401
|
Engineered DNA modifying enzymes: components of a future strategy to cure HIV/AIDS. Antiviral Res 2012; 97:211-7. [PMID: 23267832 DOI: 10.1016/j.antiviral.2012.12.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 12/14/2012] [Accepted: 12/17/2012] [Indexed: 11/21/2022]
Abstract
Despite phenomenal advances in AIDS therapy transforming the disease into a chronic illness for most patients, a routine cure for HIV infections remains a distant goal. However, a recent example of HIV eradication in a patient who had received CCR5-negative bone marrow cells after full-body irradiation has fuelled new hopes for a cure for AIDS. Here, we review new HIV treatment strategies that use sophisticated genome engineering to target HIV infections. These approaches offer new ways to tackle the infection, and alone or in conjunction with already established treatments, promise to transform HIV into a curable disease.
Collapse
|
402
|
Assessing the risks of genotoxicity in the therapeutic development of induced pluripotent stem cells. Mol Ther 2012. [PMID: 23207694 DOI: 10.1038/mt.2012.255] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) have great potential for regenerative medicine as well as for basic and translational research. However, following the initial excitement over the enormous prospects of this technology, several reports uncovered serious concerns regarding its safety for clinical applications and reproducibility for laboratory applications such as disease modeling or drug screening. In particular, the genomic integrity of iPSCs is the focus of extensive research. Epigenetic remodeling, aberrant expression of reprogramming factors, clonal selection, and prolonged in vitro culture are potential pathways for acquiring genomic alterations. In this review, we will critically discuss current reprogramming technologies particularly in the context of genotoxicity, and the consequences of these alternations for the potential applications of reprogrammed cells. In addition, current strategies of genetic modification of iPSCs, as well as applicable suicide strategies to control the risk of iPSC-based therapies will be introduced.
Collapse
|
403
|
Abstract
PURPOSE OF REVIEW Primary immunodeficiencies (PIDs) are an often-devastating class of genetic disorders that can be effectively treated by hematopoietic stem cell transplantation, but the lack of a suitable donor precludes this option for many patients. Gene therapy overcomes this obstacle by restoring gene expression in autologous hematopoietic stem cells and has proven effective in clinical trials, but widespread use of this approach has been impeded by the occurrence of serious complications. In this review, we discuss recent advances in gene therapy with an emphasis on strategies to improve safety, including the emergence of gene targeting technologies for the treatment of PIDs. RECENT FINDINGS New viral vectors, including lentiviral vectors with self-inactivating long terminal repeats, have been shown to have improved safety profiles in preclinical studies, and clinical trials using these vectors are now underway. Preclinical studies using engineered nucleases to stimulate precise gene targeting have also demonstrated correction of disease phenotypes for X-linked severe combined immunodeficiency, chronic granulomatous disease, and other diseases. SUMMARY Advances in viral vector design and the development of new technologies that allow precise alteration of the genome have the potential to begin a new chapter for gene therapy where effective treatment of PIDs is achieved without serious risk for patients.
Collapse
|
404
|
Xiao A, Wu Y, Yang Z, Hu Y, Wang W, Zhang Y, Kong L, Gao G, Zhu Z, Lin S, Zhang B. EENdb: a database and knowledge base of ZFNs and TALENs for endonuclease engineering. Nucleic Acids Res 2012. [PMID: 23203870 PMCID: PMC3531095 DOI: 10.1093/nar/gks1144] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We report here the construction of engineered endonuclease database (EENdb) (http://eendb.zfgenetics.org/), a searchable database and knowledge base for customizable engineered endonucleases (EENs), including zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs). EENs are artificial nucleases designed to target and cleave specific DNA sequences. EENs have been shown to be a very useful genetic tool for targeted genome modification and have shown great potentials in the applications in basic research, clinical therapies and agricultural utilities, and they are specifically essential for reverse genetics research in species where no other gene targeting techniques are available. EENdb contains over 700 records of all the reported ZFNs and TALENs and related information, such as their target sequences, the peptide components [zinc finger protein-/transcription activator-like effector (TALE)-binding domains, FokI variants and linker peptide/framework], the efficiency and specificity of their activities. The database also lists EEN engineering tools and resources as well as information about forms and types of EENs, EEN screening and construction methods, detection methods for targeting efficiency and many other utilities. The aim of EENdb is to represent a central hub for EEN information and an integrated solution for EEN engineering. These studies may help to extract in-depth properties and common rules regarding ZFN or TALEN efficiency through comparison of the known ZFNs or TALENs.
Collapse
Affiliation(s)
- An Xiao
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
405
|
Obligate ligation-gated recombination (ObLiGaRe): custom-designed nuclease-mediated targeted integration through nonhomologous end joining. Genome Res 2012; 23:539-46. [PMID: 23152450 PMCID: PMC3589542 DOI: 10.1101/gr.145441.112] [Citation(s) in RCA: 233] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Custom-designed nucleases (CDNs) greatly facilitate genetic engineering by generating a targeted DNA double-strand break (DSB) in the genome. Once a DSB is created, specific modifications can be introduced around the breakage site during its repair by two major DNA damage repair (DDR) mechanisms: the dominant but error-prone nonhomologous end joining (NHEJ) pathway, and the less-frequent but precise homologous recombination (HR) pathway. Here we describe ObLiGaRe, a new method for site-specific gene insertions that uses the efficient NHEJ pathway and acts independently of HR. This method is applicable with both zinc finger nucleases (ZFNs) and Tale nucleases (TALENs), and has enabled us to insert a 15-kb inducible gene expression cassette at a defined locus in human cell lines. In addition, our experiments have revealed the previously underestimated error-free nature of NHEJ and provided new tools to further characterize this pathway under physiological and pathological conditions.
Collapse
|
406
|
Antunes MS, Smith JJ, Jantz D, Medford JI. Targeted DNA excision in Arabidopsis by a re-engineered homing endonuclease. BMC Biotechnol 2012; 12:86. [PMID: 23148662 PMCID: PMC3536558 DOI: 10.1186/1472-6750-12-86] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 10/26/2012] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND A systematic method for plant genome manipulation is a major aim of plant biotechnology. One approach to achieving this involves producing a double-strand DNA break at a genomic target site followed by the introduction or removal of DNA sequences by cellular DNA repair. Hence, a site-specific endonuclease capable of targeting double-strand breaks to unique locations in the plant genome is needed. RESULTS We engineered and tested a synthetic homing endonuclease, PB1, derived from the I-CreI endonuclease of Chlamydomonas reinhardtii, which was re-designed to recognize and cleave a newly specified DNA sequence. We demonstrate that an activity-optimized version of the PB1 endonuclease, under the control of a heat-inducible promoter, is capable of targeting DNA breaks to an introduced PB1 recognition site in the genome of Arabidopsis thaliana. We further demonstrate that this engineered endonuclease can very efficiently excise unwanted transgenic DNA, such as an herbicide resistance marker, from the genome when the marker gene is flanked by PB1 recognition sites. Interestingly, under certain conditions the repair of the DNA junctions resulted in a conservative pairing of recognition half sites to remove the intervening DNA and reconstitute a single functional recognition site. CONCLUSION These results establish parameters needed to use engineered homing endonucleases for the modification of endogenous loci in plant genomes.
Collapse
Affiliation(s)
- Mauricio S Antunes
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - J Jeff Smith
- Precision BioSciences, 302 East Pettigrew Street, Dibrell Building, Suite A-100, Durham, North Carolina 27701, USA
| | - Derek Jantz
- Precision BioSciences, 302 East Pettigrew Street, Dibrell Building, Suite A-100, Durham, North Carolina 27701, USA
| | - June I Medford
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| |
Collapse
|
407
|
Ramalingam S, London V, Kandavelou K, Cebotaru L, Guggino W, Civin C, Chandrasegaran S. Generation and genetic engineering of human induced pluripotent stem cells using designed zinc finger nucleases. Stem Cells Dev 2012; 22:595-610. [PMID: 22931452 DOI: 10.1089/scd.2012.0245] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Zinc finger nucleases (ZFNs) have become powerful tools to deliver a targeted double-strand break at a pre-determined chromosomal locus in order to insert an exogenous transgene by homology-directed repair. ZFN-mediated gene targeting was used to generate both single-allele chemokine (C-C motif) receptor 5 (CCR5)-modified human induced pluripotent stem cells (hiPSCs) and biallele CCR5-modified hiPSCs from human lung fibroblasts (IMR90 cells) and human primary cord blood mononuclear cells (CBMNCs) by site-specific insertion of stem cell transcription factor genes flanked by LoxP sites into the endogenous CCR5 locus. The Oct4 and Sox2 reprogramming factors, in combination with valproic acid, induced reprogramming of human lung fibroblasts to form CCR5-modified hiPSCs, while 5 factors, Oct4/Sox2/Klf4/Lin28/Nanog, induced reprogramming of CBMNCs. Subsequent Cre recombinase treatment of the CCR5-modified IMR90 hiPSCs resulted in the removal of the Oct4 and Sox2 transgenes. Further genetic engineering of the single-allele CCR5-modified IMR90 hiPSCs was achieved by site-specific addition of the large CFTR transcription unit to the remaining CCR5 wild-type allele, using CCR5-specific ZFNs and a donor construct containing tdTomato and CFTR transgenes flanked by CCR5 homology arms. CFTR was expressed efficiently from the endogenous CCR5 locus of the CCR5-modified tdTomato/CFTR hiPSCs. These results suggest that it might be feasible to use ZFN-evoked strategies to (1) generate precisely targeted genetically well-defined patient-specific hiPSCs, and (2) then to reshape their function by targeted addition and expression of therapeutic genes from the CCR5 chromosomal locus for autologous cell-based transgene-correction therapy to treat various recessive monogenic human diseases in the future.
Collapse
Affiliation(s)
- Sivaprakash Ramalingam
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | |
Collapse
|
408
|
Mussolino C, Cathomen T. TALE nucleases: tailored genome engineering made easy. Curr Opin Biotechnol 2012; 23:644-50. [DOI: 10.1016/j.copbio.2012.01.013] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 01/25/2012] [Accepted: 01/25/2012] [Indexed: 12/18/2022]
|
409
|
Gabriel R, Schmidt M, von Kalle C. Integration of retroviral vectors. Curr Opin Immunol 2012; 24:592-7. [DOI: 10.1016/j.coi.2012.08.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 08/23/2012] [Indexed: 11/26/2022]
|
410
|
Abstract
Induced pluripotent stem (iPS) cell technology holds vast promises for a cure to the hemoglobinopathies. Constructs and methods to safely insert therapeutic genes to correct the genetic defect need to be developed. Site-specific insertion is a very attractive method for gene therapy because the risks of insertional mutagenesis are eliminated provided that a "safe harbor" is identified, and because a single set of validated constructs can be used to correct a large variety of mutations simplifying eventual clinical use. We report here the correction of α-thalassemia major hydrops fetalis in transgene-free iPS cells using zinc finger-mediated insertion of a globin transgene in the AAVS1 site on human chromosome 19. Homozygous insertion of the best of the 4 constructs tested led to complete correction of globin chain imbalance in erythroid cells differentiated from the corrected iPS cells.
Collapse
|
411
|
Targeted integration of a rAAV vector into the AAVS1 region. Virology 2012; 433:356-66. [PMID: 22981435 DOI: 10.1016/j.virol.2012.08.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 05/25/2012] [Accepted: 08/03/2012] [Indexed: 11/22/2022]
Abstract
Adeno-associated virus (AAV) has been reported to integrate in a site-specific manner into chromosome 19 (a site designated AAVS1), a phenomenon that could be exploited for ex vivo targeted gene therapy. Recent studies employing LM-PCR to determine AAV integration loci; however, have, contrary to previous results with less reliable methods, concluded that the proclivity for AAV integration at AAVS1 is minimal. We tested this conclusion employing LM-PCR protocols designed to avoid bias. Hep G2 cells were infected with rAAV2-GFP and coinfected with wt AAV2 to supply Rep in trans. Sorted cells were cloned and cultured. In 26 clones that retained fluorescence, DNA was extracted and AAV-genomic junctions amplified by two LM-PCR methods. Sequencing was performed without bacterial cloning. Of these 26 clones it was possible to assign a genomic integration site to 14, of which 9 were in the AAVS1 region. In three additional clones, rAAV integration junction were to an integrated wt AAV genome while two were to an rAAV genome. We also show that integration of the AAV-GFP genome can be achieved without cointegration of the AAV genome. Based on the pattern of integrants we propose, for potential use in ex vivo targeted gene therapy, a simplified PCR method to identify clones that have rAAV genomes integrated into AAVS1.
Collapse
|
412
|
Wirt SE, Porteus MH. Development of nuclease-mediated site-specific genome modification. Curr Opin Immunol 2012; 24:609-16. [PMID: 22981684 DOI: 10.1016/j.coi.2012.08.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Accepted: 08/10/2012] [Indexed: 11/30/2022]
Abstract
Genome engineering is an emerging strategy to treat monogenic diseases that relies on the use of engineered nucleases to correct mutations at the nucleotide level. Zinc finger nucleases can be designed to stimulate homologous recombination-mediated gene targeting at a variety of loci, including genes known to cause the primary immunodeficiencies (PIDs). Recently, these nucleases have been used to correct disease-causing mutations in human cells, as well as to create new animal models for human disease. Although a number of hurdles remain before they can be used clinically, engineered nucleases hold increasing promise as a therapeutic tool, particularly for the PIDs.
Collapse
Affiliation(s)
- Stacey E Wirt
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
413
|
Cavazzana-Calvo M, Fischer A, Hacein-Bey-Abina S, Aiuti A. Gene therapy for primary immunodeficiencies: Part 1. Curr Opin Immunol 2012; 24:580-4. [PMID: 22981681 DOI: 10.1016/j.coi.2012.08.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 08/23/2012] [Indexed: 10/27/2022]
Abstract
Over 60 patients affected by SCID due to IL2RG deficiency (SCID-X1) or adenosine deaminase (ADA)-SCID have received hematopoietic stem cell gene therapy in the past 15 years using gammaretroviral vectors, resulting in immune reconstitution and clinical benefit in the majority of them. However, the occurrence of insertional oncogenesis in the SCID-X1 trials has led to the development of new clinical trials based on integrating vectors with improved safety design as well as investigation on new technologies for highly efficient gene targeting and site-specific gene editing. Here we will present the experience and perspectives of gene therapy for SCID-X1 and ADA-SCID and discuss the pros and cons of gene therapy in comparison to allogeneic transplantation.
Collapse
|
414
|
Reyon D, Tsai SQ, Khayter C, Foden JA, Sander JD, Joung JK. FLASH assembly of TALENs for high-throughput genome editing. Nat Biotechnol 2012; 30:460-5. [PMID: 22484455 PMCID: PMC3558947 DOI: 10.1038/nbt.2170] [Citation(s) in RCA: 887] [Impact Index Per Article: 73.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 02/26/2012] [Indexed: 11/09/2022]
Abstract
Engineered transcription activator–like effector nucleases (TALENs) have shown promise as facile and broadly applicable genome editing tools. However, no publicly available high-throughput method for constructing TALENs has been published, and large-scale assessments of the success rate and targeting range of the technology remain lacking. Here we describe the fast ligation-based automatable solid-phase high-throughput (FLASH) system, a rapid and cost-effective method for large-scale assembly of TALENs. We tested 48 FLASH-assembled TALEN pairs in a human cell–based EGFP reporter system and found that all 48 possessed efficient gene-modification activities. We also used FLASH to assemble TALENs for 96 endogenous human genes implicated in cancer and/or epigenetic regulation and found that 84 pairs were able to efficiently introduce targeted alterations. Our results establish the robustness of TALEN technology and demonstrate that FLASH facilitates high-throughput genome editing at a scale not currently possible with other genome modification technologies.
Collapse
Affiliation(s)
- Deepak Reyon
- Molecular Pathology Unit, Center for Computational and Integrative Biology, and Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
415
|
Kajumbula H, Byarugaba W, Wayengera M. Targeting wild-type Erythrocyte receptors for Plasmodium falciparum and vivax Merozoites by Zinc Finger Nucleases In- silico: Towards a Genetic Vaccine against Malaria. GENETIC VACCINES AND THERAPY 2012; 10:8. [PMID: 22938508 PMCID: PMC3500210 DOI: 10.1186/1479-0556-10-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Accepted: 08/29/2012] [Indexed: 11/10/2022]
Abstract
UNLABELLED BACKGROUND Malaria causes immense human morbidity and mortality globally. The plasmodium species vivax and falciparum cause over 75 % clinical malaria cases. Until now, gene-based strategies against malaria have only been applied to plasmodium species and their mosquito-vector. Merozoites of these two respective plasmodium species target and invade red blood cells (RBCs) by using the duffy antigen receptor for chemokines (DARC), and Sialic Acid (SLC4A1) residues of the O-linked glycans of Glycophorin A. RBCs of naturally selected duffy-negative blacks are resistant to P.vivax tropism. We hypothesized that artificial aberration of the host-pathway by target mutagenesis of either RBC -receptors, may abolish or reduce susceptibility of the host to malaria. As a first step towards the experimental actualization of these concepts, we aimed to identify zinc finger arrays (ZFAs) for constructing ZFNs that target genes of either wild-type host-RBC- receptors. METHODS In-Silico Gene & Genome Informatics RESULTS Using the genomic contextual nucleotide-sequences of homo-sapiens darc and glycophorin-a, and the ZFN-consortia software- CoDA-ZiFiT-ZFA and CoDA-ZiFiT-ZFN: we identified 163 and over 1,000 single zinc finger arrays (sZFAs) that bind sequences within the genes for the two respective RBC-receptors. Second, 2 and 18 paired zinc finger arrays (pZFAs) that are precursors for zinc finger nucleases (ZFNs) capable of cleaving the genes for darc and glycophorin-a were respectively assembled. Third, a mega-BLAST evaluation of the genome-wide cleavage specificity of this set of ZFNs was done, revealing alternate homologous nucleotide targets in the human genome other than darc or glycophorin A. CONCLUSIONS ZFNs engineered with these ZFA-precursors--with further optimization to enhance their specificity to only darc and glycophorin-a, could be used in constructing an experimental gene-based-malaria vaccine. Alternatively, meganucleases and transcription activator-like (TAL) nucleases that target conserved stretches of darc and glycophorin-a DNA may serve the purpose of abrogating invasion of RBCs by falciparam and vivax plasmodia species.
Collapse
Affiliation(s)
- Henry Kajumbula
- Dept of Medical Microbiology, School of Biomedical Science, College of Health Sciences, Makerere University, P O Box 7072, Kampala, Uganda.
| | | | | |
Collapse
|
416
|
Hsu PD, Zhang F. Dissecting neural function using targeted genome engineering technologies. ACS Chem Neurosci 2012; 3:603-10. [PMID: 22896804 DOI: 10.1021/cn300089k] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 07/19/2012] [Indexed: 02/07/2023] Open
Abstract
Designer DNA-binding proteins based on transcriptional activator-like effectors (TALEs) and zinc finger proteins (ZFPs) are easily tailored to recognize specific DNA sequences in a modular manner. They can be engineered to generate tools for targeted genome perturbation. Here, we review recent advances in these versatile technologies with a focus on designer nucleases for highly precise, efficient, and scarless gene modification. By generating double stranded breaks and stimulating cellular DNA repair pathways, TALE and ZF nucleases have the ability to modify the endogenous genome. We also discuss current applications of designer DNA-binding proteins in synthetic biology and disease modeling, novel effector domains for genetic and epigenetic regulation, and finally perspectives on using customizable DNA-binding proteins for interrogating neural function.
Collapse
Affiliation(s)
- Patrick D. Hsu
- Department of Molecular and
Cellular Biology, Harvard University, Cambridge,
Massachusetts, United States
- Broad Institute of MIT and Harvard,
Cambridge, Massachusetts, United States
- McGovern Institute for Brain Research,
MIT Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United
States
| | - Feng Zhang
- Broad Institute of MIT and Harvard,
Cambridge, Massachusetts, United States
- McGovern Institute for Brain Research,
MIT Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United
States
| |
Collapse
|
417
|
Owens JB, Urschitz J, Stoytchev I, Dang NC, Stoytcheva Z, Belcaid M, Maragathavally KJ, Coates CJ, Segal DJ, Moisyadi S. Chimeric piggyBac transposases for genomic targeting in human cells. Nucleic Acids Res 2012; 40:6978-91. [PMID: 22492708 PMCID: PMC3413120 DOI: 10.1093/nar/gks309] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 03/23/2012] [Accepted: 03/25/2012] [Indexed: 11/14/2022] Open
Abstract
Integrating vectors such as viruses and transposons insert transgenes semi-randomly and can potentially disrupt or deregulate genes. For these techniques to be of therapeutic value, a method for controlling the precise location of insertion is required. The piggyBac (PB) transposase is an efficient gene transfer vector active in a variety of cell types and proven to be amenable to modification. Here we present the design and validation of chimeric PB proteins fused to the Gal4 DNA binding domain with the ability to target transgenes to pre-determined sites. Upstream activating sequence (UAS) Gal4 recognition sites harbored on recipient plasmids were preferentially targeted by the chimeric Gal4-PB transposase in human cells. To analyze the ability of these PB fusion proteins to target chromosomal locations, UAS sites were randomly integrated throughout the genome using the Sleeping Beauty transposon. Both N- and C-terminal Gal4-PB fusion proteins but not native PB were capable of targeting transposition nearby these introduced sites. A genome-wide integration analysis revealed the ability of our fusion constructs to bias 24% of integrations near endogenous Gal4 recognition sequences. This work provides a powerful approach to enhance the properties of the PB system for applications such as genetic engineering and gene therapy.
Collapse
Affiliation(s)
- Jesse B. Owens
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, Entomology Department, Texas A&M University, College Station, TX 77843 and Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Johann Urschitz
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, Entomology Department, Texas A&M University, College Station, TX 77843 and Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Ilko Stoytchev
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, Entomology Department, Texas A&M University, College Station, TX 77843 and Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Nong C. Dang
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, Entomology Department, Texas A&M University, College Station, TX 77843 and Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Zoia Stoytcheva
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, Entomology Department, Texas A&M University, College Station, TX 77843 and Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Mahdi Belcaid
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, Entomology Department, Texas A&M University, College Station, TX 77843 and Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Kommineni J. Maragathavally
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, Entomology Department, Texas A&M University, College Station, TX 77843 and Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Craig J. Coates
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, Entomology Department, Texas A&M University, College Station, TX 77843 and Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - David J. Segal
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, Entomology Department, Texas A&M University, College Station, TX 77843 and Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Stefan Moisyadi
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, Entomology Department, Texas A&M University, College Station, TX 77843 and Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
418
|
Wayengera M. Zinc finger arrays binding human papillomavirus types 16 and 18 genomic DNA: precursors of gene-therapeutics for in-situ reversal of associated cervical neoplasia. Theor Biol Med Model 2012; 9:30. [PMID: 22840184 PMCID: PMC3511202 DOI: 10.1186/1742-4682-9-30] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 07/21/2012] [Indexed: 11/17/2022] Open
Abstract
Background Human papillomavirus (HPV) types 16 and 18 are the high-risk, sexually transmitted infectious causes of most cervical intraepithelial neoplasias (CIN) or cancers. While efficacious vaccines to reduce the sexual acquisition of these high-risk HPVs have recently been introduced, no virus-targeted therapies exist for those already exposed and infected. Considering the oncogenic role of the transforming (E6 and E7) genes of high-risk HPVs in the slow pathogenesis of cervical cancer, we hypothesize that timely disruption or abolition of HPV genome expression within pre-cancerous lesions identified at screening may reverse neoplasia. We aimed to derive model zinc finger nucleases (ZFNs) for mutagenesis of the genomes of two high-risk HPV (types 16 & 18). Methods and results Using ZiFiT software and the complete genomes of HPV types16 and 18, we computationally generated the consensus amino acid sequences of the DNA-binding domains (F1, F2, & F3) of (i) 296 & 327 contextually unpaired (or single) three zinc-finger arrays (sZFAs) and (ii) 9 & 13 contextually paired (left and right) three- zinc-finger arrays (pZFAs) that bind genomic DNA of HPV-types 16 and 18 respectively, inclusive of the E7 gene (s/pZFAHpV/E7). In the absence of contextually paired three-zinc-finger arrays (pZFAs) that bind DNA corresponding to the genomic context of the E6 gene of either HPV type, we derived the DNA binding domains of another set of 9 & 14 contextually unpaired E6 gene-binding ZFAs (sZFAE6) to aid the future quest for paired ZFAs to target E6 gene sequences in both HPV types studied (pZFAE6). This paper presents models for (i) synthesis of hybrid ZFNs that cleave within the genomic DNA of either HPV type, by linking the gene sequences of the DNA-cleavage domain of the FokI endonuclease FN to the gene sequences of a member of the paired-HPV-binding ZFAs (pZFAHpV/E7 + FN), and (ii) delivery of the same into precancerous lesions using HPV-derived viral plasmids or vectors. Conclusions With further optimization, these model ZFNs offer the opportunity to induce target-mutagenesis and gene-therapeutic reversal of cervical neoplasia associated with HPV types 16 & 18.
Collapse
Affiliation(s)
- Misaki Wayengera
- Unit of Genetics, Genomics & Theoretical Biology, Dept of Pathology, School of Biomedical Science, College of Health Sciences, Makerere University, P.O. Box 7072, Kampala, Uganda.
| |
Collapse
|
419
|
Perez-Pinera P, Ousterout DG, Gersbach CA. Advances in targeted genome editing. Curr Opin Chem Biol 2012; 16:268-77. [PMID: 22819644 DOI: 10.1016/j.cbpa.2012.06.007] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 06/16/2012] [Accepted: 06/20/2012] [Indexed: 01/19/2023]
Abstract
New technologies have recently emerged that enable targeted editing of genomes in diverse systems. This includes precise manipulation of gene sequences in their natural chromosomal context and addition of transgenes to specific genomic loci. This progress has been facilitated by advances in engineering targeted nucleases with programmable, site-specific DNA-binding domains, including zinc finger proteins and transcription activator-like effectors (TALEs). Recent improvements have enhanced nuclease performance, accelerated nuclease assembly, and lowered the cost of genome editing. These advances are driving new approaches to many areas of biotechnology, including biopharmaceutical production, agriculture, creation of transgenic organisms and cell lines, and studies of genome structure, regulation, and function. Genome editing is also being investigated in preclinical and clinical gene therapies for many diseases.
Collapse
Affiliation(s)
- Pablo Perez-Pinera
- Department of Biomedical Engineering, Duke University, Durham, NC 27708-0281, USA
| | | | | |
Collapse
|
420
|
Sun N, Abil Z, Zhao H. Recent advances in targeted genome engineering in mammalian systems. Biotechnol J 2012; 7:1074-87. [PMID: 22777886 DOI: 10.1002/biot.201200038] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 05/22/2012] [Accepted: 06/15/2012] [Indexed: 12/21/2022]
Abstract
Targeted genome engineering enables researchers to disrupt, insert, or replace a genomic sequence precisely at a predetermined locus. One well-established technology to edit a mammalian genome is known as gene targeting, which is based on the homologous recombination (HR) mechanism. However, the low HR frequency in mammalian cells (except for mice) prevents its wide application. To address this limitation, a custom-designed nuclease is used to introduce a site-specific DNA double-strand break (DSB) on the chromosome and the subsequent repair of the DSB by the HR mechanism or the non-homologous end joining mechanism results in efficient targeted genome modifications. Engineered homing endonucleases (also called meganucleases), zinc finger nucleases, and transcription activator-like effector nucleases represent the three major classes of custom-designed nucleases that have been successfully applied in many different organisms for targeted genome engineering. This article reviews the recent developments of these genome engineering tools and highlights a few representative applications in mammalian systems. Recent advances in gene delivery strategies of these custom-designed nucleases are also briefly discussed.
Collapse
Affiliation(s)
- Ning Sun
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 61801, USA
| | | | | |
Collapse
|
421
|
Ramirez CL, Certo MT, Mussolino C, Goodwin MJ, Cradick TJ, McCaffrey AP, Cathomen T, Scharenberg AM, Joung JK. Engineered zinc finger nickases induce homology-directed repair with reduced mutagenic effects. Nucleic Acids Res 2012; 40:5560-8. [PMID: 22373919 PMCID: PMC3384306 DOI: 10.1093/nar/gks179] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 02/03/2012] [Accepted: 02/06/2012] [Indexed: 11/17/2022] Open
Abstract
Engineered zinc finger nucleases (ZFNs) induce DNA double-strand breaks at specific recognition sequences and can promote efficient introduction of desired insertions, deletions or substitutions at or near the cut site via homology-directed repair (HDR) with a double- and/or single-stranded donor DNA template. However, mutagenic events caused by error-prone non-homologous end-joining (NHEJ)-mediated repair are introduced with equal or higher frequency at the nuclease cleavage site. Furthermore, unintended mutations can also result from NHEJ-mediated repair of off-target nuclease cleavage sites. Here, we describe a simple and general method for converting engineered ZFNs into zinc finger nickases (ZFNickases) by inactivating the catalytic activity of one monomer in a ZFN dimer. ZFNickases show robust strand-specific nicking activity in vitro. In addition, we demonstrate that ZFNickases can stimulate HDR at their nicking site in human cells, albeit at a lower frequency than by the ZFNs from which they were derived. Finally, we find that ZFNickases appear to induce greatly reduced levels of mutagenic NHEJ at their target nicking site. ZFNickases thus provide a promising means for inducing HDR-mediated gene modifications while reducing unwanted mutagenesis caused by error-prone NHEJ.
Collapse
Affiliation(s)
- Cherie L. Ramirez
- Molecular Pathology Unit, Center for Cancer Research, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA, 02129, Biological and Biomedical Sciences Program, Harvard Medical School, Boston, MA, 02115, Program in Molecular and Cellular Biology, University of Washington, Seattle, WA, 98195, Center of Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, 98105, USA, Institute of Experimental Hematology, Hannover Medical School, Hannover, 30625, Germany, Department of Internal Medicine, University of Iowa School of Medicine, Iowa City, IA, 52245, Department of Pediatrics, University of Washington, Seattle, WA, 98105 and Department of Pathology, Harvard Medical School, Boston, MA, 02115, USA
| | - Michael T. Certo
- Molecular Pathology Unit, Center for Cancer Research, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA, 02129, Biological and Biomedical Sciences Program, Harvard Medical School, Boston, MA, 02115, Program in Molecular and Cellular Biology, University of Washington, Seattle, WA, 98195, Center of Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, 98105, USA, Institute of Experimental Hematology, Hannover Medical School, Hannover, 30625, Germany, Department of Internal Medicine, University of Iowa School of Medicine, Iowa City, IA, 52245, Department of Pediatrics, University of Washington, Seattle, WA, 98105 and Department of Pathology, Harvard Medical School, Boston, MA, 02115, USA
| | - Claudio Mussolino
- Molecular Pathology Unit, Center for Cancer Research, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA, 02129, Biological and Biomedical Sciences Program, Harvard Medical School, Boston, MA, 02115, Program in Molecular and Cellular Biology, University of Washington, Seattle, WA, 98195, Center of Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, 98105, USA, Institute of Experimental Hematology, Hannover Medical School, Hannover, 30625, Germany, Department of Internal Medicine, University of Iowa School of Medicine, Iowa City, IA, 52245, Department of Pediatrics, University of Washington, Seattle, WA, 98105 and Department of Pathology, Harvard Medical School, Boston, MA, 02115, USA
| | - Mathew J. Goodwin
- Molecular Pathology Unit, Center for Cancer Research, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA, 02129, Biological and Biomedical Sciences Program, Harvard Medical School, Boston, MA, 02115, Program in Molecular and Cellular Biology, University of Washington, Seattle, WA, 98195, Center of Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, 98105, USA, Institute of Experimental Hematology, Hannover Medical School, Hannover, 30625, Germany, Department of Internal Medicine, University of Iowa School of Medicine, Iowa City, IA, 52245, Department of Pediatrics, University of Washington, Seattle, WA, 98105 and Department of Pathology, Harvard Medical School, Boston, MA, 02115, USA
| | - Thomas J. Cradick
- Molecular Pathology Unit, Center for Cancer Research, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA, 02129, Biological and Biomedical Sciences Program, Harvard Medical School, Boston, MA, 02115, Program in Molecular and Cellular Biology, University of Washington, Seattle, WA, 98195, Center of Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, 98105, USA, Institute of Experimental Hematology, Hannover Medical School, Hannover, 30625, Germany, Department of Internal Medicine, University of Iowa School of Medicine, Iowa City, IA, 52245, Department of Pediatrics, University of Washington, Seattle, WA, 98105 and Department of Pathology, Harvard Medical School, Boston, MA, 02115, USA
| | - Anton P. McCaffrey
- Molecular Pathology Unit, Center for Cancer Research, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA, 02129, Biological and Biomedical Sciences Program, Harvard Medical School, Boston, MA, 02115, Program in Molecular and Cellular Biology, University of Washington, Seattle, WA, 98195, Center of Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, 98105, USA, Institute of Experimental Hematology, Hannover Medical School, Hannover, 30625, Germany, Department of Internal Medicine, University of Iowa School of Medicine, Iowa City, IA, 52245, Department of Pediatrics, University of Washington, Seattle, WA, 98105 and Department of Pathology, Harvard Medical School, Boston, MA, 02115, USA
| | - Toni Cathomen
- Molecular Pathology Unit, Center for Cancer Research, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA, 02129, Biological and Biomedical Sciences Program, Harvard Medical School, Boston, MA, 02115, Program in Molecular and Cellular Biology, University of Washington, Seattle, WA, 98195, Center of Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, 98105, USA, Institute of Experimental Hematology, Hannover Medical School, Hannover, 30625, Germany, Department of Internal Medicine, University of Iowa School of Medicine, Iowa City, IA, 52245, Department of Pediatrics, University of Washington, Seattle, WA, 98105 and Department of Pathology, Harvard Medical School, Boston, MA, 02115, USA
| | - Andrew M. Scharenberg
- Molecular Pathology Unit, Center for Cancer Research, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA, 02129, Biological and Biomedical Sciences Program, Harvard Medical School, Boston, MA, 02115, Program in Molecular and Cellular Biology, University of Washington, Seattle, WA, 98195, Center of Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, 98105, USA, Institute of Experimental Hematology, Hannover Medical School, Hannover, 30625, Germany, Department of Internal Medicine, University of Iowa School of Medicine, Iowa City, IA, 52245, Department of Pediatrics, University of Washington, Seattle, WA, 98105 and Department of Pathology, Harvard Medical School, Boston, MA, 02115, USA
| | - J. Keith Joung
- Molecular Pathology Unit, Center for Cancer Research, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA, 02129, Biological and Biomedical Sciences Program, Harvard Medical School, Boston, MA, 02115, Program in Molecular and Cellular Biology, University of Washington, Seattle, WA, 98195, Center of Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, 98105, USA, Institute of Experimental Hematology, Hannover Medical School, Hannover, 30625, Germany, Department of Internal Medicine, University of Iowa School of Medicine, Iowa City, IA, 52245, Department of Pediatrics, University of Washington, Seattle, WA, 98105 and Department of Pathology, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
422
|
Gaj T, Guo J, Kato Y, Sirk SJ, Barbas CF. Targeted gene knockout by direct delivery of zinc-finger nuclease proteins. Nat Methods 2012; 9:805-7. [PMID: 22751204 PMCID: PMC3424280 DOI: 10.1038/nmeth.2030] [Citation(s) in RCA: 247] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 05/30/2012] [Indexed: 11/22/2022]
Abstract
Zinc-finger nucleases (ZFNs) are versatile reagents that have redefined genome engineering. Realizing the full potential of this technology requires the development of safe and effective methods for delivering ZFNs into cells. We demonstrate the intrinsic cell-penetrating capabilities of the standard ZFN architecture and show that direct delivery of ZFNs as proteins leads to efficient endogenous gene disruption in various mammalian cell types with minimal off-target effects.
Collapse
Affiliation(s)
- Thomas Gaj
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, USA
| | | | | | | | | |
Collapse
|
423
|
Kim E, Kim S, Kim DH, Choi BS, Choi IY, Kim JS. Precision genome engineering with programmable DNA-nicking enzymes. Genome Res 2012; 22:1327-33. [PMID: 22522391 PMCID: PMC3396373 DOI: 10.1101/gr.138792.112] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 04/16/2012] [Indexed: 11/25/2022]
Abstract
Zinc finger nucleases (ZFNs) are powerful tools of genome engineering but are limited by their inevitable reliance on error-prone nonhomologous end-joining (NHEJ) repair of DNA double-strand breaks (DSBs), which gives rise to randomly generated, unwanted small insertions or deletions (indels) at both on-target and off-target sites. Here, we present programmable DNA-nicking enzymes (nickases) that produce single-strand breaks (SSBs) or nicks, instead of DSBs, which are repaired by error-free homologous recombination (HR) rather than mutagenic NHEJ. Unlike their corresponding nucleases, zinc finger nickases allow site-specific genome modifications only at the on-target site, without the induction of unwanted indels. We propose that programmable nickases will be of broad utility in research, medicine, and biotechnology, enabling precision genome engineering in any cell or organism.
Collapse
Affiliation(s)
- Eunji Kim
- National Creative Research Initiatives Center for Genome Engineering and Department of Chemistry, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul, South Korea
| | - Sojung Kim
- National Creative Research Initiatives Center for Genome Engineering and Department of Chemistry, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul, South Korea
| | - Duk Hyoung Kim
- National Creative Research Initiatives Center for Genome Engineering and Department of Chemistry, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul, South Korea
| | - Beom-Soon Choi
- National Instrumentation Center for Environmental Management, College of Agriculture and Life Sciences, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul, South Korea
| | - Ik-Young Choi
- National Instrumentation Center for Environmental Management, College of Agriculture and Life Sciences, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul, South Korea
| | - Jin-Soo Kim
- National Creative Research Initiatives Center for Genome Engineering and Department of Chemistry, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul, South Korea
| |
Collapse
|
424
|
Zinc-finger nuclease-mediated targeted insertion of reporter genes for quantitative imaging of gene expression in sea urchin embryos. Proc Natl Acad Sci U S A 2012; 109:10915-20. [PMID: 22711830 DOI: 10.1073/pnas.1202768109] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
To understand complex biological systems, such as the development of multicellular organisms, it is important to characterize the gene expression dynamics. However, there is currently no universal technique for targeted insertion of reporter genes and quantitative imaging in multicellular model systems. Recently, genome editing using zinc-finger nucleases (ZFNs) has been reported in several models. ZFNs consist of a zinc-finger DNA-binding array with the nuclease domain of the restriction enzyme FokI and facilitate targeted transgene insertion. In this study, we successfully inserted a GFP reporter cassette into the HpEts1 gene locus of the sea urchin, Hemicentrotus pulcherrimus. We achieved this insertion by injecting eggs with a pair of ZFNs for HpEts1 with a targeting donor construct that contained ∼1-kb homology arms and a 2A-histone H2B-GFP cassette. We increased the efficiency of the ZFN-mediated targeted transgene insertion by in situ linearization of the targeting donor construct and cointroduction of an mRNA for a dominant-negative form of HpLig4, which encodes the H. pulcherrimus homolog of DNA ligase IV required for error-prone nonhomologous end joining. We measured the fluorescence intensity of GFP at the single-cell level in living embryos during development and found that there was variation in HpEts1 expression among the primary mesenchyme cells. These findings demonstrate the feasibility of ZFN-mediated targeted transgene insertion to enable quantification of the expression levels of endogenous genes during development in living sea urchin embryos.
Collapse
|
425
|
Cade L, Reyon D, Hwang WY, Tsai SQ, Patel S, Khayter C, Joung JK, Sander JD, Peterson RT, Yeh JRJ. Highly efficient generation of heritable zebrafish gene mutations using homo- and heterodimeric TALENs. Nucleic Acids Res 2012; 40:8001-10. [PMID: 22684503 PMCID: PMC3439908 DOI: 10.1093/nar/gks518] [Citation(s) in RCA: 187] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Transcription activator-like effector nucleases (TALENs) are powerful new research tools that enable targeted gene disruption in a wide variety of model organisms. Recent work has shown that TALENs can induce mutations in endogenous zebrafish genes, but to date only four genes have been altered, and larger-scale tests of the success rate, mutation efficiencies and germline transmission rates have not been described. Here, we constructed homodimeric TALENs to 10 different targets in various endogenous zebrafish genes and found that 7 nuclease pairs induced targeted indel mutations with high efficiencies ranging from 2 to 76%. We also tested obligate heterodimeric TALENs and found that these nucleases induce mutations with comparable or higher frequencies and have better toxicity profiles than their homodimeric counterparts. Importantly, mutations induced by both homodimeric and heterodimeric TALENs are passed efficiently through the germline, in some cases reaching 100% transmission. For one target gene sequence, we observed substantially reduced mutagenesis efficiency for a variant site bearing two mismatched nucleotides, raising the possibility that TALENs might be used to perform allele-specific gene disruption. Our results suggest that construction of one to two heterodimeric TALEN pairs for any given gene will, in most cases, enable researchers to rapidly generate knockout zebrafish.
Collapse
Affiliation(s)
- Lindsay Cade
- Cardiovascular Research Center, Massachusetts General Hospital, Department of Medicine, Harvard Medical School, Charlestown, MA 02129, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
426
|
Kiem HP, Jerome KR, Deeks SG, McCune JM. Hematopoietic-stem-cell-based gene therapy for HIV disease. Cell Stem Cell 2012; 10:137-47. [PMID: 22305563 DOI: 10.1016/j.stem.2011.12.015] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Although combination antiretroviral therapy can dramatically reduce the circulating viral load in those infected with HIV, replication-competent virus persists. To eliminate the need for indefinite treatment, there is growing interest in creating a functional HIV-resistant immune system through the use of gene-modified hematopoietic stem cells (HSCs). Proof of concept for this approach has been provided in the instance of an HIV-infected adult transplanted with allogeneic stem cells from a donor lacking the HIV coreceptor, CCR5. Here, we review this and other strategies for HSC-based gene therapy for HIV disease.
Collapse
Affiliation(s)
- Hans-Peter Kiem
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | |
Collapse
|
427
|
Sorefan K, Pais H, Hall AE, Kozomara A, Griffiths-Jones S, Moulton V, Dalmay T. Reducing ligation bias of small RNAs in libraries for next generation sequencing. SILENCE 2012; 3:4. [PMID: 22647250 PMCID: PMC3489589 DOI: 10.1186/1758-907x-3-4] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 05/30/2012] [Indexed: 02/07/2023]
Abstract
BACKGROUND The use of nucleic acid-modifying enzymes has driven the rapid advancement in molecular biology. Understanding their function is important for modifying or improving their activity. However, functional analysis usually relies upon low-throughput experiments. Here we present a method for functional analysis of nucleic acid-modifying enzymes using next generation sequencing. FINDINGS We demonstrate that sequencing data of libraries generated by RNA ligases can reveal novel secondary structure preferences of these enzymes, which are used in small RNA cloning and library preparation for NGS. Using this knowledge we demonstrate that the cloning bias in small RNA libraries is RNA ligase-dependent. We developed a high definition (HD) protocol that reduces the RNA ligase-dependent cloning bias. The HD protocol doubled read coverage, is quantitative and found previously unidentified microRNAs. In addition, we show that microRNAs in miRBase are those preferred by the adapters of the main sequencing platform. CONCLUSIONS Sequencing bias of small RNAs partially influenced which microRNAs have been studied in depth; therefore most previous small RNA profiling experiments should be re-evaluated. New microRNAs are likely to be found, which were selected against by existing adapters. Preference of currently used adapters towards known microRNAs suggests that the annotation of all existing small RNAs, including miRNAs, siRNAs and piRNAs, has been biased.
Collapse
Affiliation(s)
- Karim Sorefan
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Helio Pais
- School of Computing Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Adam E Hall
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Ana Kozomara
- Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
| | | | - Vincent Moulton
- School of Computing Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Tamas Dalmay
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| |
Collapse
|
428
|
Kawai N, Ochiai H, Sakuma T, Yamada L, Sawada H, Yamamoto T, Sasakura Y. Efficient targeted mutagenesis of the chordate Ciona intestinalis genome with zinc-finger nucleases. Dev Growth Differ 2012; 54:535-45. [PMID: 22640377 DOI: 10.1111/j.1440-169x.2012.01355.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 04/06/2012] [Accepted: 04/09/2012] [Indexed: 12/13/2022]
Abstract
Zinc-finger nucleases (ZFNs) are engineered nucleases that induce DNA double-strand breaks (DSBs) at target sequences. They have been used as tools for generating targeted mutations in the genomes of multiple organisms in both animals and plants. The DSB induced by ZFNs is repaired by non-homologous end joining (NHEJ) or by homologous recombination (HR) mechanisms. Non-homologous end joining induces some errors because it is independent of a reference DNA sequence. Through the NHEJ mechanism, ZFNs generate insertional or deletional mutations at the target sequence. We examined the usability, specificity and toxicity of ZFNs in the basal chordate Ciona intestinalis. As the target of ZFNs, we chose an enhanced green fluorescent protein (EGFP) gene artificially inserted in the C. intestinalis genome because this locus is neutral for the development and growth of C. intestinalis, and the efficiency of mutagenesis with ZFNs can thus be determined without any bias. We introduced EGFP -ZFN mRNAs into the embryos of an EGFP -transgenic line and observed the mutation frequency in the target site of EGFP . We also examined the effects of the EGFP -ZFNs at off-target sites resembling the EGFP target sequence in the C. intestinalis genome in order to examine the specificity of ZFNs. We further investigated the influence of ZFNs on embryogenesis, and showed that adequate amounts of ZFNs, which do not disrupt embryogenesis, can efficiently induce mutations on the on-target site with less effect on the off-target sites. This suggests that target mutagenesis with ZFNs will be a powerful technique in C. intestinalis.
Collapse
Affiliation(s)
- Narudo Kawai
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, 415-0025, Japan.
| | | | | | | | | | | | | |
Collapse
|
429
|
Wayengera M. Zinc finger nucleases for targeted mutagenesis and repair of the sickle-cell disease mutation: An in-silico study. BMC BLOOD DISORDERS 2012; 12:5. [PMID: 22583379 PMCID: PMC3407482 DOI: 10.1186/1471-2326-12-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 05/14/2012] [Indexed: 11/16/2022]
Abstract
Background Sickle cell disease (or simply, SCD) is an inherited hemoglobinopathy which is mostly prevalent among persons of African descent. SCD results from a monogenic (Hemoglobin, beta) point-mutation (substitution of the base Adenine with Thymine at position six) that leads to replacement of the amino acid glutamic acid (E) with valine (V). Management of SCD within resource-poor settings is largely syndromic, since the option of cure offered by bone-marrow transplantation (BMT) is risky and unaffordable by most affected individuals. Despite previous reports of repair and inhibition of the sickle beta-globin gene and messenger ribonucleic acids (mRNAs), respectively in erythrocyte precursor cells via gene-targeting using an oligomer-restriction enzyme construct and either ribozyme- or RNA-DNA chimeric oligonucleotides (or simply third strand binding), gene-therapy to treat SCD still remains largely preclinical. In the wake of the advances in target- gene- mutagenesis and repair wrought by zinc finger nuclease (ZFN) technology, it was hypothesized that SCD may be cured by the same. The goal of this study thus, was constructing a database of zinc finger arrays (ZFAs) and engineering ZFNs, that respectively bind and cleave within or around specific sequences in the sickle hemoglobin, beta (−βS) gene. Methods and results First, using the complete 1606 genomic DNA base pair (bp) sequences of the normal hemoglobin-beta (βA) chain gene, and the ZiFiT-CoDA-ZFA software preset at default, 57 three-finger arrays (ZFAs) that specifically bind 9 base-pair sequences within the normal hemoglobin-beta chain, were computationally assembled. Second, by serial linkage of these ZFAs to the Flavobacterium okeanokoites endonuclease Fok I― four ZFNs with unique specificity to >24 bp target-sequences at the genomic contextual positions 82, 1333, 1334, and 1413 of the βA chain-gene were constructed in-silico. Third, localizing the point-mutation of SCD at genomic contextual position −69-70-71- bp (a position corresponding to the 6th codon) of the βA chain-gene, inspired the final design of five more ZFNs specific to >24 bp target-sequences within the 8,954 bp that are genomically adjacent to the 5′ end of the βA chain-gene. Conclusions This set of 57 ZFAs and 9 ZFNs offers us gene-therapeutic precursors for the targeted mutagenesis and repair of the SCD mutation or genotype.
Collapse
Affiliation(s)
- Misaki Wayengera
- Unit of Genetics, Genomics & Theoretical Biology, Dept of Pathology, School of Biomedical Science, College of Health Sciences, Makerere University, P o Box 7072, Kampala, Uganda.
| |
Collapse
|
430
|
Arens A, Appelt JU, Bartholomae CC, Gabriel R, Paruzynski A, Gustafson D, Cartier N, Aubourg P, Deichmann A, Glimm H, von Kalle C, Schmidt M. Bioinformatic clonality analysis of next-generation sequencing-derived viral vector integration sites. Hum Gene Ther Methods 2012; 23:111-8. [PMID: 22559057 DOI: 10.1089/hgtb.2011.219] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Clonality analysis of viral vector-transduced cell populations represents a convincing approach to dissect the physiology of tissue and organ regeneration, to monitor the fate of individual gene-corrected cells in vivo, and to assess vector biosafety. With the decoding of mammalian genomes and the introduction of next-generation sequencing technologies, the demand for automated bioinformatic analysis tools that can rapidly process and annotate vector integration sites is rising. Here, we provide a publicly accessible, graphical user interface-guided automated bioinformatic high-throughput integration site analysis pipeline. Its performance and key features are illustrated on pyrosequenced linear amplification-mediated PCR products derived from one patient previously enrolled in the first lentiviral vector clinical gene therapy study. Analysis includes trimming of vector genome junctions, alignment of genomic sequence fragments to the host genome for the identification of integration sites, and the annotation of nearby genomic elements. Most importantly, clinically relevant features comprise the determination of identical integration sites with respect to different time points or cell lineages, as well as the retrieval of the most prominent cell clones and common integration sites. The resulting output is summarized in tables within a convenient spreadsheet and can be further processed by researchers without profound bioinformatic knowledge.
Collapse
Affiliation(s)
- Anne Arens
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
431
|
Abstract
Many devastating human diseases are caused by mutations in a single gene that prevent a somatic cell from carrying out its essential functions, or by genetic changes acquired as a result of infectious disease or in the course of cell transformation. Targeted gene therapies have emerged as potential strategies for treatment of such diseases. These therapies depend upon rare-cutting endonucleases to cleave at specific sites in or near disease genes. Targeted gene correction provides a template for homology-directed repair, enabling the cell's own repair pathways to erase the mutation and replace it with the correct sequence. Targeted gene disruption ablates the disease gene, disabling its function. Gene targeting can also promote other kinds of genome engineering, including mutation, insertion, or gene deletion. Targeted gene therapies present significant advantages compared to approaches to gene therapy that depend upon delivery of stably expressing transgenes. Recent progress has been fueled by advances in nuclease discovery and design, and by new strategies that maximize efficiency of targeting and minimize off-target damage. Future progress will build on deeper mechanistic understanding of critical factors and pathways.
Collapse
Affiliation(s)
- Olivier Humbert
- Departments of Immunology and Biochemistry, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | | |
Collapse
|
432
|
Johnston R, Barré-Sinoussi F. Controversies in HIV cure research. J Int AIDS Soc 2012; 15:16. [PMID: 22424402 PMCID: PMC3334674 DOI: 10.1186/1758-2652-15-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 03/16/2012] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Antiretroviral therapy significantly reduces HIV viral burden and prolongs life, but does not cure HIV infection. The major scientific barrier to a cure is thought to be the persistence of the virus in cellular and/or anatomical reservoirs. DISCUSSION Most efforts to date, including pharmaco, immuno or gene therapy, have failed to cure patients, with the notable exception of a stem cell transplant recipient commonly known as the Berlin patient. This case has revived interest in the potential to cure HIV infection and has highlighted the need to resolve critical questions in the basic, pre-clinical and clinical research spheres as they pertain specifically to efforts to eradicate HIV from the body of an infected person (a sterilizing cure) or at least render the need for lifelong antiretroviral therapy obsolete (functional cure). This paper describes ongoing debates in each of these research spheres as they were presented and discussed at a satellite session that took place at the 6th International AIDS Society Conference on HIV Pathogenesis, Treatment and Prevention in Rome in July 2011. SUMMARY The resolution of these debates may have important implications for the search for a cure, the most efficient ways to identify and test promising interventions, and ultimately the availability of such a cure to diverse groups of HIV patients around the world.
Collapse
Affiliation(s)
- Rowena Johnston
- amfAR, The Foundation for AIDS Research, 120 Wall St, 13th Floor, New York, NT 10005, USA
| | | |
Collapse
|
433
|
Porteus M. Homologous recombination-based gene therapy for the primary immunodeficiencies. Ann N Y Acad Sci 2012; 1246:131-40. [PMID: 22236437 DOI: 10.1111/j.1749-6632.2011.06314.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The devastating nature of primary immunodeficiencies, the ability to cure primary immunodeficiencies by bone marrow transplantation, the ability of a small number of gene-corrected cells to reconstitute the immune system, and the overall suboptimal results of bone marrow transplantation for most patients with primary immunodeficiencies make the development of gene therapy for this class of diseases important. While there has been clear clinical benefit for a number of patients from viral-based gene therapy strategies, there have also been a significant number of serious adverse events, including the development of leukemia, from the approach. In this review, I discuss the development of nuclease-stimulated, homologous recombination-based approaches as a novel gene therapy strategy for the primary immunodeficiencies.
Collapse
Affiliation(s)
- Matthew Porteus
- Department of Pediatrics, Divisions of Cancer Biology, Hematology/Oncology, Human Gene Therapy, Stanford University, Stanford, California, USA.
| |
Collapse
|
434
|
Abstract
Genome editing with the use of zinc finger nucleases has been successfully applied to variety of a eukaryotic cells. Furthermore, the proof of concept for this approach has been extended to diverse animal models from Drosophila to mice. Engineered zinc finger nucleases are able to target specifically and manipulate disease-causing genes through site-specific double strand DNA breaks followed by non-homologous end joining or homologous recombination mechanisms. Consequently, this technology has considerable flexibility that can result in either a gain or loss of function of the targeted gene. In addition to this flexibility, gene therapy by zinc finger nucleases may enable persistent long term gene modification without continuous transfection- a potential advantage over RNA interference or direct gene inhibitors. With systemic viral delivery systems, this gene-editing approach corrected the mutant factor IX in models of mouse hemophilia. Moreover, phase I clinical trials have been initiated with zinc finger nucleases in patients with glioblastoma and HIV. Thus, this emerging field has significant promise as a therapeutic strategy for human genetic diseases, infectious diseases and oncology. In this article, we will review recent advances and potential risks in zinc finger nuclease gene therapy.
Collapse
Affiliation(s)
- S-T Chou
- Department of Pathology, University of Maryland School of Medicine, MSTF Building, 10 South Pine Street, Baltimore, MD 21201, USA ; Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742
| | | | | |
Collapse
|
435
|
Händel EM, Gellhaus K, Khan K, Bednarski C, Cornu TI, Müller-Lerch F, Kotin RM, Heilbronn R, Cathomen T. Versatile and efficient genome editing in human cells by combining zinc-finger nucleases with adeno-associated viral vectors. Hum Gene Ther 2012; 23:321-9. [PMID: 21980922 PMCID: PMC3300077 DOI: 10.1089/hum.2011.140] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 10/05/2011] [Indexed: 11/13/2022] Open
Abstract
Zinc-finger nucleases (ZFNs) have become a valuable tool for targeted genome engineering. Based on the enzyme's ability to create a site-specific DNA double-strand break, ZFNs promote genome editing by activating the cellular DNA damage response, including homology-directed repair (HDR) and nonhomologous end-joining. The goal of this study was (i) to demonstrate the versatility of combining the ZFN technology with a vector platform based on adeno-associated virus (AAV), and (ii) to assess the toxicity evoked by this platform. To this end, human cell lines that harbor enhanced green fluorescence protein (EGFP) reporters were generated to easily quantify the frequencies of gene deletion, gene disruption, and gene correction. We demonstrated that ZFN-encoding AAV expression vectors can be employed to induce large chromosomal deletions or to disrupt genes in up to 32% of transduced cells. In combination with AAV vectors that served as HDR donors, the AAV-ZFN platform was utilized to correct a mutation in EGFP in up to 6% of cells. Genome editing on the DNA level was confirmed by genotyping. Although cell cycle profiling revealed a modest G2/M arrest at high AAV-ZFN vector doses, platform-induced apoptosis could not be detected. In conclusion, the combined AAV-ZFN vector technology is a useful tool to edit the human genome with high efficiency. Because AAV vectors can transduce many cell types relevant for gene therapy, the ex vivo and in vivo delivery of ZFNs via AAV vectors will be of great interest for the treatment of inherited disorders.
Collapse
Affiliation(s)
- Eva-Maria Händel
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
- Institute of Virology, Campus Benjamin Franklin, Charité Medical School, 12203 Berlin, Germany
| | - Katharina Gellhaus
- Institute of Virology, Campus Benjamin Franklin, Charité Medical School, 12203 Berlin, Germany
| | - Kafaitullah Khan
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
- Institute of Virology, Campus Benjamin Franklin, Charité Medical School, 12203 Berlin, Germany
| | - Christien Bednarski
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
- Institute of Virology, Campus Benjamin Franklin, Charité Medical School, 12203 Berlin, Germany
| | - Tatjana I. Cornu
- Institute of Virology, Campus Benjamin Franklin, Charité Medical School, 12203 Berlin, Germany
| | - Felix Müller-Lerch
- Institute of Virology, Campus Benjamin Franklin, Charité Medical School, 12203 Berlin, Germany
| | - Robert M. Kotin
- Molecular Virology and Gene Delivery Section, Laboratory of Biochemical Genetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Regine Heilbronn
- Institute of Virology, Campus Benjamin Franklin, Charité Medical School, 12203 Berlin, Germany
| | - Toni Cathomen
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
- Institute of Virology, Campus Benjamin Franklin, Charité Medical School, 12203 Berlin, Germany
| |
Collapse
|
436
|
Schierling B, Dannemann N, Gabsalilow L, Wende W, Cathomen T, Pingoud A. A novel zinc-finger nuclease platform with a sequence-specific cleavage module. Nucleic Acids Res 2012; 40:2623-38. [PMID: 22135304 PMCID: PMC3315325 DOI: 10.1093/nar/gkr1112] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 11/04/2011] [Accepted: 11/06/2011] [Indexed: 12/18/2022] Open
Abstract
Zinc-finger nucleases (ZFNs) typically consist of three to four zinc fingers (ZFs) and the non-specific DNA-cleavage domain of the restriction endonuclease FokI. In this configuration, the ZFs constitute the binding module and the FokI domain the cleavage module. Whereas new binding modules, e.g. TALE sequences, have been considered as alternatives to ZFs, no efforts have been undertaken so far to replace the catalytic domain of FokI as the cleavage module in ZFNs. Here, we have fused a three ZF array to the restriction endonuclease PvuII to generate an alternative ZFN. While PvuII adds an extra element of specificity when combined with ZFs, ZF-PvuII constructs must be designed such that only PvuII sites with adjacent ZF-binding sites are cleaved. To achieve this, we introduced amino acid substitutions into PvuII that alter K(m) and k(cat) and increase fidelity. The optimized ZF-PvuII fusion constructs cleave DNA at addressed sites with a >1000-fold preference over unaddressed PvuII sites in vitro as well as in cellula. In contrast to the 'analogous' ZF-FokI nucleases, neither excess of enzyme over substrate nor prolonged incubation times induced unaddressed cleavage in vitro. These results present the ZF-PvuII platform as a valid alternative to conventional ZFNs.
Collapse
Affiliation(s)
- Benno Schierling
- Institute of Biochemistry, Justus-Liebig University, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany.
| | | | | | | | | | | |
Collapse
|
437
|
Abstract
Genetic engineering has emerged as a powerful mechanism for understanding biological systems and a potential approach for redressing congenital disease. Alongside, the emergence of these technologies in recent decades has risen the complementary analysis of the ethical implications of genetic engineering techniques and applications. Although viral-mediated approaches have dominated initial efforts in gene transfer (GT) methods, an emerging technology involving engineered restriction enzymes known as zinc finger nucleases (ZFNs) has become a powerful new methodology for gene editing. Given the advantages provided by ZFNs for more specific and diverse approaches in gene editing for basic science and clinical applications, we discuss how ZFN research can address some of the ethical and scientific questions that have been posed for other GT techniques. This is of particular importance, given the momentum currently behind ZFNs in moving into phase I clinical trials. This study provides a historical account of the origins of ZFN technology, an analysis of current techniques and applications, and an examination of the ethical issues applicable to translational ZFN genetic engineering in early phase clinical trials.
Collapse
|
438
|
Affiliation(s)
- Jesús Prieto
- Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fdez Almagro, Madrid, Spain
| | | | | |
Collapse
|
439
|
Clark KJ, Voytas DF, Ekker SC. A TALE of two nucleases: gene targeting for the masses? Zebrafish 2012; 8:147-9. [PMID: 21929364 DOI: 10.1089/zeb.2011.9993] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genome editing appears poised to enter an exciting new era. Targeted double-stranded breaks due to custom restriction enzymes are powerful nucleating events for the induction of local changes in the genome. The zinc finger nuclease (ZFN) platform established the potential of this approach for the zebrafish, but access to high quality reagents has been a major bottleneck for the field. However, two groups recently report successful somatic and germline gene modification using a new nuclease architecture, transcription activator-like effector nucleases (TALENs). TALEN construction is simpler, potentially more reliable, and in the few cases examined, shows fewer off-target effects than corresponding ZFNs. TALENs promise to bring gene targeting to the majority of zebrafish laboratories.
Collapse
Affiliation(s)
- Karl J Clark
- Department of Biochemistry and Molecular Biology, Mayo Addiction Research Center, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
440
|
Carlson DF, Fahrenkrug SC, Hackett PB. Targeting DNA With Fingers and TALENs. MOLECULAR THERAPY. NUCLEIC ACIDS 2012; 1:e3. [PMID: 23344620 PMCID: PMC3381595 DOI: 10.1038/mtna.2011.5] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Accepted: 11/26/2011] [Indexed: 12/18/2022]
Affiliation(s)
- Daniel F Carlson
- 1] Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA [2] Department of Animal Science, University of Minnesota, Saint Paul, Minnesota, USA
| | | | | |
Collapse
|
441
|
Abstract
γ-Retroviral and lentiviral vectors allow the permanent integration of a therapeutic transgene in target cells and have provided in the last decade a delivery platform for several successful gene therapy (GT) clinical approaches. However, the occurrence of adverse events due to insertional mutagenesis in GT treated patients poses a strong challenge to the scientific community to identify the mechanisms at the basis of vector-driven genotoxicity. Along the last decade, the study of retroviral integration sites became a fundamental tool to monitor vector–host interaction in patients overtime. This review is aimed at critically revising the data derived from insertional profiling, with a particular focus on the evidences collected from GT clinical trials. We discuss the controversies and open issues associated to the interpretation of integration site analysis during patient's follow up, with an update on the latest results derived from the use of high-throughput technologies. Finally, we provide a perspective on the future technical development and on the application of these studies to address broader biological questions, from basic virology to human hematopoiesis.
Collapse
Affiliation(s)
- Luca Biasco
- San Raffaele Telethon Institute for Gene Therapy, Milan, Italy
| | | | | |
Collapse
|
442
|
Tan WS, Carlson DF, Walton MW, Fahrenkrug SC, Hackett PB. Precision editing of large animal genomes. ADVANCES IN GENETICS 2012; 80:37-97. [PMID: 23084873 PMCID: PMC3683964 DOI: 10.1016/b978-0-12-404742-6.00002-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Transgenic animals are an important source of protein and nutrition for most humans and will play key roles in satisfying the increasing demand for food in an ever-increasing world population. The past decade has experienced a revolution in the development of methods that permit the introduction of specific alterations to complex genomes. This precision will enhance genome-based improvement of farm animals for food production. Precision genetics also will enhance the development of therapeutic biomaterials and models of human disease as resources for the development of advanced patient therapies.
Collapse
Affiliation(s)
- Wenfang Spring Tan
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | | | | | | | | |
Collapse
|
443
|
|
444
|
Lee HJ, Kweon J, Kim E, Kim S, Kim JS. Targeted chromosomal duplications and inversions in the human genome using zinc finger nucleases. Genome Res 2011; 22:539-48. [PMID: 22183967 DOI: 10.1101/gr.129635.111] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Despite the recent discoveries of and interest in numerous structural variations (SVs)--which include duplications and inversions--in the human and other higher eukaryotic genomes, little is known about the etiology and biology of these SVs, partly due to the lack of molecular tools with which to create individual SVs in cultured cells and model organisms. Here, we present a novel method of inducing duplications and inversions in a targeted manner without pre-manipulation of the genome. We found that zinc finger nucleases (ZFNs) designed to target two different sites in a human chromosome could introduce two concurrent double-strand breaks, whose repair via non-homologous end-joining (NHEJ) gives rise to targeted duplications and inversions of the genomic segments of up to a mega base pair (bp) in length between the two sites. Furthermore, we demonstrated that a ZFN pair could induce the inversion of a 140-kbp chromosomal segment that contains a portion of the blood coagulation factor VIII gene to mimic the inversion genotype that is associated with some cases of severe hemophilia A. This same ZFN pair could be used, in theory, to revert the inverted region to restore genomic integrity in these hemophilia A patients. We propose that ZFNs can be employed as molecular tools to study mechanisms of chromosomal rearrangements and to create SVs in a predetermined manner so as to study their biological roles. In addition, our method raises the possibility of correcting genetic defects caused by chromosomal rearrangements and holds new promise in gene and cell therapy.
Collapse
Affiliation(s)
- Hyung Joo Lee
- National Creative Research Initiatives Center for Genome Engineering, Department of Chemistry, Seoul National University, 599 Gwanak-ro, Seoul, South Korea
| | | | | | | | | |
Collapse
|
445
|
Pan H, Zhang W, Zhang W, Liu GH. Find and replace: editing human genome in pluripotent stem cells. Protein Cell 2011; 2:950-6. [PMID: 22173708 DOI: 10.1007/s13238-011-1132-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Accepted: 12/04/2011] [Indexed: 12/14/2022] Open
Abstract
Genetic manipulation of human pluripotent stem cells (hPSCs) provides a powerful tool for modeling diseases and developing future medicine. Recently a number of independent genome-editing techniques were developed, including plasmid, bacterial artificial chromosome, adeno-associated virus vector, zinc finger nuclease, transcription activator-like effecter nuclease, and helper-dependent adenoviral vector. Gene editing has been successfully employed in different aspects of stem cell research such as gene correction, mutation knock-in, and establishment of reporter cell lines (Raya et al., 2009; Howden et al., 2011; Li et al., 2011; Liu et al., 2011b; Papapetrou et al., 2011; Sebastiano et al., 2011; Soldner et al., 2011; Zou et al., 2011a). These techniques combined with the utility of hPSCs will significantly influence the area of regenerative medicine.
Collapse
Affiliation(s)
- Huize Pan
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | | | | | | |
Collapse
|
446
|
Osiak A, Radecke F, Guhl E, Radecke S, Dannemann N, Lütge F, Glage S, Rudolph C, Cantz T, Schwarz K, Heilbronn R, Cathomen T. Selection-independent generation of gene knockout mouse embryonic stem cells using zinc-finger nucleases. PLoS One 2011; 6:e28911. [PMID: 22194948 PMCID: PMC3237556 DOI: 10.1371/journal.pone.0028911] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 11/17/2011] [Indexed: 12/18/2022] Open
Abstract
Gene knockout in murine embryonic stem cells (ESCs) has been an invaluable tool to study gene function in vitro or to generate animal models with altered phenotypes. Gene targeting using standard techniques, however, is rather inefficient and typically does not exceed frequencies of 10(-6). In consequence, the usage of complex positive/negative selection strategies to isolate targeted clones has been necessary. Here, we present a rapid single-step approach to generate a gene knockout in mouse ESCs using engineered zinc-finger nucleases (ZFNs). Upon transient expression of ZFNs, the target gene is cleaved by the designer nucleases and then repaired by non-homologous end-joining, an error-prone DNA repair process that introduces insertions/deletions at the break site and therefore leads to functional null mutations. To explore and quantify the potential of ZFNs to generate a gene knockout in pluripotent stem cells, we generated a mouse ESC line containing an X-chromosomally integrated EGFP marker gene. Applying optimized conditions, the EGFP locus was disrupted in up to 8% of ESCs after transfection of the ZFN expression vectors, thus obviating the need of selection markers to identify targeted cells, which may impede or complicate downstream applications. Both activity and ZFN-associated cytotoxicity was dependent on vector dose and the architecture of the nuclease domain. Importantly, teratoma formation assays of selected ESC clones confirmed that ZFN-treated ESCs maintained pluripotency. In conclusion, the described ZFN-based approach represents a fast strategy for generating gene knockouts in ESCs in a selection-independent fashion that should be easily transferrable to other pluripotent stem cells.
Collapse
Affiliation(s)
- Anna Osiak
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- Institute of Virology (CBF), Charité Medical School, Berlin, Germany
| | - Frank Radecke
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Eva Guhl
- Institute of Virology (CBF), Charité Medical School, Berlin, Germany
| | - Sarah Radecke
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Service Baden-Württemberg – Hessen, Ulm, Germany
| | - Nadine Dannemann
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Fabienne Lütge
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Silke Glage
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Cornelia Rudolph
- JRG Genetic and Epigenetic Integrity, REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Tobias Cantz
- JRG Stem Cell Biology, REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Klaus Schwarz
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Service Baden-Württemberg – Hessen, Ulm, Germany
| | - Regine Heilbronn
- Institute of Virology (CBF), Charité Medical School, Berlin, Germany
| | - Toni Cathomen
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- Institute of Virology (CBF), Charité Medical School, Berlin, Germany
| |
Collapse
|
447
|
Pluripotent Stem Cells and Human Diseases*. PROG BIOCHEM BIOPHYS 2011. [DOI: 10.3724/sp.j.1206.2011.00466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
448
|
Efficient correction of hemoglobinopathy-causing mutations by homologous recombination in integration-free patient iPSCs. Cell Res 2011; 21:1740-4. [PMID: 22105484 DOI: 10.1038/cr.2011.186] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
449
|
Abstract
The genetic engineering of hematopoietic stem cells is the basis for potentially treating a large array of hereditary and acquired diseases, and stands as the paradigm for stem cell engineering in general. Recent clinical reports support the formidable promise of this approach but also highlight the limitations of the technologies used to date, which have on occasion resulted in clonal expansion, myelodysplasia, or leukemogenesis. New research directions, predicated on improved vector designs, targeted gene delivery or the therapeutic use of pluripotent stem cells, herald the advent of safer and more effective hematopoietic stem cell therapies that may transform medical practice. In this review, we place these recent advances in perspective, emphasizing the solutions emerging from a wave of new technologies and highlighting the challenges that lie ahead.
Collapse
|
450
|
Chung J, Rossi JJ, Jung U. Current progress and challenges in HIV gene therapy. Future Virol 2011; 6:1319-1328. [PMID: 22754586 DOI: 10.2217/fvl.11.113] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
HIV-1 causes AIDS, a syndrome that affects millions of people globally. Existing HAART is efficient in slowing down disease progression but cannot eradicate the virus. Furthermore the severity of the side effects and the emergence of drug-resistant mutants call for better therapy. Gene therapy serves as an attractive alternative as it reconstitutes the immune system with HIV-resistant cells and could thereby provide a potential cure. The feasibility of this approach was first demonstrated with the 'Berlin patient', who was functionally cured from HIV/AIDS with undetectable HIV-1 viral load after transplantation of bone marrow harboring a naturally occurring CCR5 mutation that blocks viral entry. Here, we give an overview of the current status of HIV gene therapy and remaining challenges and obstacles.
Collapse
Affiliation(s)
- Janet Chung
- Division of Molecular & Cell Biology, Beckman Research Institute of the City of Hope, 1500 East Duarte Road, CA 91010, USA
| | | | | |
Collapse
|