401
|
Chung YM, Kim BG, Park CS, Huh SJ, Kim J, Park JK, Cho SM, Kim BS, Kim JS, Yoo YD, Bae DS. Increased expression of ICAM-3 is associated with radiation resistance in cervical cancer. Int J Cancer 2005; 117:194-201. [PMID: 15880373 DOI: 10.1002/ijc.21180] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
To search for a marker that predicts the efficacy of radiation therapy in human cervical cancer, gene expression profiles between parental SiHa cervical cancer cells and radiation-resistant SiHa/R cells have been compared by the microarray technique. Microarray and Northern blot analyses demonstrated that the ICAM-3 expression was upregulated in SiHa/R cells. This increased expression of ICAM-3 in SiHa cells enhanced cell survival by about 34.3% after a 2 Gy dosage of radiation. In addition, SiHa/ICAM-3 cells showed a 2.45-fold higher level of FAK phosphorylation than that of the control cells. In tumor specimens, ICAM-3 staining was restricted to tumor stromal endothelial cells and lymphocytes. The overexpression of ICAM-3 was significantly more frequent in radiation-resistant cervical cancer specimens when compared with radiation-sensitive specimens (83.3% vs. 35.3%; p = 0.015). With these observations, we can suggest that an increased expression of ICAM-3 is associated with radiation resistance in cervical cancer cells and the expression of ICAM-3 can be used as a valuable biomarker to predict the radiation resistance in cervical cancer that occurs during radiotherapy.
Collapse
Affiliation(s)
- Young Min Chung
- Department of Internal Medicine and Brain Korea 21 Project for Biomedical Science, Korea University College of Medicine, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
402
|
Itamochi H, Yamasaki F, Sudo T, Takahashi T, Bartholomeusz C, Das S, Terakawa N, Ueno NT. Reduction of radiation-induced apoptosis by specific expression of Bcl-2 in normal cells. Cancer Gene Ther 2005; 13:451-9. [PMID: 16294215 DOI: 10.1038/sj.cgt.7700920] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Radiation-induced apoptosis is thought to underlie the toxicity of radiation to normal tissues as well as to cancer cells. We hypothesized that specific ectopic overexpression of the antiapoptotic molecule Bcl-2 in normal cells would inhibit radiation-induced apoptosis and thereby reduce radiation-induced toxicity in normal cells. To express Bcl-2 specifically in normal cells (which have wild-type (wt) p53) but not in cancer cells (which often have mutated p53), we constructed a Bcl-2 expression plasmid (PG13-Bcl-2) with a minimal promoter regulated by multiple wt p53 DNA-binding sites and found that the presence of wt p53 protein strongly upregulated Bcl-2 expression through this plasmid. Transfection of NIH 3T3 fibroblasts, which express wt p53, with PG13-Bcl-2 increased cell survival and reduced apoptosis; however, transfection of MDA-MB-231 breast cancer cells, which have mutated p53, did not affect survival and apoptosis of those cells. These results indicate that irradiation of normal cells rapidly upregulates the expression of wt p53, which binds to the p53 binding sequence of the PG13-Bcl-2 plasmid and increases the transcriptional activity of Bcl-2. Ectopic expression of Bcl-2 reduced radiation-induced apoptosis only in normal cells (not in cancer cells). Bcl-2 expression was detected in the lung from mice injected via a tail vein with LPD-PG13-Bcl-2 or LPD-CMV-Bcl-2, but did not in the lung from mice treated with DOTAP or LPD-PG13-mock. This novel approach to inhibiting radiation-induced apoptosis in normal cells may allow such cells to be protected from radiation-induced toxicity. Further preclinical in vivo studies are needed.
Collapse
Affiliation(s)
- H Itamochi
- Breast Cancer Translational Research Laboratory, Houston, TX, USA
| | | | | | | | | | | | | | | |
Collapse
|
403
|
Walton MI, Wilson SC, Hardcastle IR, Mirza AR, Workman P. An evaluation of the ability of pifithrin-α and -β to inhibit p53 function in two wild-type p53 human tumor cell lines. Mol Cancer Ther 2005; 4:1369-77. [PMID: 16170029 DOI: 10.1158/1535-7163.mct-04-0341] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The small-molecule compound pifithrin-alpha (PFT-alpha) has been reported to inhibit p53 function and protect against a variety of genotoxic agents. We show here that PFT-alpha is unstable in tissue culture medium and is rapidly converted to its condensation product PFT-beta. Both compounds showed limited solubility with PFT-alpha precipitating out of tissue culture medium at concentrations >30 micromol/L. PFT-alpha and -beta exhibited cytotoxic effects in vitro towards two human wild-type p53-expressing tumor cell lines, A2780 ovarian and HCT116 colon (IC(50) values for both cell lines were 21.3 +/- 8.1 micromol/L for PFT-alpha and 90.3 +/- 15.5 micromol/L for PFT-beta, mean +/- SD, n = 4). There was no evidence of protection by clonogenic assay with either compound in combination with ionizing radiation. Indeed, there was some evidence that PFT-alpha enhanced cytotoxicity, particularly at higher concentrations of PFT-alpha. Neither compound had any effect on p53, p21, or MDM-2 protein expression following ionizing radiation exposure and there was no evidence of any abrogation of p53-dependent, ionizing radiation-induced cell cycle arrest. Similarly, there was no evidence of cellular protection, or of effects on p53-dependent gene transcription, or on translation of MDM-2 or p21 following UV treatment of these human tumor cell lines. In addition, there was no effect on p53 or p21 gene transactivation or p38 phosphorylation after UV irradiation of NIH-3T3 mouse fibroblasts. In conclusion, neither PFT-alpha nor -beta can be regarded as a ubiquitous inhibitor of p53 function, and caution should be exercised in the use of these agents as specific p53 inhibitors.
Collapse
Affiliation(s)
- Mike I Walton
- Cancer Research UK Centre for Cancer Therapeutics, The Institute of Cancer Research, Haddow Laboratories, Sutton Surrey.
| | | | | | | | | |
Collapse
|
404
|
Nix P, Cawkwell L, Patmore H, Greenman J, Stafford N. Bcl-2 expression predicts radiotherapy failure in laryngeal cancer. Br J Cancer 2005; 92:2185-9. [PMID: 15928664 PMCID: PMC2361818 DOI: 10.1038/sj.bjc.6602647] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Early stage laryngeal cancer can be effectively cured by radiotherapy or conservative laryngeal surgery. In the UK, radiotherapy is the preferred first line treatment. However, up to 25% of patients with T2 tumours will demonstrate locally persistent or recurrent disease at the original site, requiring salvage surgery to achieve a definitive cure. Patients experiencing treatment failure have a relatively poor prognosis. A retrospective analysis was conducted consisting of 124 patients with early stage (T1–T2, N0) laryngeal squamous cell carcinoma. In total, 62 patients who failed radiotherapy were matched for T stage, laryngeal subsite and smoking history to a group of 62 patients successfully cured by radiotherapy. Using immunohistochemistry the groups were compared for expression of apoptotic proteins: bcl-2, bcl-XL, bax, bak and survivin. Radioresistant laryngeal cancer was associated with bcl-2 (P<0.001) and bcl-XL (P=0.005) expression and loss of bax expression (P=0.012) in pretreatment biopsies. Bcl-2 has an accuracy of 71% in predicting radiotherapy outcome. The association between expression of bcl-2, bcl-XL and bax with radioresistant cancer suggests a potential mechanism by which cancer cells avoid the destructive effects of radiotherapy. Predicting radioresistance, using bcl-2, would allow the clinician to recommend conservative laryngeal surgery as an alternative first line treatment to radiotherapy.
Collapse
Affiliation(s)
- P Nix
- Postgraduate Medical Institute, University of Hull in association with Hull York Medical School, Hull, UK
| | - L Cawkwell
- Postgraduate Medical Institute, University of Hull in association with Hull York Medical School, Hull, UK
- R&D Building, Castle Hill Hospital, Hull HU16 5JQ, UK. E-mail:
| | - H Patmore
- Postgraduate Medical Institute, University of Hull in association with Hull York Medical School, Hull, UK
| | - J Greenman
- Postgraduate Medical Institute, University of Hull in association with Hull York Medical School, Hull, UK
| | - N Stafford
- Postgraduate Medical Institute, University of Hull in association with Hull York Medical School, Hull, UK
| |
Collapse
|
405
|
Fukuda A, Fukuda H, Jönsson M, Swanpalmer J, Hertzman S, Lannering B, Björk-Eriksson T, Màrky I, Blomgren K. Progenitor cell injury after irradiation to the developing brain can be modulated by mild hypothermia or hyperthermia. J Neurochem 2005; 94:1604-19. [PMID: 16086699 DOI: 10.1111/j.1471-4159.2005.03313.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Ionizing radiation induced acute cell death in the dentate gyrus subgranular zone (SGZ) and the subventricular zone (SVZ). Hypomyelination was also observed. The effects of mild hypothermia and hyperthermia for 4 h after irradiation (IR) were studied in postnatal day 9 rats. One hemisphere was irradiated with a single dose of 8 Gy and animals were randomized to normothermia (rectal temperature 36 degrees C for 4 h), hypothermia (32 degrees C for 4 h) or hyperthermia (39 degrees C for 4 h). Cellular injury, e.g. chromatin condensation and nitrotyrosine formation, appeared to proceed faster when the body temperature was higher. Caspase-3 activation was more pronounced in the hyperthermia group and nuclear translocation of p53 was less pronounced in the hypothermia group 6 h after IR. In the SVZ the loss of nestin-positive progenitors was more pronounced (48%) and the size was smaller (45%) in the hyperthermia group 7 days post-IR. Myelination was not different after hypo- or hyperthermia. This is the first report to demonstrate that hypothermia may be beneficial and that hyperthermia may aggravate the adverse side-effects after radiation therapy to the developing brain.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Apoptosis/physiology
- Apoptosis/radiation effects
- Body Temperature/physiology
- Brain/growth & development
- Brain/physiopathology
- Brain/radiation effects
- Brain Damage, Chronic/physiopathology
- Brain Damage, Chronic/prevention & control
- Brain Damage, Chronic/therapy
- Caspase 3
- Caspases/metabolism
- Dentate Gyrus/growth & development
- Dentate Gyrus/physiopathology
- Dentate Gyrus/radiation effects
- Female
- Hyperthermia, Induced/adverse effects
- Hypothermia, Induced
- Intermediate Filament Proteins/metabolism
- Male
- Nerve Degeneration/physiopathology
- Nerve Degeneration/prevention & control
- Nerve Degeneration/therapy
- Nerve Tissue Proteins/metabolism
- Nestin
- Neurons/physiology
- Neurons/radiation effects
- Radiation Injuries, Experimental/physiopathology
- Radiation Injuries, Experimental/prevention & control
- Radiation Injuries, Experimental/therapy
- Radiation, Ionizing
- Rats
- Rats, Wistar
- Stem Cells/physiology
- Stem Cells/radiation effects
- Tumor Suppressor Protein p53/metabolism
Collapse
Affiliation(s)
- Aya Fukuda
- The Arvid Carlsson Institute of Neuroscience at the Institute of Clinical Neuroscience, Sahlgrenska Academy, Göteborg University, Göteborg, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
406
|
Saffari B, Bernstein L, Hong DC, Sullivan-Halley J, Runnebaum IB, Grill HJ, Jones LA, El-Naggar A, Press MF. Association of p53 mutations and a codon 72 single nucleotide polymorphism with lower overall survival and responsiveness to adjuvant radiotherapy in endometrioid endometrial carcinomas. Int J Gynecol Cancer 2005; 15:952-63. [PMID: 16174251 DOI: 10.1111/j.1525-1438.2005.00159.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
p53 Genetic alterations are associated with advanced stage and aggressive tumors in a variety of human malignancies. The aim of this study was to examine p53 for genetic alterations and to evaluate the association of these alterations with clinical outcome and response to adjuvant radiotherapy in endometrioid endometrial carcinomas. p53 mutations in exons 2-11 were assessed in 59 endometrioid carcinomas by polymerase chain reaction-single-strand conformational polymorphism and sequence analysis. Twelve mutations (20.3%) and nine polymorphisms were identified. Seven of the nine polymorphisms were codon 72 single nucleotide polymorphisms (SNP) with an Arg/Pro allelotype. Women harboring either a mutation or an Arg/Pro allelotype at codon 72 had a lower overall survival rate than women whose tumors lacked alterations in the p53 gene (P= 0.0029). Women were stratified based on p53 genetic alterations (p53 mutation or p53 codon 72 SNP) and whether or not they received adjuvant radiation therapy. Women with p53 genetic alterations who did not receive adjuvant radiotherapy had the lowest survival rate (P= 0.0005). Treated women with p53 genetic alterations and untreated women with no p53 alteration had similar rates of survival. Among women with p53 alterations, adjuvant radiotherapy substantially increased survival (P= 0.035). In multivariate analyses, the group of women with p53 genetic alterations who did not receive adjuvant radiation therapy had a 5.9-fold increased risk of death (95% confidence interval: 1.5-22.7) compared to women whose tumors lacked p53 alterations and did not receive adjuvant radiation therapy.
Collapse
Affiliation(s)
- B Saffari
- Department of Pathology, University of Southern California School of Medicine, Los Angeles, California 90033, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
407
|
Mazzatti DJ, Lee YJ, Helt CE, O'Reilly MA, Keng PC. p53 modulates radiation sensitivity independent of p21 transcriptional activation. Am J Clin Oncol 2005; 28:43-50. [PMID: 15685034 DOI: 10.1097/01.coc.0000139484.51715.5a] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cellular sensitivity to ionizing radiation (IR) treatment is a complex biologic phenomenon that is affected by several processes, namely the ability of the cell to detect and repair DNA damage, regulate cell cycle division, and execute apoptosis. Because the p53 tumor suppressor protein is implicated in the regulation of each of these processes, radiation sensitivity of H1299 p53-null human lung carcinoma cells was evaluated after restoration of wild-type p53. Expression of wild-type p53 in radiation-resistant H1299 cells reinstated a radiation-sensitive phenotype that was not fully explained by cell death resulting from p53-mediated apoptosis. In addition, we show that p53 alters radiation sensitivity only in the G1 phase of the cell cycle, whereas S- and G2/M-phase cells were unaffected by p53 status. To determine the mechanism of p53-induced G1-phase radiation sensitivity, we investigated the G1/S checkpoint response to IR in H1299/p53 cells. We show that H1299/p53 cells arrest in the G1 phase in a p53-dependent manner as a result of transcriptional activation of p21WAF1/Cip1. To determine if p53-induced radiation sensitivity was the result of a reproductive death from accumulated p21 protein expression, p21 was independently induced in H1299 parental cells. However, induction of p21 was not sufficient to account for the enhanced radiation sensitivity in H1299/p53 cells. Together, these data indicate that p53 modulates radiation sensitivity in the G1 phase of the cell cycle through mechanisms independent of p53-mediated transcriptional activation of p21 and cell cycle arrest.
Collapse
Affiliation(s)
- Dawn J Mazzatti
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | | | | | | | | |
Collapse
|
408
|
Antoch MP, Kondratov RV, Takahashi JS. Circadian clock genes as modulators of sensitivity to genotoxic stress. Cell Cycle 2005; 4:901-7. [PMID: 15917646 PMCID: PMC3774065 DOI: 10.4161/cc.4.7.1792] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A broad variety of organisms display circadian rhythms (i.e., oscillations with 24-hr periodicities) in many aspects of their behavior, physiology and metabolism. These rhythms are under genetic control and are generated endogenously at the cellular level. In mammals, the core molecular mechanism of the oscillator consists of two transcriptional activators, CLOCK and BMAL1, and their transcriptional targets, CRYPTOCHROMES (CRYS) and PERIODS (PERS). The CRY and PER proteins function as negative regulators of CLOCK/BMAL1 activity, thus forming the major circadian autoregulatory feedback loop. It is believed that the circadian clock system regulates daily variations in output physiology and metabolism through periodic activation/repression of the set of clock-controlled genes that are involved in various metabolic pathways. Importantly, circadian-controlled pathways include those that determine in vivo responses to genotoxic stress. By using circadian mutant mice deficient in different components of the molecular clock system, we have established genetic models that correlate with the two opposite extremes of circadian cycle as reflected by the activity of the CLOCK/BMAL1 transactivation complex. Comparison of the in vivo responses of these mutants to the chemotherapeutic drug, cyclophosphamide (CY), has established a direct correlation between drug toxicity and the functional status of the CLOCK/BMAL1 transcriptional complex. We have also demonstrated that CLOCK/BMAL1 modulates sensitivity to drug-induced toxicity by controlling B cell responses to active CY metabolites. These results suggest that the sensitivity of cells to genotoxic stress induced by anticancer therapy may be modulated by CLOCK/BMAL1 transcriptional activity. Further elucidation of the molecular mechanisms of circadian control as well as identification of specific pharmacological modulators of CLOCK/BMAL1 activity are likely to lead to the development of new anti-cancer treatment schedules with increased therapeutic index and reduced morbidity.
Collapse
Affiliation(s)
- Marina P Antoch
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA.
| | | | | |
Collapse
|
409
|
Fukuda A, Fukuda H, Swanpalmer J, Hertzman S, Lannering B, Marky I, Björk-Eriksson T, Blomgren K. Age-dependent sensitivity of the developing brain to irradiation is correlated with the number and vulnerability of progenitor cells. J Neurochem 2005; 92:569-84. [PMID: 15659227 DOI: 10.1111/j.1471-4159.2004.02894.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In a newly established model of unilateral, irradiation (IR)-induced injury we compared the outcome after IR to the immature and juvenile brain, using rats at postnatal days 9 or 23, respectively. We demonstrate that (i) the immature brains contained more progenitors in the subventricular zone (SVZ) and subgranular zone (SGZ) compared with the juvenile brains; (ii) cellular injury, as judged by activation of caspase 3 and p53, as well as nitrotyrosine formation, was more pronounced in the SVZ and SGZ in the immature brains 6 h after IR; (iii) the number of progenitor and immature cells in the SVZ and SGZ decreased 6 h and 7 days post-IR, corresponding to acute and subacute effects in humans, respectively, these effects were more pronounced in immature brains; (iv) myelination was impaired after IR at both ages, and much more pronounced after IR to immature brains; (v) the IR-induced changes remained significant for at least 10 weeks, corresponding to late effects in humans, and were most pronounced after IR to immature brains. It appears that IR induces both an acute loss of progenitors through apoptosis and a perturbed microenvironment incompatible with normal proliferation and differentiation, and that this is more pronounced in the immature brain.
Collapse
Affiliation(s)
- Aya Fukuda
- Arvid Carlsson Institute for Neuroscience, Department of Clinical Neuroscience, Sahlgrenska Academy, Göteborg University, SE-405 30 Göteborg, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
410
|
Gudkov AV, Komarova EA. Prospective therapeutic applications of p53 inhibitors. Biochem Biophys Res Commun 2005; 331:726-36. [PMID: 15865929 DOI: 10.1016/j.bbrc.2005.03.153] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Indexed: 10/25/2022]
Abstract
p53, in addition to being a key cancer preventive factor, is also a determinant of cancer treatment side effects causing excessive apoptotic death in several normal tissues during cancer therapy. p53 inhibitory strategy has been suggested to protect normal tissues from chemo- and radiotherapy, and to treat other pathologies associated with stress-mediated activation of p53. This strategy was validated by isolation and testing of small molecule p53 inhibitor pifithrin-alpha that demonstrated broad tissue protecting capacity. However, in some normal tissues and tumors p53 plays protective role by inducing growth arrest and preventing cells from premature entrance into mitosis and death from mitotic catastrophe. Inhibition of this function of p53 can sensitize tumor cells to chemo- and radiotherapy, thus opening new potential application of p53 inhibitors and justifying the need in pharmacological agents targeting specifically either pro-apoptotic or growth arrest functions of p53.
Collapse
Affiliation(s)
- Andrei V Gudkov
- Department of Molecular Genetics, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH 44195, USA.
| | | |
Collapse
|
411
|
Grimberg A, Coleman CM, Burns TF, Himelstein BP, Koch CJ, Cohen P, El-Deiry WS. p53-Dependent and p53-independent induction of insulin-like growth factor binding protein-3 by deoxyribonucleic acid damage and hypoxia. J Clin Endocrinol Metab 2005; 90:3568-74. [PMID: 15769996 PMCID: PMC4145590 DOI: 10.1210/jc.2004-1213] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IGF binding protein (IGFBP)-3, the principal carrier of IGFs in the circulation, contributes to both endocrine and autocrine/paracrine growth control; it can be induced by GH, cytokines, retinoic acid, and tumor suppressors. Induction of IGFBP-3 by the tumor suppressor p53 has been shown in various models that directly manipulate p53 activity. However, the physiologic settings under which this induction occurs have not been established. DNA damage and hypoxia are two important physiologic activators of p53. We have demonstrated for the first time that IGFBP-3 is an in vivo target of p53 in response to ionizing radiation. This effect was tissue specific. Furthermore, we demonstrated that genotoxic drugs could increase IGFBP-3 protein levels and secretion in tumor cell lines in a p53-independent manner. Finally, we have established that IGFBP-3 induction under hypoxic conditions is independent of p53 in tumor cell lines derived form multiple tissue types. Thus, IGFBP-3 is induced by physiologic conditions that also induce p53, although p53 is not always required. Because IGFBP-3 can inhibit growth and induce apoptosis in IGF-dependent and IGF-independent manners, its induction by DNA damage and hypoxia suggest IGFBP-3 plays a role in the physiologic protection against aberrant cell growth.
Collapse
Affiliation(s)
- Adda Grimberg
- Division of Pediatric Endocrinology, The Children's Hospital of Philadelphia, Abramson Research Center, Room 802, 3615 Civic Center Boulevard, Philadelphia, Pennsylvania 19104-4318, USA.
| | | | | | | | | | | | | |
Collapse
|
412
|
Abstract
The p53 pathway responds to stresses that can disrupt the fidelity of DNA replication and cell division. A stress signal is transmitted to the p53 protein by post-translational modifications. This results in the activation of the p53 protein as a transcription factor that initiates a program of cell cycle arrest, cellular senescence or apoptosis. The transcriptional network of p53-responsive genes produces proteins that interact with a large number of other signal transduction pathways in the cell and a number of positive and negative autoregulatory feedback loops act upon the p53 response. There are at least seven negative and three positive feedback loops described here, and of these, six act through the MDM-2 protein to regulate p53 activity. The p53 circuit communicates with the Wnt-beta-catenin, IGF-1-AKT, Rb-E2F, p38 MAP kinase, cyclin-cdk, p14/19 ARF pathways and the cyclin G-PP2A, and p73 gene products. There are at least three different ubiquitin ligases that can regulate p53 in an autoregulatory manner: MDM-2, Cop-1 and Pirh-2. The meaning of this redundancy and the relative activity of each of these feedback loops in different cell types or stages of development remains to be elucidated. The interconnections between signal transduction pathways will play a central role in our understanding of cancer.
Collapse
Affiliation(s)
- Sandra L Harris
- The Cancer Institute of New Jersey and the Institute for Advanced Study, New Jersey, NJ, USA
| | | |
Collapse
|
413
|
Hoagland MS, Hoagland EM, Swanson HI. The p53 inhibitor pifithrin-alpha is a potent agonist of the aryl hydrocarbon receptor. J Pharmacol Exp Ther 2005; 314:603-10. [PMID: 15843497 DOI: 10.1124/jpet.105.084186] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The tumor suppressor protein p53 is currently a target of emerging drug therapies directed toward neurodegenerative diseases, such as Alzheimer's and Parkinson's, and side effects associated with cancer treatments. Of this group of drugs, the best characterized is pifithrin-alpha, a small molecule that inhibits p53-dependent apoptosis through an undetermined mechanism. In this study, we have used a number of molecular approaches to test the hypothesis that pifithrin-alpha acts as an aryl hydrocarbon receptor (AhR) agonist and, in this manner, inhibits the actions of p53. Toward this end, we have found that pifithrin-alpha is a potent AhR agonist as determined by its ability to bind the AhR, induce formation of its DNA binding complex, activate reporter activity, and up-regulate the classic AhR target gene CYP1A1. However, examination of its ability to inhibit p53-mediated gene activation and apoptosis revealed that these actions occurred via an AhR-independent manner. The significance of this study is based on the fact that activation of the AhR is typically associated with an increase in phase I and phase II metabolizing enzymes and adverse biological events such as tumor promotion that may contribute to untoward effects of pifithrin-alpha. Hence, this work will aid in the future design of more specific members of this important class of p53 inhibitors for use in a clinical setting.
Collapse
Affiliation(s)
- Martin S Hoagland
- University of Kentucky Medical Center S-305, 800 Rose Street, Lexington, KY 40536-0084, USA
| | | | | |
Collapse
|
414
|
Abstract
We performed a systematic review of studies that investigated the effect of abnormalities of the tumour suppressor gene p53 upon prognosis in patients with colorectal cancer. The methods used to assess p53 status were immunohistochemistry (IHC), indicating abnormal accumulation of p53, and sequence analysis, indicating presence of p53 mutations (mut). We identified 168 reports, with 241 comparisons of relevant end points and survival data on 18 766 patients. We found evidence of both publication bias and heterogeneity of results. Our analysis was hampered by variability in both the assessment of p53 status and the reporting of results. We used a trim and fill method to correct for publication bias and minimised heterogeneity by using well-defined clinical subgroups for the assessment of outcomes. Overall, patients with abnormal p53 were at increased risk of death: relative risk (RR) with IHC 1.32 (95% confidence interval (c.i.) 1.23–1.42) and with mutation analysis 1.31 (95% c.i. 1.19–1.45). The adverse impact of abnormal p53 was greater in patients with lower baseline risk of dying: good prognosis RR (mut) 1.63 (95% c.i. 1.40–1.90) and poor prognosis RR (mut) 1.04 (95% c.i. 0.91–1.19). We found no effect of abnormal p53 on outcome in patients treated with chemotherapy. Abnormal p53 was associated with failure of response to radiotherapy in patients with rectal cancer: RR (mut) 1.49 (95% c.i. 1.25–1.77).
Collapse
Affiliation(s)
- A J Munro
- Department of Surgery and Molecular Oncology, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK.
| | | | | |
Collapse
|
415
|
Akerman GS, Rosenzweig BA, Domon OE, Tsai CA, Bishop ME, McGarrity LJ, Macgregor JT, Sistare FD, Chen JJ, Morris SM. Alterations in gene expression profiles and the DNA-damage response in ionizing radiation-exposed TK6 cells. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2005; 45:188-205. [PMID: 15657912 DOI: 10.1002/em.20091] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Identifying genes that are differentially expressed in response to DNA damage may help elucidate markers for genetic damage and provide insight into the cellular responses to specific genotoxic agents. We utilized cDNA microarrays to develop gene expression profiles for ionizing radiation-exposed human lymphoblastoid TK6 cells. In order to relate changes in the expression profiles to biological responses, the effects of ionizing radiation on cell viability, cloning efficiency, and micronucleus formation were measured. TK6 cells were exposed to 0.5, 1, 5, 10, and 20 Gy ionizing radiation and cultured for 4 or 24 hr. A significant (P < 0.0001) decrease in cloning efficiency was observed at all doses at 4 and 24 hr after exposure. Flow cytometry revealed significant decreases in cell viability at 24 hr in cells exposed to 5 (P < 0.001), 10 (P < 0.0001), and 20 Gy (P < 0.0001). An increase in micronucleus frequency occurred at both 4 and 24 hr at 0.5 and 1 Gy; however, insufficient binucleated cells were present for analysis at the higher doses. Gene expression profiles were developed from mRNA isolated from cells exposed to 5, 10, and 20 Gy using a 350 gene human cDNA array platform. Overall, more genes were differentially expressed at 24-hr than at the 4-hr time point. The genes upregulated (> 1.5-fold) or downregulated (< 0.67-fold) at 4 hr were those primarily involved in the cessation of the cell cycle, cellular detoxification pathways, DNA repair, and apoptosis. At 24 hr, glutathione-associated genes were induced in addition to genes involved in apoptosis. Genes involved in cell cycle progression and mitosis were downregulated at 24 hr. Real-time quantitative PCR was used to confirm the microarray results and to evaluate expression levels of selected genes at the low doses (0.5 and 1.0 Gy). The expression profiles reflect the cellular and molecular responses to ionizing radiation related to the recognition of DNA damage, a halt in progression through the cell cycle, activation of DNA-repair pathways, and the promotion of apoptosis.
Collapse
Affiliation(s)
- Gregory S Akerman
- Division of Genetic and Reproductive Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
416
|
Abstract
The inactivation of programmed cell death, or apoptosis, is central to the development of cancer. This disabling of apoptotic responses might be a major contributor both to treatment resistance and to the observation that, in many tumours, apoptosis is not the main mechanism for the death of cancer cells in response to common treatment regimens. Importantly, this suggests that other modes of cell death are involved in the response to therapy.
Collapse
Affiliation(s)
- J Martin Brown
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford, California 94305, USA.
| | | |
Collapse
|
417
|
Abstract
The p53 tumour suppressor protein is a highly potent transcription factor which, under normal circumstances, is maintained at low levels through the action of MDM2, an E3 ubiquitin ligase which directs p53 ubiquitylation and degradation. Expression of the mdm2 gene is stimulated by p53 and this reciprocal relationship forms the basis of a negative feedback loop. Both genotoxic and non-genotoxic stresses that induce p53 focus principally on interruption of the p53-MDM2 loop with the consequence that p53 becomes stabilised, leading to changes in the expression of p53-responsive genes. The biological outcome of inducing this pathway can be either growth arrest or apoptosis: factors affecting the functioning of the loop, the biochemical activity of p53 itself and the cellular environment govern the choice between these outcomes in a cell type- and stress-specific manner.
Collapse
Affiliation(s)
- David W Meek
- Biomedical Research Centre, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK.
| |
Collapse
|
418
|
Rodrigues AS, Oliveira NG, Gil OM, Léonard A, Rueff J. Use of cytogenetic indicators in radiobiology. RADIATION PROTECTION DOSIMETRY 2005; 115:455-60. [PMID: 16381766 DOI: 10.1093/rpd/nci072] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The study of ionising radiation has systematically relied on cytogenetic indicators to evaluate the biological effects and has led to theoretical approaches to explain observations associated with radiation exposure. In many of the early studies on radiobiology, the induction of chromosomal aberrations was the method of choice to evaluate dose-response relationships. But progressively, this and other cytogenetic biomarkers were used to obtain mechanistic insight on the biological effects induced by radiation. This paper attempts to give a view on the use of cytogenetic indicators in the study of various radiation-related phenomena, including radiation dosimetry, mechanisms involved in the various cellular responses to radiation, such as bystander effects, chromosomal instability and adaptive response, as well as DNA repair pathways. One future direction may involve the use of cytogenetic indicators to evaluate various molecular determinants in individuals' susceptibility to radiation, using other techniques such as fluorescence in situ hybridisation (FISH) and linking them to specific gene functions and single nucleotide polymorphisms.
Collapse
Affiliation(s)
- A S Rodrigues
- Department of Genetics, Faculty of Medical Sciences, Universidade Nova de Lisboa, R. da Junqueira 96, P 1349-008 Lisbon, Portugal
| | | | | | | | | |
Collapse
|
419
|
Tsukamoto T, Hirata A, Tatematsu M. Susceptibility of Heterozygous and Nullizygous p53 Knockout Mice to Chemical Carcinogens: Tissue Dependence and Role of p53 Gene Mutations. J Toxicol Pathol 2005. [DOI: 10.1293/tox.18.121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Tetsuya Tsukamoto
- Division of Oncological Pathology, Aichi Cancer Center Research Institute
| | - Akihiro Hirata
- Division of Oncological Pathology, Aichi Cancer Center Research Institute
| | - Masae Tatematsu
- Division of Oncological Pathology, Aichi Cancer Center Research Institute
| |
Collapse
|
420
|
Barcellos-Hoff MH. How tissues respond to damage at the cellular level: orchestration by transforming growth factor-β (TGF-β). Br J Radiol 2005. [DOI: 10.1259/bjr/26432956] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
421
|
Mackintosh C. Dynamic interactions between 14-3-3 proteins and phosphoproteins regulate diverse cellular processes. Biochem J 2004; 381:329-42. [PMID: 15167810 PMCID: PMC1133837 DOI: 10.1042/bj20031332] [Citation(s) in RCA: 417] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2003] [Revised: 04/14/2004] [Accepted: 05/28/2004] [Indexed: 12/17/2022]
Abstract
14-3-3 proteins exert an extraordinarily widespread influence on cellular processes in all eukaryotes. They operate by binding to specific phosphorylated sites on diverse target proteins, thereby forcing conformational changes or influencing interactions between their targets and other molecules. In these ways, 14-3-3s 'finish the job' when phosphorylation alone lacks the power to drive changes in the activities of intracellular proteins. By interacting dynamically with phosphorylated proteins, 14-3-3s often trigger events that promote cell survival--in situations from preventing metabolic imbalances caused by sudden darkness in leaves to mammalian cell-survival responses to growth factors. Recent work linking specific 14-3-3 isoforms to genetic disorders and cancers, and the cellular effects of 14-3-3 agonists and antagonists, indicate that the cellular complement of 14-3-3 proteins may integrate the specificity and strength of signalling through to different cellular responses.
Collapse
Affiliation(s)
- Carol Mackintosh
- MRC Protein Phosphorylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK.
| |
Collapse
|
422
|
Mack PC, Jones AA, Gustafsson MH, Gandara DR, Gumerlock PH, Goldberg Z. Enhancement of Radiation Cytotoxicity by UCN-01 in Non-small Cell Lung Carcinoma Cells. Radiat Res 2004; 162:623-34. [PMID: 15548112 DOI: 10.1667/rr3253] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Thoracic ionizing radiation is a standard component of combined-modality therapy for locally advanced non-small cell lung cancer. To improve low 5-year survival rates (5- 15%), new strategies for enhancing the effectiveness of ionizing radiation are needed. The kinase inhibitor UCN-01 has multiple cell cycle effects, including abrogation of DNA damage-induced S- and G(2)-phase arrest, which may limit DNA repair prior to mitosis. To test the hypothesis that therapy-induced cell cycle effects would have an impact on the efficacy of a combination of UCN-01 plus ionizing radiation, the cell cycle responses of the non-small cell lung cancer cell lines Calu1 (TP53-null) and A549 (wild-type TP53) to 2 Gy ionizing radiation were correlated with clonogenic survival after irradiation plus UCN-01. Irradiated cells were exposed to UCN-01 simultaneously and at 3-h increments after irradiation. In Calu1 cells but not A549 cells, sequence-dependent potentiation of radiation by UCN-01 was observed, with maximal interaction occurring when UCN-01 was administered 6 h after irradiation. This coincided with the postirradiation time with the greatest depletion of cells from G(1). Abrogation of G(2) arrest was observed regardless of TP53 status. The role of TP53 was investigated using siRNA to achieve gene silencing. These studies demonstrated that radiation plus UCN-01 was more effective in cells with diminished TP53 activity, associated with a reduced G(1) checkpoint arrest. These studies indicate that simultaneous elimination of multiple DNA damage-induced checkpoints in G(1), S and G(2) may enhance the effects of radiation and that drug scheduling may have an impact on clinical efficacy.
Collapse
Affiliation(s)
- Philip C Mack
- Cancer and Molecular Research Laboratory, Division of Hematology/Oncology, Department of Internal Medicine, Sacramento, California 95817, USA.
| | | | | | | | | | | |
Collapse
|
423
|
Stone HB, Moulder JE, Coleman CN, Ang KK, Anscher MS, Barcellos-Hoff MH, Dynan WS, Fike JR, Grdina DJ, Greenberger JS, Hauer-Jensen M, Hill RP, Kolesnick RN, Macvittie TJ, Marks C, McBride WH, Metting N, Pellmar T, Purucker M, Robbins ME, Schiestl RH, Seed TM, Tomaszewski JE, Travis EL, Wallner PE, Wolpert M, Zaharevitz D. Models for Evaluating Agents Intended for the Prophylaxis, Mitigation and Treatment of Radiation Injuries Report of an NCI Workshop, December 3–4, 2003. Radiat Res 2004; 162:711-28. [PMID: 15548121 DOI: 10.1667/rr3276] [Citation(s) in RCA: 184] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
To develop approaches to prophylaxis/protection, mitigation and treatment of radiation injuries, appropriate models are needed that integrate the complex events that occur in the radiation-exposed organism. While the spectrum of agents in clinical use or preclinical development is limited, new research findings promise improvements in survival after whole-body irradiation and reductions in the risk of adverse effects of radiotherapy. Approaches include agents that act on the initial radiochemical events, agents that prevent or reduce progression of radiation damage, and agents that facilitate recovery from radiation injuries. While the mechanisms of action for most of the agents with known efficacy are yet to be fully determined, many seem to be operating at the tissue, organ or whole animal level as well as the cellular level. Thus research on prophylaxis/protection, mitigation and treatment of radiation injuries will require studies in whole animal models. Discovery, development and delivery of effective radiation modulators will also require collaboration among researchers in diverse fields such as radiation biology, inflammation, physiology, toxicology, immunology, tissue injury, drug development and radiation oncology. Additional investment in training more scientists in radiation biology and in the research portfolio addressing radiological and nuclear terrorism would benefit the general population in case of a radiological terrorism event or a large-scale accidental event as well as benefit patients treated with radiation.
Collapse
Affiliation(s)
- Helen B Stone
- National Cancer Institute, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
424
|
Seidl C, Schröck H, Seidenschwang S, Beck R, Schmid E, Abend M, Becker KF, Apostolidis C, Nikula TK, Kremmer E, Schwaiger M, Senekowitsch-Schmidtke R. Cell death triggered by alpha-emitting 213Bi-immunoconjugates in HSC45-M2 gastric cancer cells is different from apoptotic cell death. Eur J Nucl Med Mol Imaging 2004; 32:274-85. [PMID: 15791436 DOI: 10.1007/s00259-004-1653-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2004] [Accepted: 07/05/2004] [Indexed: 11/30/2022]
Abstract
PURPOSE Radioimmunotherapy with alpha-particle-emitting nuclides, such as 213Bi, is a promising concept for the elimination of small tumour nodules or single disseminated tumour cells. The aim of this study was to investigate cellular damage and the mode of cell death triggered by 213Bi-immunoconjugates. METHODS Human gastric cancer cells (HSC45-M2) expressing d9-E-cadherin were incubated with different levels of activity of 213Bi-d9MAb targeting d9-E-cadherin and 213Bi-d8MAb, which does not bind to d9-E-cadherin. Micronucleated (M) cells, abnormal (A) cells and apoptotic (A) [(MAA)] cells were scored microscopically in the MAA assay following fluorescent staining of nuclei and cytoplasm. Chromosomal aberrations were analysed microscopically following Giemsa staining. The effect of z-VAD-fmk, known to inhibit apoptosis, on the prevention of cell death was investigated following treatment of HSC45-M2 cells with sorbitol as well as 213Bi-d9MAb. Activation of caspase 3 after incubation of HSC45-M2 cells with both sorbitol and 213Bi-d9MAb was analysed via Western blotting. RESULTS Following incubation of HSC45-M2 human gastric cancer cells expressing d9-E-cadherin with 213Bi-d9MAb the number of cells killed increased proportional to the applied activity concentration. Microscopically visible effects of alpha-irradiation of HSC45-M2 cells were formation of micronuclei and severe chromosomal aberrations. Preferential induction of these lesions with specific 213Bi-d9MAb compared with unspecific 213Bi-d8MAb (not targeting d9-E-cadherin) was not observed if the number of floating, i.e. unbound 213Bi-immunoconjugates per cell exceeded 2 x 10(4), most likely due to intense crossfire. In contrast to sorbitol-induced cell death, cell death triggered by 213Bi-immunoconjugates was independent of caspase 3 activation and could not be inhibited by z-VAD-fmk, known to suppress the apoptotic pathway. CONCLUSION 213Bi-immunoconjugates seem to induce a mode of cell death different from apoptosis in HSC45-M2 cells.
Collapse
Affiliation(s)
- Christof Seidl
- Department of Nuclear Medicine, Technische Universität München, Ismaninger Strasse 22, 81675, Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
425
|
Sharov AA, Siebenhaar F, Sharova TY, Botchkareva NV, Gilchrest BA, Botchkarev VA. Fas Signaling Is Involved in the Control of Hair Follicle Response to Chemotherapy. Cancer Res 2004; 64:6266-70. [PMID: 15342414 DOI: 10.1158/0008-5472.can-04-1367] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chemotherapeutic agents induce p53-dependent apoptosis in the hair follicle (HF) resulting in hair loss, a common side effect of cancer therapy. Here, we show that Fas as a p53 target plays important role in the HF response to cyclophosphamide. Specifically, we demonstrate that Fas is up-regulated in HF keratinocytes after cyclophosphamide treatment, Fas ligand-neutralizing antibody partially inhibits HF response to cyclophosphamide in wild-type mice, and Fas knockout mice show significant retardation of cyclophosphamide-induced HF involution associated with reduced Fas-associated death domain and caspase-8 expression. These data raise a possibility to explore blockade of Fas signaling as a part of complex local therapy for inhibiting keratinocyte apoptosis and hair loss induced by chemotherapy.
Collapse
Affiliation(s)
- Andrei A Sharov
- Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | |
Collapse
|
426
|
Li B, Wang X, Rasheed N, Hu Y, Boast S, Ishii T, Nakayama K, Nakayama KI, Goff SP. Distinct roles of c-Abl and Atm in oxidative stress response are mediated by protein kinase C delta. Genes Dev 2004; 18:1824-37. [PMID: 15289456 PMCID: PMC517403 DOI: 10.1101/gad.1223504] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
c-Abl and Atm have been implicated in cell responses to DNA damage and oxidative stress. However, the molecular mechanisms by which they regulate oxidative stress response remain unclear. In this report, we show that deficiency of c-Abl and deficiency of ATM differentially altered cell responses to oxidative stress by induction of antioxidant protein peroxiredoxin I (Prx I) via Nrf2 and cell death, both of which required protein kinase C (PKC) delta activation and were mediated by reactive oxygen species. c-abl-/- osteoblasts displayed enhanced Prx I induction, elevated Nrf2 levels, and hypersusceptibility to arsenate, which were reinstated by reconstitution of c-Abl; Atm-/- osteoblasts showed the opposite. These phenotypes correlated with increased PKC delta expression in c-abl-/- osteoblasts and decreased PKC delta expression in Atm-/- cells, respectively. The enhanced responses of c-abl-/- osteoblasts could be mimicked by overexpression of PKC delta in normal cells and impeded by inhibition of PKC delta, and diminished responses of Atm-/- cells could be rescued by PKC delta overexpression, indicating that PKC delta mediated the effects of c-Abl and ATM in oxidative stress response. Hence, our results unveiled a previously unrecognized mechanism by which c-Abl and Atm participate in oxidative stress response.
Collapse
Affiliation(s)
- Baojie Li
- Institute of Molecular and Cell Biology, Proteos Singapore 138673.
| | | | | | | | | | | | | | | | | |
Collapse
|
427
|
Komarova EA, Kondratov RV, Wang K, Christov K, Golovkina TV, Goldblum JR, Gudkov AV. Dual effect of p53 on radiation sensitivity in vivo: p53 promotes hematopoietic injury, but protects from gastro-intestinal syndrome in mice. Oncogene 2004; 23:3265-71. [PMID: 15064735 DOI: 10.1038/sj.onc.1207494] [Citation(s) in RCA: 182] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Ionizing radiation (IR) induces p53-dependent apoptosis in radiosensitive tissues, suggesting that p53 is a determinant of radiation syndromes. In fact, p53-deficient mice survive doses of IR that cause lethal hematopoietic syndrome in wild-type animals. Surprisingly, p53 deficiency results in sensitization of mice to higher doses of IR, causing lethal gastro-intestinal (GI) syndrome. While cells in the crypts of p53-wild-type epithelium undergo prolonged growth arrest after irradiation, continuous cell proliferation ongoing in p53-deficient epithelium correlates with accelerated death of damaged cells followed by rapid destruction of villi and accelerated lethality. p21-deficient mice are also characterized by increased sensitivity to GI syndrome-inducing doses of IR. We conclude that p53/p21-mediated growth arrest plays a protective role in the epithelium of small intestine after severe doses of IR. Pharmacological inhibition of p53 by a small molecule that can rescue from lethal hematopoietic syndrome has no effect on the lethality from gastro-intestinal syndrome, presumably because of a temporary and reversible nature of its action.
Collapse
Affiliation(s)
- Elena A Komarova
- Department of Molecular Biology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | | | | | | | | | |
Collapse
|
428
|
Fukuda H, Fukuda A, Zhu C, Korhonen L, Swanpalmer J, Hertzman S, Leist M, Lannering B, Lindholm D, Björk-Eriksson T, Marky I, Blomgren K. Irradiation-induced progenitor cell death in the developing brain is resistant to erythropoietin treatment and caspase inhibition. Cell Death Differ 2004; 11:1166-78. [PMID: 15243583 DOI: 10.1038/sj.cdd.4401472] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
One hemisphere of postnatal day 8 (P8) rats or P10 mice was irradiated with a single dose of 4-12 Gy, and animals were killed from 2 h to 8 weeks after irradiation (IR). In the subventricular zone (SVZ) and the granular cell layer (GCL) of the dentate gyrus, harboring neural and other progenitor cells, nitrosylation and p53 peaked 2-12 h after IR, followed by markers for active caspase-3, apoptosis-inducing factor and TUNEL (6-24 h). Ki67-positive (proliferating) cells had disappeared by 12 h and partly reappeared by 7 days post-IR. The SVZ and GCL areas decreased approximately 50% 7 days after IR. The development of white matter was hampered, resulting in 50-70% less myelin basic protein staining. Pretreatment with erythropoietin did not confer protection against IR. Caspase inhibition by overexpression of XIAP prevented caspase-9 and caspase-3 activation but not cell death, presumably because of increased caspase-independent cell death.
Collapse
Affiliation(s)
- H Fukuda
- Perinatal Center, Department of Physiology, Göteborg University, Box 432, SE 405 30 Göteborg, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
429
|
Abstract
While p53 family members have distinct nonoverlapping functions, the involvement of p63 and p73 in p53-mediated apoptosis is controversial. Results of a recent study indicate that at least in thymocytes, p53-dependent apoptosis occurs independently of p63 and p73.
Collapse
Affiliation(s)
- Samuel Benchimol
- Ontario Cancer Institute, Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
430
|
Zong WX, Ditsworth D, Bauer DE, Wang ZQ, Thompson CB. Alkylating DNA damage stimulates a regulated form of necrotic cell death. Genes Dev 2004; 18:1272-82. [PMID: 15145826 PMCID: PMC420353 DOI: 10.1101/gad.1199904] [Citation(s) in RCA: 470] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2004] [Accepted: 04/09/2004] [Indexed: 11/24/2022]
Abstract
Necrosis has been considered a passive form of cell death in which the cell dies as a result of a bioenergetic catastrophe imposed by external conditions. However, in response to alkylating DNA damage, cells undergo necrosis as a self-determined cell fate. This form of death does not require the central apoptotic mediators p53, Bax/Bak, or caspases and actively induces an inflammatory response. Necrosis in response to DNA damage requires activation of the DNA repair protein poly(ADP-ribose) polymerase (PARP), but PARP activation is not sufficient to determine cell fate. Cell death is determined by the effect of PARP-mediated beta-nicotinamide adenine dinucleotide (NAD) consumption on cellular metabolism. Cells using aerobic glycolysis to support their bioenergetics undergo rapid ATP depletion and death in response to PARP activation. In contrast, cells catabolizing nonglucose substrates to maintain oxidative phosphorylation are resistant to ATP depletion and death in response to PARP activation. Because most cancer cells maintain their ATP production through aerobic glycolysis, these data may explain the molecular basis by which DNA-damaging agents can selectively induce tumor cell death independent of p53 or Bcl-2 family proteins.
Collapse
Affiliation(s)
- Wei-Xing Zong
- Abramson Family Cancer Research Institute, Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
431
|
Franken NAP, Van Bree C, Haveman J. Differential Response to Radiation of TP53-Inactivated Cells by Overexpression of Dominant-Negative Mutant TP53 or HPVE6. Radiat Res 2004; 161:504-10. [PMID: 15161374 DOI: 10.1667/rr3160] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The inactivation of TP53 by transfection of a dominant- negative mutated TP53 (MP53.13 cells) was compared with inactivation of TP53 by transfection with the HPV E6 gene (RC10.1 cells) with respect to PLD repair, G(1)-phase arrest, and induction of color junctions. Functional G(1) arrest was demonstrated in parental (RKO) cells with wild-type TP53, while in RC10.1 cells the G(1) arrest was eliminated. In MP53.13 cells an intermediate G(1) arrest was found. Functionality of endogenous TP53 was confirmed in RKO and MP53.13 cells by accumulation of TP53 protein and its downstream target CDKN1A (p21). Radiation survival of MP53.13 cells was higher than that of RKO cells, and PLD repair was found in RKO cells and MP53.13 cells but not in RC10.1 cells. Both with and without irradiation, the number of color junctions was 50 to 80% higher in MP53.13 cells than in RKO and RC10.1 cells. In the MP53.13 cells, the genetic instability appears to lead to more aberrations and to radioresistance. In spite of the presence of an excess of mutated TP53, wild- type TP53 functions appear to be affected only partly or not at all.
Collapse
Affiliation(s)
- N A P Franken
- Department of Radiotherapy, Academic Medical Center, University of Amsterdam, 1100 DE Amsterdam, The Netherlands.
| | | | | |
Collapse
|
432
|
van Bree C, Franken NAP, Rodermond HM, Stalpers LJA, Haveman J. Repair of Potentially Lethal Damage does not Depend on Functional TP53 in Human Glioblastoma Cells. Radiat Res 2004; 161:511-6. [PMID: 15161373 DOI: 10.1667/3154] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The functionality of G(1)-phase arrest was investigated in relation to repair of potentially lethal damage (PLD) in human glioblastoma Gli-06 cells. Confluent cultures were irradiated and plated for clonogenic survival either immediately or 24 h after gamma irradiation. Bivariate flow cytometry was performed to assess the distribution over the cell cycle. Levels of TP53 and CDKN1A protein were assessed with Western blotting and levels of CDKN1A mRNA with RT-PCR. Confluence significantly reduced the number of proliferating cells. Marked PLD repair was found in the absence of an intact G(1) arrest. No accumulation of TP53 was observed, and the protein was smaller than the wild-type TP53 of RKO cells. No increased expression of CDKN1A at the mRNA or protein levels was found in Gli-06 cells. The TP53 of Gli-06 cells was unable to transactivate the CDKN1A gene. From this study, it is evident that PLD repair may be present without a functional TP53 or G(1) arrest.
Collapse
Affiliation(s)
- C van Bree
- Academic Medical Center, University of Amsterdam, Department of Radiotherapy, 1100 DE Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
433
|
Frank AJ, Hernan R, Hollander A, Lindsey JC, Lusher ME, Fuller CE, Clifford SC, Gilbertson RJ. The TP53-ARF tumor suppressor pathway is frequently disrupted in large/cell anaplastic medulloblastoma. ACTA ACUST UNITED AC 2004; 121:137-40. [PMID: 14969745 DOI: 10.1016/j.molbrainres.2003.11.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2003] [Indexed: 11/28/2022]
Abstract
We analyzed the TP53 and INK4A/ARF loci in 29 pediatric medulloblastomas. Mutually exclusive mutation in TP53, methylation of P14(ARF) or deletion of INK4A/ARF were identified in 21% (6/29) of tumors. Five of these alterations were detected in large cell/anaplastic medulloblastomas or tumors with significant anaplasia. Our data provide the first evidence that alterations within the TP53-ARF tumor suppressor pathway contribute to development of aggressive forms of medulloblastoma.
Collapse
Affiliation(s)
- Adrian J Frank
- Northern Institute for Cancer Research, University of Newcastle, The Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | | | | | | | | | | | | | | |
Collapse
|
434
|
Park JK, Chung YM, Kim BG, Yoo YA, Yang BS, Kim JS, Yoo YD. N′-(phenyl-pyridin-2-yl-methylene)-hydrazine carbodithioic acid methyl ester enhances radiation-induced cell death by targeting Bcl-2 against human lung carcinoma cells. Mol Cancer Ther 2004. [DOI: 10.1158/1535-7163.403.3.4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
To develop a new radiosensitizer, we screened a chemical library and selected one chemical reagent, N′-(phenyl-pyridin-2-yl-methylene)-hydrazine carbodithioic acid methyl ester (PHCM), which was already known to have antifungal and antimicrobial properties. PHCM enhanced radiation-induced cell death and its mean calculated dose enhancement ratio was 1.17. PHCM was found to induce the phosphorylation of p38 mitogen-activated protein kinase, and combined treatment with PHCM and radiation down-regulated Bcl-2. In a xenograft assay, the combined PHCM and radiation group showed 39.3 days of growth delay versus the control in terms of tumor growth. The enhancement factor of this combined treatment was determined to be 4.02.
Collapse
Affiliation(s)
| | | | - Byung-Gyu Kim
- 5Laboratory of Cell Regulation and Carcinogenesis, National Cancer Institute/NIH, Bethesda, MD; and
| | - Young-A Yoo
- 1Brain Korea 21 Biomedical Sciences,
- 4Graduate School of Biotechnology, Korea University, Seoul, Korea
| | - Beom-Seok Yang
- 6Life Science Division, Korea Institute of Science and Technology, Seoul, Korea
| | - Jun Suk Kim
- 1Brain Korea 21 Biomedical Sciences,
- 2Department of Internal Medicine, and
| | - Young Do Yoo
- 3Genomic Research Center, Korea University Cancer Institute, College of Medicine and
| |
Collapse
|
435
|
Nix PA, Greenman J, Cawkwell L, Stafford N. Radioresistant laryngeal cancer: beyond the TNM stage. ACTA ACUST UNITED AC 2004; 29:105-14. [PMID: 15113291 DOI: 10.1046/j.1365-2273.2003.00796.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Early stage squamous cell carcinoma of the larynx can be effectively cured by radiotherapy. Unfortunately treatment failures do occur and at present cannot be predicted by the clinician. This article reviews the potential molecular and cellular markers that may help to predict radioresistance in early stage laryngeal cancer.
Collapse
Affiliation(s)
- P A Nix
- Postgraduate Medical Institute of the University of Hull and York Medical School, University of Hull, Hull, UK.
| | | | | | | |
Collapse
|
436
|
Nieto M, Samper E, Fraga MF, González de Buitrago G, Esteller M, Serrano M. The absence of p53 is critical for the induction of apoptosis by 5-aza-2'-deoxycytidine. Oncogene 2004; 23:735-43. [PMID: 14737108 DOI: 10.1038/sj.onc.1207175] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The absence of functional p53 has complex consequences on the cellular responses to cytotoxic drugs. Here, we have examined the role of p53 in the response to 5-aza-2'-deoxycytidine (5-aza-dC or decitabine). Primary mouse embryonic fibroblasts deficient for p53 undergo apoptosis after treatment with 5-aza-dC. When compared with other demethylating drugs or chemotherapeutic treatments, 5-aza-dC showed the highest selectivity ratio for triggering apoptosis in p53-deficient cells relative to wild-type cells. Moreover, the apoptotic efficacy of 5-aza-dC is proprietary of p53-deficient cells, not being observed in cells lacking other cell-cycle regulators, such as p19ARF, p16INK4a, p21(CIP1/WAF1), E2F-1, or E2F-2. Interestingly, treatment with 5-aza-dC results in the same degree of global genomic hypomethylation in wild-type and p53-null cells. However, wild-type cells activate p53 and arrest at G2/M, whereas p53-null cells accumulate severe chromosomal aberrations and undergo apoptosis. Significantly, the impact of p53-deficiency on the response to 5-aza-dC is not exclusive of primary non-neoplastic cells, but it is also present in neoplastically transformed cells. Finally, treatment of mice bearing genetically defined tumors with nontoxic doses of 5-aza-dC results in therapeutical responses only on tumors lacking p53, but not on tumors lacking p19ARF. Together, our results put forward the hypothesis that the absence of p53 may determine a higher chemotherapeutic index for 5-aza-dC.
Collapse
Affiliation(s)
- María Nieto
- Department of Immunology and Oncology, Spanish National Center of Biotechnology (CNB), Madrid, Spain
| | | | | | | | | | | |
Collapse
|
437
|
Affiliation(s)
- Bin-Bing S Zhou
- Drug Discovery Biology, Incyte Corporation, Experimental Station, Rt. 141 & Henry Clay Road, Bldg 400, Wilmington, DE 19880, USA.
| | | |
Collapse
|
438
|
Basse B, Baguley BC, Marshall ES, Joseph WR, van Brunt B, Wake G, Wall DJN. Modelling cell death in human tumour cell lines exposed to the anticancer drug paclitaxel. J Math Biol 2004; 49:329-57. [PMID: 15657794 DOI: 10.1007/s00285-003-0254-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2003] [Indexed: 10/26/2022]
Abstract
Most anti-cancer drugs in use today exert their effects by inducing a programmed cell death mechanism. This process, termed apoptosis, is accompanied by degradation of the DNA and produces cells with a range of DNA contents. We have previously developed a phase transition mathematical model to describe the mammalian cell division cycle in terms of cell cycle phases and the transition rates between these phases. We now extend this model here to incorporate a transition to a programmed cell death phase whereby cellular DNA is progressively degraded with time. We have utilised the technique of flow cytometry to analyse the behaviour of a melanoma cell line (NZM13) that was exposed to paclitaxel, a drug used frequently in the treatment of cancer. The flow cytometry profiles included a complex mixture of living cells whose DNA content was increasing with time and dying cells whose DNA content was decreasing with time. Application of the mathematical model enabled estimation of the rate constant for entry of mitotic cells into apoptosis (0.035 per hour) and the duration of the period of DNA degradation (51 hours). These results provide a dynamic model of the action of an anticancer drug that can be extended to improve the clinical outcome in individual cancer patients.
Collapse
Affiliation(s)
- Britta Basse
- Biomathematics Research Centre, University of Canterbury, Private Bag 4800, Christchurch, New Zealand.
| | | | | | | | | | | | | |
Collapse
|
439
|
Bataille F, Rümmele P, Dietmaier W, Gaag D, Klebl F, Reichle A, Wild P, Hofstädter F, Hartmann A. Alterations in p53 predict response to preoperative high dose chemotherapy in patients with gastric cancer. Mol Pathol 2004; 56:286-92. [PMID: 14514923 PMCID: PMC1187340 DOI: 10.1136/mp.56.5.286] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AIMS To evaluate the usefulness of molecular markers in predicting histopathological and clinical response to preoperative high dose chemotherapy (HDCT) and survival of patients with advanced gastric cancer. METHODS In a phase II trial, 25 patients with metastatic gastric cancer received preoperative tandem HDCT consisting of etoposide, cisplatin, and mitomycin, followed by autologous bone marrow transplantation to achieve surgical resectability. Samples before and after treatment, from normal and tumour tissue, were characterised histopathologically, and both p53 and BAX expression was analysed by immunohistochemistry. Pretreatment formalin fixed, paraffin wax embedded samples from normal and tumour tissue were microdissected, and the extracted DNA was preamplified using improved primer extension preamplification polymerase chain reaction. Detection of microsatellite instability (MSI) or loss of heterozygosity (LOH) was performed using markers for p53, BAX, BAT25, BAT26, D2S123, D17S250, and APC. Exons 5-9 of the p53 gene were sequenced directly on ABI 373. RESULTS Four parameters were significantly associated with response to chemotherapy and prolonged overall survival: positive p53 immunostaining, positive p53 mutation status before chemotherapy, strong histological regression induced by preoperative HDCT, and surgical treatment. Patients's sex or age, tumour location or stage, lymph node status, Lauren classification, MSI, or LOH did not influence duration of survival significantly in this high risk population. CONCLUSION Positive p53 immunostaining and p53 mutation status in pretreatment tumour biopsies might be useful molecular predictors of response and prognosis in patients with advanced gastric cancer treated by preoperative HDCT.
Collapse
Affiliation(s)
- F Bataille
- Department of Pathology, University of Regensburg, 93042 Regensburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
440
|
Abstract
The p53 tumor suppressor acts to integrate multiple stress signals into a series of diverse antiproliferative responses. One of the most important p53 functions is its ability to activate apoptosis, and disruption of this process can promote tumor progression and chemoresistance. p53 apparently promotes apoptosis through transcription-dependent and -independent mechanisms that act in concert to ensure that the cell death program proceeds efficiently. Moreover, the apoptotic activity of p53 is tightly controlled, and is influenced by a series of quantitative and qualitative events that influence the outcome of p53 activation. Interestingly, other p53 family members can also promote apoptosis, either in parallel or in concert with p53. Although incomplete, our current understanding of p53 illustrates how apoptosis can be integrated into a larger tumor suppressor network controlled by different signals, environmental factors, and cell type. Understanding this network in more detail will provide insights into cancer and other diseases, and will identify strategies to improve their therapeutic treatment.
Collapse
|
441
|
Liu S, Bishop WR, Dasmahapatra B, Wang Y. Pharmacogenomics of the p53 tumor suppressor and its role in cancer chemoresistance. Drug Dev Res 2004. [DOI: 10.1002/ddr.10362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
442
|
Abstract
Genomic instability is effectively induced by ionizing radiation. Recently, evidence has accumulated supporting a relationship between genetic background and the radiation-induced genomic instability phenotype. This is possibly due to alterations in proteins responsible for maintenance of genomic integrity or altered oxidative metabolism. Studies in human cell lines, human primary cells, and mouse models have been performed predominantly using high linear energy transfer (LET) radiation, or high doses of low LET radiation. The interplay between genetics, radiation response, and genomic instability has not been fully determined at low doses of low LET radiation. However, recent studies using low doses of low LET radiation suggest that the relationship between genetic background and radiation-induced genomic instability may be more complicated than these same relationships at high LET or high doses of low LET radiation. The complexity of this relationship at low doses of low LET radiation suggests that more of the population may be at risk than previously recognized and may have implications for radiation risk assessment.
Collapse
Affiliation(s)
- Munira A Kadhim
- Radiation and Genome Stability Unit, Medical Research Council, Harwell, Oxfordshire, OX11 0RD, UK.
| |
Collapse
|
443
|
Abstract
DNA damage checkpoints are essential control points in the cell cycle ensuring effective damage repair. The loss of checkpoint functions leads to loss of genomic integrity and allows accumulation of genetic damage in the daughter cells. Checkpoint deficiency is one of the main causes of DNA aberrations in cancer.
Collapse
Affiliation(s)
- Marikki Laiho
- Haartman Institute, Molecular Cancer Biology Research Program, University of Helsinki and Helsinki University Central Hospital, FIN-00014 Helsinki, Finland.
| | | |
Collapse
|
444
|
Lane DP, Fischer PM. Magnifying endoscopic observation of the gastric mucosa, particularly in patients with atrophic gastritis. Endoscopy 1978; 427:789-90. [PMID: 14985740 DOI: 10.1038/427789a] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The gastric mucosal surface was observed using the magnifying fibergastroscope (FGS-ML), and the fine gastric mucosal patterns, which were even smaller than one unit of gastric area, were examined at a magnification of about 30. For simplicification, we classified these patterns by magnifying endoscopy in the following ways; FP, FIP, FSP, SP and MP, modifying Yoshii's classification under the dissecting microscope. The FIP, which was found to have round and long elliptical gastric pits, is a new addition to our endoscopic classification. The relationship between the FIP and the intermediate zone was evaluated by superficial and histological studies of surgical and biopsy specimens. The width of the band of FIP seems to be related to the severity of atrophic gastritis. Also, the transformation of FP to FIP was assessed by comparing specimens taken from the resected and residual parts of the stomach, respectively. Moreover, it appears that severe gastritis occurs in the gastric mucosa which shows a FIP. Therefore, we consider that the FIP indicates the position of the atrophic border.
Collapse
|