401
|
Mutation allele burden remains unchanged in chronic myelomonocytic leukaemia responding to hypomethylating agents. Nat Commun 2016; 7:10767. [PMID: 26908133 PMCID: PMC4770084 DOI: 10.1038/ncomms10767] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 01/19/2016] [Indexed: 12/18/2022] Open
Abstract
The cytidine analogues azacytidine and 5-aza-2'-deoxycytidine (decitabine) are commonly used to treat myelodysplastic syndromes, with or without a myeloproliferative component. It remains unclear whether the response to these hypomethylating agents results from a cytotoxic or an epigenetic effect. In this study, we address this question in chronic myelomonocytic leukaemia. We describe a comprehensive analysis of the mutational landscape of these tumours, combining whole-exome and whole-genome sequencing. We identify an average of 14±5 somatic mutations in coding sequences of sorted monocyte DNA and the signatures of three mutational processes. Serial sequencing demonstrates that the response to hypomethylating agents is associated with changes in DNA methylation and gene expression, without any decrease in the mutation allele burden, nor prevention of new genetic alteration occurence. Our findings indicate that cytosine analogues restore a balanced haematopoiesis without decreasing the size of the mutated clone, arguing for a predominantly epigenetic effect.
Collapse
|
402
|
DNMT3A(R882H) mutant and Tet2 inactivation cooperate in the deregulation of DNA methylation control to induce lymphoid malignancies in mice. Leukemia 2016; 30:1388-98. [PMID: 26876596 PMCID: PMC4869893 DOI: 10.1038/leu.2016.29] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 01/07/2016] [Accepted: 01/18/2016] [Indexed: 12/21/2022]
Abstract
TEN-ELEVEN-TRANSLOCATION-2 (TET2) and DNA-METHYLTRANSFERASE-3A (DNMT3A), both encoding proteins involved in regulating DNA methylation, are mutated in hematological malignancies affecting both myeloid and lymphoid lineages. We previously reported an association of TET2 and DNMT3A mutations in progenitors of patients with angioimmunoblastic T-cell lymphomas (AITL). Here, we report on the cooperative effect of Tet2-inactivation and DNMT3A mutation affecting arginine 882 (DNMT3AR882H) using a murine bone marrow transplantation assay. Five out of 18 primary recipients developed hematological malignancies with one mouse developing an AITL-like disease, 2 mice presenting acute myeloid leukemia (AML)-like and 2 others T cell acute lymphoblastic leukemia (T-ALL)-like diseases within 6 months following transplantation. Serial transplantations of DNMT3AR882H Tet2−/− progenitors led to a differentiation bias toward the T-cell compartment, eventually leading to AITL-like disease in 9/12 serially transplanted recipients. Expression profiling suggested that DNMT3AR882H Tet2−/− T-ALLs resemble those of NOTCH1 mutant. Methylation analysis of DNMT3AR882H Tet2−/− T-ALLs showed a global increase in DNA methylation affecting tumor suppressor genes and local hypomethylation affecting genes involved in the Notch pathway. Our data confirm the transformation potential of DNMT3AR882H Tet2−/− progenitors and represent the first cooperative model in mice involving Tet2-inactivation driving lymphoid malignancies.
Collapse
|
403
|
Hou HA, Tien HF. Mutations in epigenetic modifiers in acute myeloid leukemia and their clinical utility. Expert Rev Hematol 2016; 9:447-69. [DOI: 10.1586/17474086.2016.1144469] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Hsin-An Hou
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| | - Hwei-Fang Tien
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
404
|
Biology of peripheral T cell lymphomas – Not otherwise specified: Is something finally happening? ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.pathog.2016.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
405
|
Abstract
Aberrant DNA methylation is a characteristic feature of cancer including blood malignancies. Mutations in the DNA methylation regulators DNMT3A, TET1/2 and IDH1/2 are recurrent in leukemia and lymphoma. Specific and distinct DNA methylation patterns characterize subtypes of AML and lymphoma. Regulatory regions such as promoter CpG islands, CpG shores and enhancers show changes in methylation during transformation. However, the reported poor correlation between changes in methylation and gene expression in many mouse models and human studies reflects the complexity in the precise molecular mechanism for why aberrant DNA methylation promotes malignancies. This review will summarize current concepts regarding the mechanisms behind aberrant DNA methylation in hematopoietic malignancy and discuss its importance in cancer prognosis, tumor heterogeneity and relapse.
Collapse
Affiliation(s)
- Maria Guillamot
- Howard Hughes Medical Institute and Department of Pathology, NYU School of Medicine, New York, NY, 10016, USA; Laura and Isaac Perlmutter Cancer Center and Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY, 10016, USA
| | - Luisa Cimmino
- Howard Hughes Medical Institute and Department of Pathology, NYU School of Medicine, New York, NY, 10016, USA; Laura and Isaac Perlmutter Cancer Center and Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY, 10016, USA
| | - Iannis Aifantis
- Howard Hughes Medical Institute and Department of Pathology, NYU School of Medicine, New York, NY, 10016, USA; Laura and Isaac Perlmutter Cancer Center and Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY, 10016, USA
| |
Collapse
|
406
|
Portraits of TET-mediated DNA hydroxymethylation in cancer. Curr Opin Genet Dev 2016; 36:16-26. [DOI: 10.1016/j.gde.2016.01.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/19/2016] [Accepted: 01/19/2016] [Indexed: 12/28/2022]
|
407
|
Yoo HY, Kim P, Kim WS, Lee SH, Kim S, Kang SY, Jang HY, Lee JE, Kim J, Kim SJ, Ko YH, Lee S. Frequent CTLA4-CD28 gene fusion in diverse types of T-cell lymphoma. Haematologica 2016; 101:757-63. [PMID: 26819049 DOI: 10.3324/haematol.2015.139253] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 01/22/2016] [Indexed: 11/09/2022] Open
Abstract
CTLA4 and CD28 are co-regulatory receptors with opposite roles in T-cell signaling. By RNA sequencing, we identified a fusion between the two genes from partial gene duplication in a case of angioimmunoblastic T-cell lymphoma. The fusion gene, which codes for the extracellular domain of CTLA4 and the cytoplasmic region of CD28, is likely capable of transforming inhibitory signals into stimulatory signals for T-cell activation. Ectopic expression of the fusion transcript in Jurkat and H9 cells resulted in enhanced proliferation and AKT and ERK phosphorylation, indicating activation of downstream oncogenic pathways. To estimate the frequency of this gene fusion in mature T-cell lymphomas, we examined 115 T-cell lymphoma samples of diverse subtypes using reverse transcriptase polymerase chain reaction analysis and Sanger sequencing. We identified the fusion in 26 of 45 cases of angioimmunoblastic T-cell lymphomas (58%), nine of 39 peripheral T-cell lymphomas, not otherwise specified (23%), and nine of 31 extranodal NK/T cell lymphomas (29%). We further investigated the mutation status of 70 lymphoma-associated genes using ultra-deep targeted resequencing for 74 mature T-cell lymphoma samples. The mutational landscape we obtained suggests that T-cell lymphoma results from diverse combinations of multiple gene mutations. The CTLA4-CD28 gene fusion is likely a major contributor to the pathogenesis of T-cell lymphomas and represents a potential target for anti-CTLA4 cancer immunotherapy.
Collapse
Affiliation(s)
- Hae Yong Yoo
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Korea Samsung Biomedical Research Institute, Research Institute for Future Medicine, Samsung Medical Center, Ewha Womans University, Seoul, Korea
| | - Pora Kim
- Ewha Research Center for Systems Biology (ERCSB), Ewha Womans University, Seoul, Korea
| | - Won Seog Kim
- Samsung Biomedical Research Institute, Research Institute for Future Medicine, Samsung Medical Center, Ewha Womans University, Seoul, Korea Division of Hematology and Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Ewha Womans University, Seoul, Korea
| | - Seung Ho Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Korea
| | - Sangok Kim
- Ewha Research Center for Systems Biology (ERCSB), Ewha Womans University, Seoul, Korea Department of Bio-Information Science, Ewha Womans University, Ewha Womans University, Seoul, Korea
| | - So Young Kang
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Ewha Womans University, Seoul, Korea
| | | | - Jong-Eun Lee
- DNA Link Inc., Ewha Womans University, Seoul, Korea
| | - Jaesang Kim
- Department of Life Science, Ewha Womans University, Seoul, Korea
| | - Seok Jin Kim
- Samsung Biomedical Research Institute, Research Institute for Future Medicine, Samsung Medical Center, Ewha Womans University, Seoul, Korea Division of Hematology and Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Ewha Womans University, Seoul, Korea
| | - Young Hyeh Ko
- Samsung Biomedical Research Institute, Research Institute for Future Medicine, Samsung Medical Center, Ewha Womans University, Seoul, Korea Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Ewha Womans University, Seoul, Korea
| | - Sanghyuk Lee
- Ewha Research Center for Systems Biology (ERCSB), Ewha Womans University, Seoul, Korea Department of Bio-Information Science, Ewha Womans University, Ewha Womans University, Seoul, Korea Department of Life Science, Ewha Womans University, Seoul, Korea
| |
Collapse
|
408
|
Abstract
In this issue of Blood, Wang et al describe the occurrence and pathogenetic relevance of IDH2R172 mutations in angioimmunoblastic T-cell lymphoma (AITL).
Collapse
|
409
|
Redundant and nonredundant roles for Cdc42 and Rac1 in lymphomas developed in NPM-ALK transgenic mice. Blood 2016; 127:1297-306. [PMID: 26747246 DOI: 10.1182/blood-2015-11-683052] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 12/14/2015] [Indexed: 01/24/2023] Open
Abstract
Increasing evidence suggests that Rho family GTPases could have a critical role in the biology of T-cell lymphoma. In ALK-rearranged anaplastic large cell lymphoma (ALCL), a specific subtype of T-cell lymphoma, the Rho family GTPases Cdc42 and Rac1 are activated by the ALK oncogenic activity. In vitro studies have shown that Cdc42 and Rac1 control rather similar phenotypes of ALCL biology such as the proliferation, survival, and migration of lymphoma cells. However, their role and possible redundancy in ALK-driven lymphoma development in vivo are still undetermined. We genetically deleted Cdc42 or Rac1 in a mouse model of ALK-rearranged ALCL to show that either Cdc42 or Rac1 deletion impaired lymphoma development, modified lymphoma morphology, actin filament distribution, and migration properties of lymphoma cells. Cdc42 or Rac1 deletion primarily affected survival rather than proliferation of lymphoma cells. Apoptosis of lymphoma cells was equally induced following Cdc42 or Rac1 deletion, was associated with upregulation of the proapoptotic molecule Bid, and was blocked by Bcl2 overexpression. Remarkably, Cdc42/Rac1 double deletion, but not Cdc42 or Rac1 single deletions, completely prevented NPM-ALK lymphoma dissemination in vivo. Thus, Cdc42 and Rac1 have nonredundant roles in controlling ALK-rearranged lymphoma survival and morphology but are redundant for lymphoma dissemination, suggesting that targeting both GTPases could represent a preferable therapeutic option for ALCL treatment.
Collapse
|
410
|
Wilcox RA. A three-signal model of T-cell lymphoma pathogenesis. Am J Hematol 2016; 91:113-22. [PMID: 26408334 DOI: 10.1002/ajh.24203] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 08/24/2015] [Accepted: 09/23/2015] [Indexed: 12/12/2022]
Abstract
T-cell lymphoma pathogenesis and classification have, until recently, remained enigmatic. Recently performed whole-exome sequencing and gene-expression profiling studies have significant implications for their classification and treatment. Recurrent genetic modifications in antigen ("signal 1"), costimulatory ("signal 2"), or cytokine receptors ("signal 3"), and the tyrosine kinases and other signaling proteins they activate, have emerged as important therapeutic targets in these lymphomas. Many of these genetic modifications do not function in a cell-autonomous manner, but require the provision of ligand(s) by constituents of the tumor microenvironment, further supporting the long-appreciated view that these lymphomas are dependent upon and driven by their microenvironment. Therefore, the seemingly disparate fields of genomics and immunology are converging. A unifying "3 signal model" for T-cell lymphoma pathogenesis that integrates these findings will be presented, and its therapeutic implications briefly reviewed.
Collapse
Affiliation(s)
- Ryan A. Wilcox
- Department of Internal Medicine, Division of Hematology and Oncology; University of Michigan; Ann Arbor Michigan
| |
Collapse
|
411
|
Rohr J, Guo S, Huo J, Bouska A, Lachel C, Li Y, Simone PD, Zhang W, Gong Q, Wang C, Cannon A, Heavican T, Mottok A, Hung S, Rosenwald A, Gascoyne R, Fu K, Greiner TC, Weisenburger DD, Vose JM, Staudt LM, Xiao W, Borgstahl GEO, Davis S, Steidl C, McKeithan T, Iqbal J, Chan WC. Recurrent activating mutations of CD28 in peripheral T-cell lymphomas. Leukemia 2015; 30:1062-70. [PMID: 26719098 DOI: 10.1038/leu.2015.357] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/30/2015] [Accepted: 12/15/2015] [Indexed: 11/09/2022]
Abstract
Peripheral T-cell lymphomas (PTCLs) comprise a heterogeneous group of mature T-cell neoplasms with a poor prognosis. Recently, mutations in TET2 and other epigenetic modifiers as well as RHOA have been identified in these diseases, particularly in angioimmunoblastic T-cell lymphoma (AITL). CD28 is the major co-stimulatory receptor in T cells which, upon binding ligand, induces sustained T-cell proliferation and cytokine production when combined with T-cell receptor stimulation. We have identified recurrent mutations in CD28 in PTCLs. Two residues-D124 and T195-were recurrently mutated in 11.3% of cases of AITL and in one case of PTCL, not otherwise specified (PTCL-NOS). Surface plasmon resonance analysis of mutations at these residues with predicted differential partner interactions showed increased affinity for ligand CD86 (residue D124) and increased affinity for intracellular adaptor proteins GRB2 and GADS/GRAP2 (residue T195). Molecular modeling studies on each of these mutations suggested how these mutants result in increased affinities. We found increased transcription of the CD28-responsive genes CD226 and TNFA in cells expressing the T195P mutant in response to CD3 and CD86 co-stimulation and increased downstream activation of NF-κB by both D124V and T195P mutants, suggesting a potential therapeutic target in CD28-mutated PTCLs.
Collapse
Affiliation(s)
- J Rohr
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Pathology, City of Hope National Medical Center, Duarte, CA, USA
| | - S Guo
- Department of Pathology, Xi Jing Hospital, Fourth Military Medical University, Xi'an, Shaan Xi Province, China
| | - J Huo
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - A Bouska
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - C Lachel
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Y Li
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, USA
| | - P D Simone
- Internal Medicine Residency Program, Florida Atlantic University College of Medicine, Boca Raton, FL, USA
| | - W Zhang
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Q Gong
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, USA
| | - C Wang
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Pathology, City of Hope National Medical Center, Duarte, CA, USA.,School of Medicine, Shandong University, Jinan, China
| | - A Cannon
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - T Heavican
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - A Mottok
- Department for Lymphoid Cancer Research, Centre for Lymphoid Cancer, BC Cancer Agency, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - S Hung
- Department for Lymphoid Cancer Research, Centre for Lymphoid Cancer, BC Cancer Agency, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - A Rosenwald
- Institute of Pathology and Comprehensive Cancer Center Mainfranken (CCC MF), University of Wuerzburg, Wuerzburg, Germany
| | - R Gascoyne
- Department for Lymphoid Cancer Research, Centre for Lymphoid Cancer, BC Cancer Agency, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - K Fu
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - T C Greiner
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - D D Weisenburger
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, USA
| | - J M Vose
- Department of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - L M Staudt
- National Institutes of Health, Bethesda, MD, USA
| | - W Xiao
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, Food and Drug Administration, Washington, DC, USA
| | - G E O Borgstahl
- Eppley Institute for Cancer Research and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - S Davis
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - C Steidl
- Department for Lymphoid Cancer Research, Centre for Lymphoid Cancer, BC Cancer Agency, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - T McKeithan
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, USA
| | - J Iqbal
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - W C Chan
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, USA
| |
Collapse
|
412
|
Lim ST. Meeting an unmet need for peripheral T-cell lymphoma. LANCET HAEMATOLOGY 2015; 2:e134-5. [PMID: 26687954 DOI: 10.1016/s2352-3026(15)00042-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 02/26/2015] [Indexed: 10/23/2022]
Affiliation(s)
- Soon Thye Lim
- National Cancer Centre, Medical Oncology, 11 Hospital Drive, Singapore, Singapore.
| |
Collapse
|
413
|
Gambichler T, Mamali K, Patsinakidis N, Moritz R, Mucke M, Skrygan M, Stockfleth E, Stücker M. Decreased expression of ten-eleven translocation 2 protein is associated with progressive disease and death in patients with mycosis fungoides. Br J Dermatol 2015; 174:652-3. [PMID: 26384468 DOI: 10.1111/bjd.14174] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- T Gambichler
- Department of Dermatology, Ruhr-University Bochum, Gudrunstraße 56, 44791, Bochum, Germany.
| | - K Mamali
- Department of Dermatology, Ruhr-University Bochum, Gudrunstraße 56, 44791, Bochum, Germany
| | - N Patsinakidis
- Department of Dermatology, Ruhr-University Bochum, Gudrunstraße 56, 44791, Bochum, Germany
| | - R Moritz
- Department of Dermatology, University Hospital of Münster, Münster, Germany
| | - M Mucke
- Department of Dermatology, Ruhr-University Bochum, Gudrunstraße 56, 44791, Bochum, Germany
| | - M Skrygan
- Department of Dermatology, Ruhr-University Bochum, Gudrunstraße 56, 44791, Bochum, Germany
| | - E Stockfleth
- Department of Dermatology, Ruhr-University Bochum, Gudrunstraße 56, 44791, Bochum, Germany
| | - M Stücker
- Department of Dermatology, Ruhr-University Bochum, Gudrunstraße 56, 44791, Bochum, Germany
| |
Collapse
|
414
|
Abstract
INTRODUCTION Peripheral T-cell lymphomas (PTCL) represent a heterogeneous group of malignancies frequently associated with a poor outcome. The frontline treatment strategy for PTCL relies mostly on CHOP or CHOP-like regimens, which are associated with a high failure rate and frequent relapses. AREAS COVERED In this review, the authors present recently registered drugs and their positioning in the therapeutic armamentarium against PTCL and new drugs currently in development. The successful results in CD30-positive anaplastic large cell lymphomas suggest that a better characterization of these lymphomas could open new areas of efficient drug development. EXPERT OPINION Advances in the field of molecular biology have started to unravel the anomalies associated with T-cell malignancies. Recent knowledge on potential epigenetic modifiers like IDH2, which is frequently mutated in angioimmunoblastic T-cell lymphoma, opens new areas of research and confirms that epigenetic drugs could represent an attractive area of clinical research. The recently developed immune checkpoints regulators might represent another area of potential interest.
Collapse
Affiliation(s)
- David Ghez
- a Service d'Hématologie, Département de Médecine , Gustave Roussy Cancer Campus , Villejuif , France
| | - Alina Danu
- a Service d'Hématologie, Département de Médecine , Gustave Roussy Cancer Campus , Villejuif , France
| | - Vincent Ribrag
- a Service d'Hématologie, Département de Médecine , Gustave Roussy Cancer Campus , Villejuif , France
| |
Collapse
|
415
|
O'Hayre M, Inoue A, Kufareva I, Wang Z, Mikelis CM, Drummond RA, Avino S, Finkel K, Kalim KW, DiPasquale G, Guo F, Aoki J, Zheng Y, Lionakis MS, Molinolo AA, Gutkind JS. Inactivating mutations in GNA13 and RHOA in Burkitt's lymphoma and diffuse large B-cell lymphoma: a tumor suppressor function for the Gα13/RhoA axis in B cells. Oncogene 2015; 35:3771-80. [PMID: 26616858 PMCID: PMC4885800 DOI: 10.1038/onc.2015.442] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/15/2015] [Accepted: 10/15/2015] [Indexed: 01/06/2023]
Abstract
G proteins and their cognate G protein-coupled receptors (GPCRs) function as critical signal transduction molecules that regulate cell survival, proliferation, motility and differentiation. The aberrant expression and/or function of these molecules have been linked to the growth, progression and metastasis of various cancers. As such, the analysis of mutations in the genes encoding GPCRs, G proteins and their downstream targets provides important clues regarding how these signaling cascades contribute to malignancy. Recent genome-wide sequencing efforts have unveiled the presence of frequent mutations in GNA13, the gene encoding the G protein Gα13, in Burkitt's lymphoma and diffuse large B-cell lymphoma (DLBCL). We found that mutations in the downstream target of Gα13, RhoA, are also present in Burkitt's lymphoma and DLBCL. By multiple complementary approaches, we now show that that these cancer-specific GNA13 and RHOA mutations are inhibitory in nature, and that the expression of wild-type Gα13 in B-cell lymphoma cells with mutant GNA13 has limited impact in vitro but results in a remarkable growth inhibition in vivo. Thus, although Gα13 and RhoA activity has previously been linked to cellular transformation and metastatic potential of epithelial cancers, our findings support a tumor suppressive role for Gα13 and RhoA in Burkitt's lymphoma and DLBCL.
Collapse
Affiliation(s)
- M O'Hayre
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - A Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan.,PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama, Japan
| | - I Kufareva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Z Wang
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - C M Mikelis
- Department of Biomedical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - R A Drummond
- Fungal Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - S Avino
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.,Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende (Cs), Italy
| | - K Finkel
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - K W Kalim
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - G DiPasquale
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - F Guo
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - J Aoki
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan.,Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), AMED, Chiyoda-ku, Tokyo, Japan
| | - Y Zheng
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - M S Lionakis
- Fungal Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - A A Molinolo
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - J S Gutkind
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.,Department of Pharmacology, UC San Diego Moores Cancer Center, La Jolla, CA, USA
| |
Collapse
|
416
|
Ko M, An J, Rao A. DNA methylation and hydroxymethylation in hematologic differentiation and transformation. Curr Opin Cell Biol 2015; 37:91-101. [PMID: 26595486 DOI: 10.1016/j.ceb.2015.10.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 10/21/2015] [Accepted: 10/26/2015] [Indexed: 01/09/2023]
Abstract
Maintenance of the balance of DNA methylation and demethylation is fundamental for normal cellular development and function. Members of the Ten-Eleven-Translocation (TET) family proteins are Fe(II)-dependent and 2-oxoglutarate-dependent dioxygenases that catalyze sequential oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) and subsequent oxidized derivatives in DNA. In addition to their roles as intermediates in DNA demethylation, these oxidized methylcytosines are novel epigenetic modifications of DNA. DNA methylation and hydroxymethylation profiles are markedly disrupted in a wide range of cancers but how these changes are related to the pathogenesis of cancers is still ambiguous. In this review, we discuss the current understanding of TET protein functions in normal and malignant hematopoietic development and the ongoing questions to be resolved.
Collapse
Affiliation(s)
- Myunggon Ko
- School of Life Sciences, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulju-gun, Ulsan 689-798, Republic of Korea.
| | - Jungeun An
- Center for Genomic Integrity, Institute for Basic Science (IBS), UNIST-gil 50, Ulju-gun, Ulsan 689-798, Republic of Korea
| | - Anjana Rao
- Division of Signaling and Gene Expression, La Jolla Institute for Allergy & Immunology, La Jolla, CA 92037, USA; Department of Pharmacology and Moores Cancer Center, University of California at San Diego, La Jolla, CA, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| |
Collapse
|
417
|
Variegated RHOA mutations in adult T-cell leukemia/lymphoma. Blood 2015; 127:596-604. [PMID: 26574607 DOI: 10.1182/blood-2015-06-644948] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 11/02/2015] [Indexed: 12/24/2022] Open
Abstract
Adult T-cell leukemia/lymphoma (ATLL) is a distinct form of peripheral T-cell lymphoma with poor prognosis, which is caused by the human T-lymphotropic virus type 1 (HTLV-1). In contrast to the unequivocal importance of HTLV-1 infection in the pathogenesis of ATLL, the role of acquired mutations in HTLV-1 infected T cells has not been fully elucidated, with a handful of genes known to be recurrently mutated. In this study, we identified unique RHOA mutations in ATLL through whole genome sequencing of an index case, followed by deep sequencing of 203 ATLL samples. RHOA mutations showed distinct distribution and function from those found in other cancers. Involving 15% (30/203) of ATLL cases, RHOA mutations were widely distributed across the entire coding sequence but almost invariably located at the guanosine triphosphate (GTP)-binding pocket, with Cys16Arg being most frequently observed. Unexpectedly, depending on mutation types and positions, these RHOA mutants showed different or even opposite functional consequences in terms of GTP/guanosine diphosphate (GDP)-binding kinetics, regulation of actin fibers, and transcriptional activation. The Gly17Val mutant did not bind GTP/GDP and act as a dominant negative molecule, whereas other mutants (Cys16Arg and Ala161Pro) showed fast GTP/GDP cycling with enhanced transcriptional activation. These findings suggest that both loss- and gain-of-RHOA functions could be involved in ATLL leukemogenesis. In summary, our study not only provides a novel insight into the molecular pathogenesis of ATLL but also highlights a unique role of variegation of heterologous RHOA mutations in human cancers.
Collapse
|
418
|
De Rienzo A, Archer MA, Yeap BY, Dao N, Sciaranghella D, Sideris AC, Zheng Y, Holman AG, Wang YE, Dal Cin PS, Fletcher JA, Rubio R, Croft L, Quackenbush J, Sugarbaker PE, Munir KJ, Battilana JR, Gustafson CE, Chirieac LR, Ching SM, Wong J, Tay LC, Rudd S, Hercus R, Sugarbaker DJ, Richards WG, Bueno R. Gender-Specific Molecular and Clinical Features Underlie Malignant Pleural Mesothelioma. Cancer Res 2015; 76:319-28. [PMID: 26554828 DOI: 10.1158/0008-5472.can-15-0751] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 10/19/2015] [Indexed: 12/29/2022]
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive cancer that occurs more frequently in men, but is associated with longer survival in women. Insight into the survival advantage of female patients may advance the molecular understanding of MPM and identify therapeutic interventions that will improve the prognosis for all MPM patients. In this study, we performed whole-genome sequencing of tumor specimens from 10 MPM patients and matched control samples to identify potential driver mutations underlying MPM. We identified molecular differences associated with gender and histology. Specifically, single-nucleotide variants of BAP1 were observed in 21% of cases, with lower mutation rates observed in sarcomatoid MPM (P < 0.001). Chromosome 22q loss was more frequently associated with the epithelioid than that nonepitheliod histology (P = 0.037), whereas CDKN2A deletions occurred more frequently in nonepithelioid subtypes among men (P = 0.021) and were correlated with shorter overall survival for the entire cohort (P = 0.002) and for men (P = 0.012). Furthermore, women were more likely to harbor TP53 mutations (P = 0.004). Novel mutations were found in genes associated with the integrin-linked kinase pathway, including MYH9 and RHOA. Moreover, expression levels of BAP1, MYH9, and RHOA were significantly higher in nonepithelioid tumors, and were associated with significant reduction in survival of the entire cohort and across gender subgroups. Collectively, our findings indicate that diverse mechanisms highly related to gender and histology appear to drive MPM.
Collapse
Affiliation(s)
- Assunta De Rienzo
- The Thoracic Surgery Oncology laboratory and the International Mesothelioma Program, Division of Thoracic Surgery and the Lung Center, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts.
| | - Michael A Archer
- The Thoracic Surgery Oncology laboratory and the International Mesothelioma Program, Division of Thoracic Surgery and the Lung Center, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Beow Y Yeap
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Nhien Dao
- The Thoracic Surgery Oncology laboratory and the International Mesothelioma Program, Division of Thoracic Surgery and the Lung Center, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Daniele Sciaranghella
- The Thoracic Surgery Oncology laboratory and the International Mesothelioma Program, Division of Thoracic Surgery and the Lung Center, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Antonios C Sideris
- The Thoracic Surgery Oncology laboratory and the International Mesothelioma Program, Division of Thoracic Surgery and the Lung Center, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Yifan Zheng
- The Thoracic Surgery Oncology laboratory and the International Mesothelioma Program, Division of Thoracic Surgery and the Lung Center, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Alexander G Holman
- Center for Cancer Computational Biology, Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, and Harvard School of Public Health, Boston, Massachusetts
| | - Yaoyu E Wang
- Center for Cancer Computational Biology, Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, and Harvard School of Public Health, Boston, Massachusetts
| | - Paola S Dal Cin
- Departments of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Jonathan A Fletcher
- Departments of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Renee Rubio
- Center for Cancer Computational Biology, Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, and Harvard School of Public Health, Boston, Massachusetts
| | - Larry Croft
- Malaysian Genomics Resource Centre, Kuala Lumpur, Malaysia
| | - John Quackenbush
- Center for Cancer Computational Biology, Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, and Harvard School of Public Health, Boston, Massachusetts
| | - Peter E Sugarbaker
- The Thoracic Surgery Oncology laboratory and the International Mesothelioma Program, Division of Thoracic Surgery and the Lung Center, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Kiara J Munir
- The Thoracic Surgery Oncology laboratory and the International Mesothelioma Program, Division of Thoracic Surgery and the Lung Center, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Jesse R Battilana
- The Thoracic Surgery Oncology laboratory and the International Mesothelioma Program, Division of Thoracic Surgery and the Lung Center, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Corinne E Gustafson
- The Thoracic Surgery Oncology laboratory and the International Mesothelioma Program, Division of Thoracic Surgery and the Lung Center, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Lucian R Chirieac
- Departments of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Soo Meng Ching
- Malaysian Genomics Resource Centre, Kuala Lumpur, Malaysia
| | - James Wong
- Malaysian Genomics Resource Centre, Kuala Lumpur, Malaysia
| | | | - Stephen Rudd
- Malaysian Genomics Resource Centre, Kuala Lumpur, Malaysia
| | - Robert Hercus
- Malaysian Genomics Resource Centre, Kuala Lumpur, Malaysia
| | - David J Sugarbaker
- Debakey Department of Surgery, Baylor College of Medicine, Houston, Texas
| | - William G Richards
- The Thoracic Surgery Oncology laboratory and the International Mesothelioma Program, Division of Thoracic Surgery and the Lung Center, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Raphael Bueno
- The Thoracic Surgery Oncology laboratory and the International Mesothelioma Program, Division of Thoracic Surgery and the Lung Center, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
419
|
The mutational landscape of cutaneous T cell lymphoma and Sézary syndrome. Nat Genet 2015; 47:1465-70. [PMID: 26551667 DOI: 10.1038/ng.3442] [Citation(s) in RCA: 282] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 10/16/2015] [Indexed: 12/14/2022]
Abstract
Sézary syndrome is a leukemic and aggressive form of cutaneous T cell lymphoma (CTCL) resulting from the malignant transformation of skin-homing central memory CD4(+) T cells. Here we performed whole-exome sequencing of tumor-normal sample pairs from 25 patients with Sézary syndrome and 17 patients with other CTCLs. These analyses identified a distinctive pattern of somatic copy number alterations in Sézary syndrome, including highly prevalent chromosomal deletions involving the TP53, RB1, PTEN, DNMT3A and CDKN1B tumor suppressors. Mutation analysis identified a broad spectrum of somatic mutations in key genes involved in epigenetic regulation (TET2, CREBBP, KMT2D (MLL2), KMT2C (MLL3), BRD9, SMARCA4 and CHD3) and signaling, including MAPK1, BRAF, CARD11 and PRKG1 mutations driving increased MAPK, NF-κB and NFAT activity upon T cell receptor stimulation. Collectively, our findings provide new insights into the genetics of Sézary syndrome and CTCL and support the development of personalized therapies targeting key oncogenically activated signaling pathways for the treatment of these diseases.
Collapse
|
420
|
Concurrent Mutations in ATM and Genes Associated with Common γ Chain Signaling in Peripheral T Cell Lymphoma. PLoS One 2015; 10:e0141906. [PMID: 26536348 PMCID: PMC4633051 DOI: 10.1371/journal.pone.0141906] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 10/14/2015] [Indexed: 11/19/2022] Open
Abstract
Peripheral T cell lymphoma (PTCL) is a heterogeneous malignancy with poor response to current therapeutic strategies and incompletely characterized genetics. We conducted whole exome sequencing of matched PTCL and non-malignant samples from 12 patients, spanning 8 subtypes, to identify potential oncogenic mutations in PTCL. Analysis of the mutations identified using computational algorithms, CHASM, PolyPhen2, PROVEAN, and MutationAssessor to predict the impact of these mutations on protein function and PTCL tumorigenesis, revealed 104 somatic mutations that were selected as high impact by all four algorithms. Our analysis identified recurrent somatic missense or nonsense mutations in 70 genes, 9 of which contained mutations predicted significant by all 4 algorithms: ATM, RUNX1T1, WDR17, NTRK3, TP53, TRMT12, CACNA2D1, INTS8, and KCNH8. We observed somatic mutations in ATM (ataxia telangiectasia-mutated) in 5 out of the 12 samples and mutations in the common gamma chain (γc) signaling pathway (JAK3, IL2RG, STAT5B) in 3 samples, all of which also harbored mutations in ATM. Our findings contribute insights into the genetics of PTCL and suggest a relationship between γc signaling and ATM in T cell malignancy.
Collapse
|
421
|
Kong R, Yi F, Wen P, Liu J, Chen X, Ren J, Li X, Shang Y, Nie Y, Wu K, Fan D, Zhu L, Feng W, Wu JY. Myo9b is a key player in SLIT/ROBO-mediated lung tumor suppression. J Clin Invest 2015; 125:4407-20. [PMID: 26529257 PMCID: PMC4665778 DOI: 10.1172/jci81673] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 09/21/2015] [Indexed: 11/17/2022] Open
Abstract
Emerging evidence indicates that the neuronal guidance molecule SLIT plays a role in tumor suppression, as SLIT-encoding genes are inactivated in several types of cancer, including lung cancer; however, it is not clear how SLIT functions in lung cancer. Here, our data show that SLIT inhibits cancer cell migration by activating RhoA and that myosin 9b (Myo9b) is a ROBO-interacting protein that suppresses RhoA activity in lung cancer cells. Structural analyses revealed that the RhoGAP domain of Myo9b contains a unique patch that specifically recognizes RhoA. We also determined that the ROBO intracellular domain interacts with the Myo9b RhoGAP domain and inhibits its activity; therefore, SLIT-dependent activation of RhoA is mediated by ROBO inhibition of Myo9b. In a murine model, compared with control lung cancer cells, SLIT-expressing cells had a decreased capacity for tumor formation and lung metastasis. Evaluation of human lung cancer and adjacent nontumor tissues revealed that Myo9b is upregulated in the cancer tissue. Moreover, elevated Myo9b expression was associated with lung cancer progression and poor prognosis. Together, our data identify Myo9b as a key player in lung cancer and as a ROBO-interacting protein in what is, to the best of our knowledge, a newly defined SLIT/ROBO/Myo9b/RhoA signaling pathway that restricts lung cancer progression and metastasis. Additionally, our work suggests that targeting the SLIT/ROBO/Myo9b/RhoA pathway has potential as a diagnostic and therapeutic strategy for lung cancer.
Collapse
Affiliation(s)
- Ruirui Kong
- State Key Laboratory of Brain and Cognitive Science and
| | - Fengshuang Yi
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Pushuai Wen
- State Key Laboratory of Brain and Cognitive Science and
| | - Jianghong Liu
- State Key Laboratory of Brain and Cognitive Science and
| | - Xiaoping Chen
- Department of Neurology, Center for Genetic Medicine, Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jinqi Ren
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiaofei Li
- Department of Thoracic Surgery, Tangdu Hospital, and
| | - Yulong Shang
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Shaanxi, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Shaanxi, China
| | - Kaichun Wu
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Shaanxi, China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Shaanxi, China
| | - Li Zhu
- State Key Laboratory of Brain and Cognitive Science and
| | - Wei Feng
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jane Y. Wu
- State Key Laboratory of Brain and Cognitive Science and
- Department of Neurology, Center for Genetic Medicine, Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
422
|
Han JA, An J, Ko M. Functions of TET Proteins in Hematopoietic Transformation. Mol Cells 2015; 38:925-35. [PMID: 26552488 PMCID: PMC4673406 DOI: 10.14348/molcells.2015.0294] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 11/04/2015] [Indexed: 12/12/2022] Open
Abstract
DNA methylation is a well-characterized epigenetic modification that plays central roles in mammalian development, genomic imprinting, X-chromosome inactivation and silencing of retrotransposon elements. Aberrant DNA methylation pattern is a characteristic feature of cancers and associated with abnormal expression of oncogenes, tumor suppressor genes or repair genes. Ten-eleven-translocation (TET) proteins are recently characterized dioxygenases that catalyze progressive oxidation of 5-methylcytosine to produce 5-hydroxymethylcytosine and further oxidized derivatives. These oxidized methylcytosines not only potentiate DNA demethylation but also behave as independent epigenetic modifications per se. The expression or activity of TET proteins and DNA hydroxymethylation are highly dysregulated in a wide range of cancers including hematologic and non-hematologic malignancies, and accumulating evidence points TET proteins as a novel tumor suppressor in cancers. Here we review DNA demethylation-dependent and -independent functions of TET proteins. We also describe diverse TET loss-of-function mutations that are recurrently found in myeloid and lymphoid malignancies and their potential roles in hematopoietic transformation. We discuss consequences of the deficiency of individual Tet genes and potential compensation between different Tet members in mice. Possible mechanisms underlying facilitated oncogenic transformation of TET-deficient hematopoietic cells are also described. Lastly, we address non-mutational mechanisms that lead to suppression or inactivation of TET proteins in cancers. Strategies to restore normal 5mC oxidation status in cancers by targeting TET proteins may provide new avenues to expedite the development of promising anti-cancer agents.
Collapse
Affiliation(s)
- Jae-A Han
- School of Life Sciences, Ulsan National Institute of Science and Technology
| | - Jungeun An
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 689-798,
Korea
| | - Myunggon Ko
- School of Life Sciences, Ulsan National Institute of Science and Technology
| |
Collapse
|
423
|
|
424
|
Couronné L, Bastard C, Gaulard P, Hermine O, Bernard O. [Molecular pathogenesis of peripheral T-cell lymphoma (1): angioimmunoblastic T-cell lymphoma, peripheral T-cell lymphoma, not otherwise specified and anaplastic large cell lymphoma]. Med Sci (Paris) 2015; 31:841-52. [PMID: 26481023 DOI: 10.1051/medsci/20153110010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Peripheral T-cell lymphomas (PTCL) belong to the group of non-Hodgkin lymphoma and particularly that of mature T/NK cells lymphoproliferative neoplasms. The 2008 WHO classification describes different PTCL entities with varying prevalence. With the exception of the histological subtype "ALK positive anaplastic large cell lymphoma", PTCL are characterized by a poor prognosis. The mechanisms underlying the pathogenesis of these lymphomas are not yet fully understood, but development of genomic high-throughput analysis techniques now allows to extensively identify the molecular abnormalities present in tumor cells. This review aims to summarize the current knowledge and recent advances about the molecular events occurring at the origin or during the natural history of main entities of PTCL. It will be published in two parts : the first is focused on the three more frequent entities, angioimmunoblastic T-cell lymphoma, peripheral T-cell lymphoma, not otherwise specified, and anaplastic large cell lymphoma. The second (which will appear in the november issue) will describe other subtypes less frequent and of poor prognosis : extranodal NK/T-cell lymphoma, nasal type, adult T-cell leukemia/lymphoma, and enteropathy-associated T-cell lymphoma. T or NK cell lymphoproliferative disorders with leukemic presentation, primary cutaneous T-cell lymphoma and very rare subtypes of PTCL whose prevalence is less than 5% (hepatosplenic T-cell lymphoma and subcutaneous panniculitis-like T cell lymphoma) will not be discussed herein.
Collapse
Affiliation(s)
- Lucile Couronné
- Service d'hématologie adultes, Assistance publique-hôpitaux de Paris (APHP), hôpital Necker, Paris, France - Inserm UMR1163, CNRS ERL 8254, Institut Imagine, Paris, France - Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Christian Bastard
- Service d'anatomo-pathologie, AP-HP, groupe hospitalier Henri Mondor-Albert Chenevier, Créteil, France; Université Paris-Est, faculté de médecine, Créteil, France ; Inserm U955, institut Mondor de recherche biomédicale, Créteil, France
| | - Philippe Gaulard
- Inserm, U918 ; Université de Rouen ; centre Henri Becquerel, Rouen, France
| | - Olivier Hermine
- Service d'hématologie adultes, Assistance publique-hôpitaux de Paris (APHP), hôpital Necker, Paris, France - Inserm UMR1163, CNRS ERL 8254, Institut Imagine, Paris, France - Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Olivier Bernard
- UMR 1170 ; Institut Gustave Roussy, 94805 Villejuif, France ; Université Paris Sud 11, Orsay, France
| |
Collapse
|
425
|
Abate F, Ambrosio MR, Mundo L, Laginestra MA, Fuligni F, Rossi M, Zairis S, Gazaneo S, De Falco G, Lazzi S, Bellan C, Rocca BJ, Amato T, Marasco E, Etebari M, Ogwang M, Calbi V, Ndede I, Patel K, Chumba D, Piccaluga PP, Pileri S, Leoncini L, Rabadan R. Distinct Viral and Mutational Spectrum of Endemic Burkitt Lymphoma. PLoS Pathog 2015; 11:e1005158. [PMID: 26468873 PMCID: PMC4607508 DOI: 10.1371/journal.ppat.1005158] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 08/19/2015] [Indexed: 12/15/2022] Open
Abstract
Endemic Burkitt lymphoma (eBL) is primarily found in children in equatorial regions and represents the first historical example of a virus-associated human malignancy. Although Epstein-Barr virus (EBV) infection and MYC translocations are hallmarks of the disease, it is unclear whether other factors may contribute to its development. We performed RNA-Seq on 20 eBL cases from Uganda and showed that the mutational and viral landscape of eBL is more complex than previously reported. First, we found the presence of other herpesviridae family members in 8 cases (40%), in particular human herpesvirus 5 and human herpesvirus 8 and confirmed their presence by immunohistochemistry in the adjacent non-neoplastic tissue. Second, we identified a distinct latency program in EBV involving lytic genes in association with TCF3 activity. Third, by comparing the eBL mutational landscape with published data on sporadic Burkitt lymphoma (sBL), we detected lower frequencies of mutations in MYC, ID3, TCF3 and TP53, and a higher frequency of mutation in ARID1A in eBL samples. Recurrent mutations in two genes not previously associated with eBL were identified in 20% of tumors: RHOA and cyclin F (CCNF). We also observed that polyviral samples showed lower numbers of somatic mutations in common altered genes in comparison to sBL specimens, suggesting dual mechanisms of transformation, mutation versus virus driven in sBL and eBL respectively. Burkitt lymphoma is endemic in sub-Saharan Africa and affects primarily children of age 4–7 years. Historically, it was one of the first tumors associated with a virus (EBV) and bearing a translocation involving an oncogene, i.e. MYC. There are three distinct clinical variants of Burkitt lymphoma according to the World Health Organization: sporadic, endemic and immunodeficiency-related. Although there has been some recent work on the molecular characterization of sporadic Burkitt lymphomas, little is known about the pathogenesis of endemic cases. In this work, we analyzed 20 samples of RNASeq from Burkitt lymphoma collected in Lacor Hospital (Uganda, Africa) and validated in an extension panel of 73 samples from Uganda and Kenya. We identify the presence in the adjacent non-neoplastic tissue of other herpesviridae family members in 53% of the cases, namely cytomegalovirus (CMV) and Kaposi sarcoma herpesvirus (KSHV). We also demonstrate expression of EBV lytic genes in primary tumor samples and find an inverse association between EBV lytic expression and TCF3 activity. When studying the mutational profile of endemic Burkitt tumors, we find recurrent alterations in genes rarely mutated in sporadic Burkitt lymphomas, i.e. ARID1A, CCNF and RHOA, and lower numbers of mutations in genes previously reported to be commonly mutated in sporadic cases, i.e. MYC, ID3, TCF3, TP53. Together, these results illustrate a distinct genetic and viral profile of endemic Burkitt lymphoma, suggesting a dual mechanism of transformation (mutation versus virus driven in sBL and eBL respectively).
Collapse
Affiliation(s)
- Francesco Abate
- Department of Systems Biology, Columbia University College of Physicians and Surgeons, New York, New York, United States of America
- Department of Biomedical Informatics, Columbia University College of Physicians and Surgeons, New York, New York, United States of America
| | | | - Lucia Mundo
- Department of Medical Biotechnologies, Section of Pathology, University of Siena, Siena, Italy
| | - Maria Antonella Laginestra
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), S. Orsola-Malpighi Hospital, Bologna University School of Medicine, Bologna, Italy
| | - Fabio Fuligni
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), S. Orsola-Malpighi Hospital, Bologna University School of Medicine, Bologna, Italy
| | - Maura Rossi
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), S. Orsola-Malpighi Hospital, Bologna University School of Medicine, Bologna, Italy
| | - Sakellarios Zairis
- Department of Systems Biology, Columbia University College of Physicians and Surgeons, New York, New York, United States of America
| | - Sara Gazaneo
- Department of Medical Biotechnologies, Section of Pathology, University of Siena, Siena, Italy
| | - Giulia De Falco
- Department of Medical Biotechnologies, Section of Pathology, University of Siena, Siena, Italy
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Stefano Lazzi
- Department of Medical Biotechnologies, Section of Pathology, University of Siena, Siena, Italy
| | - Cristiana Bellan
- Department of Medical Biotechnologies, Section of Pathology, University of Siena, Siena, Italy
| | - Bruno Jim Rocca
- Department of Medical Biotechnologies, Section of Pathology, University of Siena, Siena, Italy
| | - Teresa Amato
- Department of Medical Biotechnologies, Section of Pathology, University of Siena, Siena, Italy
| | - Elena Marasco
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), S. Orsola-Malpighi Hospital, Bologna University School of Medicine, Bologna, Italy
| | - Maryam Etebari
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), S. Orsola-Malpighi Hospital, Bologna University School of Medicine, Bologna, Italy
| | | | | | | | | | | | - Pier Paolo Piccaluga
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), S. Orsola-Malpighi Hospital, Bologna University School of Medicine, Bologna, Italy
| | - Stefano Pileri
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), S. Orsola-Malpighi Hospital, Bologna University School of Medicine, Bologna, Italy
- Unit of Haematopathology, European Institute of Oncology, Milan and Bologna University School of Medicine, Bologna, Italy
- * E-mail: , (SP); (LL); (RR)
| | - Lorenzo Leoncini
- Department of Medical Biotechnologies, Section of Pathology, University of Siena, Siena, Italy
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), S. Orsola-Malpighi Hospital, Bologna University School of Medicine, Bologna, Italy
- * E-mail: , (SP); (LL); (RR)
| | - Raul Rabadan
- Department of Systems Biology, Columbia University College of Physicians and Surgeons, New York, New York, United States of America
- Department of Biomedical Informatics, Columbia University College of Physicians and Surgeons, New York, New York, United States of America
- * E-mail: , (SP); (LL); (RR)
| |
Collapse
|
426
|
Kataoka K, Nagata Y, Kitanaka A, Shiraishi Y, Shimamura T, Yasunaga JI, Totoki Y, Chiba K, Sato-Otsubo A, Nagae G, Ishii R, Muto S, Kotani S, Watatani Y, Takeda J, Sanada M, Tanaka H, Suzuki H, Sato Y, Shiozawa Y, Yoshizato T, Yoshida K, Makishima H, Iwanaga M, Ma G, Nosaka K, Hishizawa M, Itonaga H, Imaizumi Y, Munakata W, Ogasawara H, Sato T, Sasai K, Muramoto K, Penova M, Kawaguchi T, Nakamura H, Hama N, Shide K, Kubuki Y, Hidaka T, Kameda T, Nakamaki T, Ishiyama K, Miyawaki S, Yoon SS, Tobinai K, Miyazaki Y, Takaori-Kondo A, Matsuda F, Takeuchi K, Nureki O, Aburatani H, Watanabe T, Shibata T, Matsuoka M, Miyano S, Shimoda K, Ogawa S. Integrated molecular analysis of adult T cell leukemia/lymphoma. Nat Genet 2015; 47:1304-15. [PMID: 26437031 DOI: 10.1038/ng.3415] [Citation(s) in RCA: 593] [Impact Index Per Article: 65.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 09/09/2015] [Indexed: 12/11/2022]
Abstract
Adult T cell leukemia/lymphoma (ATL) is a peripheral T cell neoplasm of largely unknown genetic basis, associated with human T cell leukemia virus type-1 (HTLV-1) infection. Here we describe an integrated molecular study in which we performed whole-genome, exome, transcriptome and targeted resequencing, as well as array-based copy number and methylation analyses, in a total of 426 ATL cases. The identified alterations overlap significantly with the HTLV-1 Tax interactome and are highly enriched for T cell receptor-NF-κB signaling, T cell trafficking and other T cell-related pathways as well as immunosurveillance. Other notable features include a predominance of activating mutations (in PLCG1, PRKCB, CARD11, VAV1, IRF4, FYN, CCR4 and CCR7) and gene fusions (CTLA4-CD28 and ICOS-CD28). We also discovered frequent intragenic deletions involving IKZF2, CARD11 and TP73 and mutations in GATA3, HNRNPA2B1, GPR183, CSNK2A1, CSNK2B and CSNK1A1. Our findings not only provide unique insights into key molecules in T cell signaling but will also guide the development of new diagnostics and therapeutics in this intractable tumor.
Collapse
Affiliation(s)
- Keisuke Kataoka
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasunobu Nagata
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akira Kitanaka
- Department of Gastroenterology and Hematology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yuichi Shiraishi
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Teppei Shimamura
- Division of Systems Biology, Center for Neurological Disease and Cancer, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Jun-Ichirou Yasunaga
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Yasushi Totoki
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Kenichi Chiba
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Aiko Sato-Otsubo
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Genta Nagae
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Ryohei Ishii
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Satsuki Muto
- Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Shinichi Kotani
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yosaku Watatani
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - June Takeda
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masashi Sanada
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Advanced Diagnosis, Clinical Research Center, Nagoya Medical Center, Nagoya, Japan
| | - Hiroko Tanaka
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hiromichi Suzuki
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yusuke Sato
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yusuke Shiozawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tetsuichi Yoshizato
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kenichi Yoshida
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hideki Makishima
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masako Iwanaga
- Department of Frontier Life Science, Nagasaki University Graduate School of Biomedical Science, Nagasaki, Japan
| | - Guangyong Ma
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Kisato Nosaka
- Department of Hematology, Kumamoto University School of Medicine, Kumamoto, Japan
| | - Masakatsu Hishizawa
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hidehiro Itonaga
- Department of Hematology, Sasebo City General Hospital, Sasebo, Japan
| | - Yoshitaka Imaizumi
- Department of Hematology, Atomic Bomb Disease and Hibakusya Medicine Unit, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Wataru Munakata
- Department of Hematology, National Cancer Center Hospital, Tokyo, Japan
| | | | | | - Ken Sasai
- KAN Research Institute, Inc., Kobe, Japan
| | | | - Marina Penova
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takahisa Kawaguchi
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiromi Nakamura
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Natsuko Hama
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Kotaro Shide
- Department of Gastroenterology and Hematology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yoko Kubuki
- Department of Gastroenterology and Hematology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Tomonori Hidaka
- Department of Gastroenterology and Hematology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Takuro Kameda
- Department of Gastroenterology and Hematology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Tsuyoshi Nakamaki
- Division of Hematology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Ken Ishiyama
- Department of Hematology and Oncology, Kanazawa University Hospital, Kanazawa, Japan
| | - Shuichi Miyawaki
- Division of Hematology, Department of Internal Medicine, Tokyo Metropolitan Ohtsuka Hospital, Tokyo, Japan
| | - Sung-Soo Yoon
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Kensei Tobinai
- Department of Hematology, National Cancer Center Hospital, Tokyo, Japan
| | - Yasushi Miyazaki
- Department of Hematology, Atomic Bomb Disease and Hibakusya Medicine Unit, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kengo Takeuchi
- Pathology Project for Molecular Targets, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Toshiki Watanabe
- Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Tatsuhiro Shibata
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan.,Laboratory of Molecular Medicine, Human Genome Center, The institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Masao Matsuoka
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Satoru Miyano
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kazuya Shimoda
- Department of Gastroenterology and Hematology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
427
|
|
428
|
Tse E, Kwong YL. T-cell lymphoma: Microenvironment-related biomarkers. Semin Cancer Biol 2015; 34:46-51. [DOI: 10.1016/j.semcancer.2015.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 05/27/2015] [Accepted: 06/01/2015] [Indexed: 01/22/2023]
|
429
|
Pilati C, Zucman-Rossi J. Mutations leading to constitutive active gp130/JAK1/STAT3 pathway. Cytokine Growth Factor Rev 2015; 26:499-506. [DOI: 10.1016/j.cytogfr.2015.07.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 07/01/2015] [Indexed: 12/21/2022]
|
430
|
Lin Y, Wu Z, Guo W, Li J. Gene mutations in gastric cancer: a review of recent next-generation sequencing studies. Tumour Biol 2015; 36:7385-94. [PMID: 26364057 DOI: 10.1007/s13277-015-4002-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/25/2015] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) is one of the most common malignancies worldwide. Although some driver genes have been identified in GC, the molecular compositions of GC have not been fully understood. The development of next-generation sequencing (NGS) provides a high-throughput and systematic method to identify all genetic alterations in the cancer genome, especially in the field of mutation detection. NGS studies in GC have discovered some novel driver mutations. In this review, we focused on novel gene mutations discovered by NGS studies, along with some well-known driver genes in GC. We organized mutated genes from the perspective of related biological pathways. Mutations in genes relating to genome integrity (TP53, BRCA2), chromatin remodeling (ARID1A), cell adhesion (CDH1, FAT4, CTNNA1), cytoskeleton and cell motility (RHOA), Wnt pathway (CTNNB1, APC, RNF43), and RTK pathway (RTKs, RAS family, MAPK pathway, PIK pathway) are discussed. Efforts to establish a molecular classification based on NGS data which is valuable for future targeted therapy for GC are introduced. Comprehensive dissection of the molecular profile of GC cannot only unveil the molecular basis for GC but also identify genes of clinical utility, especially potential and specific therapeutic targets for GC.
Collapse
Affiliation(s)
- Y Lin
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Z Wu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - W Guo
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - J Li
- Tongji University Tianyou Hospital, Shanghai, 200331, China.
| |
Collapse
|
431
|
Inghirami G, Chan WC, Pileri S. Peripheral T-cell and NK cell lymphoproliferative disorders: cell of origin, clinical and pathological implications. Immunol Rev 2015; 263:124-59. [PMID: 25510275 DOI: 10.1111/imr.12248] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
T-cell lymphoproliferative disorders are a heterogeneous group of neoplasms with distinct clinical-biological properties. The normal cellular counterpart of these processes has been postulated based on functional and immunophenotypic analyses. However, T lymphocytes have been proven to be remarkably capable of modulating their properties, adapting their function in relationship with multiple stimuli and to the microenvironment. This impressive plasticity is determined by the equilibrium among a pool of transcription factors and by DNA chromatin regulators. It is now proven that the acquisition of specific genomic defects leads to the enforcement/activation of distinct pathways, which ultimately alter the preferential activation of defined regulators, forcing the neoplastic cells to acquire features and phenotypes distant from their original fate. Thus, dissecting the landscape of the genetic defects and their functional consequences in T-cell neoplasms is critical not only to pinpoint the origin of these tumors but also to define innovative mechanisms to re-adjust an unbalanced state to which the tumor cells have become addicted and make them vulnerable to therapies and targetable by the immune system. In our review, we briefly describe the pathological and clinical aspects of the T-cell lymphoma subtypes as well as NK-cell lymphomas and then focus on the current understanding of their pathogenesis and the implications on diagnosis and treatment.
Collapse
Affiliation(s)
- Giorgio Inghirami
- Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies (CeRMS), University of Torino, Torino, Italy; Department of Pathology, and NYU Cancer Center, New York University School of Medicine, New York, NY, USA; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | | | | | | |
Collapse
|
432
|
Ko M, An J, Pastor WA, Koralov SB, Rajewsky K, Rao A. TET proteins and 5-methylcytosine oxidation in hematological cancers. Immunol Rev 2015; 263:6-21. [PMID: 25510268 DOI: 10.1111/imr.12239] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
DNA methylation has pivotal regulatory roles in mammalian development, retrotransposon silencing, genomic imprinting, and X-chromosome inactivation. Cancer cells display highly dysregulated DNA methylation profiles characterized by global hypomethylation in conjunction with hypermethylation of promoter CpG islands that presumably lead to genome instability and aberrant expression of tumor suppressor genes or oncogenes. The recent discovery of ten-eleven-translocation (TET) family dioxygenases that oxidize 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) in DNA has led to profound progress in understanding the mechanism underlying DNA demethylation. Among the three TET genes, TET2 recurrently undergoes inactivating mutations in a wide range of myeloid and lymphoid malignancies. TET2 functions as a bona fide tumor suppressor particularly in the pathogenesis of myeloid malignancies resembling chronic myelomonocytic leukemia (CMML) and myelodysplastic syndromes (MDS) in human. Here we review diverse functions of TET proteins and the novel epigenetic marks that they generate in DNA methylation/demethylation dynamics and normal and malignant hematopoietic differentiation. The impact of TET2 inactivation in hematopoiesis and various mechanisms modulating the expression or activity of TET proteins are also discussed. Furthermore, we also present evidence that TET2 and TET3 collaborate to suppress aberrant hematopoiesis and hematopoietic transformation. A detailed understanding of the normal and pathological functions of TET proteins may provide new avenues to develop novel epigenetic therapies for treating hematological malignancies.
Collapse
Affiliation(s)
- Myunggon Ko
- Division of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | | | | | | | | | | |
Collapse
|
433
|
Yoshida N, Tsuzuki S, Karube K, Takahara T, Suguro M, Miyoshi H, Nishikori M, Shimoyama M, Tsukasaki K, Ohshima K, Seto M. STX11 functions as a novel tumor suppressor gene in peripheral T-cell lymphomas. Cancer Sci 2015; 106:1455-62. [PMID: 26176172 PMCID: PMC4637999 DOI: 10.1111/cas.12742] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 07/07/2015] [Accepted: 07/09/2015] [Indexed: 12/28/2022] Open
Abstract
Peripheral T-cell lymphomas (PTCL) are a heterogeneous group of non-Hodgkin lymphomas with poor prognosis. Their molecular pathogenesis has not been entirely elucidated. We previously showed that 6q24 is one of the most frequently deleted regions in primary thyroid T-cell lymphoma. In this study, we extended the analysis to other subtypes of PTCL and performed functional assays to identify the causative genes of PTCL that are located on 6q24. Genomic loss of 6q24 was observed in 14 of 232 (6%) PTCL cases. The genomic loss regions identified at 6q24 always involved only two known genes, STX11 and UTRN. The expression of STX11, but not UTRN, was substantially lower in PTCL than in normal T-cells. STX11 sequence analysis revealed mutations in two cases (one clinical sample and one T-cell line). We further analyzed the function of STX11 in 14 cell lines belonging to different lineages. STX11 expression only suppressed the proliferation of T-cell lines bearing genomic alterations at the STX11 locus. Interestingly, expression of a novel STX11 mutant (p.Arg78Cys) did not exert suppressive effects on the induced cell lines, suggesting that this mutant is a loss-of-function mutation. In addition, STX11-altered PTCL not otherwise specified cases were characterized by the presence of hemophagocytic syndrome (67% vs 8%, P = 0.04). They also tended to have a poor prognosis compared with those without STX11 alteration. These results suggest that STX11 plays an important role in the pathogenesis of PTCL and they may contribute to the future development of new drugs for the treatment of PTCL.
Collapse
Affiliation(s)
- Noriaki Yoshida
- Division of Molecular Medicine, Aichi Cancer Center Research Institute, Nagoya, Japan.,Department of Cancer Genetics, Nagoya University Graduate School of Medicine at Aichi Cancer Center Research Institute, Nagoya, Japan.,Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Shinobu Tsuzuki
- Division of Molecular Medicine, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Kennosuke Karube
- Division of Molecular Medicine, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Taishi Takahara
- Division of Molecular Medicine, Aichi Cancer Center Research Institute, Nagoya, Japan.,Department of Pathology and Laboratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Miyuki Suguro
- Division of Molecular Medicine, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Hiroaki Miyoshi
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Momoko Nishikori
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masanori Shimoyama
- Multi-institutional Clinical Trial Support Center, National Cancer Center, Tokyo, Japan
| | - Kunihiro Tsukasaki
- Department of Hematology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Koichi Ohshima
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Masao Seto
- Division of Molecular Medicine, Aichi Cancer Center Research Institute, Nagoya, Japan.,Department of Cancer Genetics, Nagoya University Graduate School of Medicine at Aichi Cancer Center Research Institute, Nagoya, Japan.,Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
434
|
IDH2R172 mutations define a unique subgroup of patients with angioimmunoblastic T-cell lymphoma. Blood 2015; 126:1741-52. [PMID: 26268241 DOI: 10.1182/blood-2015-05-644591] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/18/2015] [Indexed: 12/22/2022] Open
Abstract
Angioimmunoblastic T-cell lymphoma (AITL) is a common subtype of peripheral T-cell lymphoma (PTCL) with a poor prognosis. We performed targeted resequencing on 92 cases of PTCL and identified frequent mutations affecting RHOA, TET2, DNMT3A, and isocitrate dehydrogenase 2 (IDH2). Although IDH2 mutations are largely confined to AITL, mutations of the other 3 can be found in other types of PTCL, although at lower frequencies. These findings indicate a key role of epigenetic regulation in the pathogenesis of AITL. However, the epigenetic alterations induced by these mutations and their role in AITL pathogenesis are still largely unknown. We correlated mutational status with gene expression and global DNA methylation changes in AITL. Strikingly, AITL cases with IDH2(R172) mutations demonstrated a distinct gene expression signature characterized by downregulation of genes associated with TH1 differentiation (eg, STAT1 and IFNG) and a striking enrichment of an interleukin 12-induced gene signature. Ectopic expression of IDH2(R172K) in the Jurkat cell line and CD4(+) T cells led to markedly increased levels of 2-hydroxyglutarate, histone-3 lysine methylation, and 5-methylcytosine and a decrease of 5-hydroxymethylcytosine. Correspondingly, clinical samples with IDH2 mutations displayed a prominent increase in H3K27me3 and DNA hypermethylation of gene promoters. Integrative analysis of gene expression and promoter methylation revealed recurrently hypermethylated genes involved in T-cell receptor signaling and T-cell differentiation that likely contribute to lymphomagenesis in AITL.
Collapse
|
435
|
Schneider M, Schneider S, Zühlke-Jenisch R, Klapper W, Sundström C, Hartmann S, Hansmann ML, Siebert R, Küppers R, Giefing M. Alterations of theCD58gene in classical Hodgkin lymphoma. Genes Chromosomes Cancer 2015; 54:638-45. [DOI: 10.1002/gcc.22276] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/01/2015] [Accepted: 06/03/2015] [Indexed: 01/15/2023] Open
Affiliation(s)
- Markus Schneider
- Faculty of Medicine, Institute of Cell Biology (Cancer Research), University of Duisburg-Essen; Essen Germany
| | - Stefanie Schneider
- Faculty of Medicine, Institute of Cell Biology (Cancer Research), University of Duisburg-Essen; Essen Germany
| | - Reina Zühlke-Jenisch
- Institute of Human Genetics, Christian-Albrechts University Kiel & University Hospital Schleswig-Holstein, Campus Kiel; Kiel Germany
| | - Wolfram Klapper
- Department of Pathology; Hematopathology Section and Lymph Node Registry, University Hospital Schleswig-Holstein, Campus Kiel/Christian-Albrechts-University Kiel; Kiel Germany
| | - Christer Sundström
- Department of Immunology; Genetics and Pathology, Uppsala University Hospital; Uppsala Sweden
| | - Sylvia Hartmann
- Senckenberg Institute of Pathology, University of Frankfurt, Medical School; Frankfurt Germany
| | - Martin-Leo Hansmann
- Senckenberg Institute of Pathology, University of Frankfurt, Medical School; Frankfurt Germany
| | - Reiner Siebert
- Institute of Human Genetics, Christian-Albrechts University Kiel & University Hospital Schleswig-Holstein, Campus Kiel; Kiel Germany
| | - Ralf Küppers
- Faculty of Medicine, Institute of Cell Biology (Cancer Research), University of Duisburg-Essen; Essen Germany
| | - Maciej Giefing
- Institute of Human Genetics, Christian-Albrechts University Kiel & University Hospital Schleswig-Holstein, Campus Kiel; Kiel Germany
- Institute of Human Genetics, Polish Academy of Sciences; Poznan Poland
- Department of Otolaryngology; Head and Neck Surgery; Poznan University of Medical Sciences; Poznan Poland
| |
Collapse
|
436
|
Genomic landscape of cutaneous T cell lymphoma. Nat Genet 2015; 47:1011-9. [PMID: 26192916 PMCID: PMC4552614 DOI: 10.1038/ng.3356] [Citation(s) in RCA: 298] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 06/22/2015] [Indexed: 12/14/2022]
Abstract
Cutaneous T cell lymphoma (CTCL) is a non-Hodgkin lymphoma of skin-homing T lymphocytes. We performed exome and whole genome DNA sequence and RNA sequencing on purified CTCL and matched normal cells. The results implicate mutations in 17 genes in CTCL pathogenesis, including genes involved in T cell activation and apoptosis, NFκB signaling, chromatin remodeling, and DNA damage response. CTCL is distinctive in that somatic copy number variants (SCNVs) comprise 92% of all driver mutations (mean of 11.8 pathogenic SCNVs vs. 1.0 somatic single nucleotide variants per CTCL). These findings have implications for novel therapeutics.
Collapse
|
437
|
Molecular classification of gastric adenocarcinoma: translating new insights from the cancer genome atlas research network. Curr Treat Options Oncol 2015; 16:17. [PMID: 25813036 DOI: 10.1007/s11864-015-0331-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gastric cancer is a heterogenous cancer, which may be classified into several distinct subtypes based on pathology and epidemiology, each with different initiating pathological processes and each possibly having different tumor biology. A classification of gastric cancer should be important to select patients who can benefit from the targeted therapies or to precisely predict prognosis. The Cancer Genome Atlas (TCGA) study collaborated with previous reports regarding subtyping gastric cancer but also proposed a refined classification based on molecular characteristics. The addition of the new molecular classification strategy to a current classical subtyping may be a promising option, particularly stratification by Epstein-Barr virus (EBV) and microsatellite instability (MSI) statuses. According to TCGA study, EBV gastric cancer patients may benefit the programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) antibodies or phosphoinositide 3-kinase (PI3K) inhibitors which are now being developed. The discoveries of predictive biomarkers should improve patient care and individualized medicine in the management since the targeted therapies may have the potential to change the landscape of gastric cancer treatment, moreover leading to both better understanding of the heterogeneity and better outcomes. Patient enrichment by predictive biomarkers for new treatment strategies will be critical to improve clinical outcomes. Additionally, liquid biopsies will be able to enable us to monitor in real-time molecular escape mechanism, resulting in better treatment strategies.
Collapse
|
438
|
O'Connor OA, Bhagat G, Ganapathi K, Pedersen MB, D'Amore F, Radeski D, Bates SE. Changing the paradigms of treatment in peripheral T-cell lymphoma: from biology to clinical practice. Clin Cancer Res 2015; 20:5240-54. [PMID: 25320373 DOI: 10.1158/1078-0432.ccr-14-2020] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Despite enormous advances in our understanding of aggressive lymphomas, it is clear that progress in the peripheral T-cell lymphomas (PTCL) has lagged well behind other B-cell malignancies. Although there are many reasons for this, the one commonly cited notes that the paradigms for diffuse large B-cell lymphoma (DLBCL) were merely applied to all patients with PTCL, the classic "one-size-fits-all" approach. Despite these challenges, progress is being made. Recently, the FDA has approved four drugs for patients with relapsed/refractory PTCL over the past 5 years, and if one counts the recent Japanese approval of the anti-CCR4 monoclonal antibody for patients with adult T-cell leukemia/lymphoma, five drugs have been approved worldwide. These efforts have led to the initiation of no fewer than four randomized clinical studies exploring the integration of these new agents into standard CHOP (cyclophosphamide-Adriamycin-vincristine-prednisone)-based chemotherapy regimens for patients with newly diagnosed PTCL. In addition, a new wave of studies are exploring the merits of novel drug combinations in the disease, an effort to build on the obvious single-agent successes. What has emerged most recently is the recognition that the PTCL may be a disease-characterized by epigenetic dysregulation, which may help explain its sensitivity to histone deacetylase (HDAC) inhibitors, and open the door for even more creative combination approaches. Nonetheless, advances made over a relatively short period of time are changing how we now view these diseases and, hopefully, have poised us to finally improve its prognosis. See all articles in this CCR Focus section, "Paradigm Shifts in Lymphoma."
Collapse
Affiliation(s)
- Owen A O'Connor
- Center for Lymphoid Malignancies, Department of Medicine, Columbia University Medical Center, The New York Presbyterian Hospital, New York, New York.
| | - Govind Bhagat
- Division of Hematopathology, Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| | - Karthik Ganapathi
- Division of Hematopathology, Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| | | | - Francesco D'Amore
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | - Dejan Radeski
- Center for Lymphoid Malignancies, Department of Medicine, Columbia University Medical Center, The New York Presbyterian Hospital, New York, New York
| | - Susan E Bates
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
439
|
Bates SE, Eisch R, Ling A, Rosing D, Turner M, Pittaluga S, Prince HM, Kirschbaum MH, Allen SL, Zain J, Geskin LJ, Joske D, Popplewell L, Cowen EW, Jaffe ES, Nichols J, Kennedy S, Steinberg SM, Liewehr DJ, Showe LC, Steakley C, Wright J, Fojo T, Litman T, Piekarz RL. Romidepsin in peripheral and cutaneous T-cell lymphoma: mechanistic implications from clinical and correlative data. Br J Haematol 2015; 170:96-109. [PMID: 25891346 PMCID: PMC4675455 DOI: 10.1111/bjh.13400] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 02/04/2015] [Indexed: 01/02/2023]
Abstract
Romidepsin is an epigenetic agent approved for the treatment of patients with cutaneous or peripheral T-cell lymphoma (CTCL and PTCL). Here we report data in all patients treated on the National Cancer Institute 1312 trial, demonstrating long-term disease control and the ability to retreat patients relapsing off-therapy. In all, 84 patients with CTCL and 47 with PTCL were enrolled. Responses occurred early, were clinically meaningful and of very long duration in some cases. Notably, patients with PTCL receiving romidepsin as third-line therapy or later had a comparable response rate (32%) of similar duration as the total population (38%). Eight patients had treatment breaks of 3.5 months to 10 years; in four of six patients, re-initiation of treatment led to clear benefit. Safety data show slightly greater haematological and constitutional toxicity in PTCL. cDNA microarray studies show unique individual gene expression profiles, minimal overlap between patients, and both induction and repression of gene expression that reversed within 24 h. These data argue against cell death occurring as a result of an epigenetics-mediated gene induction programme. Together this work supports the safety and activity of romidepsin in T-cell lymphoma, but suggests a complex mechanism of action.
Collapse
Affiliation(s)
- Susan E. Bates
- Developmental Therapeutics Branch, NCI, NIH, Bethesda, MD
| | - Robin Eisch
- Developmental Therapeutics Branch, NCI, NIH, Bethesda, MD
| | - Alex Ling
- Department of Radiology, Warren G Magnuson Clinical Center, NIH, Bethesda, MD
| | | | | | | | - H. Miles Prince
- Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Mark H. Kirschbaum
- Hematological Malignancies, Penn State Hershey Medical Center, Hershey, PA
| | - Steven L. Allen
- Hofstra North Shore-LIJ School of Medicine and Monter Cancer Center, Lake Success, NY
| | | | - Larisa J. Geskin
- Department of Dermatology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - David Joske
- Sir Charles Gairdner Hospital, Nedlands, Western Australia
| | | | | | | | | | | | | | | | | | | | - John Wright
- Cancer Therapy Evaluation Program, DCTDC, NCI, Bethesda, MD
| | - Tito Fojo
- Center for Cancer Research, NCI, Bethesda, MD
| | | | | |
Collapse
|
440
|
Aspp1 Preserves Hematopoietic Stem Cell Pool Integrity and Prevents Malignant Transformation. Cell Stem Cell 2015; 17:23-34. [DOI: 10.1016/j.stem.2015.05.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 04/02/2015] [Accepted: 05/26/2015] [Indexed: 12/23/2022]
|
441
|
Chiba S, Enami T, Ogawa S, Sakata-Yanagimoto M. G17V RHOA: Genetic evidence of GTP-unbound RHOA playing a role in tumorigenesis in T cells. Small GTPases 2015; 6:100-3. [PMID: 26103434 DOI: 10.4161/21541248.2014.988088] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
RHOA is a member of RHO family small GTPases. Over the past 2 decades, numerous biochemical and cell biological studies on RHOA have demonstrated signalings such as activation of RHO-associated coiled-coil forming kinases through guanine nucleotide exchange and GTP hydrolysis, cellular responses such as actin fiber formation and myocin activation, biological consequences such as cell motility and cytokineses, etc. There have also been a plenty of active discussion on the roles of RHOA in tumorigenesis, primarily based on gain- and loss-of-function experiments. However, cell-type-specific functions of RHOA have only recently been delineated by conditional gene targeting strategies. Furthermore, very little information had been available on human cancer genetics until we and others recently reported frequent somatic RHOA mutations in a distinct subtype of T-cell-type malignant lymphoma called angioimmunoblastic T-cell lymphoma (AITL), and other T-cell lymphoma with AITL-like features. The RHOA mutations were very specific to these types of lymphoma among hematologic malignancies, and a single hotspot, glycine at the 17th position, was affected by the replacement with valine (G17V). Remarkably, G17V RHOA did not bind GTP, and moreover, it inhibited the GTP binding to wild-type RHOA. How G17V RHOA contributes to T-cell lymphomagenesis needs to be clarified.
Collapse
Affiliation(s)
- Shigeru Chiba
- a Department of Hematology; Faculty of Medicine; University of Tsukuba ; Tskuba , Japan
| | | | | | | |
Collapse
|
442
|
Hapgood G, Savage KJ. X. Challenges and future directions in peripheral T-cell lymphoma. Hematol Oncol 2015; 33 Suppl 1:56-61. [PMID: 26062056 DOI: 10.1002/hon.2218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Greg Hapgood
- Center for Lymphoid Cancer, British Columbia Cancer Agency and Division of Medical Oncology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Kerry J Savage
- Center for Lymphoid Cancer, British Columbia Cancer Agency and Division of Medical Oncology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,University of British Columbia, Vancouver, BC, V5Z 4E6, Canada
| |
Collapse
|
443
|
Zandvakili I, Davis AK, Hu G, Zheng Y. Loss of RhoA Exacerbates, Rather Than Dampens, Oncogenic K-Ras Induced Lung Adenoma Formation in Mice. PLoS One 2015; 10:e0127923. [PMID: 26030593 PMCID: PMC4452309 DOI: 10.1371/journal.pone.0127923] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 04/20/2015] [Indexed: 12/25/2022] Open
Abstract
Numerous cellular studies have indicated that RhoA signaling is required for oncogenic Ras-induced transformation, suggesting that RhoA is a useful target in Ras induced neoplasia. However, to date very limited data exist to genetically attribute RhoA function to Ras-mediated tumorigenesis in mammalian models. In order to assess whether RhoA is required for K-Ras-induced lung cancer initiation, we utilized the K-RasG12D Lox-Stop-Lox murine lung cancer model in combination with a conditional RhoAflox/flox and RhoC-/- knockout mouse models. Deletion of the floxed Rhoa gene and expression of K-RasG12D was achieved by either CCSP-Cre or adenoviral Cre, resulting in simultaneous expression of K-RasG12D and deletion of RhoA from the murine lung. We found that deletion of RhoA, RhoC or both did not adversely affect normal lung development. Moreover, we found that deletion of either RhoA or RhoC alone did not suppress K-RasG12D induced lung adenoma initiation. Rather, deletion of RhoA alone exacerbated lung adenoma formation, whereas dual deletion of RhoA and RhoC together significantly reduced K-RasG12D induced adenoma formation. Deletion of RhoA appears to induce a compensatory mechanism that exacerbates adenoma formation. The compensatory mechanism is at least partly mediated by RhoC. This study suggests that targeting of RhoA alone may allow for compensation and a paradoxical exacerbation of neoplasia, while simultaneous targeting of both RhoA and RhoC is likely to lead to more favorable outcomes.
Collapse
Affiliation(s)
- Inuk Zandvakili
- Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Molecular and Developmental Biology Graduate Program, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Medical-Scientist Training Program, College of Medicine, The University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Ashley Kuenzi Davis
- Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Guodong Hu
- Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Yi Zheng
- Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Molecular and Developmental Biology Graduate Program, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Medical-Scientist Training Program, College of Medicine, The University of Cincinnati, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
444
|
Spina V, Martuscelli L, Rossi D. Molecular deregulation of signaling in lymphoid tumors. Eur J Haematol 2015; 95:257-69. [PMID: 25881749 DOI: 10.1111/ejh.12567] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2015] [Indexed: 12/01/2022]
Abstract
Genomic studies have led to a significant impact both on the pace and the nature of understanding the molecular and biological bases of a variety of lymphoid tumors. An increasingly emerging aspect from genomic studies is that malignant lymphoid cells manipulate signaling pathways that are central to the homeostasis of their normal counterpart, including B- and T-cell receptor signaling, NF-κB signaling, Toll-like receptor signaling, cytokine signaling, MAP kinase signaling, and NOTCH signaling. This review aims at covering the signaling pathways that are affected by mutations in lymphoid tumors, and how genetic alteration of these pathways may contribute to disease pathogenesis and management.
Collapse
Affiliation(s)
- Valeria Spina
- Division of Hematology, Department of Translational Medicine, Amedeo Avogadro University of Eastern Piedmont, Novara, Italy
| | - Lavinia Martuscelli
- Division of Hematology, Department of Translational Medicine, Amedeo Avogadro University of Eastern Piedmont, Novara, Italy
| | - Davide Rossi
- Division of Hematology, Department of Translational Medicine, Amedeo Avogadro University of Eastern Piedmont, Novara, Italy
| |
Collapse
|
445
|
Crescenzo R, Abate F, Lasorsa E, Tabbo' F, Gaudiano M, Chiesa N, Di Giacomo F, Spaccarotella E, Barbarossa L, Ercole E, Todaro M, Boi M, Acquaviva A, Ficarra E, Novero D, Rinaldi A, Tousseyn T, Rosenwald A, Kenner L, Cerroni L, Tzankov A, Ponzoni M, Paulli M, Weisenburger D, Chan WC, Iqbal J, Piris MA, Zamo' A, Ciardullo C, Rossi D, Gaidano G, Pileri S, Tiacci E, Falini B, Shultz LD, Mevellec L, Vialard JE, Piva R, Bertoni F, Rabadan R, Inghirami G. Convergent mutations and kinase fusions lead to oncogenic STAT3 activation in anaplastic large cell lymphoma. Cancer Cell 2015; 27:516-32. [PMID: 25873174 PMCID: PMC5898430 DOI: 10.1016/j.ccell.2015.03.006] [Citation(s) in RCA: 333] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 11/14/2014] [Accepted: 03/10/2015] [Indexed: 01/01/2023]
Abstract
A systematic characterization of the genetic alterations driving ALCLs has not been performed. By integrating massive sequencing strategies, we provide a comprehensive characterization of driver genetic alterations (somatic point mutations, copy number alterations, and gene fusions) in ALK(-) ALCLs. We identified activating mutations of JAK1 and/or STAT3 genes in ∼20% of 88 [corrected] ALK(-) ALCLs and demonstrated that 38% of systemic ALK(-) ALCLs displayed double lesions. Recurrent chimeras combining a transcription factor (NFkB2 or NCOR2) with a tyrosine kinase (ROS1 or TYK2) were also discovered in WT JAK1/STAT3 ALK(-) ALCL. All these aberrations lead to the constitutive activation of the JAK/STAT3 pathway, which was proved oncogenic. Consistently, JAK/STAT3 pathway inhibition impaired cell growth in vitro and in vivo.
Collapse
Affiliation(s)
- Ramona Crescenzo
- Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies, University of Torino, 10126 Torino, Italy; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10021, USA
| | - Francesco Abate
- Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies, University of Torino, 10126 Torino, Italy; Department of Control and Computer Engineering, Politecnico di Torino, 10129 Torino, Italy; Department of Biomedical Informatics and Department of Systems Biology, Center for Computational Biology and Bioinformatics, Columbia University, New York, NY 10027, USA
| | - Elena Lasorsa
- Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies, University of Torino, 10126 Torino, Italy
| | - Fabrizio Tabbo'
- Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies, University of Torino, 10126 Torino, Italy; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10021, USA
| | - Marcello Gaudiano
- Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies, University of Torino, 10126 Torino, Italy; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10021, USA
| | - Nicoletta Chiesa
- Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies, University of Torino, 10126 Torino, Italy
| | - Filomena Di Giacomo
- Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies, University of Torino, 10126 Torino, Italy
| | - Elisa Spaccarotella
- Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies, University of Torino, 10126 Torino, Italy
| | - Luigi Barbarossa
- Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies, University of Torino, 10126 Torino, Italy
| | - Elisabetta Ercole
- Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies, University of Torino, 10126 Torino, Italy
| | - Maria Todaro
- Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies, University of Torino, 10126 Torino, Italy; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10021, USA
| | - Michela Boi
- Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies, University of Torino, 10126 Torino, Italy; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10021, USA
| | - Andrea Acquaviva
- Department of Control and Computer Engineering, Politecnico di Torino, 10129 Torino, Italy
| | - Elisa Ficarra
- Department of Control and Computer Engineering, Politecnico di Torino, 10129 Torino, Italy
| | - Domenico Novero
- Department of Pathology, A.O. Città della Salute e della Scienza (Molinette), 10126 Torino, Italy
| | - Andrea Rinaldi
- Lymphoma and Genomics Research Program, Institute of Oncology Research, 6500 Bellinzona, Switzerland
| | - Thomas Tousseyn
- Translational Cell and Tissue Research Lab, KU Leuven, 3000 Leuven, Belgium
| | - Andreas Rosenwald
- Institute of Pathology, University of Würzburg and Comprehensive Cancer Center Mainfranken, 97080 Würzburg, Germany
| | - Lukas Kenner
- Ludwing Boltzmann Institute for Cancer Research, 1090 Vienna, Austria
| | - Lorenzo Cerroni
- Research Unit Dermatopathology of the Medical University of Graz, 8036 Graz, Austria
| | - Alexander Tzankov
- Institute of Pathology, University Hospital Basel, 4031 Basel, Switzerland
| | - Maurilio Ponzoni
- Pathology & Lymphoid Malignancies Units, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Marco Paulli
- Department of Human Pathology, University of Pavia and Scientific Institute Fondazione Policlinico San Matteo, 27100 Pavia, Italy
| | | | - Wing C Chan
- Department of Pathology, City of Hope Medical Center, Duarte, CA 91010, USA
| | - Javeed Iqbal
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Miguel A Piris
- Cancer Genomics, Instituto de Formación e Investigación Marqués de Valdecilla and Department of Pathology, Hospital Universitario Marqués de Valdecilla, 39008 Santander, Spain
| | - Alberto Zamo'
- Department of Pathology and Diagnostics, University of Verona, 37134 Verona, Italy
| | - Carmela Ciardullo
- Division of Hematology, Department of Translational Medicine, Amedeo Avogadro University of Eastern Piedmont, 28100 Novara, Italy
| | - Davide Rossi
- Division of Hematology, Department of Translational Medicine, Amedeo Avogadro University of Eastern Piedmont, 28100 Novara, Italy
| | - Gianluca Gaidano
- Division of Hematology, Department of Translational Medicine, Amedeo Avogadro University of Eastern Piedmont, 28100 Novara, Italy
| | - Stefano Pileri
- European Institute of Oncology, 20141 Milano, Italy; Bologna University School of Medicine, 40126 Bologna, Italy
| | - Enrico Tiacci
- Institute of Hematology-Centro di Ricerche Onco-Ematologiche (CREO), Ospedale S. Maria della Misericordia, University of Perugia, 06100 Perugia, Italy
| | - Brunangelo Falini
- Institute of Hematology-Centro di Ricerche Onco-Ematologiche (CREO), Ospedale S. Maria della Misericordia, University of Perugia, 06100 Perugia, Italy
| | | | - Laurence Mevellec
- Janssen Research & Development, a Division of Janssen-Cilag, Campus de Maigremont, CS10615, 27106 Val-de-Reuil Cedex, France
| | - Jorge E Vialard
- Janssen Research & Development, a Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Roberto Piva
- Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies, University of Torino, 10126 Torino, Italy; Department of Pathology and NYU Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | - Francesco Bertoni
- Lymphoma and Genomics Research Program, Institute of Oncology Research, 6500 Bellinzona, Switzerland; Oncology Institute of Southern Switzerland, 6500 Bellinzona, Switzerland
| | - Raul Rabadan
- Department of Biomedical Informatics and Department of Systems Biology, Center for Computational Biology and Bioinformatics, Columbia University, New York, NY 10027, USA.
| | - Giorgio Inghirami
- Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies, University of Torino, 10126 Torino, Italy; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10021, USA; Department of Pathology and NYU Cancer Center, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
446
|
Abstract
DNA methylation patterns are disrupted in various malignancies, suggesting a role in the development of cancer, but genetic aberrations directly linking the DNA methylation machinery to malignancies were rarely observed, so this association remained largely correlative. Recently, however, mutations in the gene encoding DNA methyltransferase 3A (DNMT3A) were reported in patients with acute myeloid leukaemia (AML), and subsequently in patients with various other haematological malignancies, pointing to DNMT3A as a critically important new tumour suppressor. Here, we review the clinical findings related to DNMT3A, tie these data to insights from basic science studies conducted over the past 20 years and present a roadmap for future research that should advance the agenda for new therapeutic strategies.
Collapse
Affiliation(s)
- Liubin Yang
- 1] Department of Molecular and Human Genetics, Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas 77030, USA. [2]
| | - Rachel Rau
- 1] Department of Pediatrics, Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas 77030, USA. [2]
| | - Margaret A Goodell
- 1] Department of Molecular and Human Genetics, Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas 77030, USA. [2] Department of Pediatrics, Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
447
|
Affiliation(s)
- Melissa Gilbert-Ross
- The Winship Cancer Institute, Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Adam I Marcus
- The Winship Cancer Institute, Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Wei Zhou
- The Winship Cancer Institute, Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
448
|
Cancer genomics: why rare is valuable. J Mol Med (Berl) 2015; 93:369-81. [PMID: 25676695 PMCID: PMC4366545 DOI: 10.1007/s00109-015-1260-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 12/26/2014] [Accepted: 01/29/2015] [Indexed: 02/07/2023]
Abstract
Rare conditions are sometimes ignored in biomedical research because of difficulties in obtaining specimens and limited interest from fund raisers. However, the study of rare diseases such as unusual cancers has again and again led to breakthroughs in our understanding of more common diseases. It is therefore unsurprising that with the development and accessibility of next-generation sequencing, much has been learnt from studying cancers that are rare and in particular those with uniform biological and clinical behavior. Herein, we describe how shotgun sequencing of cancers such as granulosa cell tumor, endometrial stromal sarcoma, epithelioid hemangioendothelioma, ameloblastoma, small-cell carcinoma of the ovary, clear-cell carcinoma of the ovary, nonepithelial ovarian tumors, chondroblastoma, and giant cell tumor of the bone has led to rapidly translatable discoveries in diagnostics and tumor taxonomies, as well as providing insights into cancer biology.
Collapse
|
449
|
Kikushige Y, Miyamoto T. Pre-malignant lymphoid cells arise from hematopoietic stem/progenitor cells in chronic lymphocytic leukemia. Int J Hematol 2015; 102:528-35. [PMID: 25644149 DOI: 10.1007/s12185-015-1740-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 01/08/2015] [Accepted: 01/15/2015] [Indexed: 02/04/2023]
Abstract
Human malignancies progress through a multistep process that includes the development of critical somatic mutations over the clinical course. Recent novel findings have indicated that hematopoietic stem cells (HSCs), which have the potential to self-renew and differentiate into multilineage hematopoietic cells, are an important cellular target for the accumulation of critical somatic mutations in hematological malignancies and play a central role in myeloid malignancy development. In contrast to myeloid malignancies, mature lymphoid malignancies, such as chronic lymphocytic leukemia (CLL), are thought to originate directly from differentiated mature lymphocytes; however, recent compelling data have shown that primitive HSCs and hematopoietic progenitor cells contribute to the pathogenesis of mature lymphoid malignancies. Several representative mutations of hematological malignancies have been identified within the HSCs of CLL and lymphoma patients, indicating that the self-renewing long-lived fraction of HSCs can serve as a reservoir for the development of oncogenic events. Novel mice models have been established as human mature lymphoma models, in which specific oncogenic events target the HSCs and immature progenitor cells. These data collectively suggest that HSCs can be the cellular target involved in the accumulation of oncogenic events in the pathogenesis of mature lymphoid and myeloid malignancies.
Collapse
MESH Headings
- Animals
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/pathology
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymphocytes/metabolism
- Lymphocytes/pathology
- Mice
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
Collapse
Affiliation(s)
- Yoshikane Kikushige
- Department of Medicine and Biosystemic Sciences, Kyushu University Graduate School of Medicine, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Toshihiro Miyamoto
- Department of Medicine and Biosystemic Sciences, Kyushu University Graduate School of Medicine, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
450
|
Scourzic L, Mouly E, Bernard OA. TET proteins and the control of cytosine demethylation in cancer. Genome Med 2015; 7:9. [PMID: 25632305 PMCID: PMC4308928 DOI: 10.1186/s13073-015-0134-6] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The discovery that ten-eleven translocation (TET) proteins are α-ketoglutarate-dependent dioxygenases involved in the conversion of 5-methylcytosines (5-mC) to 5-hydroxymethylcytosine (5-hmC), 5-formylcytosine and 5-carboxycytosine has revealed new pathways in the cytosine methylation and demethylation process. The description of inactivating mutations in TET2 suggests that cellular transformation is in part caused by the deregulation of this 5-mC conversion. The direct and indirect deregulation of methylation control through mutations in DNA methyltransferase and isocitrate dehydrogenase (IDH) genes, respectively, along with the importance of cytosine methylation in the control of normal and malignant cellular differentiation have provided a conceptual framework for understanding the early steps in cancer development. Here, we review recent advances in our understanding of the cytosine methylation cycle and its implication in cellular transformation, with an emphasis on TET enzymes and 5-hmC. Ongoing clinical trials targeting the activity of mutated IDH enzymes provide a proof of principle that DNA methylation is targetable, and will trigger further therapeutic applications aimed at controlling both early and late stages of cancer development.
Collapse
Affiliation(s)
- Laurianne Scourzic
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1170, équipe labellisée Ligue Contre le Cancer, 94805 Villejuif, France ; Institut Gustave Roussy, 94805 Villejuif, France ; University Paris 11 Sud, 91405 Orsay, France
| | - Enguerran Mouly
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1170, équipe labellisée Ligue Contre le Cancer, 94805 Villejuif, France ; Institut Gustave Roussy, 94805 Villejuif, France ; University Paris 11 Sud, 91405 Orsay, France
| | - Olivier A Bernard
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1170, équipe labellisée Ligue Contre le Cancer, 94805 Villejuif, France ; Institut Gustave Roussy, 94805 Villejuif, France ; University Paris 11 Sud, 91405 Orsay, France
| |
Collapse
|