping on the gas or releasing the brakes? Lessons from humans and flies. Oncogene 2004; 23:2774-84. [PMID: 15077141 DOI: 10.1038/sj.onc.1207522] [Citation(s) in RCA: 194] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The central components of the execution phase of apoptosis in worms, flies, and humans are members of the caspase protease family. Work in Drosophila and mammalian systems has revealed a web of interactions that govern the activity of these proteases, and two fundamental control points have been identified. These are zymogen activation - the process that converts a latent caspase into its active form, and inhibition of the resulting active protease. In humans, the driving force for caspase activity is activation of the zymogens, but in Drosophila, a major thrust is derepression of caspase inhibitors. In this review, we consider evidence for these two distinct events in terms of the regulation of caspase activity. This sets the scene for therapy to reinstate the normal death mechanisms that have been overcome in a cancer cell's quest for immortality.
Collapse
Affiliation(s)
- Guy S Salvesen
- Program in Apoptosis and Cell Death Research, The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92122, USA.
| | | |
Collapse
|
435
|
Yan N, Wu JW, Chai J, Li W, Shi Y. Molecular mechanisms of DrICE inhibition by DIAP1 and removal of inhibition by Reaper, Hid and Grim. Nat Struct Mol Biol 2004; 11:420-8. [PMID: 15107838 DOI: 10.1038/nsmb764] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2003] [Accepted: 03/23/2004] [Indexed: 11/08/2022]
Abstract
The Drosophila melanogaster inhibitor of apoptosis protein DIAP1 suppresses apoptosis in part through inhibition of the effector caspase DrICE. The pro-death proteins Reaper, Hid and Grim (RHG) induce apoptosis by antagonizing DIAP1 function. However, the underlying molecular mechanisms remain unknown. Here we demonstrate that DIAP1 directly inhibits the catalytic activity of DrICE through its BIR1 domain and this inhibition is countered effectively by the RHG proteins. Inhibition of DrICE by DIAP1 occurs only after the cleavage of its N-terminal 20 amino acids and involves a conserved surface groove on BIR1. Crystal structures of BIR1 bound to the RHG peptides show that the RHG proteins use their N-terminal IAP-binding motifs to bind to the same surface groove, hence relieving DIAP1-mediated inhibition of DrICE. These studies define novel molecular mechanisms for the inhibition and activation of a representative D. melanogaster effector caspase.
Collapse
Affiliation(s)
- Nieng Yan
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey 08544, USA
| | | | | | | | | |
Collapse
|
436
|
Juin P, Geneste O, Raimbaud E, Hickman JA. Shooting at survivors: Bcl-2 family members as drug targets for cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1644:251-60. [PMID: 14996507 DOI: 10.1016/j.bbamcr.2003.10.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2003] [Accepted: 10/31/2003] [Indexed: 11/20/2022]
Affiliation(s)
- Philippe Juin
- Univ. de Nantes, INSERM U419, 44035 Nantes Cedex 035, France.
| | | | | | | |
Collapse
|
437
|
Creagh EM, Murphy BM, Duriez PJ, Duckett CS, Martin SJ. Smac/Diablo antagonizes ubiquitin ligase activity of inhibitor of apoptosis proteins. J Biol Chem 2004; 279:26906-14. [PMID: 15078891 DOI: 10.1074/jbc.m313859200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inhibitor of apoptosis proteins (IAPs) can block apoptosis through binding to active caspases and antagonizing their function. IAP function can be neutralized by Smac/Diablo, an IAP-binding protein that is released from mitochondria during apoptosis. In addition to their ability to interact with caspases, certain IAPs also display ubiquitin-protein isopeptide ligase activity because of the presence of a RING domain. However, it is not known whether the ubiquitin-protein isopeptide ligase activities of human IAPs contribute to their apoptosis inhibitory activity or whether this IAP property can be modulated through association with Smac/Diablo. Here we demonstrate that the ubiquitin ligase activities of XIAP, and to a lesser extent c-IAP-1 and c-IAP2, are potently repressed through binding to Smac/Diablo. We also show that mutation of the XIAP RING domain rendered this IAP a less effective inhibitor of apoptosis, suggesting that the ubiquitin ligase activity of XIAP contributes to its anti-apoptotic function. These data suggest that Smac/Diablo potentiates apoptosis by simultaneously antagonizing caspase-IAP interactions and repressing IAP ubiquitin ligase activities.
Collapse
Affiliation(s)
- Emma M Creagh
- Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College, Dublin 2, Ireland
| | | | | | | | | |
Collapse
|
438
|
Kim JS, Lee JM, Chwae YJ, Kim YH, Lee JH, Kim K, Lee TH, Kim SJ, Park JH. Cisplatin-induced apoptosis in Hep3B cells: mitochondria-dependent and -independent pathways. Biochem Pharmacol 2004; 67:1459-68. [PMID: 15041463 DOI: 10.1016/j.bcp.2003.12.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2003] [Accepted: 12/04/2003] [Indexed: 11/22/2022]
Abstract
Human hepatoma cell lines undergo apoptosis after treatment with cisplatin (CP), by mechanisms that are not fully understood, although our previous study demonstrated that Fas-dependent or -independent pathways are involved. To elucidate the mechanisms of CP-induced apoptosis in Hep3B cells, which are Fas- and p53-negative, we investigated mitochondria associated pathways, the involvement of NF-kappaB, and p73 activation. Results of Western blot and flow cytometry assay revealed that the translocation of Bax, resulted in the loss of mitochondrial membrane potential (Deltaphi(m)) and the efflux of cytochrome c and of second mitochondria-derived activator of caspase/DIABLO from mitochondria into the cytosol. Caspase-3, -8 and -9 were activated by CP treatment, however, CP-induced apoptosis was not completely blocked by pretreating with the pan-caspase inhibitor, benzyloxycarbonyl-valinyl-alaninyl-aspartyl-(O-methyl)-fluoromethylketone, indicating that caspase-independent apoptotic pathways might also be involved. RNase protection assay confirmed that NF-kappaB downregulation leading to the suppression of its target genes, such as XIAP and TRAF2, and p73 accumulation were also observed in Hep3B cells treated with CP. CP-induced apoptosis was inhibited to some extent by transiently overexpressed p73 dominant negative and XIAP, but not by p73DN or XIAP alone. In conclusion, this study demonstrates that CP-induced apoptosis in Hep3B cells is associated with mitochondrial dysregulation, NF-kappaB downregulation and p73 accumulation.
Collapse
Affiliation(s)
- Ji Su Kim
- Department of Microbiology and Brain Korea 21 Project for Medical Sciences, Institute for Immunology and Immunological Diseases, Seoul, South Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
439
|
Zachariou A, Tenev T, Goyal L, Agapite J, Steller H, Meier P. IAP-antagonists exhibit non-redundant modes of action through differential DIAP1 binding. EMBO J 2004; 22:6642-52. [PMID: 14657035 PMCID: PMC291812 DOI: 10.1093/emboj/cdg617] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The Drosophila inhibitor of apoptosis protein DIAP1 ensures cell viability by directly inhibiting caspases. In cells destined to die this IAP-mediated inhibition of caspases is overcome by IAP-antagonists. Genetic evidence indicates that IAP-antagonists are non-equivalent and function synergistically to promote apoptosis. Here we provide biochemical evidence for the non-equivalent mode of action of Reaper, Grim, Hid and Jafrac2. We find that these IAP-antagonists display differential and selective binding to specific DIAP1 BIR domains. Consistently, we show that each DIAP1 BIR region associates with distinct caspases. The differential DIAP1 BIR interaction seen both between initiator and effector caspases and within IAP-antagonist family members suggests that different IAP-antagonists inhibit distinct caspases from interacting with DIAP1. Surprisingly, we also find that the caspase-binding residues of XIAP predicted to be strictly conserved in caspase-binding IAPs, are absent in DIAP1. In contrast to XIAP, residues C-terminal to the DIAP1 BIR1 domain are indispensable for caspase association. Our studies on DIAP1 and caspases expose significant differences between DIAP1 and XIAP suggesting that DIAP1 and XIAP inhibit caspases in different ways.
Collapse
Affiliation(s)
- Anna Zachariou
- The Breakthrough Toby Robins Breast Cancer Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, Fulham Road, London SW3 6JB, UK
| | | | | | | | | | | |
Collapse
|
440
|
Honda Y, Tanikawa H, Fukuda J, Kawamura K, Sato N, Sato T, Shimizu Y, Kodama H, Tanaka T. Expression of Smac/DIABLO in mouse preimplantation embryos and its correlation to apoptosis and fragmentation. ACTA ACUST UNITED AC 2004; 11:183-8. [PMID: 15709158 DOI: 10.1093/molehr/gah136] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Regulation of early embryonal development during fertilization and implantation is crucial for mammalian reproduction. Several studies have described cell death during preimplantation embryogenesis in a range of mammalian species, both in vivo and in vitro. Therefore, apoptosis may be involved in early embryonic arrest and the characteristic cytoplasmic fragments are the equivalents of apoptotic bodies, the end-product of apoptosis. Although apoptosis is expected to associate with fragmentation in early preimplantation embryos, the mechanism through which this fragmentation occurs has not been elucidated. Recently, second mitochondria-derived activator of caspase/Direct IAP Binding Protein with Low pI (Smac/DIABLO) was identified as a mitochondrial protein that is released into the cytosol during apoptosis. Once released, the Smac/DIABLO blocks the anti-apoptotic activity of inhibitor of apoptosis proteins (IAPs). We hypothesized that the Smac/DIABLO may be involved in the fragmentation of mouse preimplantation embryos. Therefore, we investigated the expression of Smac/DIABLO mRNA and protein and its localization in mouse oocytes and preimplantation embryos. Smac/DIABLO mRNA was detected by RT-PCR in the oocytes and the preimplantation embryos. Immunohistochemistry studies showed that the Smac/DIABLO protein localized in mitochondria and was released into the cytosol in both fragmented embryos and embryos in which apoptosis was induced by staurosporine. These observations indicate that the Smac/DIABLO is involved in the fragmentation and apoptosis of preimplantation embryos.
Collapse
Affiliation(s)
- Yoko Honda
- Division of Obstetrics and Gynecology, Department of Reproductive and Developmental Medicine, Akita University School of Medicine, 1-1-1, Hondo, Akita 010-8543, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
441
|
Chen P, Ho SI, Shi Z, Abrams JM. Bifunctional killing activity encoded by conserved reaper proteins. Cell Death Differ 2004; 11:704-13. [PMID: 15002042 DOI: 10.1038/sj.cdd.4401406] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Drosophila activators of apoptosis mapping to the Reaper region function, in part, by antagonizing IAP proteins through a shared RHG motif. We isolated Reaper from the Blowfly L. cuprina, which triggered extensive apoptosis in Drosophila cells. Conserved regions of Reaper were tested in the context of GFP fusions and a second killing activity, distinct from the RHG, was identified. A 20 amino-acid peptide, designated R3, conferred targeting to a focal compartment and promoted membrane blebbing. Killing by the R3 fragment did not correlate with translational suppression or with reduced DIAP1 levels. Likewise, R3-induced cell deaths were only modestly suppressed by silencing of Dronc and involved no detectable association with DIAP1. Instead, a second IAP-binding domain, distinct from the R3, was identified at the C terminus of Reaper that bound to DIAP1 but failed to trigger apoptosis. Collectively, these findings are inconsistent with single effector models for cell killing by Reaper and suggest, instead, that Reaper encodes conserved bifunctional death activities that propagate through distinct effector pathways.
Collapse
Affiliation(s)
- P Chen
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | |
Collapse
|
442
|
Abstract
Programmed cell death is a distinct genetic and biochemical pathway essential to metazoans. An intact death pathway is required for successful embryonic development and the maintenance of normal tissue homeostasis. Apoptosis has proven to be tightly interwoven with other essential cell pathways. The identification of critical control points in the cell death pathway has yielded fundamental insights for basic biology, as well as provided rational targets for new therapeutics.
Collapse
Affiliation(s)
- Nika N Danial
- Howard Hughes Medical Institute, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
443
|
Yang QH, Du C. Smac/DIABLO selectively reduces the levels of c-IAP1 and c-IAP2 but not that of XIAP and livin in HeLa cells. J Biol Chem 2004; 279:16963-70. [PMID: 14960576 DOI: 10.1074/jbc.m401253200] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The inhibitor of apoptosis (IAP) proteins bind and inhibit caspases via their baculovirus IAP repeat domains. Some of these IAPs are capable of ubiquitinating themselves and their interacting proteins through the ubiquitin-protein isopeptide ligase activity of their RING domain. The Drosophila IAP antagonists Reaper, Hid, and Grim can accelerate the degradation of Drosophila IAP1 and some mammalian IAPs by promoting their ubiquitin-protein isopeptide ligase activity. Here we show that Smac/DIABLO, a mammalian functional homolog of Reaper/Hid/Grim, selectively causes the rapid degradation of c-IAP1 and c-IAP2 but not XIAP and Livin in HeLa cells, although it efficiently promotes the auto-ubiquitination of them all. Smac binding to c-IAP via its N-terminal IAP-binding motif is the prerequisite for this effect, which is further supported by the findings that Smac N-terminal peptide is sufficient to enhance c-IAP1 ubiquitination, and Smac no longer promotes the ubiquitination of mutant c-IAP1 lacking all three baculovirus IAP repeat domains. In addition, different IAPs require the same ubiquitin-conjugating enzymes UbcH5a and UbcH6 for their ubiquitination. Taken together, Smac may serve as a key molecule in vivo to selectively reduce the protein level of c-IAPs through the ubiquitin/proteasome pathway.
Collapse
Affiliation(s)
- Qi-Heng Yang
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | | |
Collapse
|
444
|
Shimada A, Nyitrai M, Vetter IR, Kühlmann D, Bugyi B, Narumiya S, Geeves MA, Wittinghofer A. The Core FH2 Domain of Diaphanous-Related Formins Is an Elongated Actin Binding Protein that Inhibits Polymerization. Mol Cell 2004; 13:511-22. [PMID: 14992721 DOI: 10.1016/s1097-2765(04)00059-0] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2003] [Revised: 01/12/2004] [Accepted: 01/13/2004] [Indexed: 11/17/2022]
Abstract
Diaphanous-related formins (Drf) are activated by Rho GTP binding proteins and induce polymerization of unbranched actin filaments. They contain three formin homology domains. Evidence as to the effect of formins on actin polymerization were obtained using FH2/FH1 constructs of various length from different Drfs. Here we define the core FH2 domain as a proteolytically stable domain of approximately 338 residues. The monomeric FH2 domains from mDia1 and mDia3 inhibit polymerization of actin and can bind in a 1:1 complex with F-actin at micromolar concentrations. The X-ray structure analysis of the domain shows an elongated, crescent-shaped molecule consisting of three helical subdomains. The most highly conserved regions of the domain span a distance of 75 A and are both required for barbed-end inhibition. A construct containing an additional 72 residue linker has dramatically different properties: It oligomerizes and induces actin polymerization at subnanomolar concentration.
Collapse
Affiliation(s)
- Atsushi Shimada
- Max-Planck Institut für Molekulare Physiologie, Otto Hahn Strasse 11, D-44227 Dortmund, Germany
| | | | | | | | | | | | | | | |
Collapse
|
445
|
Abstract
We investigated the ability of tBid (truncated form of Bid) to bind and permeabilize the liposomes (large unilamellar vesicles, LUVs) and release fluorescent marker molecules (fluorescein-isothiocyanate-conjugated dextrans, FITC-dextrans) of various molecular diameters (FD-20, FD-70, FD-250S) from LUVs. Obtained data showed that tBid was more efficient in promoting leakage of FITC-dextrans from LUVs composed of cardiolipin and dioleoylphosphatidylcholine (DOPC) than LUVs made of dioleoylphosphatidic acid or dioleoylphosphatidylglycerol and DOPC. The leakage efficiency was reduced with increasing amount of dioleoylphosphatidylethanolamine or dielaidoylphosphatidylethanolamine. Phospholipid monolayer assay and fluorescence quenching measurements revealed that tBid inserted deeply into the hydrophobic acyl chain of acidic phospholipids. Taking into account the tBid three-dimensional structure, we propose that tBid could penetrate into the hydrophobic core of membrane, resulting in the leakage of entrapped content from LUVs via a pore-forming mechanism.
Collapse
Affiliation(s)
- Ling Yan
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, PR China.
| | | | | | | |
Collapse
|
446
|
Liu H, Ma Y, Pagliari LJ, Perlman H, Yu C, Lin A, Pope RM. TNF-α-Induced Apoptosis of Macrophages Following Inhibition of NF-κB: A Central Role for Disruption of Mitochondria. THE JOURNAL OF IMMUNOLOGY 2004; 172:1907-15. [PMID: 14734776 DOI: 10.4049/jimmunol.172.3.1907] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Previously, we established that suppressing the constitutive activation of NF-kappaB in in vitro matured human macrophages resulted in apoptosis initiated by a decrease of the Bcl-2 family member, A1, and the loss of mitochondrial transmembrane potential (Deltapsi(m)). This study was performed to characterize the mechanism of TNF-alpha-induced apoptosis in macrophages following the inhibition of NF-kappaB. The addition of TNF-alpha markedly enhanced the loss of Deltapsi(m) and the induction of apoptotic cell death. Although caspase 8 was activated and contributed to DNA fragmentation, it was not necessary for the TNF-alpha-induced loss of Deltapsi(m). The inhibition of NF-kappaB alone resulted in the release of cytochrome c from the mitochondria, while both cytochrome c and second mitochondria-derived activator of caspase/direct inhibitor of apoptosis-binding protein with low pI were released following the addition of TNF-alpha. Furthermore, c-Jun N-terminal kinase activation, which was sustained following treatment with TNF-alpha when NF-kappaB was inhibited, contributed to DNA fragmentation. These observations demonstrate that cytochrome c and second mitochondria-derived activator of caspase/direct inhibitor of apoptosis-binding protein with low pI may be differentially released from the mitochondria, and that the sustained activation of c-Jun N-terminal kinase modulated the DNA fragmentation independent of the loss of Deltapsi(m).
Collapse
Affiliation(s)
- Hongtao Liu
- Northwestern University Feinberg School of Medicine and Lakeside Division, Division of Rheumatology, Department of Medicine, Veterans Administration Medical Center, Chicago, IL 60611, USA
| | | | | | | | | | | | | |
Collapse
|
447
|
Rosenstock TR, Carvalho ACP, Jurkiewicz A, Frussa-Filho R, Smaili SS. Mitochondrial calcium, oxidative stress and apoptosis in a neurodegenerative disease model induced by 3-nitropropionic acid. J Neurochem 2004; 88:1220-8. [PMID: 15009678 DOI: 10.1046/j.1471-4159.2003.02250.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Intracellular calcium homeostasis is important for cell survival. However, increase in mitochondrial calcium (Ca2+m) induces opening of permeability transition pore (PTP), mitochondrial dysfunction and apoptosis. Since alterations of intracellular Ca2+ and reactive oxygen species (ROS) generation are involved in cell death, they might be involved in neurodegenerative processes such as Huntington's disease (HD). HD is characterized by the inhibition of complex II of respiratory chain and increase in ROS production. In this report, we studied the correlation between the inhibitor of the complex II, 3-nitropropionic acid (3NP), Ca2+ metabolism, apoptosis and behavioural alterations. We showed that 3NP (1 mm) is able to release Ca2+m, as neither Thapsigargin (TAP, 2 microm) nor free-calcium medium affected its effect. PTP inhibitors and antioxidants inhibited this process, suggesting an increase in ROS generation and PTP opening. In addition, 3NP (0.1 mm) also induces apoptotic cell death. Behavioural changes in animals treated with 3NP (20 mg/kg/day for 4 days) were also attenuated by pre- and co-treatment with vitamin E (VE, 20 mg/kg/day). Taken together, our results show that complex II inhibition could involve Ca2+m release, oxidative stress and cell death that may precede motor alterations in neurodegenerative processes such as HD.
Collapse
Affiliation(s)
- T R Rosenstock
- Departamento de Farmacologia, Universidade Federal de São Paulo (UNIFESP/EPM), São Paulo, Brazil
| | | | | | | | | |
Collapse
|
448
|
Abstract
Over the past decade, significant progress has been made in our understanding of the biology of microtubule (MT) assembly into the mitotic spindle during mitosis and the molecular signaling and execution of the various pathways to apoptosis. In the same period, the microtubule-targeted tubulin-polymerizing agents (MTPAs), notably paclitaxel and taxotere, have come to occupy a central role in the treatment of a variety of human epithelial cancers. Following their binding to B-tubulin, MTPAs inhibit MT dynamic instability, cell cycle G2/M phase transition and mitotic arrest of cancer cells. MTPA-induced anti-MT and cell cycle effects trigger the molecular signaling for the mitochondrial pathway of apoptosis. This triggering is orchestrated through different molecular links and determined by the threshold for apoptosis that is set and controlled diversely in various cancer types. The complexity and regulatory potential of the links and the apoptosis threshold are integral to the transformed biology of the cancer cell. The emerging understanding of this biology and how it is influenced by treatment with MTPAs has highlighted novel strategies to further enhance the antitumor activity and overcome resistance to MTPA-induced apoptosis in cancer cells.
Collapse
Affiliation(s)
- Kapil N Bhalla
- Department of Interdisciplinary Oncology, Moffitt Cancer Center and Research Institute, University of South Florida, 12902 Magnolia Drive, MRC 3 East, Room 3056, Tampa, FL, USA.
| |
Collapse
|
449
|
Gerhard MC, Zantl N, Weirich G, Schliep S, Seiffert B, Häcker G. Functional evaluation of the apoptosome in renal cell carcinoma. Br J Cancer 2004; 89:2147-54. [PMID: 14647151 PMCID: PMC2376849 DOI: 10.1038/sj.bjc.6601436] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Renal cell carcinoma (RCC) responds very poorly to chemo- or radiotherapy. Renal cell carcinoma cell lines have been described to be resistant to apoptosis-inducing stimuli and to lack caspase expression. Here, we provide a structural and functional assessment of the apoptosome, the central caspase-activating signalling complex and a candidate for apoptosis-inactivating mutations. Cells from RCC cell lines and clinical samples isolated from RCC patients were included. Apoptosome function was measured as quantitative activation of caspases in protein extracts. In all five cell lines and in 19 out of 20 primary clear cell RCC samples, the expression of apoptosome components and caspase activation appeared normal. Of the four nonclear cell RCC that could be included, both oncocytomas gave no response to cytochrome c (in one case, no Apaf-1 was detected), one chromophobe RCC lacked caspase-9 and failed to activate caspase-3 in response to cytochrome c, and one papillary RCC showed good caspase activation despite the lack of caspase-7. Experiments utilising a peptide derived from Smac/DIABLO gave no indication that inhibitor of apoptosis proteins might exert an inhibiting effect in primary clear cell RCC. Thus, the apoptosome signalling complex is intact in human (clear cell) RCC, and an apoptosis defect must be located at other, probably upstream, sites.
Collapse
Affiliation(s)
- M C Gerhard
- Institute for Medical Microbiology, Immunology and Hygiene, Trogerstrasse 9, Munich D-81675, Germany
| | - N Zantl
- Department of Urology, Ismaningerstrasse 22, Munich D-81675, Germany
| | - G Weirich
- Institute of Pathology, Trogerstrasse 18, Technische Universität München, Munich D-81675, Germany
| | - S Schliep
- Institute for Medical Microbiology, Immunology and Hygiene, Trogerstrasse 9, Munich D-81675, Germany
| | - B Seiffert
- Institute for Medical Microbiology, Immunology and Hygiene, Trogerstrasse 9, Munich D-81675, Germany
| | - G Häcker
- Institute for Medical Microbiology, Immunology and Hygiene, Trogerstrasse 9, Munich D-81675, Germany
- Institute for Medical Microbiology, Immunology and Hygiene, Trogerstrasse 9, Munich D-81675, Germany. E-mail:
| |
Collapse
|
450
|
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) or Apo2L is a ligand of the TNF family interacting with five different receptors of the TNF receptor superfamily, including two death receptors. It has attracted wide interest as a potential anticancer therapy because some recombinant soluble forms of TRAIL induce cell death predominantly in transformed cells. The nuclear factor-kappaB (NFkappaB)?Rel family of proteins are composed of a group of dimeric transcription factors that have an outstanding role in the regulation of inflammation and immunity. Control of transcription by NFkappaB proteins can be of relevance to the function of TRAIL in three ways. First, induction of antiapoptotic NFkappaB dependent genes critically determines cellular susceptibility toward apoptosis induction by TRAIL-R1, TRAIL-R2, and other death receptors. Each of the multiple of known NFkappaB inducers therefore has the potential to interfere with TRAIL-induced cell death. Second, TRAIL and some of its receptors are inducible by NFkappaB, disclosing the possibility of autoamplifying TRAIL signaling loops. Third, the TRAIL death receptors can activate the NFkappaB pathway. This chapter summarizes basic knowledge regarding the understanding of the NFkappaB pathway and focuses on its multiple roles in TRAIL signaling.
Collapse
Affiliation(s)
- Harald Wajant
- Department of Molecular Internal Medicine Medical Polyclinic, University of Würzburg, D-97070 Würzburg, Germany
| |
Collapse
|