401
|
Singh N, Haldar S, Tripathi AK, Horback K, Wong J, Sharma D, Beserra A, Suda S, Anbalagan C, Dev S, Mukhopadhyay CK, Singh A. Brain iron homeostasis: from molecular mechanisms to clinical significance and therapeutic opportunities. Antioxid Redox Signal 2014; 20:1324-63. [PMID: 23815406 PMCID: PMC3935772 DOI: 10.1089/ars.2012.4931] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Iron has emerged as a significant cause of neurotoxicity in several neurodegenerative conditions, including Alzheimer's disease (AD), Parkinson's disease (PD), sporadic Creutzfeldt-Jakob disease (sCJD), and others. In some cases, the underlying cause of iron mis-metabolism is known, while in others, our understanding is, at best, incomplete. Recent evidence implicating key proteins involved in the pathogenesis of AD, PD, and sCJD in cellular iron metabolism suggests that imbalance of brain iron homeostasis associated with these disorders is a direct consequence of disease pathogenesis. A complete understanding of the molecular events leading to this phenotype is lacking partly because of the complex regulation of iron homeostasis within the brain. Since systemic organs and the brain share several iron regulatory mechanisms and iron-modulating proteins, dysfunction of a specific pathway or selective absence of iron-modulating protein(s) in systemic organs has provided important insights into the maintenance of iron homeostasis within the brain. Here, we review recent information on the regulation of iron uptake and utilization in systemic organs and within the complex environment of the brain, with particular emphasis on the underlying mechanisms leading to brain iron mis-metabolism in specific neurodegenerative conditions. Mouse models that have been instrumental in understanding systemic and brain disorders associated with iron mis-metabolism are also described, followed by current therapeutic strategies which are aimed at restoring brain iron homeostasis in different neurodegenerative conditions. We conclude by highlighting important gaps in our understanding of brain iron metabolism and mis-metabolism, particularly in the context of neurodegenerative disorders.
Collapse
Affiliation(s)
- Neena Singh
- 1 Department of Pathology, Case Western Reserve University , Cleveland, Ohio
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
402
|
McCarthy RC, Kosman DJ. Glial cell ceruloplasmin and hepcidin differentially regulate iron efflux from brain microvascular endothelial cells. PLoS One 2014; 9:e89003. [PMID: 24533165 PMCID: PMC3923066 DOI: 10.1371/journal.pone.0089003] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 01/13/2014] [Indexed: 11/18/2022] Open
Abstract
We have used an in vitro model system to probe the iron transport pathway across the brain microvascular endothelial cells (BMVEC) of the blood-brain barrier (BBB). This model consists of human BMVEC (hBMVEC) and C6 glioma cells (as an astrocytic cell line) grown in a transwell, a cell culture system commonly used to quantify metabolite flux across a cell-derived barrier. We found that iron efflux from hBMVEC through the ferrous iron permease ferroportin (Fpn) was stimulated by secretion of the soluble form of the multi-copper ferroxidase, ceruloplasmin (sCp) from the co-cultured C6 cells. Reciprocally, expression of sCp mRNA in the C6 cells was increased by neighboring hBMVEC. In addition, data indicate that C6 cell-secreted hepcidin stimulates internalization of hBMVEC Fpn but only when the end-feet projections characteristic of this glia-derived cell line are proximal to the endothelial cells. This hepcidin-dependent loss of Fpn correlated with knock-down of iron efflux from the hBMVEC; this result was consistent with the mechanism by which hepcidin regulates iron efflux in mammalian cells. In summary, the data support a model of iron trafficking across the BBB in which the capillary endothelium induce the underlying astrocytes to produce the ferroxidase activity needed to support Fpn-mediated iron efflux. Reciprocally, astrocyte proximity modulates the effective concentration of hepcidin at the endothelial cell membrane and thus the surface expression of hBMVEC Fpn. These results are independent of the source of hBMVEC iron (transferrin or non-transferrin bound) indicating that the model developed here is broadly applicable to brain iron homeostasis.
Collapse
Affiliation(s)
- Ryan C McCarthy
- Department of Biochemistry, University at Buffalo, School of Medicine and Biomedical Scienes, Buffalo, New York, United States of America
| | - Daniel J Kosman
- Department of Biochemistry, University at Buffalo, School of Medicine and Biomedical Scienes, Buffalo, New York, United States of America
| |
Collapse
|
403
|
The role of iron and reactive oxygen species in cell death. Nat Chem Biol 2014; 10:9-17. [PMID: 24346035 DOI: 10.1038/nchembio.1416] [Citation(s) in RCA: 1545] [Impact Index Per Article: 154.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 11/19/2013] [Indexed: 02/06/2023]
Abstract
The transition metal iron is essential for life, yet potentially toxic iron-catalyzed reactive oxygen species (ROS) are unavoidable in an oxygen-rich environment. Iron and ROS are increasingly recognized as important initiators and mediators of cell death in a variety of organisms and pathological situations. Here, we review recent discoveries regarding the mechanism by which iron and ROS participate in cell death. We describe the different roles of iron in triggering cell death, targets of iron-dependent ROS that mediate cell death and a new form of iron-dependent cell death termed ferroptosis. Recent advances in understanding the role of iron and ROS in cell death offer unexpected surprises and suggest new therapeutic avenues to treat cancer, organ damage and degenerative disease.
Collapse
|
404
|
Abstract
Histochemical and MRI studies have demonstrated that MS (multiple sclerosis) patients have abnormal deposition of iron in both gray and white matter structures. Data is emerging indicating that this iron could partake in pathogenesis by various mechanisms, e.g., promoting the production of reactive oxygen species and enhancing the production of proinflammatory cytokines. Iron chelation therapy could be a viable strategy to block iron-related pathological events or it can confer cellular protection by stabilizing hypoxia inducible factor 1α, a transcription factor that normally responds to hypoxic conditions. Iron chelation has been shown to protect against disease progression and/or limit iron accumulation in some neurological disorders or their experimental models. Data from studies that administered a chelator to animals with experimental autoimmune encephalomyelitis, a model of MS, support the rationale for examining this treatment approach in MS. Preliminary clinical studies have been performed in MS patients using deferoxamine. Although some side effects were observed, the large majority of patients were able to tolerate the arduous administration regimen, i.e., 6-8 h of subcutaneous infusion, and all side effects resolved upon discontinuation of treatment. Importantly, these preliminary studies did not identify a disqualifying event for this experimental approach. More recently developed chelators, deferasirox and deferiprone, are more desirable for possible use in MS given their oral administration, and importantly, deferiprone can cross the blood-brain barrier. However, experiences from other conditions indicate that the potential for adverse events during chelation therapy necessitates close patient monitoring and a carefully considered administration regimen.
Collapse
|
405
|
Nigral iron elevation is an invariable feature of Parkinson's disease and is a sufficient cause of neurodegeneration. BIOMED RESEARCH INTERNATIONAL 2014; 2014:581256. [PMID: 24527451 PMCID: PMC3914334 DOI: 10.1155/2014/581256] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 10/28/2013] [Indexed: 12/22/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor deficits accompanying degeneration of substantia nigra pars compactor (SNc) neurons. Although familial forms of the disease exist, the cause of sporadic PD is unknown. Symptomatic treatments are available for PD, but there are no disease modifying therapies. While the neurodegenerative processes in PD may be multifactorial, this paper will review the evidence that prooxidant iron elevation in the SNc is an invariable feature of sporadic and familial PD forms, participates in the disease mechanism, and presents as a tractable target for a disease modifying therapy.
Collapse
|
406
|
Barnham KJ, Bush AI. Biological metals and metal-targeting compounds in major neurodegenerative diseases. Chem Soc Rev 2014; 43:6727-49. [DOI: 10.1039/c4cs00138a] [Citation(s) in RCA: 347] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metals are functionally essential, but redistribute in neurodegenerative disease where they induce protein aggregates, catalyze radical formation, and lose bioavailability.
Collapse
Affiliation(s)
- Kevin J. Barnham
- Florey Institute of Neuroscience and Mental Health
- The University of Melbourne
- Parkville, Australia
- Bio21 Molecular Science and Biotechnology Institute
- The University of Melbourne
| | - Ashley I. Bush
- Florey Institute of Neuroscience and Mental Health
- The University of Melbourne
- Parkville, Australia
- Department of Pathology
- The University of Melbourne
| |
Collapse
|
407
|
Pooler AM, Noble W, Hanger DP. A role for tau at the synapse in Alzheimer's disease pathogenesis. Neuropharmacology 2014; 76 Pt A:1-8. [PMID: 24076336 DOI: 10.1016/j.neuropharm.2013.09.018] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 09/06/2013] [Accepted: 09/07/2013] [Indexed: 01/05/2023]
Abstract
Alzheimer's disease (AD) is characterized by brain deposition of amyloid plaques and tau neurofibrillary tangles along with steady cognitive decline. Although the mechanism by which AD pathogenesis occurs is unclear, accumulating evidence suggests that dysfunction and loss of synaptic connections may be an early event underlying disease progression. Profound synapse degeneration is observed in AD, and the density of these connections strongly correlates with cognitive ability. Initial investigations into AD-related synaptic changes focused on the toxic effects of amyloid. However, recent research suggests an emerging role for tau at the synapse. Even in the absence of tangles, mice overexpressing human tau display significant synaptic degeneration, suggesting that soluble, oligomeric tau is the synaptotoxic species. However, the localization of tau within synapses in both healthy and AD brains indicates that tau might play a role in normal synaptic function, which may be disrupted in disease. Tau is able to impact synaptic activity in several ways: studies show tau interacting directly with post-synaptic signaling complexes, regulating glutamatergic receptor content in dendritic spines, and influencing targeting and function of synaptic mitochondria. Early trials of tau-targeted immunotherapy reduce tau pathology and synapse loss, indicating that the toxic effects of tau may be reversible within a certain time frame. Understanding the role of tau in both normal and degenerating synapses is crucial for the development of therapeutic strategies designed to ameliorate synapse loss and prevent AD pathogenesis. This article is part of the Special Issue entitled 'The Synaptic Basis of Neurodegenerative Disorders'.
Collapse
Affiliation(s)
- Amy M Pooler
- King's College London, Institute of Psychiatry, Department of Neuroscience (PO37), De Crespigny Park, London SE5 8AF, United Kingdom
| | | | | |
Collapse
|
408
|
Hare DJ, Lei P, Ayton S, Roberts BR, Grimm R, George JL, Bishop DP, Beavis AD, Donovan SJ, McColl G, Volitakis I, Masters CL, Adlard PA, Cherny RA, Bush AI, Finkelstein DI, Doble PA. An iron–dopamine index predicts risk of parkinsonian neurodegeneration in the substantia nigra pars compacta. Chem Sci 2014. [DOI: 10.1039/c3sc53461h] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Imaging of iron and dopamine by laser ablation-inductively coupled plasma-mass spectrometry reveals a risk index for parkinsonian neurodegeneration
Collapse
Affiliation(s)
- Dominic J. Hare
- Elemental Bio-imaging Facility
- University of Technology
- Sydney, Australia
- The Florey Institute of Neuroscience and Mental Health
- The University of Melbourne
| | - Peng Lei
- The Florey Institute of Neuroscience and Mental Health
- The University of Melbourne
- Parkville, Australia
| | - Scott Ayton
- The Florey Institute of Neuroscience and Mental Health
- The University of Melbourne
- Parkville, Australia
| | - Blaine R. Roberts
- The Florey Institute of Neuroscience and Mental Health
- The University of Melbourne
- Parkville, Australia
| | - Rudolf Grimm
- Agilent Technologies
- Santa Clara, United States of America
| | - Jessica L. George
- The Florey Institute of Neuroscience and Mental Health
- The University of Melbourne
- Parkville, Australia
| | - David P. Bishop
- Elemental Bio-imaging Facility
- University of Technology
- Sydney, Australia
| | - Alison D. Beavis
- Elemental Bio-imaging Facility
- University of Technology
- Sydney, Australia
| | - Sarah J. Donovan
- The Florey Institute of Neuroscience and Mental Health
- The University of Melbourne
- Parkville, Australia
- Deakin University
- Burwood, Australia
| | - Gawain McColl
- The Florey Institute of Neuroscience and Mental Health
- The University of Melbourne
- Parkville, Australia
| | - Irene Volitakis
- The Florey Institute of Neuroscience and Mental Health
- The University of Melbourne
- Parkville, Australia
| | - Colin L. Masters
- The Florey Institute of Neuroscience and Mental Health
- The University of Melbourne
- Parkville, Australia
| | - Paul A. Adlard
- The Florey Institute of Neuroscience and Mental Health
- The University of Melbourne
- Parkville, Australia
| | - Robert A. Cherny
- The Florey Institute of Neuroscience and Mental Health
- The University of Melbourne
- Parkville, Australia
| | - Ashley I. Bush
- The Florey Institute of Neuroscience and Mental Health
- The University of Melbourne
- Parkville, Australia
| | - David I. Finkelstein
- The Florey Institute of Neuroscience and Mental Health
- The University of Melbourne
- Parkville, Australia
| | - Philip A. Doble
- Elemental Bio-imaging Facility
- University of Technology
- Sydney, Australia
| |
Collapse
|
409
|
Huang XT, Qian ZM, He X, Gong Q, Wu KC, Jiang LR, Lu LN, Zhu ZJ, Zhang HY, Yung WH, Ke Y. Reducing iron in the brain: a novel pharmacologic mechanism of huperzine A in the treatment of Alzheimer's disease. Neurobiol Aging 2013; 35:1045-54. [PMID: 24332448 DOI: 10.1016/j.neurobiolaging.2013.11.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 10/14/2013] [Accepted: 11/05/2013] [Indexed: 02/02/2023]
Abstract
Huperzine A (HupA), a natural inhibitor of acetylcholinesterase derived from a plant, is a licensed anti-Alzheimer's disease (AD) drug in China and a nutraceutical in the United States. In addition to acting as an acetylcholinesterase inhibitor, HupA possesses neuroprotective properties. However, the relevant mechanism is unknown. Here, we showed that the neuroprotective effect of HupA was derived from a novel action on brain iron regulation. HupA treatment reduced insoluble and soluble beta amyloid levels, ameliorated amyloid plaques formation, and hyperphosphorylated tau in the cortex and hippocampus of APPswe/PS1dE9 transgenic AD mice. Also, HupA decreased beta amyloid oligomers and amyloid precursor protein levels, and increased A Disintegrin And Metalloprotease Domain 10 (ADAM10) expression in these treated AD mice. However, these beneficial effects of HupA were largely abolished by feeding the animals with a high iron diet. In parallel, we found that HupA decreased iron content in the brain and demonstrated that HupA also has a role to reduce the expression of transferrin-receptor 1 as well as the transferrin-bound iron uptake in cultured neurons. The findings implied that reducing iron in the brain is a novel mechanism of HupA in the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Xiao-Tian Huang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zhong-Ming Qian
- Laboratory of Neuropharmacology, School of Pharmacy, Fudan University, Shanghai, China.
| | - Xuan He
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Qi Gong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Ka-Chun Wu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Li-Rong Jiang
- Laboratory of Neuropharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Li-Na Lu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Zhou-Jing Zhu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Hai-Yan Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Wing-Ho Yung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Ya Ke
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
410
|
Zhang J, Mattison HA, Liu C, Ginghina C, Auinger P, McDermott MP, Stewart T, Kang UJ, Cain KC, Shi M. Longitudinal assessment of tau and amyloid beta in cerebrospinal fluid of Parkinson disease. Acta Neuropathol 2013; 126:671-82. [PMID: 23644819 PMCID: PMC3796193 DOI: 10.1007/s00401-013-1121-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 04/22/2013] [Accepted: 04/24/2013] [Indexed: 12/11/2022]
Abstract
Tau gene has been consistently associated with the risk of Parkinson disease in recent genome wide association studies. In addition, alterations of the levels of total tau, phosphorylated tau [181P], and amyloid beta 1-42 in cerebrospinal fluid have been reported in patients with sporadic Parkinson disease and asymptomatic carriers of leucine-rich repeat kinase 2 mutations, in patterns that clearly differ from those typically described for patients with Alzheimer disease. To further determine the potential roles of these molecules in Parkinson disease pathogenesis and/or in tracking the disease progression, especially at early stages, the current study assessed all three proteins in 403 Parkinson disease patients enrolled in the DATATOP (Deprenyl and tocopherol antioxidative therapy of parkinsonism) placebo-controlled clinical trial, the largest cohort to date with cerebrospinal fluid samples collected longitudinally. These initially drug-naive patients at early disease stages were clinically evaluated, and cerebrospinal fluid was collected at baseline and then at endpoint, defined as the time at which symptomatic anti-Parkinson disease medications were determined to be required. General linear models were used to test for associations between baseline cerebrospinal fluid biomarker levels or their rates of change and changes in the Unified Parkinson Disease Rating Scale (total or part III motor score) over time. Robust associations among candidate markers are readily noted. Baseline levels of amyloid beta were weakly but negatively correlated with baseline Unified Parkinson Disease Rating Scale total scores. Baseline phosphorylated tau/total tau and phosphorylated tau/amyloid beta were significantly and negatively correlated with the rates of the Unified Parkinson Disease Rating Scale change. While medications (deprenyl and/or tocopherol) did not appear to alter biomarkers appreciably, a weak but significant positive correlation between the rate of change in total tau or total tau/amyloid beta levels and the change of the Unified Parkinson Disease Rating Scale was observed. Notably, these correlations did not appear to be influenced by APOE genotype. These results are one of the very first pieces of evidence suggesting that tau and amyloid beta are critically involved in early Parkinson disease progression, potentially by a different mechanism than that in Alzheimer disease, although their applications as Parkinson disease progression markers will likely require the addition of other proteins.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Hayley A. Mattison
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Changqin Liu
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
- Department of Endocrinology and Metabolism and Xiamen Diabetes Institute, the First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Carmen Ginghina
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Peggy Auinger
- Department of Neurology, Center for Human Experimental Therapeutics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Michael P. McDermott
- Department of Neurology, Center for Human Experimental Therapeutics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Tessandra Stewart
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Un Jung Kang
- Department of Neurology, University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - the Parkinson Study Group DATATOP Investigators
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
- Department of Endocrinology and Metabolism and Xiamen Diabetes Institute, the First Affiliated Hospital of Xiamen University, Xiamen, China
- Department of Neurology, Center for Human Experimental Therapeutics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Department of Neurology, University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
- Department of Biostatistics, University of Washington School of Public Health, Seattle, WA, USA
| | - Kevin C. Cain
- Department of Biostatistics, University of Washington School of Public Health, Seattle, WA, USA
| | - Min Shi
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
411
|
Abstract
Tau, a microtubule-associated protein, is implicated in the pathogenesis of Alzheimer's Disease (AD) in regard to both neurofibrillary tangle formation and neuronal network hyperexcitability. The genetic ablation of tau substantially reduces hyperexcitability in AD mouse lines, induced seizure models, and genetic in vivo models of epilepsy. These data demonstrate that tau is an important regulator of network excitability. However, developmental compensation in the genetic tau knock-out line may account for the protective effect against seizures. To test the efficacy of a tau reducing therapy for disorders with a detrimental hyperexcitability profile in adult animals, we identified antisense oligonucleotides that selectively decrease endogenous tau expression throughout the entire mouse CNS--brain and spinal cord tissue, interstitial fluid, and CSF--while having no effect on baseline motor or cognitive behavior. In two chemically induced seizure models, mice with reduced tau protein had less severe seizures than control mice. Total tau protein levels and seizure severity were highly correlated, such that those mice with the most severe seizures also had the highest levels of tau. Our results demonstrate that endogenous tau is integral for regulating neuronal hyperexcitability in adult animals and suggest that an antisense oligonucleotide reduction of tau could benefit those with epilepsy and perhaps other disorders associated with tau-mediated neuronal hyperexcitability.
Collapse
|
412
|
Chen J, Marks E, Lai B, Zhang Z, Duce JA, Lam LQ, Volitakis I, Bush AI, Hersch S, Fox JH. Iron accumulates in Huntington's disease neurons: protection by deferoxamine. PLoS One 2013; 8:e77023. [PMID: 24146952 PMCID: PMC3795666 DOI: 10.1371/journal.pone.0077023] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 08/26/2013] [Indexed: 01/13/2023] Open
Abstract
Huntington’s disease (HD) is a progressive neurodegenerative disorder caused by a polyglutamine-encoding CAG expansion in the huntingtin gene. Iron accumulates in the brains of HD patients and mouse disease models. However, the cellular and subcellular sites of iron accumulation, as well as significance to disease progression are not well understood. We used independent approaches to investigate the location of brain iron accumulation. In R6/2 HD mouse brain, synchotron x-ray fluorescence analysis revealed iron accumulation as discrete puncta in the perinuclear cytoplasm of striatal neurons. Further, perfusion Turnbull’s staining for ferrous iron (II) combined with transmission electron microscope ultra-structural analysis revealed increased staining in membrane bound peri-nuclear vesicles in R6/2 HD striatal neurons. Analysis of iron homeostatic proteins in R6/2 HD mice revealed decreased levels of the iron response proteins (IRPs 1 and 2) and accordingly decreased expression of iron uptake transferrin receptor (TfR) and increased levels of neuronal iron export protein ferroportin (FPN). Finally, we show that intra-ventricular delivery of the iron chelator deferoxamine results in an improvement of the motor phenotype in R6/2 HD mice. Our data supports accumulation of redox-active ferrous iron in the endocytic / lysosomal compartment in mouse HD neurons. Expression changes of IRPs, TfR and FPN are consistent with a compensatory response to an increased intra-neuronal labile iron pool leading to increased susceptibility to iron-associated oxidative stress. These findings, together with protection by deferoxamine, support a potentiating role of neuronal iron accumulation in HD.
Collapse
Affiliation(s)
- Jianfang Chen
- Department of Veterinary Sciences and Neuroscience Graduate Program, University of Wyoming, Laramie, Wyoming, United States of America
| | - Eileen Marks
- Department of Veterinary Sciences and Neuroscience Graduate Program, University of Wyoming, Laramie, Wyoming, United States of America
| | - Barry Lai
- Argonne National Laboratory, Lemont, Illinois, United States of America
| | - Zhaojie Zhang
- Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, United States of America
| | - James A. Duce
- Mental Health Research Institute, Parkville, Melbourne, Victoria, Australia
- School of Molecular and Cellular Biology, the Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Linh Q. Lam
- Mental Health Research Institute, Parkville, Melbourne, Victoria, Australia
| | - Irene Volitakis
- Mental Health Research Institute, Parkville, Melbourne, Victoria, Australia
| | - Ashley I. Bush
- Mental Health Research Institute, Parkville, Melbourne, Victoria, Australia
| | - Steven Hersch
- MassGeneral Institute for Neurodegenerative Disease, Charlestown, Massachusetts, United States of America
| | - Jonathan H. Fox
- Department of Veterinary Sciences and Neuroscience Graduate Program, University of Wyoming, Laramie, Wyoming, United States of America
- * E-mail:
| |
Collapse
|
413
|
Zempel H, Luedtke J, Kumar Y, Biernat J, Dawson H, Mandelkow E, Mandelkow EM. Amyloid-β oligomers induce synaptic damage via Tau-dependent microtubule severing by TTLL6 and spastin. EMBO J 2013; 32:2920-37. [PMID: 24065130 PMCID: PMC3831312 DOI: 10.1038/emboj.2013.207] [Citation(s) in RCA: 207] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 08/22/2013] [Indexed: 01/23/2023] Open
Abstract
Mislocalization and aggregation of Aβ and Tau combined with loss of synapses and microtubules (MTs) are hallmarks of Alzheimer disease. We exposed mature primary neurons to Aβ oligomers and analysed changes in the Tau/MT system. MT breakdown occurs in dendrites invaded by Tau (Tau missorting) and is mediated by spastin, an MT-severing enzyme. Spastin is recruited by MT polyglutamylation, induced by Tau missorting triggered translocalization of TTLL6 (Tubulin-Tyrosine-Ligase-Like-6) into dendrites. Consequences are spine loss and mitochondria and neurofilament mislocalization. Missorted Tau is not axonally derived, as shown by axonal retention of photoconvertible Dendra2-Tau, but newly synthesized. Recovery from Aβ insult occurs after Aβ oligomers lose their toxicity and requires the kinase MARK (Microtubule-Affinity-Regulating-Kinase). In neurons derived from Tau-knockout mice, MTs and synapses are resistant to Aβ toxicity because TTLL6 mislocalization and MT polyglutamylation are prevented; hence no spastin recruitment and no MT breakdown occur, enabling faster recovery. Reintroduction of Tau re-establishes Aβ-induced toxicity in TauKO neurons, which requires phosphorylation of Tau's KXGS motifs. Transgenic mice overexpressing Tau show TTLL6 translocalization into dendrites and decreased MT stability. The results provide a rationale for MT stabilization as a therapeutic approach.
Collapse
Affiliation(s)
- Hans Zempel
- DZNE, German Center for Neurodegenerative Diseases, Bonn, Germany
| | | | | | | | | | | | | |
Collapse
|
414
|
Asci R, Vallefuoco F, Andolfo I, Bruno M, De Falco L, Iolascon A. Trasferrin receptor 2 gene regulation by microRNA 221 in SH-SY5Y cells treated with MPP⁺ as Parkinson's disease cellular model. Neurosci Res 2013; 77:121-7. [PMID: 24055409 DOI: 10.1016/j.neures.2013.09.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/03/2013] [Accepted: 09/08/2013] [Indexed: 01/08/2023]
Abstract
Parkinson's disease (PD) is one of the most frequent human neurodegenerations. The neurodegeneration in PD is related to cellular iron increase but the mechanisms involved in iron accumulation remain unclear. Transferrin receptor type 2 (TFR2) is a protein expressed on cell membrane and involved in the cellular iron uptake. We hypothesized that microRNA 221 could regulate the expression of TfR2 in an in vitro model of Parkinson's disease, SH-SY5Y cells treated with MPP⁺. The miRNA 221 was selected by in silico analysis of several miRNAs predicted to target the TFR2 gene in SHSY5Y cells treated with MPP⁺. Taqman miRNA assay was used to evaluate the expression of the selected miRNAs. Using a luciferase assay we demonstrated the inhibition of TFR2 by miRNA 221. We show that in PD cellular model, TFR2 expression is regulated by miRNA 221. TFR2 and miR 221 are inversely correlated in SHSY5Y cells during the treatment with MPP⁺. Moreover, overexpression of miRNA 221 decreases the expression of TFR2, respectively, at the mRNA and protein levels. The inhibition of endogenous miRNA 221 also is able to regulate TFR2. These data suggest that miRNA 221 regulate TFR2 in PD model.
Collapse
Affiliation(s)
- Roberta Asci
- CEINGE, Biotecnologie Avanzate, Naples, Italy; Department of Biochemistry and Medical Biotechnologies, "Federico II" University of Naples, Naples, Italy
| | | | | | | | | | | |
Collapse
|
415
|
Montalbetti N, Simonin A, Kovacs G, Hediger MA. Mammalian iron transporters: families SLC11 and SLC40. Mol Aspects Med 2013; 34:270-87. [PMID: 23506870 DOI: 10.1016/j.mam.2013.01.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 12/14/2012] [Indexed: 01/13/2023]
Abstract
This review is focused on the mammalian SLC11 and SLC40 families and their roles in iron homeostasis. The SLC11 family is composed of two members, SLC11A1 and SLC11A2. SLC11A1 is expressed in the lysosomal compartment of macrophages and in the tertiary granules of neutrophils, playing a key role in innate resistance against infection by intracellular microbes. SLC11A2 is a key player in iron metabolism and is ubiquitously expressed, most notably in the proximal duodenum, immature erythroid cells, brain, placenta and kidney. Intestinal iron absorption is mediated by SLC11A2 at the apical membrane of enterocytes, followed by basolateral exit via SLC40A1. To meet the daily requirement for iron, approximately 80% of the iron comes from the breakdown of hemoglobin following macrophage phagocytosis of senescent erythrocytes (iron recycling). Both SLC11A1 and SLC11A2 play an important role in macrophage iron recycling. SLC11A2 also transports iron into the cytosol across the membrane of endocytotic vesicles of the transferrin receptor-cycle. SLC40A1 is the sole member of the SLC40 family and is involved in the only cellular iron efflux mechanism described. SLC40A1 is highly expressed in several tissues and cells that play a critical role in body iron homeostasis. The signaling pathways that regulate SLC11A2 and SLC40A1 expression at transcriptional, post-transcriptional and post-translational levels are discussed. The roles of SLC11A2 and/or SLC40A1 in iron-associated disorders such as hemochromatosis, neurodegenerative diseases, and breast cancer are also summarized.
Collapse
Affiliation(s)
- Nicolas Montalbetti
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland.
| | | | | | | |
Collapse
|
416
|
Abisambra J, Jinwal UK, Miyata Y, Rogers J, Blair L, Li X, Seguin SP, Wang L, Jin Y, Bacon J, Brady S, Cockman M, Guidi C, Zhang J, Koren J, Young ZT, Atkins CA, Zhang B, Lawson LY, Weeber EJ, Brodsky JL, Gestwicki JE, Dickey CA. Allosteric heat shock protein 70 inhibitors rapidly rescue synaptic plasticity deficits by reducing aberrant tau. Biol Psychiatry 2013; 74:367-74. [PMID: 23607970 PMCID: PMC3740016 DOI: 10.1016/j.biopsych.2013.02.027] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 02/05/2013] [Accepted: 02/22/2013] [Indexed: 02/03/2023]
Abstract
BACKGROUND The microtubule-associated protein tau accumulates in neurodegenerative diseases known as tauopathies, the most common being Alzheimer's disease. One way to treat these disorders may be to reduce abnormal tau levels through chaperone manipulation, thus subverting synaptic plasticity defects caused by tau's toxic accretion. METHODS Tauopathy models were used to study the impact of YM-01 on tau. YM-01 is an allosteric promoter of triage functions of the most abundant variant of the heat shock protein 70 (Hsp70) family in the brain, heat shock cognate 70 protein (Hsc70). The mechanisms by which YM-01 modified Hsc70 activity and tau stability were evaluated with biochemical methods, cell cultures, and primary neuronal cultures from tau transgenic mice. YM-01 was also administered to acute brain slices of tau mice; changes in tau stability and electrophysiological correlates of learning and memory were measured. RESULTS Tau levels were rapidly and potently reduced in vitro and ex vivo upon treatment with nanomolar concentrations of YM-01. Consistent with Hsc70 having a key role in this process, overexpression of heat shock protein 40 (DNAJB2), an Hsp70 co-chaperone, suppressed YM-01 activity. In contrast to its effects in pathogenic tauopathy models, YM-01 had little activity in ex vivo brain slices from normal, wild-type mice unless microtubules were disrupted, suggesting that Hsc70 acts preferentially on abnormal pools of free tau. Finally, treatment with YM-01 increased long-term potentiation in tau transgenic brain slices. CONCLUSIONS Therapeutics that exploit the ability of chaperones to selectively target abnormal tau can rapidly and potently rescue the synaptic dysfunction that occurs in Alzheimer's disease and other tauopathies.
Collapse
Affiliation(s)
- Jose Abisambra
- Department of Molecular Medicine, USF Health Byrd Alzheimer’s Institute, University of South Florida; Tampa, FL, 33613, USA
| | - Umesh K. Jinwal
- Department of Pharmaceutical Sciences, USF Health Byrd Alzheimer’s Institute, University of South Florida; Tampa, FL, 33613, USA
| | - Yoshinari Miyata
- Life Sciences Institute and Departments of Pathology and Biological Chemistry, University of Michigan; Ann Arbor, MI, 48109, USA
| | - Justin Rogers
- Department of Molecular Pharmacology and Physiology, USF Health Byrd Alzheimer’s Institute, University of South Florida; Tampa, FL, 33613, USA
| | - Laura Blair
- Department of Molecular Medicine, USF Health Byrd Alzheimer’s Institute, University of South Florida; Tampa, FL, 33613, USA
| | - Xiaokai Li
- Life Sciences Institute and Departments of Pathology and Biological Chemistry, University of Michigan; Ann Arbor, MI, 48109, USA
| | - Sandlin P. Seguin
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | - Li Wang
- Department of Molecular Medicine, USF Health Byrd Alzheimer’s Institute, University of South Florida; Tampa, FL, 33613, USA
| | - Ying Jin
- Department of Molecular Medicine, USF Health Byrd Alzheimer’s Institute, University of South Florida; Tampa, FL, 33613, USA
| | - Justin Bacon
- Department of Molecular Medicine, USF Health Byrd Alzheimer’s Institute, University of South Florida; Tampa, FL, 33613, USA
| | - Sarah Brady
- Department of Molecular Medicine, USF Health Byrd Alzheimer’s Institute, University of South Florida; Tampa, FL, 33613, USA
| | - Matthew Cockman
- Department of Molecular Medicine, USF Health Byrd Alzheimer’s Institute, University of South Florida; Tampa, FL, 33613, USA
| | - Chantal Guidi
- Department of Molecular Medicine, USF Health Byrd Alzheimer’s Institute, University of South Florida; Tampa, FL, 33613, USA
| | - Juan Zhang
- Department of Molecular Medicine, USF Health Byrd Alzheimer’s Institute, University of South Florida; Tampa, FL, 33613, USA
| | - John Koren
- Department of Molecular Medicine, USF Health Byrd Alzheimer’s Institute, University of South Florida; Tampa, FL, 33613, USA
| | - Zapporah T. Young
- Life Sciences Institute and Departments of Pathology and Biological Chemistry, University of Michigan; Ann Arbor, MI, 48109, USA
| | - Christopher A. Atkins
- Department of Molecular Medicine, USF Health Byrd Alzheimer’s Institute, University of South Florida; Tampa, FL, 33613, USA
| | - Bo Zhang
- Department of Molecular Medicine, USF Health Byrd Alzheimer’s Institute, University of South Florida; Tampa, FL, 33613, USA
| | - Lisa Y. Lawson
- Department of Molecular Medicine, USF Health Byrd Alzheimer’s Institute, University of South Florida; Tampa, FL, 33613, USA
| | - Edwin J. Weeber
- Department of Molecular Pharmacology and Physiology, USF Health Byrd Alzheimer’s Institute, University of South Florida; Tampa, FL, 33613, USA
| | - Jeffrey L. Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | - Jason E. Gestwicki
- Life Sciences Institute and Departments of Pathology and Biological Chemistry, University of Michigan; Ann Arbor, MI, 48109, USA
| | - Chad A. Dickey
- Department of Molecular Medicine, USF Health Byrd Alzheimer’s Institute, University of South Florida; Tampa, FL, 33613, USA
| |
Collapse
|
417
|
Ayton S, Lei P, Bush AI. Metallostasis in Alzheimer's disease. Free Radic Biol Med 2013; 62:76-89. [PMID: 23142767 DOI: 10.1016/j.freeradbiomed.2012.10.558] [Citation(s) in RCA: 258] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 10/30/2012] [Accepted: 10/30/2012] [Indexed: 12/22/2022]
Abstract
2012 has been another year in which multiple large-scale clinical trials for Alzheimer's disease (AD) have failed to meet their clinical endpoints. With the social and financial burden of this disease increasing every year, the onus is now on the field of AD researchers to investigate alternative ideas to deliver outcomes for patients. Although several major clinical trials targeting Aβ have failed, three smaller clinical trials targeting metal interactions with Aβ have all shown benefit for patients. Here we review the genetic, pathological, biochemical, and pharmacological evidence that underlies the metal hypothesis of AD. The AD-affected brain suffers from metallostasis, or fatigue of metal trafficking, resulting in redistribution of metals into inappropriate compartments. The metal hypothesis is built upon a triad of transition elements: iron, copper, and zinc. The hypothesis has matured from early investigations showing amyloidogenic and oxidative stress consequences of these metals; recently, disease-related proteins, APP, tau, and presenilin, have been shown to have major roles in metal regulation, which provides insight into the pathway of neurodegeneration in AD and illuminates potential new therapeutic avenues.
Collapse
Affiliation(s)
- Scott Ayton
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Peng Lei
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Ashley I Bush
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia.
| |
Collapse
|
418
|
Abstract
The pathway leading from soluble and monomeric to hyperphosphorylated, insoluble and filamentous tau protein is at the centre of many human neurodegenerative diseases, collectively referred to as tauopathies. Dominantly inherited mutations in MAPT, the gene that encodes tau, cause forms of frontotemporal dementia and parkinsonism, proving that dysfunction of tau is sufficient to cause neurodegeneration and dementia. However, most cases of tauopathy are not inherited in a dominant manner. The first tau aggregates form in a few nerve cells in discrete brain areas. These become self propagating and spread to distant brain regions in a prion-like manner. The prevention of tau aggregation and propagation is the focus of attempts to develop mechanism-based treatments for tauopathies.
Collapse
Affiliation(s)
- Maria Grazia Spillantini
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
419
|
Hare D, Ayton S, Bush A, Lei P. A delicate balance: Iron metabolism and diseases of the brain. Front Aging Neurosci 2013; 5:34. [PMID: 23874300 PMCID: PMC3715022 DOI: 10.3389/fnagi.2013.00034] [Citation(s) in RCA: 281] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/25/2013] [Indexed: 12/12/2022] Open
Abstract
Iron is the most abundant transition metal within the brain, and is vital for a number of cellular processes including neurotransmitter synthesis, myelination of neurons, and mitochondrial function. Redox cycling between ferrous and ferric iron is utilized in biology for various electron transfer reactions essential to life, yet this same chemistry mediates deleterious reactions with oxygen that induce oxidative stress. Consequently, there is a precise and tightly controlled mechanism to regulate iron in the brain. When iron is dysregulated, both conditions of iron overload and iron deficiencies are harmful to the brain. This review focuses on how iron metabolism is maintained in the brain, and how an alteration to iron and iron metabolism adversely affects neurological function.
Collapse
Affiliation(s)
- Dominic Hare
- The Florey Institute of Neuroscience and Mental Health, University of MelbourneVIC, Australia
- Elemental Bio-imaging Facility, University of TechnologySydney, NSW, Australia
| | - Scott Ayton
- The Florey Institute of Neuroscience and Mental Health, University of MelbourneVIC, Australia
| | - Ashley Bush
- The Florey Institute of Neuroscience and Mental Health, University of MelbourneVIC, Australia
| | - Peng Lei
- The Florey Institute of Neuroscience and Mental Health, University of MelbourneVIC, Australia
| |
Collapse
|
420
|
Lin L, Huang QX, Yang SS, Chu J, Wang JZ, Tian Q. Melatonin in Alzheimer's disease. Int J Mol Sci 2013; 14:14575-93. [PMID: 23857055 PMCID: PMC3742260 DOI: 10.3390/ijms140714575] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 06/21/2013] [Accepted: 07/05/2013] [Indexed: 11/18/2022] Open
Abstract
Alzheimer’s disease (AD), an age-related neurodegenerative disorder with progressive cognition deficit, is characterized by extracellular senile plaques (SP) of aggregated β-amyloid (Aβ) and intracellular neurofibrillary tangles, mainly containing the hyperphosphorylated microtubule-associated protein tau. Multiple factors contribute to the etiology of AD in terms of initiation and progression. Melatonin is an endogenously produced hormone in the brain and decreases during aging and in patients with AD. Data from clinical trials indicate that melatonin supplementation improves sleep, ameliorates sundowning and slows down the progression of cognitive impairment in AD patients. Melatonin efficiently protects neuronal cells from Aβ-mediated toxicity via antioxidant and anti-amyloid properties. It not only inhibits Aβ generation, but also arrests the formation of amyloid fibrils by a structure-dependent interaction with Aβ. Our studies have demonstrated that melatonin efficiently attenuates Alzheimer-like tau hyperphosphorylation. Although the exact mechanism is still not fully understood, a direct regulatory influence of melatonin on the activities of protein kinases and protein phosphatases is proposed. Additionally, melatonin also plays a role in protecting the cholinergic system and in anti-inflammation. The aim of this review is to stimulate interest in melatonin as a potentially useful agent in the prevention and treatment of AD.
Collapse
Affiliation(s)
- Li Lin
- Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Department of Pathology and Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; E-Mail:
- Department of Pathology and Pathophysiology, College of Medical Science, Jishou University, 120 People Road, Jishou 436100, China; E-Mails: (L.L.); (S.-S.Y.)
| | - Qiong-Xia Huang
- Department of TCM Rationale, College of Basic Medicine, Hubei University of Chinese Medicine, 1 West Road Huangjia Lake, Wuhan 430065, China; E-Mail:
| | - Shu-Sheng Yang
- Department of Pathology and Pathophysiology, College of Medical Science, Jishou University, 120 People Road, Jishou 436100, China; E-Mails: (L.L.); (S.-S.Y.)
| | - Jiang Chu
- Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Department of Pathology and Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; E-Mail:
| | - Jian-Zhi Wang
- Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Department of Pathology and Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; E-Mail:
- Authors to whom correspondence should be addressed; E-Mails: (J.-Z.W.); (Q.T.); Tel./Fax: +86-27-8369-3883 (J.-Z.W.); Tel.: +86-27-8369-2625 (Q.T.)
| | - Qing Tian
- Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Department of Pathology and Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; E-Mail:
- Authors to whom correspondence should be addressed; E-Mails: (J.-Z.W.); (Q.T.); Tel./Fax: +86-27-8369-3883 (J.-Z.W.); Tel.: +86-27-8369-2625 (Q.T.)
| |
Collapse
|
421
|
Abstract
Adequate therapies are lacking for Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and other neurodegenerative diseases. The ability to use antisense oligonucleotides (ASOs) to target disease-associated genes by means of RNA may offer a potent approach for the treatment of these, and other, neurodegenerative disorders. In modifying the basic backbone chemistry, chemical groups, and target sequence, ASOs can act through numerous mechanisms to decrease or increase total protein levels, preferentially shift splicing patterns, and inhibit microRNAs, all at the level of the RNA molecule. Here, we discuss many of the more commonly used ASO chemistries, as well as the different mechanisms of action that can result from these specific chemical modifications. When applied to multiple neurodegenerative mouse models, ASOs that specifically target the detrimental transgenes have been shown to rescue disease associated phenotypes in vivo. These supporting mouse model data have moved the ASOs from the bench to the clinic, with two neuro-focused human clinical trials now underway and several more being proposed. Although still early in development, translating ASOs into human patients for neurodegeneration appears promising.
Collapse
Affiliation(s)
- Sarah L. DeVos
- Department of Neurology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 USA
| | - Timothy M. Miller
- Department of Neurology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 USA
| |
Collapse
|
422
|
Yoshiyama Y, Lee VMY, Trojanowski JQ. Therapeutic strategies for tau mediated neurodegeneration. J Neurol Neurosurg Psychiatry 2013; 84:784-95. [PMID: 23085937 PMCID: PMC3912572 DOI: 10.1136/jnnp-2012-303144] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Based on the amyloid hypothesis, controlling β-amyloid protein (Aβ) accumulation is supposed to suppress downstream pathological events, tau accumulation, neurodegeneration and cognitive decline. However, in recent clinical trials, Aβ removal or reducing Aβ production has shown limited efficacy. Moreover, while active immunisation with Aβ resulted in the clearance of Aβ, it did not prevent tau pathology or neurodegeneration. This prompts the concern that it might be too late to employ Aβ targeting therapies once tau mediated neurodegeneration has occurred. Therefore, it is timely and very important to develop tau directed therapies. The pathomechanisms of tau mediated neurodegeneration are unclear but hyperphosphorylation, oligomerisation, fibrillisation and propagation of tau pathology have been proposed as the likely pathological processes that induce loss of function or gain of toxic function of tau, causing neurodegeneration. Here we review the strategies for tau directed treatments based on recent progress in research on tau and our understanding of the pathomechanisms of tau mediated neurodegeneration.
Collapse
Affiliation(s)
- Yasumasa Yoshiyama
- Department of Neurology, Chiba East National Hospital, 673 Nitona, Chuo Ward, Chiba, Chiba 260-8712, Japan.
| | | | | |
Collapse
|
423
|
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disease causing irreversible cognitive decline in the elderly. There is no disease-modifying therapy for this condition and the mechanisms underpinning neuronal dysfunction and neurodegeneration are unclear. Compromised cytoskeletal integrity within neurons is reported in AD. This is believed to result from loss-of-function of the microtubule-associated protein tau, which becomes hyper-phosphorylated and deposits into neurofibrillary tangles in AD. We have developed a Drosophila model of tauopathy in which abnormal human tau mediates neuronal dysfunction characterised by microtubule destabilisation, axonal transport disruption, synaptic defects and behavioural impairments. Here we show that a microtubule-stabilising drug, NAPVSIPQ (NAP), prevents as well as reverses these phenotypes even after they have become established. Moreover, it does not alter abnormal tau levels indicating that it by-passes toxic tau altogether. Thus, microtubule stabilisation is a disease-modifying therapeutic strategy protecting against tau-mediated neuronal dysfunction, which holds great promise for tauopathies like AD.
Collapse
|
424
|
Bulic B, Pickhardt M, Mandelkow E. Progress and developments in tau aggregation inhibitors for Alzheimer disease. J Med Chem 2013; 56:4135-55. [PMID: 23484434 DOI: 10.1021/jm3017317] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pharmacological approaches directed toward Alzheimer disease are diversifying in parallel with a growing number of promising targets. Investigations on the microtubule-associated protein tau yielded innovative targets backed by recent findings about the central role of tau in numerous neurodegenerative diseases. In this review, we summarize the recent evolution in the development of nonpeptidic small molecules tau aggregation inhibitors (TAGIs) and their advancement toward clinical trials. The compounds are classified according to their chemical structures, providing correlative insights into their pharmacology. Overall, shared structure-activity traits are emerging, as well as specific binding modes related to their ability to engage in hydrogen bonding. Medicinal chemistry efforts on TAGIs together with encouraging in vivo data argue for successful translation to the clinic.
Collapse
Affiliation(s)
- Bruno Bulic
- Laboratory of Organic Synthesis of Functional Systems, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany.
| | | | | |
Collapse
|
425
|
Götz J, Xia D, Leinenga G, Chew YL, Nicholas HR. What Renders TAU Toxic. Front Neurol 2013; 4:72. [PMID: 23772223 PMCID: PMC3677143 DOI: 10.3389/fneur.2013.00072] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 05/28/2013] [Indexed: 12/21/2022] Open
Abstract
TAU is a microtubule-associated protein that under pathological conditions such as Alzheimer's disease (AD) forms insoluble, filamentous aggregates. When 20 years after TAU's discovery the first TAU transgenic mouse models were established, one declared goal that was achieved was the modeling of authentic TAU aggregate formation in the form of neurofibrillary tangles. However, as we review here, it has become increasingly clear that TAU causes damage much before these filamentous aggregates develop. In fact, because TAU is a scaffolding protein, increased levels and an altered subcellular localization (due to an increased insolubility and impaired clearance) result in the interaction of TAU with cellular proteins with which it would otherwise either not interact or do so to a lesser degree, thereby impairing their physiological functions. We specifically discuss the non-axonal localization of TAU, the role phosphorylation has in TAU toxicity and how TAU impairs mitochondrial functions. A major emphasis is on what we have learned from the four available TAU knock-out models in mice, and the knock-out of the TAU/MAP2 homolog PTL-1 in worms. It has been proposed that in human pathological conditions such as AD, a rare toxic TAU species exists which needs to be specifically removed to abrogate TAU's toxicity and restore neuronal functions. However, what is toxic in one context may not be in another, and simply reducing, but not fully abolishing TAU levels may be sufficient to abrogate TAU toxicity.
Collapse
Affiliation(s)
- Jürgen Götz
- Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- Sydney Medical School, Brain and Mind Research Institute, University of Sydney, Sydney, NSW, Australia
| | - Di Xia
- Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Gerhard Leinenga
- Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Yee Lian Chew
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
| | - Hannah R. Nicholas
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
426
|
MacArthur L, Ressom H, Shah S, Federoff HJ. Network modeling to identify new mechanisms and therapeutic targets for Parkinson’s disease. Expert Rev Neurother 2013; 13:685-93. [DOI: 10.1586/ern.13.59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
427
|
Cortical phase changes in Alzheimer's disease at 7T MRI: A novel imaging marker. Alzheimers Dement 2013; 10:e19-26. [DOI: 10.1016/j.jalz.2013.02.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 10/30/2012] [Accepted: 02/06/2013] [Indexed: 01/12/2023]
|
428
|
Ayton S, George JL, Adlard PA, Bush AI, Cherny RA, Finkelstein DI. The effect of dopamine on MPTP-induced rotarod disability. Neurosci Lett 2013; 543:105-9. [DOI: 10.1016/j.neulet.2013.02.066] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 02/06/2013] [Accepted: 02/24/2013] [Indexed: 01/07/2023]
|
429
|
Jouroukhin Y, Ostritsky R, Assaf Y, Pelled G, Giladi E, Gozes I. NAP (davunetide) modifies disease progression in a mouse model of severe neurodegeneration: protection against impairments in axonal transport. Neurobiol Dis 2013; 56:79-94. [PMID: 23631872 DOI: 10.1016/j.nbd.2013.04.012] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 04/04/2013] [Accepted: 04/09/2013] [Indexed: 12/12/2022] Open
Abstract
NAP (davunetide) is a novel neuroprotective compound with mechanism of action that appears to involve microtubule (MT) stabilization and repair. To evaluate, for the first time, the impact of NAP on axonal transport in vivo and to translate it to neuroprotection in a severe neurodegeneration, the SOD1-G93A mouse model for amyotrophic lateral sclerosis (ALS) was used. Manganese-enhanced magnetic resonance imaging (MRI), estimating axonal transport rates, revealed a significant reduction of the anterograde axonal transport in the ALS mice compared to healthy control mice. Acute NAP treatment normalized axonal transport rates in these ALS mice. Tau hyperphosphorylation, associated with MT dysfunction and defective axonal transport, was discovered in the brains of the ALS mice and was significantly reduced by chronic NAP treatment. Furthermore, in healthy wild type (WT) mice, NAP reversed axonal transport disruption by colchicine, suggesting drug-dependent protection against axonal transport impairment through stabilization of the neuronal MT network. Histochemical analysis showed that chronic NAP treatment significantly protected spinal cord motor neurons against ALS-like pathology. Sequential MRI measurements, correlating brain structure with ALS disease progression, revealed a significant damage to the ventral tegmental area (VTA), indicative of impairments to the dopaminergic pathways relative to healthy controls. Chronic daily NAP treatment of the SOD1-G93A mice, initiated close to disease onset, delayed degeneration of the trigeminal, facial and hypoglossal motor nuclei as was significantly apparent at days 90-100 and further protected the VTA throughout life. Importantly, protection of the VTA was significantly correlated with longevity and overall, NAP treatment significantly prolonged life span in the ALS mice.
Collapse
Affiliation(s)
- Yan Jouroukhin
- Department of Human Molecular Genetics and Biochemistry, Sagol School of Neuroscience, Adams Super Center for Brain Studies, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | | | |
Collapse
|
430
|
Greenough MA, Camakaris J, Bush AI. Metal dyshomeostasis and oxidative stress in Alzheimer’s disease. Neurochem Int 2013; 62:540-55. [DOI: 10.1016/j.neuint.2012.08.014] [Citation(s) in RCA: 266] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 08/13/2012] [Accepted: 08/30/2012] [Indexed: 01/21/2023]
|
431
|
Oaks AW, Frankfurt M, Finkelstein DI, Sidhu A. Age-dependent effects of A53T alpha-synuclein on behavior and dopaminergic function. PLoS One 2013; 8:e60378. [PMID: 23560093 PMCID: PMC3613356 DOI: 10.1371/journal.pone.0060378] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 02/25/2013] [Indexed: 11/30/2022] Open
Abstract
Expression of A53T mutant human alpha-synuclein under the mouse prion promoter is among the most successful transgenic models of Parkinson's disease. Accumulation of A53T alpha-synuclein causes adult mice to develop severe motor impairment resulting in early death at 8–12 months of age. In younger, pre-symptomatic animals, altered motor activity and anxiety-like behaviors have also been reported. These behavioral changes, which precede severe neuropathology, may stem from non-pathological functions of alpha-synuclein, including modulation of monoamine neurotransmission. Our analysis over the adult life-span of motor activity, anxiety-like, and depressive-like behaviors identifies perturbations both before and after the onset of disease. Young A53T mice had increased distribution of the dopamine transporter (DAT) to the membrane that was associated with increased striatal re-uptake function. DAT function decreased with aging, and was associated with neurochemical alterations that included increased expression of beta-synuclein and gamma synuclein. Prior to normalization of dopamine uptake, transient activation of Tau kinases and hyperphosphorylation of Tau in the striatum were also observed. Aged A53T mice had reduced neuron counts in the substantia nigra pars compacta, yet striatal medium spiny neuron dendritic spine density was largely maintained. These findings highlight the involvement of the synuclein family of proteins and phosphorylation of Tau in the response to dopaminergic dysfunction of the nigrostriatal pathway.
Collapse
Affiliation(s)
- Adam W. Oaks
- Laboratory of Molecular Neurochemistry, Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, D.C., United States of America
| | - Maya Frankfurt
- Department of Science Education, Hofstra North Shore-LIJ School of Medicine, Hempstead, New York, United States of America
| | - David I. Finkelstein
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria, Australia
| | - Anita Sidhu
- Laboratory of Molecular Neurochemistry, Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, D.C., United States of America
- * E-mail:
| |
Collapse
|
432
|
Funke C, Schneider SA, Berg D, Kell DB. Genetics and iron in the systems biology of Parkinson’s disease and some related disorders. Neurochem Int 2013; 62:637-52. [DOI: 10.1016/j.neuint.2012.11.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 11/19/2012] [Accepted: 11/28/2012] [Indexed: 12/21/2022]
|
433
|
Emerson DJ, Weiser BP, Psonis J, Liao Z, Taratula O, Fiamengo A, Wang X, Sugasawa K, Smith AB, Eckenhoff RG, Dmochowski IJ. Direct modulation of microtubule stability contributes to anthracene general anesthesia. J Am Chem Soc 2013; 135:5389-98. [PMID: 23484901 DOI: 10.1021/ja311171u] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recently, we identified 1-aminoanthracene as a fluorescent general anesthetic. To investigate the mechanism of action, a photoactive analogue, 1-azidoanthracene, was synthesized. Administration of 1-azidoanthracene to albino stage 40-47 tadpoles was found to immobilize animals upon near-UV irradiation of the forebrain region. The immobilization was often reversible, but it was characterized by a longer duration consistent with covalent attachment of the ligand to functionally important targets. IEF/SDS-PAGE examination of irradiated tadpole brain homogenate revealed labeled protein, identified by mass spectrometry as β-tubulin. In vitro assays with aminoanthracene-cross-linked tubulin indicated inhibition of microtubule polymerization, similar to colchicine. Tandem mass spectrometry confirmed anthracene binding near the colchicine site. Stage 40-47 tadpoles were also incubated 1 h with microtubule stabilizing agents, epothilone D or discodermolide, followed by dosing with 1-aminoanthracene. The effective concentration of 1-aminoanthracene required to immobilize the tadpoles was significantly increased in the presence of either microtubule stabilizing agent. Epothilone D similarly mitigated the effects of a clinical neurosteroid general anesthetic, allopregnanolone, believed to occupy the colchicine site in tubulin. We conclude that neuronal microtubules are "on-pathway" targets for anthracene general anesthetics and may also represent functional targets for some neurosteroid general anesthetics.
Collapse
Affiliation(s)
- Daniel J Emerson
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
434
|
Tau loss attenuates neuronal network hyperexcitability in mouse and Drosophila genetic models of epilepsy. J Neurosci 2013; 33:1651-9. [PMID: 23345237 DOI: 10.1523/jneurosci.3191-12.2013] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neuronal network hyperexcitability underlies the pathogenesis of seizures and is a component of some degenerative neurological disorders such as Alzheimer's disease (AD). Recently, the microtubule-binding protein tau has been implicated in the regulation of network synchronization. Genetic removal of Mapt, the gene encoding tau, in AD models overexpressing amyloid-β (Aβ) decreases hyperexcitability and normalizes the excitation/inhibition imbalance. Whether this effect of tau removal is specific to Aβ mouse models remains to be determined. Here, we examined tau as an excitability modifier in the non-AD nervous system using genetic deletion of tau in mouse and Drosophila models of hyperexcitability. Kcna1(-/-) mice lack Kv1.1-delayed rectifier currents and exhibit severe spontaneous seizures, early lethality, and megencephaly. Young Kcna1(-/-) mice retained wild-type levels of Aβ, tau, and tau phospho-Thr(231). Decreasing tau in Kcna1(-/-) mice reduced hyperexcitability and alleviated seizure-related comorbidities. Tau reduction decreased Kcna1(-/-) video-EEG recorded seizure frequency and duration as well as normalized Kcna1(-/-) hippocampal network hyperexcitability in vitro. Additionally, tau reduction increased Kcna1(-/-) survival and prevented megencephaly and hippocampal hypertrophy, as determined by MRI. Bang-sensitive Drosophila mutants display paralysis and seizures in response to mechanical stimulation, providing a complementary excitability assay for epistatic interactions. We found that tau reduction significantly decreased seizure sensitivity in two independent bang-sensitive mutant models, kcc and eas. Our results indicate that tau plays a general role in regulating intrinsic neuronal network hyperexcitability independently of Aβ overexpression and suggest that reducing tau function could be a viable target for therapeutic intervention in seizure disorders and antiepileptogenesis.
Collapse
|
435
|
Ayton S, Lei P, Duce JA, Wong BXW, Sedjahtera A, Adlard PA, Bush AI, Finkelstein DI. Ceruloplasmin dysfunction and therapeutic potential for Parkinson disease. Ann Neurol 2013; 73:554-9. [PMID: 23424051 DOI: 10.1002/ana.23817] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 10/16/2012] [Accepted: 11/16/2012] [Indexed: 12/12/2022]
Abstract
Ceruloplasmin is an iron-export ferroxidase that is abundant in plasma and also expressed in glia. We found a ∼80% loss of ceruloplasmin ferroxidase activity in the substantia nigra of idiopathic Parkinson disease (PD) cases, which could contribute to the pro-oxidant iron accumulation that characterizes the pathology. Consistent with a role for ceruloplasmin in PD etiopathogenesis, ceruloplasmin knockout mice developed parkinsonism that was rescued by iron chelation. Additionally, peripheral infusion of ceruloplasmin attenuated neurodegeneration and nigral iron elevation in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model for PD. These findings show, in principle, that intravenous ceruloplasmin may have therapeutic potential in PD.
Collapse
Affiliation(s)
- Scott Ayton
- Oxidation Biology Laboratory, Florey Institute for Neuroscience and Mental Health, Parkville, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
436
|
Morris M, Hamto P, Adame A, Devidze N, Masliah E, Mucke L. Age-appropriate cognition and subtle dopamine-independent motor deficits in aged tau knockout mice. Neurobiol Aging 2013; 34:1523-9. [PMID: 23332171 DOI: 10.1016/j.neurobiolaging.2012.12.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 12/07/2012] [Indexed: 01/22/2023]
Abstract
The microtubule-associated protein tau is expressed throughout the nervous system, most highly in neurons but also in glial cells. Its functions in adult and aging mammals remain to be defined. Previous studies in mouse models found either protective or detrimental effects of genetic tau ablation. Though tau ablation prevented synaptic, network, and cognitive dysfunctions in several models of Alzheimer's disease and made mice more resistant to epileptic seizures, a recent study described a parkinsonian phenotype in aging Tau knockout mice. Here we tested cognition and motor functions in Tau(+/+), Tau(+/-), and Tau(-/-) mice at approximately 1 and 2 years of age. Tau ablation did not impair cognition and caused only minor motor deficits that were much more subtle than those associated with the aging process. Tau ablation caused a mild increase in body weight, which correlated with and might have contributed to some of the motor deficits. However, tau ablation did not cause significant dopaminergic impairments, and dopamine treatment did not improve the motor deficits, suggesting that they do not reflect extrapyramidal dysfunction.
Collapse
Affiliation(s)
- Meaghan Morris
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | | | | | | | | | | |
Collapse
|
437
|
Abstract
Iron is a redox active metal which is abundant in the Earth's crust. It has played a key role in the evolution of living systems and as such is an essential element in a wide range of biological phenomena, being critical for the function of an enormous array of enzymes, energy transduction mechanisms, and oxygen carriers. The redox nature of iron renders the metal toxic in excess and consequently all biological organisms carefully control iron levels. In this overview the mechanisms adopted by man to control body iron levels are described.Low body iron levels are related to anemia which can be treated by various forms of iron fortification and supplementation. Elevated iron levels can occur systemically or locally, each giving rise to specific symptoms. Systemic iron overload results from either the hyperabsorption of iron or regular blood transfusion and can be treated by the use of a selection of iron chelating molecules. The symptoms of many forms of neurodegeneration are associated with elevated levels of iron in certain regions of the brain and iron chelation therapy is beginning to find an application in the treatment of such diseases. Iron chelators have also been widely investigated for the treatment of cancer, tuberculosis, and malaria. In these latter studies, selective removal of iron from key enzymes or iron binding proteins is sought. Sufficient selectivity between the invading organism and the host has yet to be established for such chelators to find application in the clinic.Iron chelation for systemic iron overload and iron supplementation therapy for the treatment of various forms of anemia are now established procedures in clinical medicine. Chelation therapy may find an important role in the treatment of various neurodegenerative diseases in the near future.
Collapse
|
438
|
Carman A, Kishinevsky S, Koren J, Lou W, Chiosis G. Chaperone-dependent Neurodegeneration: A Molecular Perspective on Therapeutic Intervention. ACTA ACUST UNITED AC 2013; 2013. [PMID: 25258700 PMCID: PMC4172285 DOI: 10.4172/2161-0460.s10-007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Maintenance of cellular homeostasis is regulated by the molecular chaperones. Under pathogenic conditions, aberrant proteins are triaged by the chaperone network. These aberrant proteins, known as "clients," have major roles in the pathogenesis of numerous neurological disorders, including tau in Alzheimer's disease, α-synuclein and LRRK2 in Parkinson's disease, SOD-1, TDP-43 and FUS in amyotrophic lateral sclerosis, and polyQ-expanded proteins such as huntingtin in Huntington's disease. Recent work has demonstrated that the use of chemical compounds which inhibit the activity of molecular chaperones subsequently alter the fate of aberrant clients. Inhibition of Hsp90 and Hsc70, two major molecular chaperones, has led to a greater understanding of how chaperone triage decisions are made and how perturbing the chaperone system can promote clearance of these pathogenic clients. Described here are major pathways and components of several prominent neurological disorders. Also discussed is how treatment with chaperone inhibitors, predominately Hsp90 inhibitors which are selective for a diseased state, can relieve the burden of aberrant client signaling in these neurological disorders.
Collapse
Affiliation(s)
- Aaron Carman
- Department of Molecular Pharmacology and Chemistry, Memorial Sloan-Kettering Cancer Centre, New York, NY, USA
| | - Sarah Kishinevsky
- Department of Molecular Pharmacology and Chemistry, Memorial Sloan-Kettering Cancer Centre, New York, NY, USA
| | - John Koren
- Department of Molecular Pharmacology and Chemistry, Memorial Sloan-Kettering Cancer Centre, New York, NY, USA
| | - Wenjie Lou
- Department of Neurology and Neuroscience, Weill Cornell Medical College, New York, NY, USA
| | - Gabriela Chiosis
- Department of Molecular Pharmacology and Chemistry, Memorial Sloan-Kettering Cancer Centre, New York, NY, USA
| |
Collapse
|
439
|
Hare DJ, Adlard PA, Doble PA, Finkelstein DI. Metallobiology of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity. Metallomics 2013; 5:91-109. [DOI: 10.1039/c2mt20164j] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
440
|
Abstract
Living matter is the most elaborate, elegant, and complex hierarchical material known and is consequently the natural target for an ever-expanding scientific and technological effort to unlock and deconvolute its marvelous forms and functions. Our current understanding suggests that biological materials are derived from a bottom-up process, a spontaneous emergence of molecular networks in the course of chemical evolution. Polymer cooperation, so beautifully manifested in the ribosome, appeared in these dynamic networks, and the special physicochemical properties of the nucleic and amino acid polymers made possible the critical threshold for the emergence of extant cellular life. These properties include the precise and geometrically discrete hydrogen bonding patterns that dominate the complementary interactions of nucleic acid base-pairing that guide replication and ensure replication fidelity. In contrast, complex and highly context-dependent sets of intra- and intermolecular interactions guide protein folding. These diverse interactions allow the more analog environmental chemical potential fluctuations to dictate conformational template-directed propagation. When these two different strategies converged in the remarkable synergistic ribonucleoprotein that is the ribosome, this resulting molecular digital-to-analog converter achieved the capacity for both persistent information storage and adaptive responses to an ever-changing environment. The ancestral chemical networks that preceded the Central Dogma of Earth's biology must reflect the dynamic chemical evolutionary landscapes that allowed for selection, propagation, and diversification and ultimately the demarcation and specialization of function that modern biopolymers manifest. Not only should modern biopolymers contain molecular fossils of this earlier age, but it should be possible to use this information to reinvent these dynamic functional networks. In this Account, we review the first dynamic network created by modification of a nucleic acid backbone and show how it has exploited the digital-like base pairing for reversible polymer construction and information transfer. We further review how these lessons have been extended to the complex folding landscapes of templated peptide assembly. These insights have allowed for the construction of molecular hybrids of each biopolymer class and made possible the reimagining of chemical evolution. Such elaboration of biopolymer chimeras has already led to applications in therapeutics and diagnostics, to the construction of novel nanostructured materials, and toward orthogonal biochemical pathways that expand the evolution of existing biochemical systems. The ability to look beyond the primordial emergence of the ribosome may allow us to better define the origins of chemical evolution, to extend its horizons beyond the biology of today and ask whether evolution is an inherent property of matter unbounded by physical limitations imposed by our planet's diverse environments.
Collapse
Affiliation(s)
- Jay T. Goodwin
- Center for Fundamental and Applied Molecular Evolution, NSF/NASA Center for Chemical Evolution, Departments of Chemistry and Biology, Emory University, Atlanta, Georgia, United States
| | - Anil K. Mehta
- Center for Fundamental and Applied Molecular Evolution, NSF/NASA Center for Chemical Evolution, Departments of Chemistry and Biology, Emory University, Atlanta, Georgia, United States
| | - David G. Lynn
- Center for Fundamental and Applied Molecular Evolution, NSF/NASA Center for Chemical Evolution, Departments of Chemistry and Biology, Emory University, Atlanta, Georgia, United States
| |
Collapse
|
441
|
Geldenhuys WJ, Van der Schyf CJ. Designing drugs with multi-target activity: the next step in the treatment of neurodegenerative disorders. Expert Opin Drug Discov 2012; 8:115-29. [DOI: 10.1517/17460441.2013.744746] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Werner J Geldenhuys
- Northeast Ohio Medical University, College of Pharmacy, Neurotherapeutics Emphasis Group, Department of Pharmaceutical Sciences,
Rootstown, 4209 State Route 44, P.O. Box 95, OH 44272, USA ;
| | - Cornelis J Van der Schyf
- Northeast Ohio Medical University, College of Pharmacy, Neurotherapeutics Emphasis Group, Department of Pharmaceutical Sciences,
Rootstown, 4209 State Route 44, P.O. Box 95, OH 44272, USA ;
| |
Collapse
|
442
|
Abstract
Iron metabolism has been intensively examined over the last decade and there are many new players in this field which are worth to be introduced. Since its discovery many studies confirmed role of liver hormone hepcidin as key regulator of iron metabolism and pointed out liver as the central organ of system iron homeostasis. Liver cells receive multiple signals related to iron balance and respond by transcriptional regulation of hepcidin expression. This liver hormone is negative regulator of iron metabolism that represses iron efflux from macrophages, hepatocytes and enterocytes by its binding to iron export protein ferroportin. Ferroportin degradation leads to cellular iron retention and decreased iron availability. At level of a cell IRE/IRP (iron responsive elements/iron responsive proteins) system allows tight regulation of iron assimilation that prevents an excess of free intracellular iron which could lead to oxidative stress and damage of DNA, proteins and lipid membranes by ROS (reactive oxygen species). At the same time IRE/IRP system provides sufficient iron in order to meet the metabolic needs. Recently a significant progress in understanding of iron metabolism has been made and new molecular participants have been characterized. Article gives an overview of the current understanding of iron metabolism: absorption, distribution, cellular uptake, release, and storage. We also discuss mechanisms underlying systemic and cellular iron regulation with emphasis on central regulatory hormone hepcidin.
Collapse
Affiliation(s)
- Leida Tandara
- Department of Medical Laboratory Diagnosis, University Hospital Center Split, Split, Croatia.
| | | |
Collapse
|
443
|
Lewis MM, Du G, Kidacki M, Patel N, Shaffer ML, Mailman RB, Huang X. Higher iron in the red nucleus marks Parkinson's dyskinesia. Neurobiol Aging 2012. [PMID: 23177595 DOI: 10.1016/j.neurobiolaging.2012.10.025] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Dopamine cell loss and increased iron in the substantia nigra (SN) characterize Parkinson's disease (PD), with cerebellar involvement increasingly recognized, particularly in motor compensation and levodopa-induced dyskinesia (LID) development. Because the red nucleus (RN) mediates cerebellar circuitry, we hypothesized that RN iron changes might reflect cerebellum-related compensation, and/or the intrinsic capacity for LID development. We acquired high resolution magnetic resonance images from 23 control and 38 PD subjects (12 with PD and history of LID [PD+DYS]) and 26 with PD and no history of LID (PD-DYS). Iron content was estimated from bilateral RN and SN transverse relaxation rates (R2*). PD subjects overall displayed higher R2* values in both the SN and RN. RN R2* values correlated with off-drug Unified Parkinson's Disease Rating Scale-motor scores, but not disease duration or drug dosage. RN R2* values were significantly higher in PD+DYS compared with control and PD-DYS subjects; control and PD-DYS subjects did not differ. The association of higher RN iron content with PD-related dyskinesia suggests increased iron content is involved in, or reflects, greater cerebellar compensatory capacity and thus increased likelihood of LID development.
Collapse
Affiliation(s)
- Mechelle M Lewis
- Department of Neurology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033-0850, USA
| | | | | | | | | | | | | |
Collapse
|
444
|
Leroy K, Ando K, Laporte V, Dedecker R, Suain V, Authelet M, Héraud C, Pierrot N, Yilmaz Z, Octave JN, Brion JP. Lack of tau proteins rescues neuronal cell death and decreases amyloidogenic processing of APP in APP/PS1 mice. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:1928-40. [PMID: 23026200 DOI: 10.1016/j.ajpath.2012.08.012] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 07/04/2012] [Accepted: 08/09/2012] [Indexed: 12/12/2022]
Abstract
Lack of tau expression has been reported to protect against excitotoxicity and to prevent memory deficits in mice expressing mutant amyloid precursor protein (APP) identified in familial Alzheimer disease. In APP mice, mutant presenilin 1 (PS1) enhances generation of Aβ42 and inhibits cell survival pathways. It is unknown whether the deficient phenotype induced by concomitant expression of mutant PS1 is rescued by absence of tau. In this study, we have analyzed the effect of tau deletion in mice expressing mutant APP and PS1. Although APP/PS1/tau(+/+) mice had a reduced survival, developed spatial memory deficits at 6 months and motor impairments at 12 months, these deficits were rescued in APP/PS1/tau(-/-) mice. Neuronal loss and synaptic loss in APP/PS1/tau(+/+) mice were rescued in the APP/PS1/tau(-/-) mice. The amyloid plaque burden was decreased by roughly 50% in the cortex and the spinal cord of the APP/PS1/tau(-/-) mice. The levels of soluble and insoluble Aβ40 and Aβ42, and the Aβ42/Aβ40 ratio were reduced in APP/PS1/tau(-/-) mice. Levels of phosphorylated APP, of β-C-terminal fragments (CTFs), and of β-secretase 1 (BACE1) were also reduced, suggesting that β-secretase cleavage of APP was reduced in APP/PS1/tau(-/-) mice. Our results indicate that tau deletion had a protective effect against amyloid induced toxicity even in the presence of mutant PS1 and reduced the production of Aβ.
Collapse
Affiliation(s)
- Karelle Leroy
- Laboratory of Histology, Neuroanatomy, and Neuropathology, Université Libre de Bruxelles, 808 Route de Lennik, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
445
|
Patton SM, Coe CL, Lubach GR, Connor JR. Quantitative proteomic analyses of cerebrospinal fluid using iTRAQ in a primate model of iron deficiency anemia. Dev Neurosci 2012; 34:354-65. [PMID: 23018452 DOI: 10.1159/000341919] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 07/16/2012] [Indexed: 12/17/2022] Open
Abstract
Iron deficiency affects nearly 2 billion people worldwide, with pregnant women and young children being most severely impacted. Sustained anemia during the first year of life can cause cognitive, attention and motor deficits, which may persist despite iron supplementation. We conducted iTRAQ analyses on cerebrospinal fluid (CSF) from infant monkeys (Macaca mulatta) to identify differential protein expression associated with early iron deficiency. CSF was collected from 5 iron-sufficient and 8 iron-deficient anemic monkeys at weaning age (6-7 months) and again at 12-14 months. Despite consumption of iron-fortified food after weaning, which restored hematological indices into the normal range, expression of 5 proteins in the CSF remained altered. Most of the proteins identified are involved in neurite outgrowth, migration or synapse formation. The results reveal novel ways in which iron deficiency undermines brain growth and results in aberrant neuronal migration and connections. Taken together with gene expression data from rodent models of iron deficiency, we conclude that significant alterations in neuroconnectivity occur in the iron-deficient brain, which may persist even after resolution of the hematological anemia. The compromised brain infrastructure could account for observations of behavioral deficits in children during and after the period of anemia.
Collapse
|
446
|
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, Morrison B, Stockwell BR. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 2012; 149:1060-72. [PMID: 22632970 DOI: 10.1016/j.cell.2012.03.042] [Citation(s) in RCA: 9620] [Impact Index Per Article: 801.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 03/09/2012] [Accepted: 03/13/2012] [Indexed: 02/06/2023]
Abstract
Nonapoptotic forms of cell death may facilitate the selective elimination of some tumor cells or be activated in specific pathological states. The oncogenic RAS-selective lethal small molecule erastin triggers a unique iron-dependent form of nonapoptotic cell death that we term ferroptosis. Ferroptosis is dependent upon intracellular iron, but not other metals, and is morphologically, biochemically, and genetically distinct from apoptosis, necrosis, and autophagy. We identify the small molecule ferrostatin-1 as a potent inhibitor of ferroptosis in cancer cells and glutamate-induced cell death in organotypic rat brain slices, suggesting similarities between these two processes. Indeed, erastin, like glutamate, inhibits cystine uptake by the cystine/glutamate antiporter (system x(c)(-)), creating a void in the antioxidant defenses of the cell and ultimately leading to iron-dependent, oxidative death. Thus, activation of ferroptosis results in the nonapoptotic destruction of certain cancer cells, whereas inhibition of this process may protect organisms from neurodegeneration.
Collapse
Affiliation(s)
- Scott J Dixon
- Department of Biological Sciences, Columbia University, 550 West 120th Street, Northwest Corner Building, MC 4846, New York, NY 10027, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
447
|
Abstract
Both Alzheimer's disease (AD) and frontotemporal dementia (FTD) are characterized by the deposition of hyperphosphorylated forms of the microtubule-associated protein tau in neurons and/or glia. This unifying pathology led to the umbrella term “tauopathies” for these conditions, also emphasizing the central role of tau in AD and FTD. Generation of transgenic mouse models expressing human tau in the brain has contributed to the understanding of the pathomechanistic role of tau in disease. To reveal the physiological functions of tau in vivo, several knockout mouse strains with deletion of the tau-encoding MAPT gene have been established over the past decade, using different gene targeting constructs. Surprisingly, when initially introduced tau knockout mice presented with no overt phenotype or malformations. The number of publications using tau knockout mice has recently markedly increased, and both behavioural changes and motor deficits have been identified in aged mice of certain strains. Moreover, tau knockout mice have been instrumental in identifying novel functions of tau, both in cultured neurons and in vivo. Importantly, tau knockout mice have significantly contributed to the understanding of the pathophysiological interplay between Aβ and tau in AD. Here, we review the literature that involves tau knockout mice to summarize what we have learned so far from depleting tau in vivo.
Collapse
|
448
|
Iron and neurodegeneration: from cellular homeostasis to disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:128647. [PMID: 22701145 PMCID: PMC3369498 DOI: 10.1155/2012/128647] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 03/21/2012] [Accepted: 04/05/2012] [Indexed: 01/04/2023]
Abstract
Accumulation of iron (Fe) is often detected in the brains of people suffering from neurodegenerative diseases. High Fe concentrations have been consistently observed in Parkinson's, Alzheimer's, and Huntington's diseases; however, it is not clear whether this Fe contributes to the progression of these diseases. Other conditions, such as Friedreich's ataxia or neuroferritinopathy are associated with genetic factors that cause Fe misregulation. Consequently, excessive intracellular Fe increases oxidative stress, which leads to neuronal dysfunction and death. The characterization of the mechanisms involved in the misregulation of Fe in the brain is crucial to understand the pathology of the neurodegenerative disorders and develop new therapeutic strategies. Saccharomyces cerevisiae, as the best understood eukaryotic organism, has already begun to play a role in the neurological disorders; thus it could perhaps become a valuable tool also to study the metalloneurobiology.
Collapse
|
449
|
Mesquita SD, Ferreira AC, Sousa JC, Santos NC, Correia-Neves M, Sousa N, Palha JA, Marques F. Modulation of iron metabolism in aging and in Alzheimer's disease: relevance of the choroid plexus. Front Cell Neurosci 2012; 6:25. [PMID: 22661928 PMCID: PMC3357636 DOI: 10.3389/fncel.2012.00025] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 05/09/2012] [Indexed: 11/13/2022] Open
Abstract
Iron is essential for mammalian cellular homeostasis. However, in excess, it promotes free radical formation and is associated with aging-related progressive deterioration and with neurodegenerative disorders such as Alzheimer's disease (AD). There are no mechanisms to excrete iron, which makes iron homeostasis a very tightly regulated process at the level of the intestinal absorption. Iron is believed to reach the brain through receptor-mediated endocytosis of iron-bound transferrin by the brain barriers, the blood-cerebrospinal fluid (CSF) barrier, formed by the choroid plexus (CP) epithelial cells and the blood-brain barrier (BBB) formed by the endothelial cells of the brain capillaries. Importantly, the CP epithelial cells are responsible for producing most of the CSF, the fluid that fills the brain ventricles and the subarachnoid space. Recently, the finding that the CP epithelial cells display all the machinery to locally control iron delivery into the CSF may suggest that the general and progressive senescence of the CP may be at the basis of the impairment of regional iron metabolism, iron-mediated toxicity, and the increase in inflammation and oxidative stress that occurs with aging and, particularly, in AD.
Collapse
Affiliation(s)
- Sandro D Mesquita
- School of Health Sciences, Life and Health Sciences Research Institute (ICVS), University of Minho Braga, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
450
|
Anderson CP, Shen M, Eisenstein RS, Leibold EA. Mammalian iron metabolism and its control by iron regulatory proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1468-83. [PMID: 22610083 DOI: 10.1016/j.bbamcr.2012.05.010] [Citation(s) in RCA: 346] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 05/07/2012] [Accepted: 05/11/2012] [Indexed: 02/06/2023]
Abstract
Cellular iron homeostasis is maintained by iron regulatory proteins 1 and 2 (IRP1 and IRP2). IRPs bind to iron-responsive elements (IREs) located in the untranslated regions of mRNAs encoding protein involved in iron uptake, storage, utilization and export. Over the past decade, significant progress has been made in understanding how IRPs are regulated by iron-dependent and iron-independent mechanisms and the pathological consequences of IRP2 deficiency in mice. The identification of novel IREs involved in diverse cellular pathways has revealed that the IRP-IRE network extends to processes other than iron homeostasis. A mechanistic understanding of IRP regulation will likely yield important insights into the basis of disorders of iron metabolism. This article is part of a Special Issue entitled: Cell Biology of Metals.
Collapse
Affiliation(s)
- Cole P Anderson
- Department of Oncological Sciences, University of Utah, 15 N. 2030 E., Salt Lake City, UT 84112, USA
| | | | | | | |
Collapse
|