401
|
Abstract
MicroRNAs (miRNAs) are small sequences of noncoding RNAs that regulate gene expression by two basic processes: direct degradation of mRNA and translation inhibition. miRNAs are key molecules in gene regulation for embryonic stem cells, since they are able to repress target pluripotent mRNA genes, including Oct4, Sox2, and Nanog. miRNAs are unlike other small noncoding RNAs in their biogenesis, since they derive from precursors that fold back to form a distinctive hairpin structure, whereas other classes of small RNAs are formed from longer hairpins or bimolecular RNA duplexes (siRNAs) or precursors without double-stranded character (piRNAs). An increasing amount of evidence suggests that miRNAs may have a critical role in the maintenance of the pluripotent cell state and in the regulation of early mammalian development. This review gives an overview of the current state of the art of miRNA expression and regulation in embryonic stem cell differentiation. Current insights on controlling stem cell fate toward mesodermal, endodermal and ectodermal differentiation, and cell reprogramming are also highlighted.
Collapse
Affiliation(s)
- Emanuele Berardi
- Laboratory of Translational Cardiomyology, Department of Development and Regeneration, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | | | | | | |
Collapse
|
402
|
Takwi AAL, Li Y, Becker Buscaglia LE, Zhang J, Choudhury S, Park AK, Liu M, Young KH, Park WY, Martin RCG, Li Y. A statin-regulated microRNA represses human c-Myc expression and function. EMBO Mol Med 2012; 4:896-909. [PMID: 22887866 PMCID: PMC3491823 DOI: 10.1002/emmm.201101045] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 06/04/2012] [Accepted: 06/06/2012] [Indexed: 12/19/2022] Open
Abstract
c-Myc dysregulation is one of the most common abnormalities found in human cancer. MicroRNAs (miRNAs) are functionally intertwined with the c-Myc network as multiple miRNAs are regulated by c-Myc, while others directly suppress c-Myc expression. In this work, we identified miR-33b as a primate-specific negative regulator of c-Myc. The human miR-33b gene is located at 17p11.2, a genomic locus frequently lost in medulloblastomas, of which a subset displays c-Myc overproduction. Through a small-scale screening with drugs approved by the US Food and Drug Administration (FDA), we found that lovastatin upregulated miR-33b expression, reduced cell proliferation and impaired c-Myc expression and function in miR-33b-positive medulloblastoma cells. In addition, a low dose of lovastatin treatment at a level comparable to approved human oral use reduced tumour growth in mice orthotopically xenografted with cells carrying miR-33b, but not with cells lacking miR-33b. This work presents a highly promising therapeutic option, using drug repurposing and a miRNA as a biomarker, against cancers that overexpress c-Myc.
Collapse
Affiliation(s)
- Apana A L Takwi
- Department of Biochemistry and Molecular Biology, School of Medicine, University of LouisvilleLouisville, KY, USA
| | - Yan Li
- Division of Surgical Oncology, Department of Surgery, School of Medicine, University of LouisvilleLouisville, KY, USA
| | - Lindsey E Becker Buscaglia
- Department of Biochemistry and Molecular Biology, School of Medicine, University of LouisvilleLouisville, KY, USA
| | - Jingwen Zhang
- Department of Medicine, School of Medicine, University of LouisvilleLouisville, KY, USA
| | - Saibyasachi Choudhury
- Department of Biochemistry and Molecular Biology, School of Medicine, University of LouisvilleLouisville, KY, USA
| | - Ae Kyung Park
- Department of Pharmacy, Sunchon National University College of PharmacySunchon, Korea
| | - Mofang Liu
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, China
| | - Ken H Young
- Department of Hematopathology, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
| | - Woong-Yang Park
- Department of Biomedical Sciences, Seoul National University, College of MedicineSeoul, Korea
| | - Robert C G Martin
- Division of Surgical Oncology, Department of Surgery, School of Medicine, University of LouisvilleLouisville, KY, USA
| | - Yong Li
- Department of Biochemistry and Molecular Biology, School of Medicine, University of LouisvilleLouisville, KY, USA
- *Corresponding author: Tel: +1 502 8527551; Fax: +1 502 8526222; E-mail:
| |
Collapse
|
403
|
[Research on MicroRNAs in pluripotent stem cells]. DONG WU XUE YAN JIU = ZOOLOGICAL RESEARCH 2012; 33:416-20. [PMID: 22855450 DOI: 10.3724/sp.j.1141.2012.04416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
MicroRNAs (miRNAs) are a newly identified class of small regulatory non-coding endogenous RNAs that take part in a series of important processes by regulating gene expression. Recent studies have provided evidence that miRNAs may be involved in nearly all biological and metabolic processes, especially influencing self-renewal and differentiation of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). In this review, we briefly summarize the biological characteristics of miRNAs, the detection technologies, and the role of miRNAs regulation in ESCs and iPSCs to frame a discussion on the future prospects of miRNA research.
Collapse
|
404
|
MicroRNAs in embryonic stem cells. Epigenomics 2012. [DOI: 10.1017/cbo9780511777271.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
405
|
Garg M. MicroRNAs, stem cells and cancer stem cells. World J Stem Cells 2012; 4:62-70. [PMID: 22993663 PMCID: PMC3443713 DOI: 10.4252/wjsc.v4.i7.62] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 04/18/2012] [Accepted: 04/25/2012] [Indexed: 02/06/2023] Open
Abstract
This review discusses the various regulatory characteristics of microRNAs that are capable of generating widespread changes in gene expression via post translational repression of many mRNA targets and control self-renewal, differentiation and division of cells. It controls the stem cell functions by controlling a wide range of pathological and physiological processes, including development, differentiation, cellular proliferation, programmed cell death, oncogenesis and metastasis. Through either mRNA cleavage or translational repression, miRNAs alter the expression of their cognate target genes; thereby modulating cellular pathways that affect the normal functions of stem cells, turning them into cancer stem cells, a likely cause of relapse in cancer patients. This present review further emphasizes the recent discoveries on the functional analysis of miRNAs in cancer metastasis and implications on miRNA based therapy using miRNA replacement or anti-miRNA technologies in specific cancer stem cells that are required to establish their efficacy in controlling tumorigenic potential and safe therapeutics.
Collapse
Affiliation(s)
- Minal Garg
- Minal Garg, Department of Biochemistry, University of Lucknow, Lucknow 226007, India
| |
Collapse
|
406
|
Abstract
Emerging evidence is shedding light on a large and complex network of epigenetic modifications at play in human stem cells. This “epigenetic landscape” governs the fine-tuning and precision of gene expression programs that define the molecular basis of stem cell pluripotency, differentiation and reprogramming. This review will focus on recent progress in our understanding of the processes that govern this landscape in stem cells, such as histone modification, DNA methylation, alterations of chromatin structure due to chromatin remodeling and non-coding RNA activity. Further investigation into stem cell epigenetics promises to provide novel advances in the diagnosis and treatment of a wide array of human diseases.
Collapse
|
407
|
Lüningschrör P, Stöcker B, Kaltschmidt B, Kaltschmidt C. miR-290 cluster modulates pluripotency by repressing canonical NF-κB signaling. Stem Cells 2012; 30:655-64. [PMID: 22232084 DOI: 10.1002/stem.1033] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Embryonic stem cell (ESC)-specific microRNAs (miRNAs) play a critical role in the maintenance of pluripotency and self-renewal but the complete network between these miRNAs and their broad range of target genes still remains elusive. Here we demonstrate that miR-290 cluster, the most abundant miRNA family in ESCs, targets the NF-κB subunit p65 (also known as RelA) by repressing its translation. Forced expression of p65 causes loss of pluripotency, promotes differentiation of ESCs, and leads to an epithelial to mesenchymal transition. These data define p65 as a novel target gene of miR-290 cluster and provide new insight into the function of ESC-specific miRNAs.
Collapse
|
408
|
Abstract
SIGNIFICANCE Derived from the inner cell mass of the preimplantation embryo, embryonic stem cells are prototype pluripotent stem (PS) cells that have the ability of self-renewal and differentiation into almost all cell types. Exploration of the mechanisms governing this pluripotency is important for understanding reprogramming mechanisms and stem cell behavior of PS cells and can lead to enhancing reprogramming efficiency and other applications. RECENT ADVANCES Induced pluripotent stem cells are recently discovered PS cells that can be derived from somatic cells by overexpression of pluripotency-related transcription factors. Recent studies have shown that transcription factors and their epigenetic regulation play important roles in the generating, maintaining, and differentiating these PS cells. Recent advances in sequencing technologies allow detailed analysis of target epigenomes and microRNAs (miRs), and have revealed unique epigenetic marks and miRs for PS cells. CRITICAL ISSUES Epigenetic modifications of genes include histone modifications, DNA methylation, and chromatin remodeling. Working closely with epigenetic modifiers, miRs play an important role in inducing and maintaining pluripotency. FUTURE DIRECTIONS The dynamic changes in epigenetic marks during reprogramming and their role in cell fate changes are being uncovered. This review focuses on these new advances in the epigenetics of PS cells.
Collapse
Affiliation(s)
- Ji Woong Han
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
409
|
Thornton JE, Gregory RI. How does Lin28 let-7 control development and disease? Trends Cell Biol 2012; 22:474-82. [PMID: 22784697 DOI: 10.1016/j.tcb.2012.06.001] [Citation(s) in RCA: 294] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 06/07/2012] [Accepted: 06/11/2012] [Indexed: 12/14/2022]
Abstract
One of the most ancient and highly conserved microRNAs (miRNAs), the let-7 family, has gained notoriety owing to its regulation of stem cell differentiation and essential role in normal development, as well as its tumor suppressor function. Mechanisms controlling let-7 expression have recently been uncovered, specifically the role of the RNA-binding protein Lin28 - a key developmental regulator - in blocking let-7 biogenesis. This review focuses on our current understanding of the Lin28-mediated control of let-7 maturation and highlights the central role of Lin28 in stem cell biology, development, control of glucose metabolism, and dysregulation in human disease. Manipulating the Lin28 pathway for the precise control of let-7 expression may provide novel therapeutic opportunities for cancer and other diseases.
Collapse
|
410
|
Heinrich EM, Dimmeler S. MicroRNAs and stem cells: control of pluripotency, reprogramming, and lineage commitment. Circ Res 2012; 110:1014-22. [PMID: 22461365 DOI: 10.1161/circresaha.111.243394] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Stem cells hold great promise for regenerative medicine and the treatment of cardiovascular diseases. The mechanisms regulating self-renewal, pluripotency, and differentiation are not fully understood. MicroRNAs (miRs) are small noncoding RNAs controlling gene expression, either by inducing mRNA degradation or by blocking mRNA translation. The expression of miRs was shown to regulate various aspects of stem cell functions, including the maintenance and induction of pluripotency for reprogramming. In addition, some miRs control cell fate decisions. This review summarizes the role of miRs in reprogramming and embryonic stem cell self-renewal, and specifically addresses the regulation of cardiovascular cell fate decisions by miRs.
Collapse
Affiliation(s)
- Eva-Marie Heinrich
- Institute for Cardiovascular Regeneration, Center of Molecular Medicine, University of Frankfurt, Frankfurt, Germany
| | | |
Collapse
|
411
|
Chambers I, Schroeder T. Stem cell powwow in Squaw Valley. Development 2012; 139:2457-61. [PMID: 22736242 DOI: 10.1242/dev.079475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Keystone Symposium entitled 'The Life of a Stem Cell: from Birth to Death' was held at Squaw Valley, CA, USA in March 2012. The meeting brought together researchers from across the world and showcased the most recent developments in stem cell research. Here, we review the proceedings at this meeting and discuss the major advances in fundamental and applied stem cell biology that emerged.
Collapse
Affiliation(s)
- Ian Chambers
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK.
| | | |
Collapse
|
412
|
Chang HM, Martinez NJ, Thornton JE, Hagan JP, Nguyen KD, Gregory RI. Trim71 cooperates with microRNAs to repress Cdkn1a expression and promote embryonic stem cell proliferation. Nat Commun 2012; 3:923. [PMID: 22735451 PMCID: PMC3518406 DOI: 10.1038/ncomms1909] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 05/15/2012] [Indexed: 12/19/2022] Open
Abstract
Pluripotent embryonic stem cells have a shortened cell cycle that enables their rapid proliferation. The embryonic stem cell-specific miR-290 and miR-302 microRNA families promote proliferation whereas let-7 microRNAs inhibit self-renewal, and promote cell differentiation. Lin28 suppresses let-7 expression in embryonic stem cells. Here to gain further insight into mechanisms controlling embryonic stem cell self-renewal, we explore the molecular and cellular role of the let-7 target Trim71 (mLin41). We show that Trim71 associates with Argonaute2 and microRNAs, and represses expression of Cdkn1a, a cyclin-dependent kinase inhibitor that negatively regulates the G1-S transition. We identify protein domains required for Trim71 association with Argonaute2, localization to P-bodies, and for repression of reporter messenger RNAs. Trim71 knockdown prolongs the G1 phase of the cell cycle and slows embryonic stem cell proliferation, a phenotype that was rescued by depletion of Cdkn1a. Thus, we demonstrate that Trim71 is a factor that facilitates the G1-S transition to promote rapid embryonic stem cell self-renewal.
Collapse
Affiliation(s)
- Hao-Ming Chang
- Stem Cell Program, Children's Hospital Boston, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
413
|
Xiao Y, Guan J, Ping Y, Xu C, Huang T, Zhao H, Fan H, Li Y, Lv Y, Zhao T, Dong Y, Ren H, Li X. Prioritizing cancer-related key miRNA-target interactions by integrative genomics. Nucleic Acids Res 2012; 40:7653-65. [PMID: 22705797 PMCID: PMC3439920 DOI: 10.1093/nar/gks538] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Accumulating evidence indicates that microRNAs (miRNAs) can function as oncogenes or tumor suppressor genes by controlling few key targets, which in turn contribute to the pathogenesis of cancer. The identification of cancer-related key miRNA-target interactions remains a challenge. We performed a systematic analysis of known cancer-related key interactions manually curated from published papers based on different aspects including sequence, expression and function. Known cancer-related key interactions show more miRNA binding sites (especially for 8mer binding sites), more reliable binding of miRNA to the target region, higher expression associations and broader functional coverage when compared to non-disease-related interactions. Through integrating these sequence, expression and function features, we proposed a bioinformatics approach termed PCmtI to prioritize cancer-related key interactions. Ten-fold cross-validation of our approach revealed that it can achieve an area under the receiver operating characteristic curve of 93.9%. Subsequent leave-one-miRNA-out cross-validation also demonstrated the performance of our approach. Using miR-155 as a case, we found that the top ranked interactions can account for most functions of miR-155. In addition, we further demonstrated the power of our approach by 23 recently identified cancer-related key interactions. The approach described here offers a new way for the discovery of novel cancer-related key miRNA-target interactions.
Collapse
Affiliation(s)
- Yun Xiao
- College of Bioinformatics Science and Technology, Department of Neurology, The Affiliated Hospital and Harbin Medical University, Harbin, Heilongjiang 150086, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
414
|
miRNAs involved in the generation, maintenance, and differentiation of pluripotent cells. J Mol Med (Berl) 2012; 90:747-52. [PMID: 22684238 DOI: 10.1007/s00109-012-0922-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 05/04/2012] [Accepted: 05/24/2012] [Indexed: 12/24/2022]
Abstract
With the groundbreaking work of Takahashi and Yamanaka, induced pluripotent stem cells (iPSCs) have taken the stage of international stem cell research as a novel source of pluripotent cells and an alternative to embryonic stem cells (ESCs). Apart from their enormous potential as a starting source for the generation of patient-specific cell therapy products, iPSCs also highlight the power of artificially modulating transcriptional networks to induce dramatic changes of cell specification. Since small non-coding RNAs play important roles in the modulation and fine-tuning of transcriptional networks, microRNAs also exhibit important functions in directing cell fate decisions. In this review, we will discuss the role of microRNAs in pluripotent stem cells and their impact on the induction of pluripotency during reprogramming of somatic cells.
Collapse
|
415
|
Li MA, He L. microRNAs as novel regulators of stem cell pluripotency and somatic cell reprogramming. Bioessays 2012; 34:670-80. [PMID: 22674461 DOI: 10.1002/bies.201200019] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Emerging evidence suggests that microRNA (miRNA)-mediated post-transcriptional gene regulation plays an essential role in modulating embryonic stem (ES) cell pluripotency maintenance, differentiation, and reprogramming of somatic cells to an ES cell-like state. Investigations from ES cell-enriched miRNAs, such as mouse miR-290 cluster and human miR-302 cluster, and ES cell-depleted miRNAs such as let-7 family miRNAs, revealed a common theme that miRNAs target diverse cellular processes including cell cycle regulators, signaling pathway effectors, transcription factors, and epigenetic modifiers and shape their protein output. The combinatorial effects downstream of miRNA action allow miRNAs to modulate cell-fate decisions effectively. Furthermore, the transcription and biogenesis of miRNAs are also tightly regulated. Thus, elucidating the interplay between miRNAs and other modes of gene regulation will shed new light on the biology of pluripotent stem cells and somatic cell reprogramming.
Collapse
Affiliation(s)
- Meng Amy Li
- Division of Cellular and Developmental Biology, Molecular and Cell Biology Department, University of California at Berkeley, Berkeley, CA, USA
| | | |
Collapse
|
416
|
Di Stefano B, Maffioletti SM, Gentner B, Ungaro F, Schira G, Naldini L, Broccoli V. A microRNA-based system for selecting and maintaining the pluripotent state in human induced pluripotent stem cells. Stem Cells 2012; 29:1684-95. [PMID: 21898693 DOI: 10.1002/stem.726] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Induced pluripotent stem cell (iPSC) technology has provided researchers with a unique tool to derive disease-specific stem cells for the study and possible treatment of degenerative disorders with autologous cells. The low efficiency and heterogeneous nature of reprogramming is a major impediment to the generation of personalized iPSC lines. Here, we report the generation of a lentiviral system based on a microRNA-regulated transgene that enables for the efficient selection of mouse and human pluripotent cells. This system relies on the differential expression pattern of the mature form of microRNA let7a in pluripotent versus committed or differentiated cells. We generated microRNA responsive green fluorescent protein and Neo reporters for specific labeling and active selection of the pluripotent cells in any culture condition. We used this system to establish Rett syndrome and Parkinson's disease human iPSCs. The presented selection procedure represents a straightforward and powerful tool for facilitating the derivation of patient-specific iPSCs.
Collapse
Affiliation(s)
- Bruno Di Stefano
- Division of Neuroscience, Stem Cells and Neurogenesis Unit, San Raffaele Scientific Institute, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
417
|
Toledano H, D'Alterio C, Czech B, Levine E, Jones DL. The let-7-Imp axis regulates ageing of the Drosophila testis stem-cell niche. Nature 2012; 485:605-10. [PMID: 22660319 DOI: 10.1038/nature11061] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2010] [Accepted: 03/16/2012] [Indexed: 12/25/2022]
Abstract
Adult stem cells support tissue homeostasis and repair throughout the life of an individual. During ageing, numerous intrinsic and extrinsic changes occur that result in altered stem-cell behaviour and reduced tissue maintenance and regeneration. In the Drosophila testis, ageing results in a marked decrease in the self-renewal factor Unpaired (Upd), leading to a concomitant loss of germline stem cells. Here we demonstrate that IGF-II messenger RNA binding protein (Imp) counteracts endogenous small interfering RNAs to stabilize upd (also known as os) RNA. However, similar to upd, Imp expression decreases in the hub cells of older males, which is due to the targeting of Imp by the heterochronic microRNA let-7. In the absence of Imp, upd mRNA therefore becomes unprotected and susceptible to degradation. Understanding the mechanistic basis for ageing-related changes in stem-cell behaviour will lead to the development of strategies to treat age-onset diseases and facilitate stem-cell-based therapies in older individuals.
Collapse
Affiliation(s)
- Hila Toledano
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
418
|
Small temporal RNAs in animal development. Curr Opin Genet Dev 2012; 22:368-73. [PMID: 22578317 DOI: 10.1016/j.gde.2012.04.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Revised: 04/03/2012] [Accepted: 04/08/2012] [Indexed: 11/21/2022]
Abstract
The lin-4/miR-125 and let-7 microRNAs are at the heart of the heterochronic pathway, which controls temporal cell fate determination during Caenorhabditis elegans development. These small temporal RNAs are clustered along with a third microRNA, miR-100, in the genomes of most animals. Their conserved temporal and neural expression profile suggests a general role in cell fate determination during nervous system differentiation. By triggering consecutive differentiation programs, these microRNAs probably help to determine birth-order dependent temporal identity and thereby contribute to neural stem cell multipotency.
Collapse
|
419
|
Vidigal JA, Ventura A. Embryonic stem cell miRNAs and their roles in development and disease. Semin Cancer Biol 2012; 22:428-36. [PMID: 22561239 DOI: 10.1016/j.semcancer.2012.04.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 04/17/2012] [Indexed: 01/07/2023]
Abstract
MicroRNAs have emerged as important modulators of gene expression. Both during development and disease, regulation by miRNAs controls the choice between self-renewal and differentiation, survival and apoptosis and dictates how cells respond to external stimuli. In mouse pluripotent embryonic stem cells, a surprisingly small set of miRNAs, encoded by four polycistronic genes is at the center of such decisions. miR-290-295, miR-302-367, miR-17-92 and miR-106b-25 encode for miRNAs with highly related sequences that seem to control largely overlapping gene sets. Recent studies have highlighted the importance of these miRNAs in the maintenance of 'stemness' and regulation of normal development and have linked the deregulation of their expression to a variety of human diseases.
Collapse
Affiliation(s)
- Joana Alves Vidigal
- Memorial Sloan-Kettering Cancer Center, Cancer Biology and Genetics Program, New York, NY 10065, United States
| | | |
Collapse
|
420
|
MicroRNAs and induced pluripotent stem cells for human disease mouse modeling. J Biomed Biotechnol 2012; 2012:758169. [PMID: 22619497 PMCID: PMC3350862 DOI: 10.1155/2012/758169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Accepted: 02/14/2012] [Indexed: 01/02/2023] Open
Abstract
Human disease animal models are absolutely invaluable tools for our understanding of mechanisms involved in both physiological and pathological processes. By studying various genetic abnormalities in these organisms we can get a better insight into potential candidate genes responsible for human disease development. To this point a mouse represents one of the most used and convenient species for human disease modeling. Hundreds if not thousands of inbred, congenic, and transgenic mouse models have been created and are now extensively utilized in the research labs worldwide. Importantly, pluripotent stem cells play a significant role in developing new genetically engineered mice with the desired human disease-like phenotype. Induced pluripotent stem (iPS) cells which represent reprogramming of somatic cells into pluripotent stem cells represent a significant advancement in research armament. The novel application of microRNA manipulation both in the generation of iPS cells and subsequent lineage-directed differentiation is discussed. Potential applications of induced pluripotent stem cell--a relatively new type of pluripotent stem cells--for human disease modeling by employing human iPS cells derived from normal and diseased somatic cells and iPS cells derived from mouse models of human disease may lead to uncovering of disease mechanisms and novel therapies.
Collapse
|
421
|
Hong CP, Park J, Roh TY. Epigenetic regulation in cell reprogramming revealed by genome-wide analysis. Epigenomics 2012; 3:73-81. [PMID: 22126154 DOI: 10.2217/epi.10.72] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Cell reprogramming has been known to accompany cell type-specific epigenetic alterations of the genome. Chromatin structure and dynamics influenced by epigenetic factors such as covalent histone modifications, histone variants, DNA methylation, ncRNAs and chromatin remodeling play an important role in determining cell fate. The rapid progress made with the development of high-throughput technology and the systematic assessment of accumulated data has enabled the identification of previously unknown biological processes and disease states in terms of whole-genome profiles of epigenetic signatures at a high resolution. In this article, we discuss the fundamental advances and challenges over the past several years in our knowledge of chromatin state and gene transcription programs associated with epigenetic changes during cell reprogramming processes. In particular, histone modifications, DNA methylation and transcriptome analyses in genome-scale studies will be reviewed to characterize a functional cross-talk between epigenetic and transcriptional regulations in cell reprogramming.
Collapse
Affiliation(s)
- Chang Pyo Hong
- Division of Molecular & Life Sciences, Pohang University of Science & Technology (POSTECH), Pohang 790-784, Republic of Korea
| | | | | |
Collapse
|
422
|
Ikeda H, Sato Y, Yoneda N, Harada K, Sasaki M, Kitamura S, Sudo Y, Ooi A, Nakanuma Y. α-Fetoprotein-producing gastric carcinoma and combined hepatocellular and cholangiocarcinoma show similar morphology but different histogenesis with respect to SALL4 expression. Hum Pathol 2012; 43:1955-63. [PMID: 22516245 DOI: 10.1016/j.humpath.2011.11.022] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 11/10/2011] [Accepted: 11/11/2011] [Indexed: 02/07/2023]
Abstract
α-Fetoprotein is expressed in hepatocellular carcinoma, yolk sac tumor, and some gastric carcinomas. The α-fetoprotein-producing gastric carcinoma composed of hepatoid and common adenocarcinoma shows morphological similarities to combined hepatocellular and cholangiocarcinoma. In this study, the expression of putative hepatic stem/progenitor markers (EpCAM, OV-6, DLK-1, and NCAM/CD56), hepatocyte markers (HepParI, α-fetoprotein, glypican 3), and the germ cell marker SALL4 was examined in α-fetoprotein-producing gastric carcinoma (20 cases) and combined hepatocellular and cholangiocarcinoma (20 cases) for evaluation of pathologic differentiation and also the histogenesis of both tumors. The SALL4 protein was expressed in 95% of α-fetoprotein-producing gastric carcinoma, including the hepatoid component (hepatoid gastric carcinoma), but was absent in combined hepatocellular and cholangiocarcinoma. Glypican 3 and α-fetoprotein were detected in all hepatoid-type α-fetoprotein-producing gastric carcinoma but variably in combined hepatocellular and cholangiocarcinoma. NCAM/CD56 was expressed focally in combined hepatocellular and cholangiocarcinoma but was rare in hepatoid gastric carcinoma. EpCAM, DLK-1, and OV6 were variably expressed in hepatoid gastric carcinoma and combined hepatocellular and cholangiocarcinoma. SALL4 was a useful differential marker for combined hepatocellular and cholangiocarcinoma and hepatoid gastric carcinoma. The histogenesis of hepatoid gastric carcinoma expressing SALL4 seems to reflect fetal gut differentiation or involve the germ cell lineage and may be different from that of combined hepatocellular and cholangiocarcinoma involving the hepatic stem cell or progenitor cell lineages. In conclusion, hepatoid gastric carcinoma and combined hepatocellular and cholangiocarcinoma shared morphologies, whereas the distinction of hepatoid gastric carcinoma from combined hepatocellular and cholangiocarcinoma is possible by immunostaining for SALL4. These 2 tumors seem to differ in their histogenesis with respect to SALL4 expression.1.
Collapse
Affiliation(s)
- Hiroko Ikeda
- Section of Diagnostic Pathology, Kanazawa University Hospital, Department of Human Pathology, Kanazawa University Graduate School of Medicine, Kanazawa 920-8641, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
423
|
Lipchina I, Studer L, Betel D. The expanding role of miR-302-367 in pluripotency and reprogramming. Cell Cycle 2012; 11:1517-23. [PMID: 22436490 DOI: 10.4161/cc.19846] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
MicroRNA (miRNA) has been shown to be essential for regulating cell fate and pluripotency; however, our knowledge of miRNA function in stem cells is incomplete due to experimental limitations and difficulties in identifying their physiological targets. Recent studies implicated hESC-expressed miRNAs (miR‑302-367 and miR‑371-373 clusters) in regulating BMP signaling and promoting pluripotency, suggesting that low levels of BMP signaling may promote pluripotency by preventing neural induction. A comprehensive list of miR‑302-367 targets recently identified by genome-wide approaches suggests a number of additional cellular processes and signaling pathways whose regulation by miR‑302-367 may promote pluripotency and reprogramming, such as cell cycle, epigenetic changes, metabolism and vesicular transfer.
Collapse
Affiliation(s)
- Inna Lipchina
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | | | |
Collapse
|
424
|
Huang Y. A mirror of two faces: Lin28 as a master regulator of both miRNA and mRNA. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 3:483-94. [PMID: 22467269 DOI: 10.1002/wrna.1112] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Lin28 is an evolutionarily conserved RNA-binding protein that plays important roles in development, pluripotency, tumorigenesis, and metabolism. Emerging evidence suggests that the pleiotropic roles of Lin28 in the diverse physiological and pathological processes are mechanistically linked to its ability to modulate not only the biogenesis of miRNAs, particularly the let-7 family miRNAs, but also the translation of mRNAs important for cell growth and metabolism. Let-7 negatively regulates the translation of oncogenes, cell cycle regulators, and metabolic pathway components. Lin28 relieves this repression by blocking the production of mature let-7. Lin28 binds to the terminal loops of let-7 precursors, leading to inhibition of processing and the induction of uridylation and precursor degradation. Lin28 also is a direct translational regulator: it selectively binds to a cohort of mRNAs and stimulates their translation. Recent advances in our understanding of Lin28-mediated mechanisms of posttranscriptional regulation of gene expression reveal important roles of this protein in the fields of development, stem cells, metabolic diseases, and cancer.
Collapse
Affiliation(s)
- Yingqun Huang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
425
|
WHITE KATIE, KANE NICOLEM, MILLIGAN GRAEME, BAKER ANDREWH. The Role of miRNA in Stem Cell Pluripotency and Commitment to the Vascular Endothelial Lineage. Microcirculation 2012; 19:196-207. [DOI: 10.1111/j.1549-8719.2012.00161.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
426
|
Abstract
Pluripotency is a "blank" cellular state characteristic of specific cells within the early embryo (e.g., epiblast cells) and of certain cells propagated in vitro (e.g., embryonic stem cells, ESCs). The terms pluripotent cell and stem cell are often used interchangeably to describe cells capable of differentiating into multiple cell types. In this review, we discuss the prevailing molecular and functional definitions of pluripotency and the working parameters employed to describe this state, both in the context of cells residing within the early embryo and cells propagated in vitro.
Collapse
Affiliation(s)
- Marion Dejosez
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | |
Collapse
|
427
|
Hassan O, Ahmad A, Sethi S, Sarkar FH. Recent updates on the role of microRNAs in prostate cancer. J Hematol Oncol 2012; 5:9. [PMID: 22417299 PMCID: PMC3313897 DOI: 10.1186/1756-8722-5-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 03/14/2012] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs that are involved in several important biological processes through regulation of genes post-transcriptionally. Carcinogenesis is one of the key biological processes where miRNAs play important role in the regulation of genes. The miRNAs elicit their effects by binding to the 3' untranslated region (3'UTR) of their target mRNAs, leading to the inhibition of translation or the degradation of the mRNA, depending on the degree of complementary base pairing. To-date more than 1,000 miRNAs are postulated to exist, although the field is moving rapidly. Currently, miRNAs are becoming the center of interest in a number of research areas, particularly in oncology, as documented by exponential growth in publications in the last decade. These studies have shown that miRNAs are deregulated in a wide variety of human cancers. Thus, it is reasonable to ask the question whether further understanding on the role of miRNAs could be useful for diagnosis, prognosis and predicting therapeutic response for prostate cancer (PCa). Therefore, in this review article, we will discuss the potential roles of different miRNAs in PCa in order to provide up-to-date information, which is expected to stimulate further research in the field for realizing the benefit of miRNA-targeted therapeutic approach for the treatment of metastatic castrate resistant prostate cancer (mCRPC) in the near future because there is no curative treatment for mCRPC at the moment.
Collapse
Affiliation(s)
- Oudai Hassan
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | | | | | | |
Collapse
|
428
|
Kawahara H, Imai T, Okano H. MicroRNAs in Neural Stem Cells and Neurogenesis. Front Neurosci 2012; 6:30. [PMID: 22416227 PMCID: PMC3298868 DOI: 10.3389/fnins.2012.00030] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 02/17/2012] [Indexed: 01/01/2023] Open
Abstract
MicroRNA (miRNA) is a type of short-length (~22 nt) non-coding RNA. Most miRNAs are transcribed by RNA polymerase II and processed by Drosha-DGCR8 and Dicer complexes in the cropping and dicing steps, respectively. miRNAs are exported by exportin-5 from the nucleus to the cytoplasm after cropping. Trimmed mature miRNA is loaded and targets mRNA at the 3′ or 5′ untranslated region (UTR) by recognition of base-pairing in the miRNA-loaded RISC, where it is involved in gene silencing including translational repression and/or degradation along with deadenylation. Recent studies have shown that miRNA participates in various biological functions including cell fate decision, developmental timing regulation, apoptosis, and tumorigenesis. Analyses of miRNA expression profiles have demonstrated tissue- and stage-specific miRNAs including the let-7 family, miR-124, and miR-9, which regulate the differentiation of embryonic stem cells and/or neurogenesis. This review focuses on RNA-binding protein-mediated miRNA biogenesis during neurogenesis. These miRNA biogenesis-relating proteins have also been linked to human diseases because their mutations can cause several nervous system disorders. Moreover, defects in core proteins involved in miRNA biogenesis including Drosha, DGCR8, and Dicer promote tumorigenesis. Thus, the study of not only mature miRNA function but also miRNA biogenesis steps is likely to be important.
Collapse
Affiliation(s)
- Hironori Kawahara
- Department of Physiology, Keio University School of Medicine Shinjuku, Tokyo, Japan
| | | | | |
Collapse
|
429
|
Vazquez-Martin A, Vellon L, Quirós PM, Cufí S, Ruiz de Galarreta E, Oliveras-Ferraros C, Martin AG, Martin-Castillo B, López-Otín C, Menendez JA. Activation of AMP-activated protein kinase (AMPK) provides a metabolic barrier to reprogramming somatic cells into stem cells. Cell Cycle 2012; 11:974-89. [PMID: 22333578 DOI: 10.4161/cc.11.5.19450] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The ability of somatic cells to reprogram their ATP-generating machinery into a Warburg-like glycolytic metabotype while overexpressing stemness genes facilitates their conversion into either induced pluripotent stem cells (iPSCs) or tumor-propagating cells. AMP-activated protein kinase (AMPK) is a metabolic master switch that senses and decodes intracellular changes in energy status; thus, we have evaluated the impact of AMPK activation in regulating the generation of iPSCs from nonstem cells of somatic origin. The indirect and direct activation of AMPK with the antidiabetic biguanide metformin and the thienopyridone A-769662, respectively, impeded the reprogramming of mouse embryonic and human diploid fibroblasts into iPSCs. The AMPK activators established a metabolic barrier to reprogramming that could not be bypassed, even through p53 deficiency, a fundamental mechanism to greatly improve the efficiency of stem-cell production. Treatment with metformin or A-769662 before the generation of iPSC colonies was sufficient to drastically decrease iPSC generation, suggesting that AMPK activation impedes early stem cell genetic reprogramming. Monitoring the transcriptional activation status of each individual reprogramming factor (i.e., Oct4, Sox2, Klf4 and c-Myc) revealed that AMPK activation notably prevented the transcriptional activation of Oct4, the master regulator of the pluripotent state. AMPK activation appears to impose a normalized metabolic flow away from the required pro-immortalizing glycolysis that fuels the induction of stemness and pluripotency, endowing somatic cells with an energetic infrastructure that is protected against reprogramming. AMPK-activating anti-reprogramming strategies may provide a roadmap for the generation of novel cancer therapies that metabolically target tumor-propagating cells.
Collapse
|
430
|
p53 regulates cell cycle and microRNAs to promote differentiation of human embryonic stem cells. PLoS Biol 2012; 10:e1001268. [PMID: 22389628 PMCID: PMC3289600 DOI: 10.1371/journal.pbio.1001268] [Citation(s) in RCA: 194] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 01/10/2012] [Indexed: 12/11/2022] Open
Abstract
Multiple studies show that tumor suppressor p53 is a barrier to dedifferentiation; whether this is strictly due to repression of proliferation remains a subject of debate. Here, we show that p53 plays an active role in promoting differentiation of human embryonic stem cells (hESCs) and opposing self-renewal by regulation of specific target genes and microRNAs. In contrast to mouse embryonic stem cells, p53 in hESCs is maintained at low levels in the nucleus, albeit in a deacetylated, inactive state. In response to retinoic acid, CBP/p300 acetylates p53 at lysine 373, which leads to dissociation from E3-ubiquitin ligases HDM2 and TRIM24. Stabilized p53 binds CDKN1A to establish a G1 phase of cell cycle without activation of cell death pathways. In parallel, p53 activates expression of miR-34a and miR-145, which in turn repress stem cell factors OCT4, KLF4, LIN28A, and SOX2 and prevent backsliding to pluripotency. Induction of p53 levels is a key step: RNA-interference-mediated knockdown of p53 delays differentiation, whereas depletion of negative regulators of p53 or ectopic expression of p53 yields spontaneous differentiation of hESCs, independently of retinoic acid. Ectopic expression of p53R175H, a mutated form of p53 that does not bind DNA or regulate transcription, failed to induce differentiation. These studies underscore the importance of a p53-regulated network in determining the human stem cell state. Most cell types in an organism are generated from embryonic stem cells (ESCs), which are able to proliferate an unlimited number of times and have the potential to produce any kind of cell of that organism (this ability is called pluripotency). In order to maintain these properties, ESCs have to remain in a proliferate state, which is achieved by the collaboration of several factors. Expressing combinations of these factors in differentiated cells can result in ESC-like qualities; these induced pluripotent stem cells (iPSCs) can then function like ESCs. Previous studies suggested that p53, generally known for its roles in maintaining genomic integrity by regulating cell cycle and cell death pathways, also acts as a barrier to reprogramming adult cells during the creation of iPSCs; whether this is strictly due to repression of proliferation remains a subject of debate. Here, we show that p53 plays a significant role in actively promoting differentiation of human ESCs (hESCs). We find that, prior to differentiation, p53 is expressed at very low levels in hESCs, held in check by two negative regulators, HDM2 and TRIM24, that trigger p53 degradation. Upon induction of differentiation, lysine 373 of p53 is acetylated, and this disrupts the existing interactions with negative regulators, thus allowing stabilization and activation of p53. Active p53 in turn promotes expression of the cell cycle regulator p21 to slow down the hESC cell cycle; cells in the gap (G1) phase of the cell cycle accumulate, preventing division. In parallel, p53 activates specific microRNAs, miR-34a and miR-145, that inhibit the expression of several stem cell factors and prevent differentiated cells from backsliding to pluripotency. Our results highlight a novel function of p53 in determining the human stem cell state.
Collapse
|
431
|
Gasimli L, Linhardt RJ, Dordick JS. Proteoglycans in stem cells. Biotechnol Appl Biochem 2012; 59:65-76. [PMID: 23586787 DOI: 10.1002/bab.1002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2011] [Accepted: 01/18/2012] [Indexed: 12/18/2022]
Abstract
The remarkable promise of pluripotent and multipotent stem cells (SCs) imparts tremendous optimism for advancement of regenerative medicine, developmental biology, and drug discovery. Perhaps the greatest challenge is to finely direct, control, and command their differentiation. As those processes are managed on many levels, including genomic, transcriptomic, and epigenomic, examination of all of these components will yield powerful tools for manipulation of SCs. Carbohydrates surround all cells, including SCs as a glycocalyx. Of particular interest is the class of carbohydrates known as proteoglycans (PGs), which are a diverse group of glycoconjugates consisting of core protein with one or more glycosaminoglycan (GAG) chains attached. They are primarily located in the extracellular matrix as well as at cell surfaces, where they are bound or anchored to the membrane through their core proteins. GAG chains are linear, anionic, and highly heterogeneous carbohydrates consisting of repeating disaccharides. PGs facilitate interaction of cells with the extracellular environment by interacting with chemokines, growth factors, and other signaling molecules. Core proteins are involved in many signaling pathways, both individually, as well as through attached proteins via GAG-mediated interactions. These essential and accessible functions make PGs an excellent target for manipulating SCs and guiding their fate. Studying the role of PGs in cell development will yield valuable insight into the mechanism of SC differentiation and suggest approaches toward directing those pathways. Such studies may also help identify valuable markers for distinguishing between various cell populations during differentiation.
Collapse
Affiliation(s)
- Leyla Gasimli
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | | | | |
Collapse
|
432
|
Xiao Y, Xu C, Guan J, Ping Y, Fan H, Li Y, Zhao H, Li X. Discovering dysfunction of multiple microRNAs cooperation in disease by a conserved microRNA co-expression network. PLoS One 2012; 7:e32201. [PMID: 22384175 PMCID: PMC3285207 DOI: 10.1371/journal.pone.0032201] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 01/24/2012] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs, a new class of key regulators of gene expression, have been shown to be involved in diverse biological processes and linked to many human diseases. To elucidate miRNA function from a global perspective, we constructed a conserved miRNA co-expression network by integrating multiple human and mouse miRNA expression data. We found that these conserved co-expressed miRNA pairs tend to reside in close genomic proximity, belong to common families, share common transcription factors, and regulate common biological processes by targeting common components of those processes based on miRNA targets and miRNA knockout/transfection expression data, suggesting their strong functional associations. We also identified several co-expressed miRNA sub-networks. Our analysis reveals that many miRNAs in the same sub-network are associated with the same diseases. By mapping known disease miRNAs to the network, we identified three cancer-related miRNA sub-networks. Functional analyses based on targets and miRNA knockout/transfection data consistently show that these sub-networks are significantly involved in cancer-related biological processes, such as apoptosis and cell cycle. Our results imply that multiple co-expressed miRNAs can cooperatively regulate a given biological process by targeting common components of that process, and the pathogenesis of disease may be associated with the abnormality of multiple functionally cooperative miRNAs rather than individual miRNAs. In addition, many of these co-expression relationships provide strong evidence for the involvement of new miRNAs in important biological processes, such as apoptosis, differentiation and cell cycle, indicating their potential disease links.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
- * E-mail:
| |
Collapse
|
433
|
Xue D, Peng Y, Wang F, Allan RW, Cao D. RNA-binding protein LIN28 is a sensitive marker of ovarian primitive germ cell tumours. Histopathology 2012; 59:452-9. [PMID: 22034885 DOI: 10.1111/j.1365-2559.2011.03949.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AIMS LIN28 is an RNA-binding protein that has been detected in testicular germ cell tumours (GCTs), but its status in ovarian GCTs is unknown. The aim was to determine the immunohistochemical profile of LIN28 in ovarian GCTs. METHODS AND RESULTS Immunohistochemistry of LIN28 was performed in 110 primary and 11 metastatic ovarian GCTs. The percentage of tumour cells stained was scored as 0, 1+ (1-30% cells), 2+ (31-60%), 3+ (61-90%), and 4+ (>90%). To determine its specificity, we stained LIN28 in 119 non-GCTs, including 37 clear cell carcinomas. Strong 4+ LIN28 staining was seen in 4/4 (100%) gonadoblastomas, 7/7 (100%) embryonal carcinomas (ECs), and 41/41 (100%) yolk sac tumours (YSTs). Among 39 dysgerminomas, 4+ staining was seen in 37 and 3+ staining in two (strong in 37; mixed weak and strong in two). Twelve of 14 immature teratomas showed variable LIN28 staining (1+ to 4+) in the immature neuroepithelium (weak to strong staining), whereas mature teratomas, carcinoids, struma ovarii and strumal carcinoids were negative. Only 5/117 non-GCTs (1/37 clear cell carcinomas) showed weak to moderate 1-2+ staining. CONCLUSIONS LIN28 is a sensitive marker for gonadoblastomas, dysgerminomas, ECs, and YSTs. LIN28 can be used to distinguish them from non-GCTs.
Collapse
Affiliation(s)
- Debin Xue
- Department of Pathology, The Affiliated Hospital of Putian University, Putian, Fujian, China
| | | | | | | | | |
Collapse
|
434
|
Jouneau A, Ciaudo C, Sismeiro O, Brochard V, Jouneau L, Vandormael-Pournin S, Coppée JY, Zhou Q, Heard E, Antoniewski C, Cohen-Tannoudji M. Naive and primed murine pluripotent stem cells have distinct miRNA expression profiles. RNA (NEW YORK, N.Y.) 2012; 18:253-264. [PMID: 22201644 PMCID: PMC3264912 DOI: 10.1261/rna.028878.111] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 11/06/2011] [Indexed: 05/31/2023]
Abstract
Over the last years, the microRNA (miRNA) pathway has emerged as a key component of the regulatory network of pluripotency. Although clearly distinct states of pluripotency have been described in vivo and ex vivo, differences in miRNA expression profiles associated with the developmental modulation of pluripotency have not been extensively studied so far. Here, we performed deep sequencing to profile miRNA expression in naive (embryonic stem cell [ESC]) and primed (epiblast stem cell [EpiSC]) pluripotent stem cells derived from mouse embryos of identical genetic background. We developed a graphical representation method allowing the rapid identification of miRNAs with an atypical profile including mirtrons, a small nucleolar RNA (snoRNA)-derived miRNA, and miRNAs whose biogenesis may differ between ESC and EpiSC. Comparison of mature miRNA profiles revealed that ESCs and EpiSCs exhibit very different miRNA signatures with one third of miRNAs being differentially expressed between the two cell types. Notably, differential expression of several clusters, including miR290-295, miR17-92, miR302/367, and a large repetitive cluster on chromosome 2, was observed. Our analysis also showed that differentiation priming of EpiSC compared to ESC is evidenced by changes in miRNA expression. These dynamic changes in miRNAs signature are likely to reflect both redundant and specific roles of miRNAs in the fine-tuning of pluripotency during development.
Collapse
Affiliation(s)
- Alice Jouneau
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78352 Jouy-en-Josas, France
- ENVA, F-94704 Maisons Alfort, France
| | - Constance Ciaudo
- CNRS UMR3215, INSERM U934, Institut Curie, F-75248 Paris, France
| | | | - Vincent Brochard
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78352 Jouy-en-Josas, France
- ENVA, F-94704 Maisons Alfort, France
| | - Luc Jouneau
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78352 Jouy-en-Josas, France
- ENVA, F-94704 Maisons Alfort, France
| | - Sandrine Vandormael-Pournin
- Département de Biologie du Développement, Institut Pasteur, Unité de Génétique Fonctionnelle de la Souris, F-75015 Paris, France
- CNRS URA 2578, F-75015 Paris, France
| | | | - Qi Zhou
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Science, Beijing 100101, China
| | - Edith Heard
- CNRS UMR3215, INSERM U934, Institut Curie, F-75248 Paris, France
| | - Christophe Antoniewski
- CNRS URA 2578, F-75015 Paris, France
- Drosophila Genetics and Epigenetics, Institut Pasteur, F-75015 Paris, France
| | - Michel Cohen-Tannoudji
- Département de Biologie du Développement, Institut Pasteur, Unité de Génétique Fonctionnelle de la Souris, F-75015 Paris, France
- CNRS URA 2578, F-75015 Paris, France
| |
Collapse
|
435
|
Piskounova E, Polytarchou C, Thornton JE, LaPierre RJ, Pothoulakis C, Hagan JP, Iliopoulos D, Gregory RI. Lin28A and Lin28B inhibit let-7 microRNA biogenesis by distinct mechanisms. Cell 2012; 147:1066-79. [PMID: 22118463 DOI: 10.1016/j.cell.2011.10.039] [Citation(s) in RCA: 509] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 07/25/2011] [Accepted: 10/24/2011] [Indexed: 02/07/2023]
Abstract
Lin28A and Lin28B selectively block the expression of let-7 microRNAs and function as oncogenes in a variety of human cancers. Lin28A recruits a TUTase (Zcchc11/TUT4) to let-7 precursors to block processing by Dicer in the cell cytoplasm. Here we find that unlike Lin28A, Lin28B represses let-7 processing through a Zcchc11-independent mechanism. Lin28B functions in the nucleus by sequestering primary let-7 transcripts and inhibiting their processing by the Microprocessor. The inhibitory effects of Zcchc11 depletion on the tumorigenic capacity and metastatic potential of human cancer cells and xenografts are restricted to Lin28A-expressing tumors. Furthermore, the majority of human colon and breast tumors analyzed exclusively express either Lin28A or Lin28B. Lin28A is expressed in HER2-overexpressing breast tumors, whereas Lin28B expression characterizes triple-negative breast tumors. Overall our results illuminate the distinct mechanisms by which Lin28A and Lin28B function and have implications for the development of new strategies for cancer therapy.
Collapse
|
436
|
Parsons XH. MicroRNA Profiling Reveals Distinct Mechanisms Governing Cardiac and Neural Lineage-Specification of Pluripotent Human Embryonic Stem Cells. ACTA ACUST UNITED AC 2012; 2. [PMID: 23355957 DOI: 10.4172/2157-7633.1000124] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Realizing the potential of human embryonic stem cells (hESCs) has been hindered by the inefficiency and instability of generating desired cell types from pluripotent cells through multi-lineage differentiation. We recently reported that pluripotent hESCs maintained under a defined platform can be uniformly converted into a cardiac or neural lineage by small molecule induction, which enables lineage-specific differentiation direct from the pluripotent state of hESCs and opens the door to investigate human embryonic development using in vitro cellular model systems. To identify mechanisms of small molecule induced lineage-specification of pluripotent hESCs, in this study, we compared the expression and intracellular distribution patterns of a set of cardinal chromatin modifiers in pluripotent hESCs, nicotinamide (NAM)-induced cardiomesodermal cells, and retinoic acid (RA)-induced neuroectodermal cells. Further, genome-scale profiling of microRNA (miRNA) differential expression patterns was used to monitor the regulatory networks of the entire genome and identify the development-initiating miRNAs in hESC cardiac and neural lineage-specification. We found that NAM induced nuclear translocation of NAD-dependent histone deacetylase SIRT1 and global chromatin silencing, while RA induced silencing of pluripotence-associated hsa-miR-302 family and drastic up-regulation of neuroectodermal Hox miRNA hsa-miR-10 family to high levels. Genome-scale miRNA profiling indentified that a unique set of pluripotence-associated miRNAs was down-regulated, while novel sets of distinct cardiac- and neural-driving miRNAs were up-regulated upon the induction of lineage-specification direct from the pluripotent state of hESCs. These findings suggest that a predominant epigenetic mechanism via SIRT1-mediated global chromatin silencing governs NAM-induced hESC cardiac fate determination, while a predominant genetic mechanism via silencing of pluripotence-associated hsa-miR-302 family and drastic up-regulation of neuroectodermal Hox miRNA hsa-miR-10 family governs RA-induced hESC neural fate determination. This study provides critical insight into the earliest events in human embryogenesis as well as offers means for small molecule-mediated direct control and modulation of hESC pluripotent fate when deriving clinically-relevant lineages for regenerative therapies.
Collapse
Affiliation(s)
- Xuejun H Parsons
- San Diego Regenerative Medicine Institute, San Diego, CA 92109, USA ; Xcelthera, San Diego, CA 92109, USA
| |
Collapse
|
437
|
Parsons XH, Parsons JF, Moore DA. Genome-Scale Mapping of MicroRNA Signatures in Human Embryonic Stem Cell Neurogenesis. ACTA ACUST UNITED AC 2012; 1. [PMID: 23543894 DOI: 10.4172/2324-8769.1000105] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To date, lacking of a clinically-suitable source of engraftable human stem/progenitor cells with adequate neurogenic potential has been the major setback in developing effective cell-based therapies against a wide range of neurological disorders. Derivation of human embryonic stem cells (hESCs) provides a powerful tool to investigate the molecular controls in human embryonic neurogenesis as well as an unlimited source to generate the diversity of human neuronal cell types in the developing CNS for repair. However, realizing the developmental and therapeutic potential of hESCs has been hindered by conventional multi-lineage differentiation of pluripotent cells, which is uncontrollable, inefficient, highly variable, difficult to reproduce and scale-up. We recently identified retinoic acid (RA) as sufficient to induce the specification of neuroectoderm direct from the pluripotent state of hESCs under defined platform and trigger progression to human neuronal progenitors (hESC-I hNuPs) and neurons (hESC-I hNus) in the developing CNS with high efficiency, which enables hESC neuronal lineage-specific differentiation and opens the door to investigate human embryonic neurogenesis using the hESC model system. In this study, genome-scale profiling of microRNA (miRNA) differential expression patterns in hESC neuronal lineage-specific progression was used to identify molecular signatures of human embryonic neurogenesis. These in vitro neuroectoderm-derived human neuronal cells have acquired a neuron al identity by down-regulating pluripotence-associated miRNAs and inducing the expression of miRNAs linked to regulating human CNS development to high levels in a stage-specific manner, including silencing of the prominent pluripotence-associated hsa-miR-302 family and drastic expression increases of the Hox hsa-miR-10 and let-7 miRNAs. Following transplantation, hESC-I hNuPs engrafted and yielded well-integrated neurons at a high prevalence within neurogenic regions of the brain. In 3D culture, these hESC-I hNuPs proceeded to express subtype neuronal markers, such as dopaminergic and motor neurons, demonstrating their therapeutic potential for CNS repair. Our study provides critical insight into molecular neurogenesis in human embryonic development as well as offers an adequate human neurogenic cell source in high purity and large quantity for scale-up CNS regeneration.
Collapse
Affiliation(s)
- Xuejun H Parsons
- San Diego Regenerative Medicine Institute, San Diego, CA 92109, USA ; Xcelthera, San Diego, CA 92109, USA
| | | | | |
Collapse
|
438
|
Hinton A, Hunter S, Reyes G, Fogel GB, King CC. From pluripotency to islets: miRNAs as critical regulators of human cellular differentiation. ADVANCES IN GENETICS 2012; 79:1-34. [PMID: 22989764 DOI: 10.1016/b978-0-12-394395-8.00001-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
MicroRNAs (miRNAs) actively regulate differentiation as pluripotent cells become cells of pancreatic endocrine lineage, including insulin-producing β cells. The process is dynamic; some miRNAs help maintain pluripotency, while others drive cell fate decisions. Here, we survey the current literature and describe the biological role of selected miRNAs in maintenance of both mouse and human embryonic stem cell (ESC) pluripotency. Subsequently, we review the increasing evidence that miRNAs act at selected points in differentiation to regulate decisions about early cell fate (definitive endoderm and mesoderm), formation of pancreatic precursor cells, endocrine cell function, as well as epithelial to mesenchymal transition.
Collapse
Affiliation(s)
- Andrew Hinton
- Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA, USA
| | | | | | | | | |
Collapse
|
439
|
Meng F, Glaser SS, Francis H, DeMorrow S, Han Y, Passarini JD, Stokes A, Cleary JP, Liu X, Venter J, Kumar P, Priester S, Hubble L, Staloch D, Sharma J, Liu CG, Alpini G. Functional analysis of microRNAs in human hepatocellular cancer stem cells. J Cell Mol Med 2012; 16:160-73. [PMID: 21352471 PMCID: PMC3116063 DOI: 10.1111/j.1582-4934.2011.01282.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs are endogenous small non-coding RNAs that regulate gene expression and cancer development. A rare population of hepatocellular cancer stem cells (HSCs) holds the extensive proliferative and self-renewal potential necessary to form a liver tumour. We postulated that specific transcriptional factors might regulate the expression of microRNAs and subsequently modulate the expression of gene products involved in phenotypic characteristics of HSCs. We evaluated the expression of microRNA in human HSCs by microarray profiling, and defined the target genes and functional effects of two groups of microRNA regulated by IL-6 and transcriptional factor Twist. A subset of highly chemoresistant and invasive HSCs was screened with aberrant expressions of cytokine IL-6 and Twist. We demonstrated that conserved let-7 and miR-181 family members were up-regulated in HSCs by global microarray-based microRNA profiling followed by validation with real-time polymerase chain reaction. Importantly, inhibition of let-7 increases the chemosensitivity of HSCs to sorafenib and doxorubicin whereas silencing of miR-181 led to a reduction in HSCs motility and invasion. Knocking down IL-6 and Twist in HSCs significantly reduced let-7 and miR-181 expression and subsequently inhibited chemoresistance and cell invasion. We showed that let-7 directly targets SOCS-1 and caspase-3, whereas miR-181 directly targets RASSF1A, TIMP3 as well as nemo-like kinase (NLK). In conclusion, alterations of IL-6- and Twist-regulated microRNA expression in HSCs play a part in tumour spreading and responsiveness to chemotherapy. Our results define a novel regulatory mechanism of let-7/miR-181s suggesting that let-7 and miR-181 may be molecular targets for eradication of hepatocellular malignancies.
Collapse
Affiliation(s)
- Fanyin Meng
- Department of Medicine and Scott & White Digestive Disease Research Center, Texas A&M Health Science Center College of Medicine and Scott & White HospitalTemple, TX, USA
- Research & Education, Scott & White HospitalTemple, TX, USA
- *Gianfranco ALPINI, Ph.D., Professor of Medicine and Director of the Scott & White Digestive Diseases Research Center, Dr. Nicholas C. Hightower Centennial Chair of Gastroenterology, Division Research, Central Texas Veterans Health Care System, Scott & White and Texas A & M Health Science Center College of Medicine, 702 SW H.K. Dodgen Loop, Temple, TX 76504, USA. Tel.: +254-742-7044 or 254-742-7046; Fax: +254-724-9278 E-mail:
| | - Shannon S Glaser
- Department of Medicine and Scott & White Digestive Disease Research Center, Texas A&M Health Science Center College of Medicine and Scott & White HospitalTemple, TX, USA
| | - Heather Francis
- Department of Medicine and Scott & White Digestive Disease Research Center, Texas A&M Health Science Center College of Medicine and Scott & White HospitalTemple, TX, USA
- Research & Education, Scott & White HospitalTemple, TX, USA
| | - Sharon DeMorrow
- Department of Medicine and Scott & White Digestive Disease Research Center, Texas A&M Health Science Center College of Medicine and Scott & White HospitalTemple, TX, USA
| | - Yuyan Han
- Department of Medicine and Scott & White Digestive Disease Research Center, Texas A&M Health Science Center College of Medicine and Scott & White HospitalTemple, TX, USA
| | | | - Allison Stokes
- Research & Education, Scott & White HospitalTemple, TX, USA
| | | | - Xiuping Liu
- Department of Experimental Therapeutics, Division of Cancer Medicine, University of Texas M.D. Anderson Cancer CenterHouston, TX, USA
| | - Julie Venter
- Department of Medicine and Scott & White Digestive Disease Research Center, Texas A&M Health Science Center College of Medicine and Scott & White HospitalTemple, TX, USA
| | | | - Sally Priester
- Research & Education, Scott & White HospitalTemple, TX, USA
| | - Levi Hubble
- Research & Education, Scott & White HospitalTemple, TX, USA
| | - Dustin Staloch
- Research & Education, Scott & White HospitalTemple, TX, USA
| | - Jay Sharma
- Research Division, Celprogen Inc.San Pedro, CA, USA
| | - Chang-Gong Liu
- Department of Experimental Therapeutics, Division of Cancer Medicine, University of Texas M.D. Anderson Cancer CenterHouston, TX, USA
| | - Gianfranco Alpini
- Department of Medicine and Scott & White Digestive Disease Research Center, Texas A&M Health Science Center College of Medicine and Scott & White HospitalTemple, TX, USA
- Research, Central Texas Veterans Health Care SystemTemple, TX, USA
- *Gianfranco ALPINI, Ph.D., Professor of Medicine and Director of the Scott & White Digestive Diseases Research Center, Dr. Nicholas C. Hightower Centennial Chair of Gastroenterology, Division Research, Central Texas Veterans Health Care System, Scott & White and Texas A & M Health Science Center College of Medicine, 702 SW H.K. Dodgen Loop, Temple, TX 76504, USA. Tel.: +254-742-7044 or 254-742-7046; Fax: +254-724-9278 E-mail:
| |
Collapse
|
440
|
McDonel P, Demmers J, Tan DW, Watt F, Hendrich BD. Sin3a is essential for the genome integrity and viability of pluripotent cells. Dev Biol 2011; 363:62-73. [PMID: 22206758 PMCID: PMC3334623 DOI: 10.1016/j.ydbio.2011.12.019] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 11/25/2011] [Accepted: 12/12/2011] [Indexed: 12/22/2022]
Abstract
The Sin3a/HDAC co-repressor complex is a critical regulator of transcription networks that govern cell cycle control and apoptosis throughout development. Previous studies have identified Sin3a as essential for embryonic development around the time of implantation, during which the epiblast cell cycle is uniquely structured to achieve very rapid divisions with little tolerance of DNA damage. This study investigates the specific requirement for Sin3a in the early mouse embryo and shows that embryos lacking Sin3a suffer unresolved DNA damage and acute p53-independent apoptosis specifically in the E3.5–4.5 epiblast. Surprisingly, Myc and E2F targets in Sin3a-null ICMs are downregulated, suggesting a central but non-canonical role for Sin3a in regulating the pluripotent embryonic cell cycle. ES cells deleted for Sin3a mount a DNA damage response indicative of unresolved double-strand breaks, profoundly arrest at G2, and undergo apoptosis. These results indicate that Sin3a protects the genomic integrity of pluripotent embryonic cells and governs their unusual cell cycle.
Collapse
Affiliation(s)
- Patrick McDonel
- Wellcome Trust Centre for Stem Cell Research and MRC Centre for Stem Cell Biology and Regenerative Medicine, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
- Institute for Stem Cell Research and MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH9 3JQ, UK
| | - Jeroen Demmers
- Proteomics Center, Erasmus University Medical Centre, Postbus 2040, 3000 CA Rotterdam, The Netherlands
| | - David W.M. Tan
- Wellcome Trust Centre for Stem Cell Research and MRC Centre for Stem Cell Biology and Regenerative Medicine, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Fiona Watt
- Wellcome Trust Centre for Stem Cell Research and MRC Centre for Stem Cell Biology and Regenerative Medicine, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
- Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Brian D. Hendrich
- Wellcome Trust Centre for Stem Cell Research and MRC Centre for Stem Cell Biology and Regenerative Medicine, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
- Corresponding author at: Wellcome Trust Centre for Stem Cell Research and MRC Centre for Stem Cell Biology and Regenerative Medicine, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK.
| |
Collapse
|
441
|
Lin CY, Peng CY, Huang TT, Wu ML, Lai YL, Peng DH, Chen PF, Chen HF, Yen BL, Wu KK, Yet SF. Exacerbation of oxidative stress-induced cell death and differentiation in induced pluripotent stem cells lacking heme oxygenase-1. Stem Cells Dev 2011; 21:1675-87. [PMID: 22034921 DOI: 10.1089/scd.2011.0304] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Embryonic stem cells (ESCs) are promising donor sources in cell therapies for various diseases. Although low levels of reactive oxygen species (ROS) are necessary for the maintenance of stem cells, increased ROS levels initiate differentiation and cell damage. We and others have previously demonstrated that heme oxygenase (HO)-1, a stress response protein with antioxidative and anti-inflammatory properties, plays critical protective functions in cardiovascular and other diseases. However, the functions of HO-1 in ESCs remain to be elucidated. Our goal was to investigate the roles of HO-1 in ESC survival and differentiation. Due to the lack of HO-1-deficient ESCs, we used Oct3/4, Sox2, c-Myc, and Klf4 retroviruses to reprogram mouse embryonic fibroblasts into induced pluripotent stem (iPS) cells of different HO-1 genotypes. These iPS-HO-1 cells exhibited characteristics of mouse ESCs (mESCs) and formed teratomas that were composed of cell types of all 3 germ layers after injected into severe combined immunodeficiency mice. In response to oxidant stress, iPS-HO-1(-/-) cells accumulated higher levels of intracellular ROS compared with D3 mESCs or iPS-HO-1(+/+) cells and were more prone to oxidant-induced cell death. Spontaneous differentiation experiments revealed that Oct4 levels were significantly lower in iPS-HO-1(-/-) cells after leukemia inhibitory factor withdrawal and removal of feeders. Further, during the course of spontaneous differentiation, iPS-HO-1(-/-) cells had enhanced Erk1/2 phosphorylation, which has been linked to ESC differentiation. By the loss-of-function approach using iPS-HO-1(-/-) cells, our results demonstrate that a lack of HO-1 renders iPS cells more prone to oxidative stress-induced cell death and differentiation.
Collapse
Affiliation(s)
- Chen-Yu Lin
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
442
|
Jakob P, Landmesser U. Role of microRNAs in stem/progenitor cells and cardiovascular repair. Cardiovasc Res 2011; 93:614-22. [PMID: 22135162 DOI: 10.1093/cvr/cvr311] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs), small non-coding RNAs, play a critical role in differentiation and self-renewal of pluripotent stem cells, as well as in differentiation of cardiovascular lineage cells. Several miRNAs have been demonstrated to repress stemness factors such as Oct4, Nanog, Sox2 and Klf4 in embryonic stem cells, thereby promoting embryonic stem cell differentiation. Furthermore, targeting of different miRNAs promotes reprogramming towards induced pluripotent stem cells. MicroRNAs are critical for vascular smooth muscle cell differentiation and phenotype regulation, and miR-143 and miR-145 play a particularly important role in this respect. Notably, these miRNAs are down-regulated in several cardiovascular disease states, such as in atherosclerotic lesions and vascular neointima formation. MicroRNAs are critical regulators of endothelial cell differentiation and ischaemia-induced neovascularization. miR-126 is important for vascular integrity, endothelial cell proliferation and neovascularization. miR-1 and miR-133 are highly expressed in cardiomyocytes and their precursors and regulate cardiomyogenesis. In addition, miR-499 promotes differentiation of cardiomyocyte progenitor cells. Notably, miRNA expression is altered in cardiovascular disease states, and recent studies suggest that dysregulated miRNAs may limit cardiovascular repair responses. Dysregulation of miRNAs may lead to an altered function and differentiation of cardiovascular progenitor cells, which is also likely to represent a limitation of autologous cell-based treatment approaches in these patients. These findings suggest that targeting of specific miRNAs may represent an interesting novel opportunity to impact on endogenous cardiovascular repair responses, including effects on stem/progenitor cell differentiation and functions. This approach may also serve to optimize cell-based treatment approaches in patients with cardiovascular disease.
Collapse
Affiliation(s)
- Philipp Jakob
- Cardiovascular Center, University Hospital Zurich, Zurich, Switzerland
| | | |
Collapse
|
443
|
Viader A, Chang LW, Fahrner T, Nagarajan R, Milbrandt J. MicroRNAs modulate Schwann cell response to nerve injury by reinforcing transcriptional silencing of dedifferentiation-related genes. J Neurosci 2011; 31:17358-69. [PMID: 22131398 PMCID: PMC3388739 DOI: 10.1523/jneurosci.3931-11.2011] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 10/05/2011] [Accepted: 10/09/2011] [Indexed: 12/13/2022] Open
Abstract
In the peripheral nervous system, Schwann cells (SCs) surrounding damaged axons undergo an injury response that is driven by an intricate transcriptional program and is critical for nerve regeneration. To examine whether these injury-induced changes in SCs are also regulated posttranscriptionally by miRNAs, we performed miRNA expression profiling of mouse sciatic nerve distal segment after crush injury. We also characterized the SC injury response in mice containing SCs with disrupted miRNA processing due to loss of Dicer. We identified 87 miRNAs that were expressed in mouse adult peripheral nerve, 48 of which were dynamically regulated after nerve injury. Most of these injury-regulated SC miRNAs were computationally predicted to inhibit drivers of SC dedifferentiation/proliferation and thereby re-enforce the transcriptional program driving SC remyelination. SCs deficient in miRNAs manifested a delay in the transition between the distinct differentiation states required to support peripheral nerve regeneration. Among the miRNAs expressed in adult mouse SCs, miR-34a and miR-140 were identified as functional regulators of SC dedifferentiation/proliferation and remyelination, respectively. We found that miR-34a interacted with positive regulators of dedifferentiation and proliferation such as Notch1 and Ccnd1 to control cell cycle dynamics in SCs. miR-140 targeted the transcription factor Egr2, a master regulator of myelination, and modulated myelination in DRG/SC cocultures. Together, these results demonstrate that SC miRNAs are important modulators of the SC regenerative response after nerve damage.
Collapse
Affiliation(s)
| | | | | | | | - Jeffrey Milbrandt
- Department of Genetics
- Hope Center for Neurological Diseases, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
444
|
Zhu H, Shyh-Chang N, Segrè AV, Shinoda G, Shah SP, Einhorn WS, Takeuchi A, Engreitz JM, Hagan JP, Kharas MG, Urbach A, Thornton JE, Triboulet R, Gregory RI, Altshuler D, Daley GQ. The Lin28/let-7 axis regulates glucose metabolism. Cell 2011; 147:81-94. [PMID: 21962509 DOI: 10.1016/j.cell.2011.08.033] [Citation(s) in RCA: 719] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 05/09/2011] [Accepted: 08/05/2011] [Indexed: 12/15/2022]
Abstract
The let-7 tumor suppressor microRNAs are known for their regulation of oncogenes, while the RNA-binding proteins Lin28a/b promote malignancy by inhibiting let-7 biogenesis. We have uncovered unexpected roles for the Lin28/let-7 pathway in regulating metabolism. When overexpressed in mice, both Lin28a and LIN28B promote an insulin-sensitized state that resists high-fat-diet induced diabetes. Conversely, muscle-specific loss of Lin28a or overexpression of let-7 results in insulin resistance and impaired glucose tolerance. These phenomena occur, in part, through the let-7-mediated repression of multiple components of the insulin-PI3K-mTOR pathway, including IGF1R, INSR, and IRS2. In addition, the mTOR inhibitor, rapamycin, abrogates Lin28a-mediated insulin sensitivity and enhanced glucose uptake. Moreover, let-7 targets are enriched for genes containing SNPs associated with type 2 diabetes and control of fasting glucose in human genome-wide association studies. These data establish the Lin28/let-7 pathway as a central regulator of mammalian glucose metabolism.
Collapse
Affiliation(s)
- Hao Zhu
- Stem Cell Transplantation Program, Division of Pediatric Hematology/Oncology, Children's Hospital Boston and Dana Farber Cancer Institute, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
445
|
Lipchina I, Elkabetz Y, Hafner M, Sheridan R, Mihailovic A, Tuschl T, Sander C, Studer L, Betel D. Genome-wide identification of microRNA targets in human ES cells reveals a role for miR-302 in modulating BMP response. Genes Dev 2011; 25:2173-86. [PMID: 22012620 DOI: 10.1101/gad.17221311] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
MicroRNAs are important regulators in many cellular processes, including stem cell self-renewal. Recent studies demonstrated their function as pluripotency factors with the capacity for somatic cell reprogramming. However, their role in human embryonic stem (ES) cells (hESCs) remains poorly understood, partially due to the lack of genome-wide strategies to identify their targets. Here, we performed comprehensive microRNA profiling in hESCs and in purified neural and mesenchymal derivatives. Using a combination of AGO cross-linking and microRNA perturbation experiments, together with computational prediction, we identified the targets of the miR-302/367 cluster, the most abundant microRNAs in hESCs. Functional studies identified novel roles of miR-302/367 in maintaining pluripotency and regulating hESC differentiation. We show that in addition to its role in TGF-β signaling, miR-302/367 promotes bone morphogenetic protein (BMP) signaling by targeting BMP inhibitors TOB2, DAZAP2, and SLAIN1. This study broadens our understanding of microRNA function in hESCs and is a valuable resource for future studies in this area.
Collapse
Affiliation(s)
- Inna Lipchina
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, New York 10065, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
446
|
Dai L, Tsai-Morris CH, Sato H, Villar J, Kang JH, Zhang J, Dufau ML. Testis-specific miRNA-469 up-regulated in gonadotropin-regulated testicular RNA helicase (GRTH/DDX25)-null mice silences transition protein 2 and protamine 2 messages at sites within coding region: implications of its role in germ cell development. J Biol Chem 2011; 286:44306-18. [PMID: 22086916 DOI: 10.1074/jbc.m111.282756] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Gonadotropin-regulated testicular RNA helicase (GRTH/DDX25), a testis-specific member of the DEAD-box family, is an essential post-transcriptional regulator of spermatogenesis. Failure of expression of Transition protein 2 (TP2) and Protamine 2 (Prm2) proteins (chromatin remodelers, essential for spermatid elongation and completion of spermatogenesis) with preservation of their mRNA expression was observed in GRTH-null mice (azoospermic due to failure of spermatids to elongate). These were identified as target genes for the testis-specific miR-469, which is increased in the GRTH-null mice. Further analysis demonstrated that miR-469 repressed TP2 and Prm2 protein expression at the translation level with minor effect on mRNA degradation, through binding to the coding regions of TP2 and Prm2 mRNAs. The corresponding primary-microRNAs and the expression levels of Drosha and DGCR8 (both mRNA and protein) were increased significantly in the GRTH-null mice. miR-469 silencing of TP2 and Prm2 mRNA in pachytene spermatocytes and round spermatids is essential for their timely translation at later times of spermiogenesis, which is critical to attain mature sperm. Collectively, these studies indicate that GRTH, a multifunctional RNA helicase, acts as a negative regulator of miRNA-469 biogenesis and consequently their function during spermatogenesis.
Collapse
Affiliation(s)
- Lisheng Dai
- Section on Molecular Endocrinology, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892-4510, USA
| | | | | | | | | | | | | |
Collapse
|
447
|
Yeo JC, Ng HH. Transcriptomic analysis of pluripotent stem cells: insights into health and disease. Genome Med 2011; 3:68. [PMID: 22035782 PMCID: PMC3239230 DOI: 10.1186/gm284] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) hold tremendous clinical potential because of their ability to self-renew, and to differentiate into all cell types of the body. This unique capacity of ESCs and iPSCs to form all cell lineages is termed pluripotency. While ESCs and iPSCs are pluripotent and remarkably similar in appearance, whether iPSCs truly resemble ESCs at the molecular level is still being debated. Further research is therefore needed to resolve this issue before iPSCs may be safely applied in humans for cell therapy or regenerative medicine. Nevertheless, the use of iPSCs as an in vitro human genetic disease model has been useful in studying the molecular pathology of complex genetic diseases, as well as facilitating genetic or drug screens. Here, we review recent progress in transcriptomic approaches in the study of ESCs and iPSCs, and discuss how deregulation of these pathways may be involved in the development of disease. Finally, we address the importance of these advances for developing new therapeutics, and the future challenges facing the clinical application of ESCs and iPSCs.
Collapse
Affiliation(s)
- Jia-Chi Yeo
- Gene Regulation Laboratory, Genome Institute of Singapore, 60 Biopolis Street, Genome, Singapore 138672.
| | | |
Collapse
|
448
|
Loh YH, Yang L, Yang JC, Li H, Collins JJ, Daley GQ. Genomic approaches to deconstruct pluripotency. Annu Rev Genomics Hum Genet 2011; 12:165-85. [PMID: 21801025 DOI: 10.1146/annurev-genom-082410-101506] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Embryonic stem cells (ESCs) first derived from the inner cell mass of blastocyst-stage embryos have the unique capacity of indefinite self-renewal and potential to differentiate into all somatic cell types. Similar developmental potency can be achieved by reprogramming differentiated somatic cells into induced pluripotent stem cells (iPSCs). Both types of pluripotent stem cells provide great potential for fundamental studies of tissue differentiation, and hold promise for disease modeling, drug development, and regenerative medicine. Although much has been learned about the molecular mechanisms that underlie pluripotency in such cells, our understanding remains incomplete. A comprehensive understanding of ESCs and iPSCs requires the deconstruction of complex transcription regulatory networks, epigenetic mechanisms, and biochemical interactions critical for the maintenance of self-renewal and pluripotency. In this review, we will discuss recent advances gleaned from application of global "omics" techniques to dissect the molecular mechanisms that define the pluripotent state.
Collapse
Affiliation(s)
- Yuin-Han Loh
- Stem Cell Transplantation Program, Division of Pediatric Hematology/Oncology, Children's Hospital Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
449
|
Emerging Evidence for MicroRNAs as Regulators of Cancer Stem Cells. Cancers (Basel) 2011; 3:3957-71. [PMID: 24213119 PMCID: PMC3763404 DOI: 10.3390/cancers3043957] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 10/01/2011] [Accepted: 10/13/2011] [Indexed: 12/31/2022] Open
Abstract
Cancer stem cells are defined as a subpopulation of cells within a tumor that are capable of self-renewal and differentiation into the heterogeneous cell lineages that comprise the tumor. Many studies indicate that cancer stem cells may be responsible for treatment failure and relapse in cancer patients. The factors that regulate cancer stem cells are not well defined. MicroRNAs (miRNAs) are small non-coding RNAs that regulate translational repression and transcript degradation. miRNAs play a critical role in embryonic and inducible pluripotent stem cell regulation and emerging evidence supports their role in cancer stem cell evolution. To date, miRNAs have been shown to act either as tumor suppressor genes or oncogenes in driving critical gene expression pathways in cancer stem cells in a wide range of human malignancies, including hematopoietic and epithelial tumors and sarcomas. miRNAs involved in cancer stem cell regulation provide attractive, novel therapeutic targets for cancer treatment. This review attempts to summarize progress to date in defining the role of miRNAs in cancer stem cells.
Collapse
|
450
|
Choi YJ, Lin CP, Ho JJ, He X, Okada N, Bu P, Zhong Y, Kim SY, Bennett MJ, Chen C, Ozturk A, Hicks GG, Hannon GJ, He L. miR-34 miRNAs provide a barrier for somatic cell reprogramming. Nat Cell Biol 2011; 13:1353-60. [PMID: 22020437 PMCID: PMC3541684 DOI: 10.1038/ncb2366] [Citation(s) in RCA: 324] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 09/22/2011] [Indexed: 12/18/2022]
Abstract
Somatic reprogramming induced by defined transcription factors is a low efficiency process that is enhanced by p53 deficiency 1-5. To date, p21 is the only p53 target shown to contribute to p53 repression of iPSC (induced pluripotent stem cell) generation 1, 3, suggesting additional p53 targets may regulate this process. Here, we demonstrated that mir-34 microRNAs (miRNAs), particularly miR-34a, exhibit p53-dependent induction during reprogramming. mir-34a deficiency in mice significantly increased reprogramming efficiency and kinetics, with miR-34a and p21 cooperatively regulating somatic reprogramming downstream of p53. Unlike p53 deficiency, which enhances reprogramming at the expense of iPSC pluripotency, genetic ablation of mir-34a promoted iPSC generation without compromising self-renewal and differentiation. Suppression of reprogramming by miR-34a was due, at least in part, to repression of pluripotency genes, including Nanog, Sox2 and Mycn (N-Myc). This post-transcriptional gene repression by miR-34a also regulated iPSC differentiation kinetics. miR-34b and c similarly repressed reprogramming; and all three mir-34 miRNAs acted cooperatively in this process. Taken together, our findings identified mir-34 miRNAs as novel p53 targets that play an essential role in restraining somatic reprogramming.
Collapse
Affiliation(s)
- Yong Jin Choi
- Division of Cellular and Developmental Biology, Molecular and Cell Biology Department, University of California at Berkeley, Berkeley, California 94705, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|