401
|
Qi Z, Wu P, Zhang Q, Wei Y, Wang Z, Qiu M, Shao R, Li Y, Gao Q. Transcriptome analysis of soiny mullet (Liza haematocheila) spleen in response to Streptococcus dysgalactiae. FISH & SHELLFISH IMMUNOLOGY 2016; 49:194-204. [PMID: 26707943 DOI: 10.1016/j.fsi.2015.12.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/21/2015] [Accepted: 12/16/2015] [Indexed: 06/05/2023]
Abstract
Soiny mullet (Liza haematocheila) is becoming an economically important aquaculture mugilid species in China and other Asian countries. However, increasing incidences of bacterial pathogenic diseases has greatly hampered the production of the soiny mullet. Deeper understanding of the soiny mullet immune system and its related genes in response to bacterial infections are necessary for disease control in this species. In this study, the transcriptomic profile of spleen from soiny mullet challenged with Streptococcus dysgalactiae was analyzed by Illumina-based paired-end sequencing method. After assembly, 86,884 unique transcript fragments (unigenes) were assembled, with an average length of 991 bp. Approximately 41,795 (48.1%) unigenes were annotated in the nr NCBI database and 57.9% of the unigenes were similar to that of the Nile tilapia. A total of 24,299 unigenes were categorized into three Gene Ontology (GO) categories (molecular function, cellular component and biological process), 13,570 unigenes into 25 functional Clusters of Orthologous Groups of proteins (COG) categories, and 30,547 unigenes were grouped into 258 known pathways in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Following S. dysgalactiae infection, 11,461 differentially expressed unigenes were identified including 4658 up-regulated unigenes and 6803 down-regulated unigenes. Significant enrichment analysis of these differentially expressed unigenes identified major immune related pathways, including the Toll-like receptor, complement and coagulation cascades, T cell receptor signaling pathway and B cell receptor signaling pathway. In addition, 24,813 simple sequence repeats (SSRs) and 127,503 candidate single nucleotide polymorphisms (SNPs) were identified from the mullet spleen transcriptome. To this date, this study has globally analyzed the transcriptome profile from the spleen of L. haematocheila after S. dysgalactiae infection. Therefore, the results of our study contributes to better on the immune system and defense mechanisms of soiny mullet in response to bacterial infection, and provides valuable references for related studies in mugilidae species which currently lack genomic reference.
Collapse
Affiliation(s)
- Zhitao Qi
- Key Laboratory of Aquaculture and Ecology of Coastal Pool in Jiangsu Province, Department of Ocean Technology, Yancheng Institute of Technology, Yancheng, Jiangsu, 224051, China.
| | - Ping Wu
- Hubei Province Key Laboratory on Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, Hubei, 437100, China
| | - Qihuan Zhang
- Key Laboratory of Aquaculture and Ecology of Coastal Pool in Jiangsu Province, Department of Ocean Technology, Yancheng Institute of Technology, Yancheng, Jiangsu, 224051, China
| | - Youchuan Wei
- Guangxi Key Laboratory of Subtropical Bioresource Conservation and Utilization, Guangxi University, Nanning, Guangxi Autonomous Region, 530004, China
| | - Zisheng Wang
- Key Laboratory of Aquaculture and Ecology of Coastal Pool in Jiangsu Province, Department of Ocean Technology, Yancheng Institute of Technology, Yancheng, Jiangsu, 224051, China
| | - Ming Qiu
- Key Laboratory of Aquaculture and Ecology of Coastal Pool in Jiangsu Province, Department of Ocean Technology, Yancheng Institute of Technology, Yancheng, Jiangsu, 224051, China
| | - Rong Shao
- Key Laboratory of Aquaculture and Ecology of Coastal Pool in Jiangsu Province, Department of Ocean Technology, Yancheng Institute of Technology, Yancheng, Jiangsu, 224051, China
| | - Yao Li
- Key Laboratory of Aquaculture and Ecology of Coastal Pool in Jiangsu Province, Department of Ocean Technology, Yancheng Institute of Technology, Yancheng, Jiangsu, 224051, China
| | - Qian Gao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China.
| |
Collapse
|
402
|
Rodriguez-Nunez I, Wcisel DJ, Litman RT, Litman GW, Yoder JA. The identification of additional zebrafish DICP genes reveals haplotype variation and linkage to MHC class I genes. Immunogenetics 2016; 68:295-312. [PMID: 26801775 DOI: 10.1007/s00251-016-0901-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 01/07/2016] [Indexed: 10/22/2022]
Abstract
Bony fish encode multiple multi-gene families of membrane receptors that are comprised of immunoglobulin (Ig) domains and are predicted to function in innate immunity. One of these families, the diverse immunoglobulin (Ig) domain-containing protein (DICP) genes, maps to three chromosomal loci in zebrafish. Most DICPs possess one or two Ig ectodomains and include membrane-bound and secreted forms. Membrane-bound DICPs include putative inhibitory and activating receptors. Recombinant DICP Ig domains bind lipids with varying specificity, a characteristic shared with mammalian CD300 and TREM family members. Numerous DICP transcripts amplified from different lines of zebrafish did not match the zebrafish reference genome sequence suggesting polymorphic and haplotypic variation. The expression of DICPs in three different lines of zebrafish has been characterized employing PCR-based strategies. Certain DICPs exhibit restricted expression in adult tissues whereas others are expressed ubiquitously. Transcripts of a subset of DICPs can be detected during embryonic development suggesting roles in embryonic immunity or other developmental processes. Transcripts representing 11 previously uncharacterized DICP sequences were identified. The assignment of two of these sequences to an unplaced genomic scaffold resulted in the identification of an alternative DICP haplotype that is linked to a MHC class I Z lineage haplotype on zebrafish chromosome 3. The linkage of DICP and MHC class I genes also is observable in the genomes of the related grass carp (Ctenopharyngodon idellus) and common carp (Cyprinus carpio) suggesting that this is a shared character with the last common Cyprinidae ancestor.
Collapse
Affiliation(s)
- Ivan Rodriguez-Nunez
- Department of Molecular Biomedical Sciences and Center for Comparative Medicine and Translational Research, North Carolina State University, 1060 William Moore Drive, Raleigh, NC, 27607, USA
| | - Dustin J Wcisel
- Department of Molecular Biomedical Sciences and Center for Comparative Medicine and Translational Research, North Carolina State University, 1060 William Moore Drive, Raleigh, NC, 27607, USA
| | - Ronda T Litman
- Department of Pediatrics, University of South Florida Morsani College of Medicine, USF/ACH Children's Research Institute, 140 7th Avenue South, St. Petersburg, FL, 33701, USA
| | - Gary W Litman
- Department of Pediatrics, University of South Florida Morsani College of Medicine, USF/ACH Children's Research Institute, 140 7th Avenue South, St. Petersburg, FL, 33701, USA.,Department of Molecular Genetics, All Children's Hospital Johns Hopkins Medicine, 501 6th Avenue South, St. Petersburg, FL, 33701, USA
| | - Jeffrey A Yoder
- Department of Molecular Biomedical Sciences and Center for Comparative Medicine and Translational Research, North Carolina State University, 1060 William Moore Drive, Raleigh, NC, 27607, USA.
| |
Collapse
|
403
|
Paulson TG. Studying Cancer Evolution in Barrett’s Esophagus and Esophageal Adenocarcinoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 908:213-36. [DOI: 10.1007/978-3-319-41388-4_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
404
|
Early histocompatibility: color the mechanism green and red. Curr Biol 2015; 25:R1042-R1043. [PMID: 26528746 DOI: 10.1016/j.cub.2015.09.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Allorecognition in Hydractinia, a cnidarian, is governed by two different, highly polymorphic genes encoding transmembrane proteins. Using a fluorescent cell read-out system, a new study now shows that the basis for specificity involves homophilic interactions between extracellular domains.
Collapse
|
405
|
Li R, Redmond AK, Wang T, Bird S, Dooley H, Secombes CJ. Characterisation of the TNF superfamily members CD40L and BAFF in the small-spotted catshark (Scyliorhinus canicula). FISH & SHELLFISH IMMUNOLOGY 2015; 47:381-389. [PMID: 26386192 DOI: 10.1016/j.fsi.2015.09.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/08/2015] [Accepted: 09/15/2015] [Indexed: 06/05/2023]
Abstract
The tumour necrosis factor superfamily (TNFSF) members CD40L and BAFF play critical roles in mammalian B cell survival, proliferation and maturation, however little is known about these key cytokines in the oldest jawed vertebrates, the cartilaginous fishes. Here we report the cloning of CD40L and BAFF orthologues (designated ScCD40L and ScBAFF) in the small-spotted catshark (Scyliorhinus canicula). As predicted both proteins are type II membrane-bound proteins with a TNF homology domain in their extracellular region and both are highly expressed in shark immune tissues. ScCD40L transcript levels correlate with those of TCRα and transcription of both genes is modulated in peripheral blood leukocytes following in vitro stimulation. Although a putative CD40L orthologue was identified in the elephant shark genome the work herein is the first molecular characterisation and transcriptional analysis of CD40L in a cartilaginous fish. ScBAFF was also cloned and its transcription characterised in an attempt to resolve the discrepancies observed between spiny dogfish BAFF and bamboo shark BAFF in previously published studies.
Collapse
Affiliation(s)
- Ronggai Li
- Scottish Fish Immunology Research Centre (SFIRC), School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom
| | - Anthony K Redmond
- Centre for Genome-Enabled Biology & Medicine (CGEBM), University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre (SFIRC), School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom
| | - Steve Bird
- Department of Biological Sciences, School of Science and Engineering, University of Waikato, New Zealand
| | - Helen Dooley
- Scottish Fish Immunology Research Centre (SFIRC), School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom.
| | - Chris J Secombes
- Scottish Fish Immunology Research Centre (SFIRC), School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom
| |
Collapse
|
406
|
Guselnikov SV, Grayfer L, De Jesús Andino F, Rogozin IB, Robert J, Taranin AV. Retention of duplicated ITAM-containing transmembrane signaling subunits in the tetraploid amphibian species Xenopus laevis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 53:158-68. [PMID: 26170006 PMCID: PMC4536121 DOI: 10.1016/j.dci.2015.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 07/02/2015] [Accepted: 07/02/2015] [Indexed: 06/04/2023]
Abstract
The ITAM-bearing transmembrane signaling subunits (TSS) are indispensable components of activating leukocyte receptor complexes. The TSS-encoding genes map to paralogous chromosomal regions, which are thought to arise from ancient genome tetraploidization(s). To assess a possible role of tetraploidization in the TSS evolution, we studied TSS and other functionally linked genes in the amphibian species Xenopus laevis whose genome was duplicated about 40 MYR ago. We found that X. laevis has retained a duplicated set of sixteen TSS genes, all except one being transcribed. Furthermore, duplicated TCRα loci and genes encoding TSS-coupling protein kinases have also been retained. No clear evidence for functional divergence of the TSS paralogs was obtained from gene expression and sequence analyses. We suggest that the main factor of maintenance of duplicated TSS genes in X. laevis was a protein dosage effect and that this effect might have facilitated the TSS set expansion in early vertebrates.
Collapse
Affiliation(s)
- S V Guselnikov
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Avenue 8/2, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogov Street 2, Novosibirsk 630090, Russia.
| | - L Grayfer
- University of Rochester, Medical Center, 601 Elmwood Avenue, MRBX, Rochester, NY 14642, USA.
| | - F De Jesús Andino
- University of Rochester, Medical Center, 601 Elmwood Avenue, MRBX, Rochester, NY 14642, USA.
| | - I B Rogozin
- National Center for Biotechnology Information NLM, National Institutes of Health, 8600 Rockville Pike, Bldg. 38A, Bethesda, MD, USA.
| | - J Robert
- University of Rochester, Medical Center, 601 Elmwood Avenue, MRBX, Rochester, NY 14642, USA.
| | - A V Taranin
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Avenue 8/2, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogov Street 2, Novosibirsk 630090, Russia.
| |
Collapse
|
407
|
Increased Transcript Complexity in Genes Associated with Chronic Obstructive Pulmonary Disease. PLoS One 2015; 10:e0140885. [PMID: 26480348 PMCID: PMC4610675 DOI: 10.1371/journal.pone.0140885] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 09/30/2015] [Indexed: 12/31/2022] Open
Abstract
Genome-wide association studies aim to correlate genotype with phenotype. Many common diseases including Type II diabetes, Alzheimer’s, Parkinson’s and Chronic Obstructive Pulmonary Disease (COPD) are complex genetic traits with hundreds of different loci that are associated with varied disease risk. Identifying common features in the genes associated with each disease remains a challenge. Furthermore, the role of post-transcriptional regulation, and in particular alternative splicing, is still poorly understood in most multigenic diseases. We therefore compiled comprehensive lists of genes associated with Type II diabetes, Alzheimer’s, Parkinson’s and COPD in an attempt to identify common features of their corresponding mRNA transcripts within each gene set. The SERPINA1 gene is a well-recognized genetic risk factor of COPD and it produces 11 transcript variants, which is exceptional for a human gene. This led us to hypothesize that other genes associated with COPD, and complex disorders in general, are highly transcriptionally diverse. We found that COPD-associated genes have a statistically significant enrichment in transcript complexity stemming from a disproportionately high level of alternative splicing, however, Type II Diabetes, Alzheimer’s and Parkinson’s disease genes were not significantly enriched. We also identified a subset of transcriptionally complex COPD-associated genes (~40%) that are differentially expressed between mild, moderate and severe COPD. Although the genes associated with other lung diseases are not extensively documented, we found preliminary data that idiopathic pulmonary disease genes, but not cystic fibrosis modulators, are also more transcriptionally complex. Interestingly, complex COPD transcripts are more often the product of alternative acceptor site usage. To verify the biological importance of these alternative transcripts, we used RNA-sequencing analyses to determine that COPD-associated genes are frequently expressed in lung and liver tissues and are regulated in a tissue-specific manner. Additionally, many complex COPD-associated genes are spliced differently between COPD and non-COPD patients. Our analysis therefore suggests that post-transcriptional regulation, particularly alternative splicing, is an important feature specific to COPD disease etiology that warrants further investigation.
Collapse
|
408
|
Wolf G, Greenberg D, Macfarlan TS. Spotting the enemy within: Targeted silencing of foreign DNA in mammalian genomes by the Krüppel-associated box zinc finger protein family. Mob DNA 2015; 6:17. [PMID: 26435754 PMCID: PMC4592553 DOI: 10.1186/s13100-015-0050-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/24/2015] [Indexed: 12/17/2022] Open
Abstract
Tandem C2H2-type zinc finger proteins (ZFPs) constitute the largest transcription factor family in animals. Tandem-ZFPs bind DNA in a sequence-specific manner through arrays of multiple zinc finger domains that allow high flexibility and specificity in target recognition. In tetrapods, a large proportion of tandem-ZFPs contain Krüppel-associated-box (KRAB) repression domains, which are able to induce epigenetic silencing through the KAP1 corepressor. The KRAB-ZFP family continuously amplified in tetrapods through segmental gene duplications, often accompanied by deletions, duplications, and mutations of the zinc finger domains. As a result, tetrapod genomes contain unique sets of KRAB-ZFP genes, consisting of ancient and recently evolved family members. Although several hundred human and mouse KRAB-ZFPs have been identified or predicted, the biological functions of most KRAB-ZFP family members have gone unexplored. Furthermore, the evolutionary forces driving the extraordinary KRAB-ZFP expansion and diversification have remained mysterious for decades. In this review, we highlight recent studies that associate KRAB-ZFPs with the repression of parasitic DNA elements in the mammalian germ line and discuss the hypothesis that the KRAB-ZFP family primarily evolved as an adaptive genomic surveillance system against foreign DNA. Finally, we comment on the computational, genetic, and biochemical challenges of studying KRAB-ZFPs and attempt to predict how these challenges may be soon overcome.
Collapse
Affiliation(s)
- Gernot Wolf
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, MD 20892 USA
| | - David Greenberg
- The Gladstone Institute of Virology and Immunology, University of California, San Francisco, CA 94158 USA ; Present address: Pacific Biosciences, 1380 Willow Road, Menlo Park, CA 94025 USA
| | - Todd S Macfarlan
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
409
|
Maslo B, Valent M, Gumbs JF, Frick WF. Conservation implications of ameliorating survival of little brown bats with white-nose syndrome. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2015; 25:1832-40. [PMID: 26591449 DOI: 10.1890/14-2472.1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Management of wildlife populations impacted by novel threats is often challenged by a lack of data on temporal changes in demographic response. Populations may suffer rapid declines from the introduction of new stressors, but how demography changes over time is critical to determining long-term outcomes for populations. White-nose syndrome (WNS), an infectious disease of hibernating bats, has caused massive and rapid population declines in several hibernating species of bats in North America since the disease was first observed on the continent in 2006. Estimating annual survival rates and demographic trends among remnant colonies of hibernating bats that experienced mass mortality from WNS is needed to determine long-term population viability of species impacted by this disease. Using mark-recapture data on infected little brown bats (Myotis lucifugus), we estimated the first apparent annual survival rates for four years following WNS detection at a site. We found strong support for an increasing trend in annual survival, which improved from 0.68 (95% CI = 0.44-0.85) to 0.75 (95% CI = 0.51-0.89) for males and 0.65 (95% CI = 0.44-0.81) to 0.70 (95% CI = 0.50-0.84) for females. These results suggest that stabilization at remnant colonies after mass mortality from WNS may be due to improved survival and not from immigration from other areas. Despite ameliorating survival, our stochastic matrix projection model predicts continued declines for little brown bat populations (λ = 0.95), raising concern for the regional persistence of this species. We conducted a vital rate sensitivity analysis and determined that adult and juvenile survival, as opposed to fecundity, are the demographic parameters most important to target to maximize recovery potential of little brown bat populations in areas impacted by WNS.
Collapse
|
410
|
Epigenetic dynamics in immunity and autoimmunity. Int J Biochem Cell Biol 2015; 67:65-74. [DOI: 10.1016/j.biocel.2015.05.022] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/21/2015] [Accepted: 05/22/2015] [Indexed: 02/01/2023]
|
411
|
Alternative adaptive immunity strategies: coelacanth, cod and shark immunity. Mol Immunol 2015; 69:157-69. [PMID: 26423359 DOI: 10.1016/j.molimm.2015.09.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 08/31/2015] [Accepted: 09/01/2015] [Indexed: 01/30/2023]
Abstract
The advent of high throughput sequencing has permitted to investigate the genome and the transcriptome of novel non-model species with unprecedented depth. This technological advance provided a better understanding of the evolution of adaptive immune genes in gnathostomes, revealing several unexpected features in different fish species which are of particular interest. In the present paper, we review the current understanding of the adaptive immune system of the coelacanth, the elephant shark and the Atlantic cod. The study of coelacanth, the only living extant of the long thought to be extinct Sarcopterygian lineage, is fundamental to bring new insights on the evolution of the immune system in higher vertebrates. Surprisingly, coelacanths are the only known jawed vertebrates to lack IgM, whereas two IgD/W loci are present. Cartilaginous fish are of great interest due to their basal position in the vertebrate tree of life; the genome of the elephant shark revealed the lack of several important immune genes related to T cell functions, which suggest the existence of a primordial set of TH1-like cells. Finally, the Atlantic cod lacks a functional major histocompatibility II complex, but balances this evolutionary loss with the expansion of specific gene families, including MHC I, Toll-like receptors and antimicrobial peptides. Overall, these data point out that several fish species present an unconventional adaptive immune system, but the loss of important immune genes is balanced by adaptive evolutionary strategies which still guarantee the establishment of an efficient immune response against the pathogens they have to fight during their life.
Collapse
|
412
|
Early Vertebrate Evolution of the Host Restriction Factor Tetherin. J Virol 2015; 89:12154-65. [PMID: 26401043 DOI: 10.1128/jvi.02149-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 09/17/2015] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED Tetherin is an interferon-inducible restriction factor targeting a broad range of enveloped viruses. Its antiviral activity depends on an unusual topology comprising an N-terminal transmembrane domain (TMD) followed by an extracellular coiled-coil region and a C-terminal glycosylphosphatidylinositol (GPI) anchor. One of the two membrane anchors is inserted into assembling virions, while the other remains in the plasma membrane of the infected cell. Thus, tetherin entraps budding viruses by physically bridging viral and cellular membranes. Although tetherin restricts the release of a large variety of diverse human and animal viruses, only mammalian orthologs have been described to date. Here, we examined the evolutionary origin of this protein and demonstrate that tetherin orthologs are also found in fish, reptiles, and birds. Notably, alligator tetherin efficiently blocks the release of retroviral particles. Thus, tetherin emerged early during vertebrate evolution and acquired its antiviral activity before the mammal/reptile divergence. Although there is only limited sequence homology, all orthologs share the typical topology. Two unrelated proteins of the slime mold Dictyostelium discoideum also adopt a tetherin-like configuration with an N-terminal TMD and a C-terminal GPI anchor. However, these proteins showed no evidence for convergent evolution and failed to inhibit virion release. In summary, our findings demonstrate that tetherin emerged at least 450 million years ago and is more widespread than previously anticipated. The early evolution of antiviral activity together with the high topology conservation but low sequence homology suggests that restriction of virus release is the primary function of tetherin. IMPORTANCE The continuous arms race with viruses has driven the evolution of a variety of cell-intrinsic immunity factors that inhibit different steps of the viral replication cycle. One of these restriction factors, tetherin, inhibits the release of newly formed progeny virions from infected cells. Although tetherin targets a broad range of enveloped viruses, including retro-, filo-, herpes-, and arenaviruses, the evolutionary origin of this restriction factor and its antiviral activity remained obscure. Here, we examined diverse vertebrate genomes for genes encoding cellular proteins that share with tetherin the highly unusual combination of an N-terminal transmembrane domain and a C-terminal glycosylphosphatidylinositol anchor. We show that tetherin orthologs are found in fish, reptiles, and birds and demonstrate that alligator tetherin efficiently inhibits the release of retroviral particles. Our findings identify tetherin as an evolutionarily ancient restriction factor and provide new important insights into the continuous arms race between viruses and their hosts.
Collapse
|
413
|
Jurberg AD, Vasconcelos-Fontes L, Cotta-de-Almeida V. A Tale from TGF-β Superfamily for Thymus Ontogeny and Function. Front Immunol 2015; 6:442. [PMID: 26441956 PMCID: PMC4564722 DOI: 10.3389/fimmu.2015.00442] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 08/14/2015] [Indexed: 12/16/2022] Open
Abstract
Multiple signaling pathways control every aspect of cell behavior, organ formation, and tissue homeostasis throughout the lifespan of any individual. This review takes an ontogenetic view focused on the large superfamily of TGF-β/bone morphogenetic protein ligands to address thymus morphogenesis and function in T cell differentiation. Recent findings on a role of GDF11 for reversing aging-related phenotypes are also discussed.
Collapse
Affiliation(s)
- Arnon Dias Jurberg
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz) , Rio de Janeiro , Brazil ; Graduate Program in Cell and Developmental Biology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro , Rio de Janeiro , Brazil
| | - Larissa Vasconcelos-Fontes
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz) , Rio de Janeiro , Brazil
| | - Vinícius Cotta-de-Almeida
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz) , Rio de Janeiro , Brazil
| |
Collapse
|
414
|
van Niekerk G, Davis T, Engelbrecht AM. Was the evolutionary road towards adaptive immunity paved with endothelium? Biol Direct 2015; 10:47. [PMID: 26341882 PMCID: PMC4560925 DOI: 10.1186/s13062-015-0079-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/02/2015] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The characterization of a completely novel adaptive immune system (AIS) in jawless vertebrates (hagfish and lampreys) presents an excellent opportunity for exploring similarities and differences in design principles. It also highlights a somewhat neglected question: Why did vertebrates, representing only 5 % of all animals, evolve a system as complex as an AIS twice, whereas invertebrates failed to do so? A number of theories have been presented in answer to this question. However, these theories either fail to explain why invertebrates would not similarly develop an AIS and are confounded by issues of causality, or have been challenged by more recent findings. PRESENTATION OF THE HYPOTHESIS Instead of identifying a selective pressure that would drive the development of an AIS, we hypothesise that invertebrates failed to develop an AIS because of the evolutionary constraints imposed by these animals' physiological context. In particular, we argue that a number of vascular innovations in vertebrates allowed the effective implementation of an AIS. A lower blood volume allowed for a higher antibody titer (i.e., less 'diluted' antibody concentration), rendering these immune effectors more cost-effective. In addition, both a high circulatory velocity and the ability of endothelium to coordinate immune cell trafficking promote 'epitope sampling'. Collectively, these innovations allowed the effective implementation of AIS in vertebrates. TESTING THE HYPOTHESIS The hypothesis posits that a number of innovations to the vascular system provided the release from constraints which allowed the implementation of an AIS. However, this hypothesis would be refuted by phylogenetic analysis demonstrating that the AIS preceded these vascular innovations. The hypothesis also suggests that vascular performance would have an impact on the efficacy of an AIS, thus predicting a correlation between the vascular parameters of a species and its relative investment in AIS. The contribution of certain vascular innovations in augmenting immune functionality of an AIS can be tested by modelling the effect of different vascular parameters on AIS efficacy. IMPLICATIONS OF THE HYPOTHESIS The hypothesis not only explains the immunological dimorphism between vertebrates and invertebrates but also brings to attention the fact that immunity is dependent on more than just an immune system.
Collapse
Affiliation(s)
- Gustav van Niekerk
- Department of Physiological Sciences, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7600, South Africa.
| | - Tanja Davis
- Department of Physiological Sciences, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7600, South Africa.
| | - Anna-Mart Engelbrecht
- Department of Physiological Sciences, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7600, South Africa.
| |
Collapse
|
415
|
Mable BK, Kilbride E, Viney ME, Tinsley RC. Copy number variation and genetic diversity of MHC Class IIb alleles in an alien population of Xenopus laevis. Immunogenetics 2015; 67:591-603. [PMID: 26329765 PMCID: PMC4572066 DOI: 10.1007/s00251-015-0860-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/10/2015] [Indexed: 12/23/2022]
Abstract
Xenopus laevis (the African clawed frog), which originated through hybridisation and whole genome duplication, has been used as a model for genetics and development for many years, but surprisingly little is known about immune gene variation in natural populations. The purpose of this study was to use an isolated population of X. laevis that was introduced to Wales, UK in the past 50 years to investigate how variation at the MHC compares to that at other loci, following a severe population bottleneck. Among 18 individuals, we found nine alleles based on exon 2 sequences of the Class IIb region (which includes the peptide binding region). Individuals carried from one to three of the loci identified from previous laboratory studies. Genetic variation was an order of magnitude higher at the MHC compared with three single-copy nuclear genes, but all loci showed high levels of heterozygosity and nucleotide diversity and there was not an excess of homozygosity or decrease in diversity over time that would suggest extensive inbreeding in the introduced population. Tajima’s D was positive for all loci, which is consistent with a bottleneck. Moreover, comparison with published sequences identified the source of the introduced population as the Western Cape region of South Africa, where most commercial suppliers have obtained their stocks. These factors suggest that despite founding by potentially already inbred individuals, the alien population in Wales has maintained substantial genetic variation at both adaptively important and neutral genes.
Collapse
Affiliation(s)
- Barbara K Mable
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Elizabeth Kilbride
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Mark E Viney
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK.
| | - Richard C Tinsley
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
| |
Collapse
|
416
|
A nonclassical MHC class I U lineage locus in zebrafish with a null haplotypic variant. Immunogenetics 2015; 67:501-13. [PMID: 26254596 DOI: 10.1007/s00251-015-0862-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 07/28/2015] [Indexed: 12/13/2022]
Abstract
Three sequence lineages of MHC class I genes have been described in zebrafish (Danio rerio): U, Z, and L. The U lineage genes encoded on zebrafish chromosome 19 are predicted to provide the classical function of antigen presentation. This MHC class I locus displays significant haplotypic variation and is the only MHC class I locus in zebrafish that shares conserved synteny with the core mammalian MHC. Here, we describe two MHC class I U lineage genes, mhc1ula and mhc1uma, that map to chromosome 22. Unlike the U lineage proteins encoded on chromosome 19, Ula and Uma likely play a nonclassical role as they lack conservation of key peptide binding residues, display limited polymorphic variation, and exhibit tissue-specific expression. We also describe a null haplotype at this chromosome 22 locus in which the mhc1ula and mhc1uma genes are absent due to a ~30 kb deletion with no other MHC class I sequences present. Functional and non-functional transcripts of mhc1ula and mhc1uma were identified; however, mhc1uma transcripts were often not amplified or amplified at low levels from individuals possessing an apparently bona fide gene. These distinct U lineage genes may be restricted to the superorder Ostariophysi as similar sequences only could be identified from the blind cavefish (Astyanax mexicanus), fathead minnow (Pimephales promelas), goldfish (Carassius auratus), and grass carp (Ctenopharyngodon idella).
Collapse
|
417
|
Li R, Su P, Liu C, Zhang Q, Zhu T, Pang Y, Liu X, Li Q. A novel protein tyrosine kinase Tec identified in lamprey, Lampetra japonica. Acta Biochim Biophys Sin (Shanghai) 2015; 47:639-46. [PMID: 26079172 DOI: 10.1093/abbs/gmv056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 04/15/2015] [Indexed: 11/14/2022] Open
Abstract
Protein tyrosine kinase Tec, a kind of non-receptor tyrosine kinase, is primarily found to be expressed in T cells, B cells, hematopoietic cells, and liver cells as a cytoplasmic protein. Tec has been proved to be a critical modulator of T cell receptor signaling pathway. In the present study, a homolog of Tec was identified in the lamprey, Lampetra japonica. The full-length Tec cDNA of L. japonica (Lja-Tec) contains a 1923 bp open reading frame that encodes a 641-amino acid protein. The multi-alignment of the deduced amino acid sequence of Lja-Tec with typical vertebrate Tecs showed that it possesses all conserved domains of the Tec family proteins, indicating that an ortholog of Tec exists in the extant jawless vertebrate. In the phylogenetic tree that was reconstructed with 24 homologs of jawless and jawed vertebrates, the Tecs from lampreys and hagfish were clustered as a single clade. The genetic distance between the outgroup and agnathan Tecs' group is closer than that between outgroup and gnathostome Tecs' group, indicating that its origin was far earlier than any of the jawed vertebrates. The mRNA levels of Lja-Tec in lymphocyte-like cells and gills were detected by real-time quantitative polymerase chain reaction. Results showed that it was significantly upregulated under stimulation with mixed pathogens. This result was further confirmed by western blot analysis. All these results indicated that Lja-Tec plays an important role in immune response. Our data will provide a reference for the further study of lamprey Tec and its immunological function in jawless vertebrates.
Collapse
Affiliation(s)
- Ranran Li
- College of Life Science, Liaoning Normal University, Dalian 116029, China Lamprey Research Center, Liaoning Normal University, Dalian 116029, China
| | - Peng Su
- College of Life Science, Liaoning Normal University, Dalian 116029, China Lamprey Research Center, Liaoning Normal University, Dalian 116029, China
| | - Chang Liu
- College of Life Science, Liaoning Normal University, Dalian 116029, China Lamprey Research Center, Liaoning Normal University, Dalian 116029, China
| | - Qiong Zhang
- College of Life Science, Liaoning Normal University, Dalian 116029, China Lamprey Research Center, Liaoning Normal University, Dalian 116029, China
| | - Ting Zhu
- College of Life Science, Liaoning Normal University, Dalian 116029, China Lamprey Research Center, Liaoning Normal University, Dalian 116029, China
| | - Yue Pang
- College of Life Science, Liaoning Normal University, Dalian 116029, China Lamprey Research Center, Liaoning Normal University, Dalian 116029, China
| | - Xin Liu
- College of Life Science, Liaoning Normal University, Dalian 116029, China Lamprey Research Center, Liaoning Normal University, Dalian 116029, China
| | - Qingwei Li
- College of Life Science, Liaoning Normal University, Dalian 116029, China Lamprey Research Center, Liaoning Normal University, Dalian 116029, China
| |
Collapse
|
418
|
Liu X, Wu H, Liu Q, Wang Q, Xiao J, Chang X, Zhang Y. Profiling immune response in zebrafish intestine, skin, spleen and kidney bath-vaccinated with a live attenuated Vibrio anguillarum vaccine. FISH & SHELLFISH IMMUNOLOGY 2015; 45:342-345. [PMID: 25956722 DOI: 10.1016/j.fsi.2015.04.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 03/22/2015] [Accepted: 04/25/2015] [Indexed: 06/04/2023]
Affiliation(s)
- Xiaohong Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China
| | - Haizhen Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jingfan Xiao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xinyue Chang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
419
|
Abstract
Interleukin 17 (IL-17) is an important pro-inflammatory cytokine and plays critical roles in the immune response to pathogens and in the pathogenesis of inflammatory and autoimmune diseases. Despite its important functions, the origin and evolution of IL-17 in animal phyla have not been characterized. As determined in this study, the distribution of the IL-17 family among 10 invertebrate species and 7 vertebrate species suggests that the IL-17 gene may have originated from Nematoda but is absent from Saccoglossus kowalevskii (Hemichordata) and Insecta. Moreover, the gene number, protein length and domain number of IL-17 differ widely. A comparison of IL-17-containing domains and conserved motifs indicated somewhat low amino acid sequence similarity but high conservation at the motif level, although some motifs were lost in certain species. The third disulfide bond for the cystine knot fold is formed by two cysteine residues in invertebrates, but these have been replaced by two serine residues in Chordata and vertebrates. One third of invertebrate IL-17 proteins were found to have no predicted signal peptide. Furthermore, an analysis of phylogenetic trees and exon-intron structures indicated that the IL-17 family lacks conservation and displays high divergence. These results suggest that invertebrate IL-17 proteins have undergone complex differentiation and that their members may have developed novel functions during evolution.
Collapse
Affiliation(s)
- Xian-De Huang
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Hua Zhang
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Mao-Xian He
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- * E-mail:
| |
Collapse
|
420
|
Zoccola E, Delamare-Deboutteville J, Barnes AC. Identification of Barramundi (Lates calcarifer) DC-SCRIPT, a Specific Molecular Marker for Dendritic Cells in Fish. PLoS One 2015; 10:e0132687. [PMID: 26173015 PMCID: PMC4501824 DOI: 10.1371/journal.pone.0132687] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 06/18/2015] [Indexed: 11/18/2022] Open
Abstract
Antigen presentation is a critical step bridging innate immune recognition and specific immune memory. In mammals, the process is orchestrated by dendritic cells (DCs) in the lymphatic system, which initiate clonal proliferation of antigen-specific lymphocytes. However, fish lack a classical lymphatic system and there are currently no cellular markers for DCs in fish, thus antigen-presentation in fish is poorly understood. Recently, antigen-presenting cells similar in structure and function to mammalian DCs were identified in various fish, including rainbow trout (Oncorhynchus mykiss) and zebrafish (Danio rerio). The present study aimed to identify a potential molecular marker for DCs in fish and therefore targeted DC-SCRIPT, a well-conserved zinc finger protein that is preferentially expressed in all sub-types of human DCs. Putative dendritic cells were obtained in culture by maturation of spleen and pronephros-derived monocytes. DC-SCRIPT was identified in barramundi by homology using RACE PCR and genome walking. Specific expression of DC-SCRIPT was detected in barramundi cells by Stellaris mRNA FISH, in combination with MHCII expression when exposed to bacterial derived peptidoglycan, suggesting the presence of DCs in L. calcarifer. Moreover, morphological identification was achieved by light microscopy of cytospins prepared from these cultures. The cultured cells were morphologically similar to mammalian and trout DCs. Migration assays determined that these cells have the ability to move towards pathogens and pathogen associated molecular patterns, with a preference for peptidoglycans over lipopolysaccharides. The cells were also strongly phagocytic, engulfing bacteria and rapidly breaking them down. Barramundi DCs induced significant proliferation of responder populations of T-lymphocytes, supporting their role as antigen presenting cells. DC-SCRIPT expression in head kidney was higher 6 and 24 h following intraperitoneal challenge with peptidoglycan and lipopolysaccharide and declined after 3 days relative to PBS-injected controls. Relative expression was also lower in the spleen at 3 days post challenge but increased again at 7 days. As DC-SCRIPT is a constitutively expressed nuclear receptor, independent of immune activation, this may indicate initial migration of immature DCs from head kidney and spleen to the injection site, followed by return to the spleen for maturation and antigen presentation. DC-SCRIPT may be a valuable tool in the investigation of antigen presentation in fish and facilitate optimisation of vaccines and adjuvants for aquaculture.
Collapse
Affiliation(s)
- Emmanuelle Zoccola
- The University of Queensland, School of Biological Sciences and Centre for Marine Science, Brisbane, Queensland, 4072, Australia
| | - Jérôme Delamare-Deboutteville
- The University of Queensland, School of Biological Sciences and Centre for Marine Science, Brisbane, Queensland, 4072, Australia
| | - Andrew C. Barnes
- The University of Queensland, School of Biological Sciences and Centre for Marine Science, Brisbane, Queensland, 4072, Australia
- * E-mail:
| |
Collapse
|
421
|
Abstract
Two types of adaptive immune strategies are known to have evolved in vertebrates: the VLR-based system, which is present in jawless organisms and is mediated by VLRA and VLRB lymphocytes, and the BCR/TCR-based system, which is present in jawed species and is provided by B and T cell receptors expressed on B and T cells, respectively. Here we summarize features of B cells and their predecessors in the different animal phyla, focusing the review on B cells from jawed vertebrates. We point out the critical role of nonclassical species and comparative immunology studies in the understanding of B cell immunity. Because nonclassical models include species relevant to veterinary medicine, basic science research performed in these animals contributes to the knowledge required for the development of more efficacious vaccines against emerging pathogens.
Collapse
Affiliation(s)
- David Parra
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Fumio Takizawa
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - J Oriol Sunyer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
422
|
Hirano M. Evolution of vertebrate adaptive immunity: immune cells and tissues, and AID/APOBEC cytidine deaminases. Bioessays 2015. [PMID: 26212221 DOI: 10.1002/bies.201400178] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
All surviving jawed vertebrate representatives achieve diversity in immunoglobulin-based B and T cell receptors for antigen recognition through recombinatorial rearrangement of V(D)J segments. However, the extant jawless vertebrates, lampreys and hagfish, instead generate three types of variable lymphocyte receptors (VLRs) through a template-mediated combinatorial assembly of different leucine-rich repeat (LRR) sequences. The clonally diverse VLRB receptors are expressed by B-like lymphocytes, while the VLRA and VLRC receptors are expressed by lymphocyte lineages that resemble αβ and γδ T lymphocytes, respectively. These findings suggest that three basic types of lymphocytes, one B-like and two T-like, are an essential feature of vertebrate adaptive immunity. Around 500 million years ago, a common ancestor of jawed and jawless vertebrates evolved a genetic program for the development of prototypic lymphoid cells as a foundation for an adaptive immune system. This acquisition preceded the convergent evolution of alternative types of clonally diverse receptors for antigens in all vertebrates, as reviewed in this article.
Collapse
Affiliation(s)
- Masayuki Hirano
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory University, Atlanta, GA, USA
| |
Collapse
|
423
|
Qi Z, Jiang Y, Holland JW, Nie P, Secombes CJ, Wang T. Identification and expression analysis of an atypical chemokine receptor-2 (ACKR2)/CC chemokine binding protein-2 (CCBP2) in rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2015; 44:389-98. [PMID: 25747793 DOI: 10.1016/j.fsi.2015.02.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 02/23/2015] [Accepted: 02/24/2015] [Indexed: 06/04/2023]
Abstract
Atypical chemokine receptors (ACKRs) have emerged as key components of the chemokine system, with an essential regulatory function in innate and adaptive immune responses and inflammation. In mammals ACKR2 is a 'scavenging' receptor for inflammatory CC chemokines and plays a central role in the resolution of in vivo inflammatory responses. An ACKR2 like gene has been identified and cloned in rainbow trout (Teleostei) in the present study, enabling the further identification of this molecule in another group of ray-finned teleost fish (Holostei), in a lobe-finned fish (Sarcopterygii-coelacanth), and in reptiles. The identity of these ACKR2 molecules is supported by their conserved structure, and by phylogenetic tree and synteny analysis. Trout ACKR2 is highly expressed in spleen and head kidney, suggesting a homeostatic role of this receptor in limiting the availability of its potential ligands. Trout ACKR2 expression can be modulated in vivo by bacterial and parasitic infections, and in vitro by PAMPs (poly I:C and peptidoglycan) and cytokines (IL-6, TNF-α, IFN-γ and IL-21) in a time dependent manner. These patterns of expression and modulation suggest that trout ACKR2 is regulated in a complex way and has an important role in control of the chemokine network in fish as in mammals.
Collapse
Affiliation(s)
- Zhitao Qi
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK; Key Laboratory of Aquaculture and Ecology of Coastal Pool in Jiangsu Province, Department of Ocean Technology, Yancheng Institute of Technology, Yancheng, Jiangsu, 224051, China
| | - Yousheng Jiang
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK; College of Fishery and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Jason W Holland
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| |
Collapse
|
424
|
Evolution of V genes from the TRV loci of mammals. Immunogenetics 2015; 67:371-84. [PMID: 26024913 DOI: 10.1007/s00251-015-0850-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 05/22/2015] [Indexed: 10/23/2022]
Abstract
Information concerning the evolution of T lymphocyte receptors (TCR) can be deciphered from that part of the molecule that recognizes antigen presented by major histocompatibility complex (MHC), namely the variable (V) regions. The genes that code for these variable regions are found within the TCR loci. Here, we describe a study of the evolutionary origin of V genes that code for the α and β chains of the TCR loci of mammals. In particular, we demonstrate that most of the 35 TRAV and 25 TRBV conserved genes found in Primates are also found in other Eutheria, while in Marsupials, Monotremes, and Reptiles, these genes diversified in a different manner. We also show that in mammals, all TRAV genes are derived from five ancestral genes, while all TRBV genes originate from four such genes. In Reptiles, the five TRAV and three out of the four TRBV ancestral genes exist, as well as other V genes not found in mammals. We also studied the TRGV and TRDV loci from all mammals, and we show a relationship of the TRDV to the TRAV locus throughout evolutionary time.
Collapse
|
425
|
van Niekerk G, Engelbrecht AM. Commentary on: "A common origin for immunity and digestion". Front Microbiol 2015; 6:531. [PMID: 26074909 PMCID: PMC4445048 DOI: 10.3389/fmicb.2015.00531] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/14/2015] [Indexed: 01/09/2023] Open
Affiliation(s)
- Gustav van Niekerk
- Department of Physiological Sciences, Stellenbosch University Stellenbosch, South Africa
| | - Anna-Mart Engelbrecht
- Department of Physiological Sciences, Stellenbosch University Stellenbosch, South Africa
| |
Collapse
|
426
|
Lee YM, Lee JH, Noh JK, Kim HC, Park CJ, Park JW, Hwang IJ, Kim SY. Stage and Tissue Specific Expression of Four TCR Subunits in Olive Flounder (Paralichthys olivaceus). Dev Reprod 2015; 17:329-35. [PMID: 25949148 PMCID: PMC4382943 DOI: 10.12717/dr.2013.17.4.329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 12/02/2013] [Accepted: 12/08/2013] [Indexed: 11/17/2022]
Abstract
TCR subunits are members of membrane-bound receptors which allow the fast and efficient elimination of the specific fish pathogens have regulated function in adaptive immunity. Sequence structure of TCR subunits have been reported for various teleosts, but the information of each TCR subunit functional characterization through expression analysis in fish was unknown. In this study, we examined the gene expression of TCR subunits in the early developmental stages and observed transcript levels in various tissues from healthy adult olive flounder by RT-PCR. The mRNA expression of alpha subunit was already detected in the previous hatching step. But the transcripts of another TCR subunit were not observed during embryo development and increased after hatching and maintained until metamorphosis at the same level. It was found that all TCR subunits mRNAs are commonly expressed in the immune-related organ such as spleen, kidney and gill, also weak expressed in fin and eye. TCR alpha and beta subunit were expressed in brain, whereas gamma and delta were not expressed same tissue. The sequence alignment analysis shows that there are more than 80% sequence homology between TCR subunits. Because it has a high similarity of amino acid sequence to expect similar in function, but expression analysis show that will have may functional diversity due to different time and place of expression.
Collapse
Affiliation(s)
- Young Mee Lee
- Genetics and Breeding Research Center, NFRDI, Geoje 656-842, Republic of Korea
| | - Jeong-Ho Lee
- Genetics and Breeding Research Center, NFRDI, Geoje 656-842, Republic of Korea
| | - Jae Koo Noh
- Genetics and Breeding Research Center, NFRDI, Geoje 656-842, Republic of Korea
| | - Hyun Chul Kim
- Genetics and Breeding Research Center, NFRDI, Geoje 656-842, Republic of Korea
| | - Choul-Ji Park
- Genetics and Breeding Research Center, NFRDI, Geoje 656-842, Republic of Korea
| | - Jong-Won Park
- Genetics and Breeding Research Center, NFRDI, Geoje 656-842, Republic of Korea
| | - In Joon Hwang
- Genetics and Breeding Research Center, NFRDI, Geoje 656-842, Republic of Korea
| | - Sung Yeon Kim
- Genetics and Breeding Research Center, NFRDI, Geoje 656-842, Republic of Korea
| |
Collapse
|
427
|
Campbell CL, Torres-Perez F, Acuna-Retamar M, Schountz T. Transcriptome markers of viral persistence in naturally-infected andes virus (bunyaviridae) seropositive long-tailed pygmy rice rats. PLoS One 2015; 10:e0122935. [PMID: 25856432 PMCID: PMC4391749 DOI: 10.1371/journal.pone.0122935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/24/2015] [Indexed: 12/22/2022] Open
Abstract
Long-tailed pygmy rice rats (Oligoryzomys longicaudatus) are principal reservoir hosts of Andes virus (ANDV) (Bunyaviridae), which causes most hantavirus cardiopulmonary syndrome cases in the Americas. To develop tools for the study of the ANDV-host interactions, we used RNA-Seq to generate a de novo transcriptome assembly. Splenic RNA from five rice rats captured in Chile, three of which were ANDV-infected, was used to generate an assembly of 66,173 annotated transcripts, including noncoding RNAs. Phylogenetic analysis of selected predicted proteins showed similarities to those of the North American deer mouse (Peromyscus maniculatus), the principal reservoir of Sin Nombre virus (SNV). One of the infected rice rats had about 50-fold more viral burden than the others, suggesting acute infection, whereas the remaining two had levels consistent with persistence. Differential expression analysis revealed distinct signatures among the infected rodents. The differences could be due to 1) variations in viral load, 2) dimorphic or reproductive differences in splenic homing of immune cells, or 3) factors of unknown etiology. In the two persistently infected rice rats, suppression of the JAK-STAT pathway at Stat5b and Ccnot1, elevation of Casp1, RIG-I pathway factors Ppp1cc and Mff, and increased FC receptor-like transcripts occurred. Caspase-1 and Stat5b activation pathways have been shown to stimulate T helper follicular cell (TFH) development in other species. These data are also consistent with reports suggestive of TFH stimulation in deer mice experimentally infected with hantaviruses. In the remaining acutely infected rice rat, the apoptotic pathway marker Cox6a1 was elevated, and putative anti-viral factors Abcb1a, Fam46c, Spp1, Rxra, Rxrb, Trmp2 and Trim58 were modulated. Transcripts for preproenkephalin (Prenk) were reduced, which may be predictive of an increased T cell activation threshold. Taken together, this transcriptome dataset will permit rigorous examination of rice rat-ANDV interactions and may lead to better understanding of virus ecology.
Collapse
Affiliation(s)
- Corey L. Campbell
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| | - Fernando Torres-Perez
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | | | - Tony Schountz
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|
428
|
van Niekerk G, Engelbrecht AM. On the evolutionary origin of the adaptive immune system—The adipocyte hypothesis. Immunol Lett 2015; 164:81-7. [DOI: 10.1016/j.imlet.2015.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 02/03/2015] [Accepted: 02/09/2015] [Indexed: 12/18/2022]
|
429
|
Jiang Y, Husain M, Qi Z, Bird S, Wang T. Identification and expression analysis of two interleukin-23α (p19) isoforms, in rainbow trout Oncorhynchus mykiss and Atlantic salmon Salmo salar. Mol Immunol 2015; 66:216-28. [PMID: 25841173 DOI: 10.1016/j.molimm.2015.03.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 03/11/2015] [Accepted: 03/12/2015] [Indexed: 12/11/2022]
Abstract
Interleukin (IL)-23 is a heterodimeric IL-12 family cytokine composed of a p19 α-chain, linked to a p40 β-chain that is shared with IL-12. IL-23 is distinguished functionally from IL-12 by its ability to induce the production of IL-17, and differentiation of Th17 cells in mammals. Three isoforms of p40 (p40a, p40b and p40c) have been found in some 3R teleosts. Salmonids also possess three p40 isoforms (p40b1, p40b2 and p40c) although p40a is missing, and two copies (paralogues) of p40b are present that have presumably been retained following the 4R duplication in this fish lineage. Teleost p19 has been discovered recently in zebrafish, but to date there is limited information on expression and modulation of this molecule. In this report we have cloned two p19 paralogues (p19a and p19b) in salmonids, suggesting that a salmonid can possess six potential IL-23 isoforms. Whilst Atlantic salmon has two active p19 genes, the rainbow trout p19b gene may have been pseudogenized. The salmonid p19 translations share moderate identities (22.8-29.9%) to zebrafish and mammalian p19 molecules, but their identity was supported by structural features, a conserved 4 exon/3 intron gene organisation, and phylogenetic tree analysis. The active salmonid p19 genes are highly expressed in blood and gonad. Bacterial (Yersinia ruckeri) and viral infection in rainbow trout induces the expression of p19a, suggesting pathogen-specific induction of IL-23 isoforms. Trout p19a expression was also induced by PAMPs (poly IC and peptidoglycan) and the proinflammatory cytokine IL-1β in primary head kidney macrophages. These data may indicate diverse functional roles of trout IL-23 isoforms in regulating the immune response in fish.
Collapse
Affiliation(s)
- Yousheng Jiang
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK; College of Fishery and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Mansourah Husain
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Zhitao Qi
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK; Key Laboratory of Aquaculture and Ecology of Coastal pool in Jiangsu Province, Department of Ocean Technology, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Steve Bird
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK; Molecular Genetics, School of Science, University of Waikato, Hamilton, New Zealand
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| |
Collapse
|
430
|
Grimholt U, Tsukamoto K, Azuma T, Leong J, Koop BF, Dijkstra JM. A comprehensive analysis of teleost MHC class I sequences. BMC Evol Biol 2015; 15:32. [PMID: 25888517 PMCID: PMC4364491 DOI: 10.1186/s12862-015-0309-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 02/16/2015] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND MHC class I (MHCI) molecules are the key presenters of peptides generated through the intracellular pathway to CD8-positive T-cells. In fish, MHCI genes were first identified in the early 1990's, but we still know little about their functional relevance. The expansion and presumed sub-functionalization of cod MHCI and access to many published fish genome sequences provide us with the incentive to undertake a comprehensive study of deduced teleost fish MHCI molecules. RESULTS We expand the known MHCI lineages in teleosts to five with identification of a new lineage defined as P. The two lineages U and Z, which both include presumed peptide binding classical/typical molecules besides more derived molecules, are present in all teleosts analyzed. The U lineage displays two modes of evolution, most pronouncedly observed in classical-type alpha 1 domains; cod and stickleback have expanded on one of at least eight ancient alpha 1 domain lineages as opposed to many other teleosts that preserved a number of these ancient lineages. The Z lineage comes in a typical format present in all analyzed ray-finned fish species as well as lungfish. The typical Z format displays an unprecedented conservation of almost all 37 residues predicted to make up the peptide binding groove. However, also co-existing atypical Z sub-lineage molecules, which lost the presumed peptide binding motif, are found in some fish like carps and cavefish. The remaining three lineages, L, S and P, are not predicted to bind peptides and are lost in some species. CONCLUSIONS Much like tetrapods, teleosts have polymorphic classical peptide binding MHCI molecules, a number of classical-similar non-classical MHCI molecules, and some members of more diverged MHCI lineages. Different from tetrapods, however, is that in some teleosts the classical MHCI polymorphism incorporates multiple ancient MHCI domain lineages. Also different from tetrapods is that teleosts have typical Z molecules, in which the residues that presumably form the peptide binding groove have been almost completely conserved for over 400 million years. The reasons for the uniquely teleost evolution modes of peptide binding MHCI molecules remain an enigma.
Collapse
Affiliation(s)
| | - Kentaro Tsukamoto
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan.
| | - Teruo Azuma
- Fisheries Technology Division, National Research Institute of Fisheries Engineering, 7620-7, Hasaki, Kamisu-shi, Ibaraki, Japan.
| | - Jong Leong
- Centre for Biomedical Research, Department of Biology, University of Victoria, PO Box 3020 STN CSC, Victoria, Canada.
| | - Ben F Koop
- Centre for Biomedical Research, Department of Biology, University of Victoria, PO Box 3020 STN CSC, Victoria, Canada.
| | - Johannes M Dijkstra
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan.
| |
Collapse
|
431
|
Immunotherapy for lung cancer: for whom the bell tolls? Tumour Biol 2015; 36:1411-22. [PMID: 25736929 DOI: 10.1007/s13277-015-3285-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 02/18/2015] [Indexed: 12/14/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related death and accounts for approximately 30% of all cancer deaths. Despite the recent developments in personalized therapy, the prognosis in lung cancer is still very poor. Immunotherapy is now emerging as a new hope for patients with lung cancer. It is well known that standard chemotherapeutic regimens have devastating effects for the patient's immune system. Therefore, the aim of immunotherapy is to specifically enhance the immune response against the tumour. Recently, many trials addressed the role of such therapies for metastatic non-small cell lung cancer (NSCLC) treatment: ipilimumab, tremelimumab, nivolumab and pembrolizumab are immunotherapeutic agents of high relevance in this field. Anti-tumour vaccines, as well as dendritic cell-based therapies, have emerged as potent inducers of immune response against the tumour. Herein, we will review some of the most promising cancer immunotherapies, highlighting their advantages and try to understand, in an immunological perspective, the missteps associated with the current treatments for cancer.
Collapse
|
432
|
Zhang L, Li L, Guo X, Litman GW, Dishaw LJ, Zhang G. Massive expansion and functional divergence of innate immune genes in a protostome. Sci Rep 2015; 5:8693. [PMID: 25732911 PMCID: PMC4346834 DOI: 10.1038/srep08693] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 02/02/2015] [Indexed: 02/06/2023] Open
Abstract
The molecules that mediate innate immunity are encoded by relatively few genes and exhibit broad specificity. Detailed annotation of the Pacific oyster (Crassostrea gigas) genome, a protostome invertebrate, reveals large-scale duplication and divergence of multigene families encoding molecules that effect innate immunity. Transcriptome analyses indicate dynamic and orchestrated specific expression of numerous innate immune genes in response to experimental challenge with pathogens, including bacteria, and a pathogenic virus. Variable expression of individual members of the multigene families encoding these genes also occurs during different types of abiotic stress (environmentally-equivalent conditions of temperature, salinity and desiccation). Multiple families of immune genes are responsive in concert to certain biotic and abiotic challenges. Individual members of expanded families of immune genes are differentially expressed under both biotic challenge and abiotic stress conditions. Members of the same families of innate immune molecules also are transcribed in developmental stage- and tissue-specific manners. An integrated, highly complex innate immune system that exhibits remarkable discriminatory properties and responses to different pathogens as well as environmental stress has arisen through the adaptive recruitment of tandem duplicated genes. The co-adaptive evolution of stress and innate immune responses appears to have an ancient origin in phylogeny.
Collapse
Affiliation(s)
- Linlin Zhang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Li Li
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Ximing Guo
- Haskin Shellfish Research Laboratory, Institute of National and Local Marine and Coastal Sciences, Rutgers University, Port Norris, NJ 08349, USA
| | - Gary W Litman
- 1] Morsani College of Medicine, Department of Pediatrics, University of South Florida, St. Petersburg, FL 33701, USA [2] All Children's Hospital Johns Hopkins Medicine, St. Petersburg, FL 33701, USA
| | - Larry J Dishaw
- Morsani College of Medicine, Department of Pediatrics, University of South Florida, St. Petersburg, FL 33701, USA
| | - Guofan Zhang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
433
|
Shao T, Zhu LY, Nie L, Shi W, Dong WR, Xiang LX, Shao JZ. Characterization of surface phenotypic molecules of teleost dendritic cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 49:38-43. [PMID: 25445909 DOI: 10.1016/j.dci.2014.11.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 11/09/2014] [Accepted: 11/10/2014] [Indexed: 06/04/2023]
Abstract
Dendritic cells (DCs) are among the most important professional antigen-presenting cells (APCs) that participate in various biological activities in mammals. However, evidence of the existence of DCs in teleost fish and other lower vertebrates remains limited. In this study, phenotypic and functional characteristics of teleost DCs were described in a zebrafish model. An improved method to efficiently enrich DCs was established. Immunofluorescence staining revealed that the surface phenotypic hallmarks of mammalian DCs, including MHC-II, CD80/86, CD83, and CD209, were distributed on the surfaces of zebrafish DCs (DrDCs). Functional analysis results showed that DrDCs could initiate antigen-specific CD4(+) T cell activation, in which MHC-II, CD80/86, CD83, and CD209 are implicated. Hence, teleost DCs exhibit conserved immunophenotypes and functions similar to those of their mammalian counterparts. Our findings contributed to the current understanding of the evolutionary history of DCs and the DC-regulatory mechanisms of adaptive immunity.
Collapse
MESH Headings
- Animals
- Antigen-Presenting Cells/immunology
- Antigen-Presenting Cells/metabolism
- Antigens, CD/genetics
- Antigens, CD/immunology
- Antigens, CD/metabolism
- B7-1 Antigen/genetics
- B7-1 Antigen/immunology
- B7-1 Antigen/metabolism
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/immunology
- Cell Adhesion Molecules/metabolism
- Cell Membrane/immunology
- Cell Membrane/metabolism
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Female
- Flow Cytometry
- GATA2 Transcription Factor/genetics
- GATA2 Transcription Factor/immunology
- GATA2 Transcription Factor/metabolism
- Gene Expression/immunology
- Histocompatibility Antigens Class II/genetics
- Histocompatibility Antigens Class II/immunology
- Histocompatibility Antigens Class II/metabolism
- Immunoglobulins/genetics
- Immunoglobulins/immunology
- Immunoglobulins/metabolism
- Immunophenotyping
- Interleukin-12 Subunit p40/genetics
- Interleukin-12 Subunit p40/immunology
- Interleukin-12 Subunit p40/metabolism
- Lectins, C-Type/genetics
- Lectins, C-Type/immunology
- Lectins, C-Type/metabolism
- Lymphocyte Activation/immunology
- Male
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/immunology
- Membrane Glycoproteins/metabolism
- Microscopy, Confocal
- Receptor, Macrophage Colony-Stimulating Factor/genetics
- Receptor, Macrophage Colony-Stimulating Factor/immunology
- Receptor, Macrophage Colony-Stimulating Factor/metabolism
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/immunology
- Receptors, Cell Surface/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Zebrafish/genetics
- Zebrafish/immunology
- Zebrafish/metabolism
- Zebrafish Proteins/genetics
- Zebrafish Proteins/immunology
- Zebrafish Proteins/metabolism
- CD83 Antigen
Collapse
Affiliation(s)
- Tong Shao
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, China
| | - Lv-Yun Zhu
- College of Science, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Li Nie
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, China
| | - Wei Shi
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, China
| | - Wei-Ren Dong
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, China
| | - Li-Xin Xiang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, China.
| | - Jian-Zhong Shao
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, China.
| |
Collapse
|
434
|
Olivieri DN, Gambón-Deza F. V genes in primates from whole genome sequencing data. Immunogenetics 2015; 67:211-28. [PMID: 25721877 DOI: 10.1007/s00251-015-0830-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/16/2015] [Indexed: 10/23/2022]
Abstract
The adaptive immune system uses V genes for antigen recognition. However, the evolutionary diversification and selection processes within and across species and orders remain poorly understood. Here, we studied the amino acid (AA) sequences obtained from the translated in-frame V exons of immunoglobulins (IG) and T cell receptors (TR) from 16 primate species whose genomes have been sequenced. Multi-species comparative analysis supports the hypothesis that V genes in the IG loci undergo birth/death processes, thereby permitting rapid adaptability over evolutionary time. We also show that multiple cladistic groupings exist in the TRA (35 clades) and TRB (25 clades) V gene loci and that each primate species typically contributes at least one V gene to each of these clades. The results demonstrate that IG V genes and TR V genes have quite different evolutionary pathways; multiple duplications can explain the IG loci results, while coevolutionary pressures can explain the phylogenetic results of the TR V gene loci. Our results suggest that there exist evolutionary relationships between V gene clades in the TRA and TRB loci. Due to the long-standing preservation of these clades, such genes may have specific and necessary roles for the viability of a species.
Collapse
Affiliation(s)
- D N Olivieri
- Department of Informatics, University of Vigo, 32004, Ourense, Spain,
| | | |
Collapse
|
435
|
Fu X, Zhang H, Tan E, Watabe S, Asakawa S. Characterization of the torafugu (Takifugu rubripes) immunoglobulin heavy chain gene locus. Immunogenetics 2015; 67:179-93. [PMID: 25605268 DOI: 10.1007/s00251-014-0824-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 12/16/2014] [Indexed: 11/30/2022]
Abstract
In this study, we investigated the immunoglobulin heavy (IGH) gene locus of torafugu (Takifugu rubripes) from publicly available assembly sequences and presented an annotated locus map, including the IGHV genes, pseudogenes, and IGHC genes. Three new IGHV gene families (IGHV3-IGHV5) were discovered. We observed the interspersion of IGHV1 and IGHV2 family members and that they often intermingled with each other, while other family members were further interspersed. Conservation of the promoter and recombination signal sequences (RSS) was observed in a family-specific manner. In addition to known variable region genes present on chromosome 5 (current torafugu genome assembly), we found 34 additional IGHV genes on scaffold 287 and three novel potentially functional IGHD genes on scaffold 483. In total, the variable region of the torafugu IGH locus consists of at least 48 IGHV genes, seven IGHD genes, and six IGHJ genes. IGHC genes have also been mapped in this study, with three genes encoding immunoglobulin classes: IgT, IgM, and IgD. We confirmed the expression of newly identified IGHV3 family sequences in the spleen and kidney of adult torafugu and found a favorable IGHV segment usage by IgM and IgT. Possible structural variation in the IGHδ locus was observed based on the current torafugu assembly. The complete characterization of the torafugu IGH locus will facilitate detailed studies of large-scale mechanisms associated with the recombination of the variable region genes and will offer insights into the genetic basis of the potential diversity in the antibody response observed in torafugu.
Collapse
Affiliation(s)
- Xi Fu
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan
| | | | | | | | | |
Collapse
|
436
|
Chen R, Qi J, Yuan H, Wu Y, Hu W, Xia C. Crystal structures for short-chain pentraxin from zebrafish demonstrate a cyclic trimer with new recognition and effector faces. J Struct Biol 2015; 189:259-68. [PMID: 25592778 DOI: 10.1016/j.jsb.2015.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 01/06/2015] [Accepted: 01/06/2015] [Indexed: 12/25/2022]
Abstract
Short-chain pentraxins (PTXs), including CRP and SAP, are innate pattern recognition receptors that play vital roles in the recognition and elimination of various pathogenic bacteria by triggering the classical complement pathway through C1q. Similar to antibodies, pentraxins can also activate opsonisation and phagocytosis by interacting with Fc receptors (FcRs). Various structural studies on human PTXs have been performed, but there are no reports about the crystal structure of bony fish pentraxins. Here, the crystal structures of zebrafish PTX (Dare-PTX-Ca and Dare-PTX) are presented. Both Dare-PTX-Ca and Dare-PTX are cyclic trimers, which are new forms of crystallised pentraxins. The structures reveal that the ligand-binding pocket (LBP) in the recognition face of Dare-PTX is deep and narrow. Homology modelling shows that LBPs from different Dare-PTX loci differ in shape, reflecting their specific recognition abilities. Furthermore, in comparison with the structure of hCPR, a new C1q binding mode was identified in Dare-PTX. In addition, the FcR-binding sites of hSAP are partially conserved in Dare-PTX. These results will shed light on the understanding of a primitive PTX in bony fish, which evolved approximately 450 million years ago.
Collapse
Affiliation(s)
- Rong Chen
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100094, People's Republic of China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogenic Microbiology Immunology (CASPMI), Institute of Microbiology, Chinese Academy of Sciences (CAS), Chaoyang District, Beijing 100101, People's Republic of China
| | - Hongyu Yuan
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100094, People's Republic of China
| | - Yanan Wu
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100094, People's Republic of China
| | - Wei Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China
| | - Chun Xia
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100094, People's Republic of China; Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100094, People's Republic of China.
| |
Collapse
|
437
|
|
438
|
Abstract
Jawless vertebrates represented by lampreys and hagfish mount antigen-specific immune responses using variable lymphocyte receptors. These receptors generate diversity comparable to that of T-cell and B-cell receptors by assembling multiple leucine-rich repeat modules with highly variable sequences. Although it is true that jawed and jawless vertebrates have structurally unrelated antigen receptors, their adaptive immune systems have much in common. Most notable is the conservation of lymphocyte lineages. It appears that specialized lymphocyte lineages emerged in a common vertebrate ancestor and that jawed and jawless vertebrates co-opted different antigen receptors within the context of such lymphocyte lineages.
Collapse
Affiliation(s)
- Masanori Kasahara
- Department of Pathology, Hokkaido University Graduate School of Medicine, North 15 West 7, Sapporo, 060-8638, Japan.
| |
Collapse
|
439
|
Carico Z, Krangel MS. Chromatin Dynamics and the Development of the TCRα and TCRδ Repertoires. Adv Immunol 2015; 128:307-61. [DOI: 10.1016/bs.ai.2015.07.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
440
|
Sagi O, Budovsky A, Wolfson M, Fraifeld VE. ShcC proteins: brain aging and beyond. Ageing Res Rev 2015; 19:34-42. [PMID: 25462193 DOI: 10.1016/j.arr.2014.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 11/08/2014] [Accepted: 11/17/2014] [Indexed: 02/02/2023]
Abstract
To date, most studies of Shc family of signaling adaptor proteins have been focused on the near-ubiquitously expressed ShcA, indicating its relevance to age-related diseases and longevity. Although the role of the neuronal ShcC protein is much less investigated, accumulated evidence suggests its importance for neuroprotection against such aging-associated conditions as brain ischemia and oxidative stress. Here, we summarize more than decade of studies on the ShcC expression and function in normal brain, age-related brain pathologies and immune disorders with a focus on the interactions of ShcC with signaling proteins/pathways, and the possible implications of these interactions for changes associated with aging.
Collapse
Affiliation(s)
- Orli Sagi
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Arie Budovsky
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; Judea Regional Research & Development Center, Carmel 90404, Israel
| | - Marina Wolfson
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Vadim E Fraifeld
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel.
| |
Collapse
|
441
|
Huang S, Chen Z, Yan X, Yu T, Huang G, Yan Q, Pontarotti PA, Zhao H, Li J, Yang P, Wang R, Li R, Tao X, Deng T, Wang Y, Li G, Zhang Q, Zhou S, You L, Yuan S, Fu Y, Wu F, Dong M, Chen S, Xu A. Decelerated genome evolution in modern vertebrates revealed by analysis of multiple lancelet genomes. Nat Commun 2014; 5:5896. [PMID: 25523484 PMCID: PMC4284660 DOI: 10.1038/ncomms6896] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 11/18/2014] [Indexed: 01/19/2023] Open
Abstract
Vertebrates diverged from other chordates ~500 Myr ago and experienced successful innovations and adaptations, but the genomic basis underlying vertebrate origins are not fully understood. Here we suggest, through comparison with multiple lancelet (amphioxus) genomes, that ancient vertebrates experienced high rates of protein evolution, genome rearrangement and domain shuffling and that these rates greatly slowed down after the divergence of jawed and jawless vertebrates. Compared with lancelets, modern vertebrates retain, at least relatively, less protein diversity, fewer nucleotide polymorphisms, domain combinations and conserved non-coding elements (CNE). Modern vertebrates also lost substantial transposable element (TE) diversity, whereas lancelets preserve high TE diversity that includes even the long-sought RAG transposon. Lancelets also exhibit rapid gene turnover, pervasive transcription, fastest exon shuffling in metazoans and substantial TE methylation not observed in other invertebrates. These new lancelet genome sequences provide new insights into the chordate ancestral state and the vertebrate evolution. The lancelet, or amphioxus, is an extant basal chordate that diverged from other chordate lineages about 550 million years ago. Here the authors sequence and assemble the diploid genome of a male adult of the Chinese lancelet, B. belcheri, and highlight genomic features that may have played an important role in the origin and evolution of vertebrates.
Collapse
Affiliation(s)
- Shengfeng Huang
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zelin Chen
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Xinyu Yan
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Ting Yu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Guangrui Huang
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Qingyu Yan
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Pierre Antoine Pontarotti
- Evolution Biologique et Modélisation UMR 7353 Aix Marseille Université/CNRS, 3 Place Victor Hugo, 13331 Marseille, France
| | - Hongchen Zhao
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jie Li
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Ping Yang
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Ruihua Wang
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Rui Li
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Tao
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Ting Deng
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yiquan Wang
- 1] School of Life Sciences, Xiamen University, Xiamen 361005, China [2] Shenzhen Research Institute of Xiamen University, Shenzhen 518058, China
| | - Guang Li
- 1] School of Life Sciences, Xiamen University, Xiamen 361005, China [2] Shenzhen Research Institute of Xiamen University, Shenzhen 518058, China
| | - Qiujin Zhang
- Fujian Key Laboratory of Developmental and Neuron Biology, College of Life Sciences, Fujian Normal University, Fuzhou 350108, China
| | - Sisi Zhou
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Leiming You
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Shaochun Yuan
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yonggui Fu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Fenfang Wu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Meiling Dong
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Shangwu Chen
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Anlong Xu
- 1] State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China [2] Beijing University of Chinese Medicine, Dong San Huang Road, Chao-yang District, Beijing 100029, China
| |
Collapse
|
442
|
Karunakaran MM, Herrmann T. The Vγ9Vδ2 T Cell Antigen Receptor and Butyrophilin-3 A1: Models of Interaction, the Possibility of Co-Evolution, and the Case of Dendritic Epidermal T Cells. Front Immunol 2014; 5:648. [PMID: 25566259 PMCID: PMC4271611 DOI: 10.3389/fimmu.2014.00648] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/04/2014] [Indexed: 01/18/2023] Open
Abstract
Most circulating human gamma delta T cells are Vγ9Vδ2 T cells. Their hallmark is the expression of T cell antigen receptors (TCR) whose γ-chains show a Vγ9-JP (Vγ2-Jγ1.2) rearrangement and are paired with Vδ2-containing δ-chains, a dominant TCR configuration, which until recently seemed to occur in primates only. Vγ9Vδ2 T cells respond to phosphoantigens (PAg) such as (E)-4-Hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP), which is produced by many pathogens and isopentenyl pyrophosphate (IPP), which accumulates in certain tumors or cells treated with aminobisphosphonates such as zoledronate. A prerequisite for PAg-induced activation is the contact of Vγ9Vδ2 T cells with cells expressing butyrophilin-3 A1 (BTN3A1). We will first critically review models of how BTN3 might act in PAg-mediated Vγ9Vδ2 T cell activation and then address putative co-evolution of Vγ9, Vδ2, and BTN3 genes. In those rodent and lagomorphs used as animal models, all three genes are lost but a data-base analysis showed that they emerged together with placental mammals. A strong concomitant conservation of functional Vγ9, Vδ2, and BTN3 genes in other species suggests co-evolution of these three genes. A detailed analysis was performed for the new world camelid alpaca (Vicugna pacos). It provides an excellent candidate for a non-primate species with presumably functional Vγ9Vδ2 T cells since TCR rearrangements share features characteristic for PAg-reactive primate Vγ9Vδ2 TCR and proposed PAg-binding sites of BTN3A1 have been conserved. Finally, we analyze the possible functional relationship between the butyrophilin-family member Skint1 and the γδ TCR-V genes used by murine dendritic epithelial T cells (DETC). Among placental mammals, we identify five rodents, the cow, a bat, and the cape golden mole as the only species concomitantly possessing potentially functional homologs of murine Vγ3, Vδ4 genes, and Skint1 gene and suggest to search for DETC like cells in these species.
Collapse
Affiliation(s)
- Mohindar M Karunakaran
- Department of Medicine, Institute for Virology and Immunobiology, University of Würzburg , Würzburg , Germany
| | - Thomas Herrmann
- Department of Medicine, Institute for Virology and Immunobiology, University of Würzburg , Würzburg , Germany
| |
Collapse
|
443
|
Bekiaris V, Šedý JR, Ware CF. Mixing Signals: Molecular Turn Ons and Turn Offs for Innate γδ T-Cells. Front Immunol 2014; 5:654. [PMID: 25566265 PMCID: PMC4270187 DOI: 10.3389/fimmu.2014.00654] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/06/2014] [Indexed: 01/19/2023] Open
Abstract
Lymphocytes of the gamma delta (γδ) T-cell lineage are evolutionary conserved and although they express rearranged antigen-specific receptors, a large proportion respond as innate effectors. γδ T-cells are poised to combat infection by responding rapidly to cytokine stimuli similar to innate lymphoid cells. This potential to initiate strong inflammatory responses necessitates that inhibitory signals are balanced with activation signals. Here, we discuss some of the key mechanisms that regulate the development, activation, and inhibition of innate γδ T-cells in light of recent evidence that the inhibitory immunoglobulin-superfamily member B and T lymphocyte attenuator restricts their differentiation and effector function.
Collapse
Affiliation(s)
- Vasileios Bekiaris
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute , La Jolla, CA , USA
| | - John R Šedý
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute , La Jolla, CA , USA
| | - Carl F Ware
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute , La Jolla, CA , USA
| |
Collapse
|
444
|
Pettinello R, Dooley H. The immunoglobulins of cold-blooded vertebrates. Biomolecules 2014; 4:1045-69. [PMID: 25427250 PMCID: PMC4279169 DOI: 10.3390/biom4041045] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 11/10/2014] [Accepted: 11/13/2014] [Indexed: 12/27/2022] Open
Abstract
Although lymphocyte-like cells secreting somatically-recombining receptors have been identified in the jawless fishes (hagfish and lamprey), the cartilaginous fishes (sharks, skates, rays and chimaera) are the most phylogenetically distant group relative to mammals in which bona fide immunoglobulins (Igs) have been found. Studies of the antibodies and humoral immune responses of cartilaginous fishes and other cold-blooded vertebrates (bony fishes, amphibians and reptiles) are not only revealing information about the emergence and roles of the different Ig heavy and light chain isotypes, but also the evolution of specialised adaptive features such as isotype switching, somatic hypermutation and affinity maturation. It is becoming increasingly apparent that while the adaptive immune response in these vertebrate lineages arose a long time ago, it is most definitely not primitive and has evolved to become complex and sophisticated. This review will summarise what is currently known about the immunoglobulins of cold-blooded vertebrates and highlight the differences, and commonalities, between these and more “conventional” mammalian species.
Collapse
Affiliation(s)
- Rita Pettinello
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| | - Helen Dooley
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| |
Collapse
|
445
|
Castro CD, Flajnik MF. Putting J chain back on the map: how might its expression define plasma cell development? THE JOURNAL OF IMMUNOLOGY 2014; 193:3248-55. [PMID: 25240020 DOI: 10.4049/jimmunol.1400531] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Joining chain (J chain) is a small polypeptide that regulates multimerization of secretory IgM and IgA, the only two mammalian Igs capable of forming multimers. J chain also is required for poly-Ig receptor-mediated transport of these Ig classes across the mucosal epithelium. It is generally assumed that all plasma cells express J chain regardless of expressed isotype, despite the documented presence of J chain(-) plasma cells in mammals, specifically in all monomeric IgA-secreting cells and some IgG-secreting cells. Compared with most other immune molecules, J chain has not been studied extensively, in part because of technical limitations. Even the reported phenotype of the J chain-knockout mouse is often misunderstood or underappreciated. In this short review, we discuss J chain in light of the various proposed models of its expression and regulation, with an added focus on its evolutionary significance, as well as its expression in different B cell lineages/differentiation states.
Collapse
Affiliation(s)
- Caitlin D Castro
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD 21201
| | - Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD 21201
| |
Collapse
|
446
|
Abstract
Modern medicine faces a growing crisis as demand for organ transplantations continues to far outstrip supply. By stimulating the body’s own repair mechanisms, regenerative medicine aims to reduce demand for organs, while the closely related field of tissue engineering promises to deliver “off-the-self” organs grown from patients’ own stem cells to improve supply. To deliver on these promises, we must have reliable means of generating complex tissues. Thus far, the majority of successful tissue engineering approaches have relied on macroporous scaffolds to provide cells with both mechanical support and differentiative cues. In order to engineer complex tissues, greater attention must be paid to nanoscale cues present in a cell’s microenvironment. As the extracellular matrix is capable of driving complexity during development, it must be understood and reproduced in order to recapitulate complexity in engineered tissues. This review will summarize current progress in engineering complex tissue through the integration of nanocomposites and biomimetic scaffolds.
Collapse
Affiliation(s)
- John W Cassidy
- Centre for Cell Engineering, University of Glasgow, Glasgow, UK. ; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
447
|
Abstract
Classically the immunological 'Big Bang' of adaptive immunity was believed to have resulted from the insertion of a transposon into an immunoglobulin superfamily gene member, initiating antigen receptor gene rearrangement via the RAG recombinase in an ancestor of jawed vertebrates. However, the discovery of a second, convergent adaptive immune system in jawless fish, focused on the so-called variable lymphocyte receptors (VLRs), was arguably the most exciting finding of the past decade in immunology and has drastically changed the view of immune origins. The recent report of a new lymphocyte lineage in lampreys, defined by the antigen receptor VLRC, suggests that there were three lymphocyte lineages in the common ancestor of jawless and jawed vertebrates that co-opted different antigen receptor supertypes. The transcriptional control of these lineages during development is predicted to be remarkably similar in both the jawless (agnathan) and jawed (gnathostome) vertebrates, suggesting that an early 'division of labor' among lymphocytes was a driving force in the emergence of adaptive immunity. The recent cartilaginous fish genome project suggests that most effector cytokines and chemokines were also present in these fish, and further studies of the lamprey and hagfish genomes will determine just how explosive the Big Bang actually was.
Collapse
Affiliation(s)
- Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD 21201, USA.
| |
Collapse
|
448
|
Tacchi L, Musharrafieh R, Larragoite ET, Crossey K, Erhardt EB, Martin SAM, LaPatra SE, Salinas I. Nasal immunity is an ancient arm of the mucosal immune system of vertebrates. Nat Commun 2014; 5:5205. [PMID: 25335508 DOI: 10.1038/ncomms6205] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 09/09/2014] [Indexed: 01/14/2023] Open
Abstract
The mucosal surfaces of all vertebrates have been exposed to similar evolutionary pressures for millions of years. In terrestrial vertebrates such as birds and mammals, the nasopharynx-associated lymphoid tissue (NALT) represents a first line of immune defence. Here we propose that NALT is an ancient arm of the mucosal immune system not restricted to terrestrial vertebrates. We find that NALT is present in rainbow trout and that it resembles other teleost mucosa-associated lymphoid tissues. Trout NALT consists of diffuse lymphoid cells and lacks tonsils and adenoids. The predominant B-cell subset found in trout NALT are IgT(+) B cells, similar to skin and gut. The trout olfactory organ is colonized by abundant symbiotic bacteria, which are coated by trout secretory immunoglobulin. Trout NALT is capable of mounting strong anti-viral immune responses following nasal delivery of a live attenuated viral vaccine. Our results open up a new tool for the control of aquatic infectious diseases via nasal vaccination.
Collapse
Affiliation(s)
- Luca Tacchi
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Rami Musharrafieh
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Erin T Larragoite
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Kyle Crossey
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Erik B Erhardt
- Department of Mathematics and Statistics, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Samuel A M Martin
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, Scotland
| | | | - Irene Salinas
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
449
|
Wang T, Husain M. The expanding repertoire of the IL-12 cytokine family in teleost fish: Identification of three paralogues each of the p35 and p40 genes in salmonids, and comparative analysis of their expression and modulation in Atlantic salmon Salmo salar. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:194-207. [PMID: 24759618 DOI: 10.1016/j.dci.2014.04.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 04/09/2014] [Accepted: 04/10/2014] [Indexed: 06/03/2023]
Abstract
Interleukin (IL)-12 family cytokines are heterodimers of an α-chain (p19, p28 and p35) and a β-chain (p40 and Ebi3), present as IL-12 (p35/p40), IL-23 (p19/p40), IL-27 (p28/Ebi3) and IL-35 (p35/Ebi3), and play key roles in immune responses in mammals. One p35 and up to three p40 genes have been cloned in some fish species. The identification of three active p35 genes, along with three p40 paralogues in salmonids in the current study further expands the repertoire of IL-12, IL-23 and IL-35 molecules in these species. The multiple p35 genes in teleost fish appear to have arisen via whole genome duplications. The different paralogues of the subunits are divergent, and differentially expressed and modulated by PAMPs and proinflammatory cytokines, hinting that distinct isoforms could be produced in response to infection. Therefore, the expanded IL-12 cytokine family may provide an unprecedented level of regulation to fine tune the immune response in fish.
Collapse
Affiliation(s)
- Tiehui Wang
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| | - Mansourah Husain
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| |
Collapse
|
450
|
Suurväli J, Jouneau L, Thépot D, Grusea S, Pontarotti P, Du Pasquier L, Rüütel Boudinot S, Boudinot P. The Proto-MHC of Placozoans, a Region Specialized in Cellular Stress and Ubiquitination/Proteasome Pathways. THE JOURNAL OF IMMUNOLOGY 2014; 193:2891-901. [DOI: 10.4049/jimmunol.1401177] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|