401
|
Watanabe S, Suzuki T, Hara F, Yasui T, Uga N, Naoe A. Polyphyllin D, a steroidal saponin in Paris polyphylla, induces apoptosis and necroptosis cell death of neuroblastoma cells. Pediatr Surg Int 2017; 33:713-719. [PMID: 28260192 DOI: 10.1007/s00383-017-4069-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/18/2017] [Indexed: 12/16/2022]
Abstract
PURPOSE Neuroblastoma is a refractory pediatric malignant solid tumor. The previous studies demonstrated that Polyphyllin D, the main constituent of Paris polyphylla, a traditional Chinese medicine, exerts an anti-tumor effect on many tumors. However, its effects against neuroblastomas are unclear. METHODS We examined the anti-tumor effect of polyphyllin D in human neuroblastoma using IMR-32 and LA-N-2 cells, which exhibit MYCN gene amplification, and NB-69 cells, which do not exhibit MYCN gene amplification. RESULTS All cell lines showed reduced cell viability in response to polyphyllin D treatment. No caspase-3/-7, -8, and -9 activity was observed in IMR-32 and LA-N-2 cells treated with polyphyllin D. In contrast, activation of caspase-3/-7, and -8 activity was observed in NB-69 cells. When polyphyllin D and specific inhibitors of RIPK3 involved in necroptosis were added to IMR-32 and LA-N-2 cell lines, polyphyllin D-induced cell death was inhibited. CONCLUSION Together, this indicates that the underlying mechanism of polyphyllin D-induced cell death in NB-69 cells is apoptosis, whereas the cell death of IMR-32 and LA-N-2 cells occurs by necroptosis. We continue research on this topic and look forward the discovery of a new therapeutic agent for neuroblastoma.
Collapse
Affiliation(s)
- Shunsuke Watanabe
- Department of Pediatric Surgery, Fujita Health University, 1-98 Dengakugakubo, Kutsukakecho, Toyoake, Aichi, 470-1192, Japan.
| | - Tatuya Suzuki
- Department of Pediatric Surgery, Fujita Health University, 1-98 Dengakugakubo, Kutsukakecho, Toyoake, Aichi, 470-1192, Japan
| | - Fujio Hara
- Department of Pediatric Surgery, Fujita Health University, 1-98 Dengakugakubo, Kutsukakecho, Toyoake, Aichi, 470-1192, Japan
| | - Toshihiro Yasui
- Department of Pediatric Surgery, Fujita Health University, 1-98 Dengakugakubo, Kutsukakecho, Toyoake, Aichi, 470-1192, Japan
| | - Naoko Uga
- Department of Pediatric Surgery, Fujita Health University, 1-98 Dengakugakubo, Kutsukakecho, Toyoake, Aichi, 470-1192, Japan
| | - Atuki Naoe
- Department of Pediatric Surgery, Fujita Health University, 1-98 Dengakugakubo, Kutsukakecho, Toyoake, Aichi, 470-1192, Japan
| |
Collapse
|
402
|
Abstract
Autophagy contributes to the maintenance of intracellular homeostasis in most cells of cardiovascular origin, including cardiomyocytes, endothelial cells, and arterial smooth muscle cells. Mitophagy is an autophagic response that specifically targets damaged, and hence potentially cytotoxic, mitochondria. As these organelles occupy a critical position in the bioenergetics of the cardiovascular system, mitophagy is particularly important for cardiovascular homeostasis in health and disease. Consistent with this notion, genetic defects in autophagy or mitophagy have been shown to exacerbate the propensity of laboratory animals to spontaneously develop cardiodegenerative disorders. Moreover, pharmacological or genetic maneuvers that alter the autophagic or mitophagic flux have been shown to influence disease outcome in rodent models of several cardiovascular conditions, such as myocardial infarction, various types of cardiomyopathy, and atherosclerosis. In this review, we discuss the intimate connection between autophagy, mitophagy, and cardiovascular disorders.
Collapse
|
403
|
Head T, Dau P, Duffort S, Daftarian P, Joshi PM, Vazquez-Padron R, Deo SK, Daunert S. An enhanced bioluminescence-based Annexin V probe for apoptosis detection in vitro and in vivo. Cell Death Dis 2017; 8:e2826. [PMID: 28542141 PMCID: PMC5520691 DOI: 10.1038/cddis.2017.141] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/21/2017] [Accepted: 02/23/2017] [Indexed: 02/07/2023]
Abstract
The process of controlled cellular death known as apoptosis has an important central role not only in normal homeostatic maintenance of tissues, but also in numerous diseases such as cancer, neurodegenerative, autoimmune, and cardiovascular diseases. As a result, new technologies with the capability to selectively detect apoptotic cells represent a central focus of research for the study of these conditions. We have developed a new biosensor for the detection of apoptotic cells, incorporating the targeted selectivity for apoptotic cells from Annexin V with the sensitivity of bioluminescence signal generation from a serum-stable mutant of Renilla luciferase (RLuc8). Our data presents a complete characterization of the structural and biochemical properties of this new Annexin-Renilla fusion protein (ArFP) construct, as well as a validation of its ability to detect apoptosis in vitro. Moreover, this work represents the first report of a bioluminescent Annexin V apoptosis sensor utilized in vivo. With this new construct, we examine apoptosis within disease-relevant animal models of surgery-induced ischemia/reperfusion, corneal injury, and retinal cell death as a model of age-related macular degeneration. In each of these experiments, we demonstrate successful application of the ArFP construct for detection and bioluminescence imaging of apoptosis within each disease or treatment model. ArFP represents an important new tool in the continuously growing kit of technologies for apoptosis detection, and our results from both in vitro and in vivo experiments suggest a diverse range of potential clinically relevant applications including cancer therapeutic screening and efficacy analysis, atherosclerosis and cardiovascular disease detection, and the monitoring of any number of other conditions in which apoptosis has a central role.
Collapse
Affiliation(s)
- Trajen Head
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Peter Dau
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Stephanie Duffort
- Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Pirouz Daftarian
- NGM Biopharmaceuticals, Inc., South San Francisco, CA 94080, USA
| | - Pratibha M Joshi
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Roberto Vazquez-Padron
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sapna K Deo
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
404
|
Kostic L, Sedov E, Soteriou D, Yosefzon Y, Fuchs Y. Isolation of Stem Cells and Progenitors from Mouse Epidermis. ACTA ACUST UNITED AC 2017; 41:1C.20.1-1C.20.11. [DOI: 10.1002/cpsc.26] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Lana Kostic
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology and Lokey Interdisciplinary Center for Life Sciences and Engineering, Technion Israel Institute of Technology Haifa Israel
| | - Egor Sedov
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology and Lokey Interdisciplinary Center for Life Sciences and Engineering, Technion Israel Institute of Technology Haifa Israel
| | - Despina Soteriou
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology and Lokey Interdisciplinary Center for Life Sciences and Engineering, Technion Israel Institute of Technology Haifa Israel
| | - Yahav Yosefzon
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology and Lokey Interdisciplinary Center for Life Sciences and Engineering, Technion Israel Institute of Technology Haifa Israel
| | - Yaron Fuchs
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology and Lokey Interdisciplinary Center for Life Sciences and Engineering, Technion Israel Institute of Technology Haifa Israel
| |
Collapse
|
405
|
Wang L, Yu X, Wang C, Pan S, Liang B, Zhang Y, Chong X, Meng Y, Dong J, Zhao Y, Yang Y, Wang H, Gao J, Wei H, Zhao J, Wang H, Hu C, Xiao W, Li B. The anti-ErbB2 antibody H2-18 and the pan-PI3K inhibitor GDC-0941 effectively inhibit trastuzumab-resistant ErbB2-overexpressing breast cancer. Oncotarget 2017; 8:52877-52888. [PMID: 28881779 PMCID: PMC5581078 DOI: 10.18632/oncotarget.17907] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/05/2017] [Indexed: 11/25/2022] Open
Abstract
Trastuzumab, an anti-ErbB2 humanized antibody, brings benefit to patients with ErbB2-amplified metastatic breast cancers. However, the resistance to trastuzumab is common. Our previously reported H2-18, an anti-ErbB2 antibody, potently induced programmed cell death in trastuzumab-resistant breast cancer cells. Here, we aim to investigate the antitumor efficacy of H2-18 in combination with the pan-PI3K inhibitor GDC-0941 in trastuzumab-resistant breast cancer cell lines. The results showed that H2-18 and GDC-0941 synergistically inhibited the in vitro proliferation of BT-474, SKBR-3, HCC-1954 and HCC-1419 breast cancer cells. H2-18 plus GDC-0941 showed significantly enhanced programmed cell death-inducing activity compared with each drug used alone. The combination of H2-18 and GDC-0941 did not increase the effect of single agent on ROS production, cell cycle and ErbB2 signaling. Importantly, the in vivo antitumor efficacy of H2-18 plus GDC-0941 was superior to that of single agent. Thus, the enhanced in vivo antitumor efficacy of H2-18 plus GDC-0941 may mainly be attributable to its increased programmed cell death-inducing activity. Collectively, H2-18 plus GDC-0941 could effectively inhibit tumor growth, suggesting the potential to be translated into clinic as an efficient strategy for ErbB2-overexpressing breast cancers.
Collapse
Affiliation(s)
- Lingfei Wang
- Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China.,International Joint Cancer Institute, Second Military Medical University, Shanghai 200433, China
| | - Xiaojie Yu
- International Joint Cancer Institute, Second Military Medical University, Shanghai 200433, China
| | - Chao Wang
- International Joint Cancer Institute, Second Military Medical University, Shanghai 200433, China
| | - Shujun Pan
- Hangzhou Sanatorium of People's Liberation Army, Hangzhou 310007, China
| | - Beibei Liang
- Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Yajun Zhang
- International Joint Cancer Institute, Second Military Medical University, Shanghai 200433, China
| | - Xiaodan Chong
- International Joint Cancer Institute, Second Military Medical University, Shanghai 200433, China
| | - Yanchun Meng
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Jian Dong
- Department of Vascular Surgery, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Yirong Zhao
- International Joint Cancer Institute, Second Military Medical University, Shanghai 200433, China
| | - Yang Yang
- International Joint Cancer Institute, Second Military Medical University, Shanghai 200433, China
| | - Huajing Wang
- International Joint Cancer Institute, Second Military Medical University, Shanghai 200433, China
| | - Jie Gao
- Department of Pharmaceutical Sciences, Second Military Medical University, Shanghai 200433, China
| | - Huafeng Wei
- Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China.,International Joint Cancer Institute, Second Military Medical University, Shanghai 200433, China
| | - Jian Zhao
- Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China.,International Joint Cancer Institute, Second Military Medical University, Shanghai 200433, China
| | - Hao Wang
- International Joint Cancer Institute, Second Military Medical University, Shanghai 200433, China
| | - Chaohua Hu
- Department of General Surgery, Xiaogan Central Hospital Affiliated to Wuhan University of Science and Technology, Wuhan 432000, China
| | - Wenze Xiao
- Department of Rheumatology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Bohua Li
- Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China.,International Joint Cancer Institute, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
406
|
Apoptotic forces in tissue morphogenesis. Mech Dev 2017; 144:33-42. [DOI: 10.1016/j.mod.2016.10.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/13/2016] [Accepted: 10/18/2016] [Indexed: 02/03/2023]
|
407
|
Bisindolylmaleimide alkaloid BMA-155Cl induces autophagy and apoptosis in human hepatocarcinoma HepG-2 cells through the NF-κB p65 pathway. Acta Pharmacol Sin 2017; 38:524-538. [PMID: 28260799 DOI: 10.1038/aps.2016.171] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 12/28/2016] [Indexed: 12/23/2022] Open
Abstract
Bisindolylmaleimides, a series of derivatives of a PKC inhibitor staurosporine, exhibit potential as anti-cancer drugs and have received considerable attention in clinical trials. This study aims to investigate the effects of a bisindolylmaleimide alkaloid 155Cl (BMA-155Cl) with a novel structure on autophagy and apoptosis in human hepatocarcinoma HepG-2 cells in vitro and in vivo. The cell poliferation was assessed with a MTT assay. Autophagy was evaluated by MDC staining and TEM analysis. Apoptosis was investigated using Annexin V-FITC/PI and DAPI staining. The antitumor effects were further evaluated in nude mice bearing HepG-2 xenografts, which received BMA-155Cl (10, 20 mg/kg, ip) for 18 days. Autophagy- and apoptosis-associated proteins and their mRNA levels were examined with Western blotting, immunohistochemistry, and RT-PCR. BMA-155Cl (2.5-20 μmol/L) inhibited the growth of HepG-2 cells with IC50 values of 16.62±1.34, 12.21±0.83, and 8.44±1.82 μmol/L at 24, 48, and 72 h, respectively. Furthermore, BMA-155Cl (5-20 μmol/L) dose-dependently induced autophagy and apoptosis in HepG-2 cells. The formation of autophagic vacuoles was induced by BMA-155Cl (10 μmol/L) at approximately 6 h and peaked at approximately 15 h. Pretreatment with 3-MA potentiated BMA-155Cl-mediated apoptotic cell death. This compound dose-dependently increased the mRNA and protein levels of Beclin-1, NF-κB p65, p53, and Bax, but decreased the expression of IκB and Bcl-2. Pretreatment with BAY 11-7082, a specific inhibitor of NF-κB p65, blocked BMA-155Cl-induced expression of autophagy- and apoptosis-associated proteins. BMA-155Cl administration effectively suppressed the growth of HepG-2 xenografts in vivo, and increased the protein expression levels of LC3B, Beclin-1, NF-κB p65, and Bax in vivo. We conclude that the NF-κB p65 pathway is involved in BMA-155Cl-triggered autophagy, followed by apoptosis in HepG-2 cells in vitro and in vivo. Hence, BMA-155Cl could be a promising pro-apoptotic candidate for developing as a novel anti-cancer drug.
Collapse
|
408
|
Nonaka S, Ando Y, Kanetani T, Hoshi C, Nakai Y, Nainu F, Nagaosa K, Shiratsuchi A, Nakanishi Y. Signaling pathway for phagocyte priming upon encounter with apoptotic cells. J Biol Chem 2017; 292:8059-8072. [PMID: 28325838 DOI: 10.1074/jbc.m116.769745] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 03/12/2017] [Indexed: 12/18/2022] Open
Abstract
The phagocytic elimination of cells undergoing apoptosis is an evolutionarily conserved innate immune mechanism for eliminating unnecessary cells. Previous studies showed an increase in the level of engulfment receptors in phagocytes after the phagocytosis of apoptotic cells, which leads to the enhancement of their phagocytic activity. However, precise mechanisms underlying this phenomenon require further clarification. We found that the pre-incubation of a Drosophila phagocyte cell line with the fragments of apoptotic cells enhanced the subsequent phagocytosis of apoptotic cells, accompanied by an augmented expression of the engulfment receptors Draper and integrin αPS3. The DNA-binding activity of the transcription repressor Tailless was transiently raised in those phagocytes, depending on two partially overlapping signal-transduction pathways for the induction of phagocytosis as well as the occurrence of engulfment. The RNAi knockdown of tailless in phagocytes abrogated the enhancement of both phagocytosis and engulfment receptor expression. Furthermore, the hemocyte-specific RNAi of tailless reduced apoptotic cell clearance in Drosophila embryos. Taken together, we propose the following mechanism for the activation of Drosophila phagocytes after an encounter with apoptotic cells: two partially overlapping signal-transduction pathways for phagocytosis are initiated; transcription repressor Tailless is activated; expression of engulfment receptors is stimulated; and phagocytic activity is enhanced. This phenomenon most likely ensures the phagocytic elimination of apoptotic cells by stimulated phagocytes and is thus considered as a mechanism to prime phagocytes in innate immunity.
Collapse
Affiliation(s)
- Saori Nonaka
- From the Graduate School of Medical Sciences and
| | - Yuki Ando
- From the Graduate School of Medical Sciences and
| | | | - Chiharu Hoshi
- School of Pharmacy, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Yuji Nakai
- the Institute for Food Sciences, Hirosaki University, Aomori, Aomori 038-0012, Japan, and
| | - Firzan Nainu
- From the Graduate School of Medical Sciences and.,the Faculty of Pharmacy, Hasanuddin University, Makassar, South Sulawesi 90245, Indonesia
| | - Kaz Nagaosa
- the Institute for Food Sciences, Hirosaki University, Aomori, Aomori 038-0012, Japan, and
| | | | - Yoshinobu Nakanishi
- From the Graduate School of Medical Sciences and .,School of Pharmacy, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
409
|
Kerr MC, Gomez GA, Ferguson C, Tanzer MC, Murphy JM, Yap AS, Parton RG, Huston WM, Teasdale RD. Laser-mediated rupture of chlamydial inclusions triggers pathogen egress and host cell necrosis. Nat Commun 2017; 8:14729. [PMID: 28281536 PMCID: PMC5353685 DOI: 10.1038/ncomms14729] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 01/25/2017] [Indexed: 12/21/2022] Open
Abstract
Remarkably little is known about how intracellular pathogens exit the host cell in order to infect new hosts. Pathogenic chlamydiae egress by first rupturing their replicative niche (the inclusion) before rapidly lysing the host cell. Here we apply a laser ablation strategy to specifically disrupt the chlamydial inclusion, thereby uncoupling inclusion rupture from the subsequent cell lysis and allowing us to dissect the molecular events involved in each step. Pharmacological inhibition of host cell calpains inhibits inclusion rupture, but not subsequent cell lysis. Further, we demonstrate that inclusion rupture triggers a rapid necrotic cell death pathway independent of BAK, BAX, RIP1 and caspases. Both processes work sequentially to efficiently liberate the pathogen from the host cytoplasm, promoting secondary infection. These results reconcile the pathogen's known capacity to promote host cell survival and induce cell death.
Collapse
Affiliation(s)
- Markus C. Kerr
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Guillermo A. Gomez
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Charles Ferguson
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Maria C. Tanzer
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - James M. Murphy
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Alpha S. Yap
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Robert G. Parton
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Wilhelmina M. Huston
- School of Life Sciences, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Rohan D Teasdale
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
410
|
Plaza-Zabala A, Sierra-Torre V, Sierra A. Autophagy and Microglia: Novel Partners in Neurodegeneration and Aging. Int J Mol Sci 2017; 18:E598. [PMID: 28282924 PMCID: PMC5372614 DOI: 10.3390/ijms18030598] [Citation(s) in RCA: 225] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 02/28/2017] [Accepted: 03/05/2017] [Indexed: 02/07/2023] Open
Abstract
Autophagy is emerging as a core regulator of Central Nervous System (CNS) aging and neurodegeneration. In the brain, it has mostly been studied in neurons, where the delivery of toxic molecules and organelles to the lysosome by autophagy is crucial for neuronal health and survival. However, we propose that the (dys)regulation of autophagy in microglia also affects innate immune functions such as phagocytosis and inflammation, which in turn contribute to the pathophysiology of aging and neurodegenerative diseases. Herein, we first describe the basic concepts of autophagy and its regulation, discuss key aspects for its accurate monitoring at the experimental level, and summarize the evidence linking autophagy impairment to CNS senescence and disease. We focus on acute, chronic, and autoimmunity-mediated neurodegeneration, including ischemia/stroke, Alzheimer's, Parkinson's, and Huntington's diseases, and multiple sclerosis. Next, we describe the actual and potential impact of autophagy on microglial phagocytic and inflammatory function. Thus, we provide evidence of how autophagy may affect microglial phagocytosis of apoptotic cells, amyloid-β, synaptic material, and myelin debris, and regulate the progression of age-associated neurodegenerative diseases. We also discuss data linking autophagy to the regulation of the microglial inflammatory phenotype, which is known to contribute to age-related brain dysfunction. Overall, we update the current knowledge of autophagy and microglia, and highlight as yet unexplored mechanisms whereby autophagy in microglia may contribute to CNS disease and senescence.
Collapse
Affiliation(s)
| | | | - Amanda Sierra
- Achucarro Basque Center for Neuroscience, 48170 Zamudio, Spain.
- Department of Neurosciences, University of the Basque Country EHU/UPV, 48940 Leioa, Spain.
- Ikerbasque Foundation, 48013 Bilbao, Spain.
| |
Collapse
|
411
|
Non-apoptotic cell death in animal development. Cell Death Differ 2017; 24:1326-1336. [PMID: 28211869 DOI: 10.1038/cdd.2017.20] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/18/2017] [Accepted: 01/19/2017] [Indexed: 01/22/2023] Open
Abstract
Programmed cell death (PCD) is an important process in the development of multicellular organisms. Apoptosis, a form of PCD characterized morphologically by chromatin condensation, membrane blebbing, and cytoplasm compaction, and molecularly by the activation of caspase proteases, has been extensively investigated. Studies in Caenorhabditis elegans, Drosophila, mice, and the developing chick have revealed, however, that developmental PCD also occurs through other mechanisms, morphologically and molecularly distinct from apoptosis. Some non-apoptotic PCD pathways, including those regulating germ cell death in Drosophila, still appear to employ caspases. However, another prominent cell death program, linker cell-type death (LCD), is morphologically conserved, and independent of the key genes that drive apoptosis, functioning, at least in part, through the ubiquitin proteasome system. These non-apoptotic processes may serve as backup programs when caspases are inactivated or unavailable, or, more likely, as freestanding cell culling programs. Non-apoptotic PCD has been documented extensively in the developing nervous system, and during the formation of germline and somatic gonadal structures, suggesting that preservation of these mechanisms is likely under strong selective pressure. Here, we discuss our current understanding of non-apoptotic PCD in animal development, and explore possible roles for LCD and other non-apoptotic developmental pathways in vertebrates. We raise the possibility that during vertebrate development, apoptosis may not be the major PCD mechanism.
Collapse
|
412
|
Kamber Kaya HE, Ditzel M, Meier P, Bergmann A. An inhibitory mono-ubiquitylation of the Drosophila initiator caspase Dronc functions in both apoptotic and non-apoptotic pathways. PLoS Genet 2017; 13:e1006438. [PMID: 28207763 PMCID: PMC5313150 DOI: 10.1371/journal.pgen.1006438] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 10/21/2016] [Indexed: 11/19/2022] Open
Abstract
Apoptosis is an evolutionary conserved cell death mechanism, which requires activation of initiator and effector caspases. The Drosophila initiator caspase Dronc, the ortholog of mammalian Caspase-2 and Caspase-9, has an N-terminal CARD domain that recruits Dronc into the apoptosome for activation. In addition to its role in apoptosis, Dronc also has non-apoptotic functions such as compensatory proliferation. One mechanism to control the activation of Dronc is ubiquitylation. However, the mechanistic details of ubiquitylation of Dronc are less clear. For example, monomeric inactive Dronc is subject to non-degradative ubiquitylation in living cells, while ubiquitylation of active apoptosome-bound Dronc triggers its proteolytic degradation in apoptotic cells. Here, we examined the role of non-degradative ubiquitylation of Dronc in living cells in vivo, i.e. in the context of a multi-cellular organism. Our in vivo data suggest that in living cells Dronc is mono-ubiquitylated on Lys78 (K78) in its CARD domain. This ubiquitylation prevents activation of Dronc in the apoptosome and protects cells from apoptosis. Furthermore, K78 ubiquitylation plays an inhibitory role for non-apoptotic functions of Dronc. We provide evidence that not all of the non-apoptotic functions of Dronc require its catalytic activity. In conclusion, we demonstrate a mechanism whereby Dronc’s apoptotic and non-apoptotic activities can be kept silenced in a non-degradative manner through a single ubiquitylation event in living cells. Apoptosis is a programmed cell death mechanism which is conserved from flies to humans. Apoptosis is mediated by proteases, termed caspases that cleave cellular proteins and trigger the death of the cell. Activation of caspases is regulated at various levels such as protein-protein interaction for initiator caspases and ubiquitylation. Caspase 9 in mammals and its Drosophila ortholog Dronc carry a protein-protein interaction domain (CARD) in their prodomain which interacts with scaffolding proteins to form the apoptosome, a cell-death platform. Here, we show that Dronc is mono-ubiquitylated at Lysine 78 in its CARD domain. This ubiquitylation interferes with the formation of the apoptosome, causing inhibition of apoptosis. In addition to its apoptotic function, Dronc also participates in events where caspase activity is not required for cell killing, but for regulating other functions, so-called non-apoptotic functions of caspases such as apoptosis-induced proliferation. We found that mono-ubiquitylation of Lysine 78 plays an inhibitory role for these non-apoptotic functions of Dronc. Interestingly, we demonstrate that the catalytic activity of Dronc is not strictly required in these processes. Our in vivo study sheds light on how a single mono-ubiquitylation event could inhibit both apoptotic and non-apoptotic functions of a caspase.
Collapse
Affiliation(s)
- Hatem Elif Kamber Kaya
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Mark Ditzel
- Institute for Genetics and Molecular Medicine, Edinburgh Cancer Research Centre, The University of Edinburgh, Edinburgh, United Kingdom
| | - Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, London, United Kingdom
| | - Andreas Bergmann
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
413
|
Abstract
More than 50 years ago, cells were observed to die during insect development via a process that was named 'programmed cell death'. Later, a similar cell death process was found to occur in humans, and the process was renamed 'apoptosis'. In the 1990s, a number of apoptosis-regulating molecules were identified, and apoptosis was found to have essential roles in the immune system. In this Timeline article, we highlight the key events that have demonstrated the importance of programmed cell death processes, including apoptosis and programmed necrosis, in the immune system.
Collapse
Affiliation(s)
- Shigekazu Nagata
- Laboratory of Biochemistry and Immunology, World Premier International Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Masato Tanaka
- Laboratory of Immune Regulation, School of Life Science, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
414
|
Huysmans M, Lema A S, Coll NS, Nowack MK. Dying two deaths - programmed cell death regulation in development and disease. CURRENT OPINION IN PLANT BIOLOGY 2017; 35:37-44. [PMID: 27865098 DOI: 10.1016/j.pbi.2016.11.005] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/28/2016] [Accepted: 11/03/2016] [Indexed: 05/18/2023]
Abstract
Programmed cell death (PCD) is a fundamental cellular process that has adopted a plethora of vital functions in multicellular organisms. In plants, PCD processes are elicited as an inherent part of regular development in specific cell types or tissues, but can also be triggered by biotic and abiotic stresses. Although over the last years we have seen progress in our understanding of the molecular regulation of different plant PCD processes, it is still unclear whether a common core machinery exists that controls cell death in development and disease. In this review, we discuss recent advances in the field, comparing some aspects of the molecular regulation controlling developmental and pathogen-triggered PCD in plants.
Collapse
Affiliation(s)
- Marlies Huysmans
- VIB Department of Plant Systems Biology, 9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Saul Lema A
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra-Cerdanyola del Valles 08193, Catalonia, Spain
| | - Nuria S Coll
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra-Cerdanyola del Valles 08193, Catalonia, Spain.
| | - Moritz K Nowack
- VIB Department of Plant Systems Biology, 9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium.
| |
Collapse
|
415
|
Reshi L, Wang HV, Hui CF, Su YC, Hong JR. Anti-apoptotic genes Bcl-2 and Bcl-xL overexpression can block iridovirus serine/threonine kinase-induced Bax/mitochondria-mediated cell death in GF-1 cells. FISH & SHELLFISH IMMUNOLOGY 2017; 61:120-129. [PMID: 28025159 DOI: 10.1016/j.fsi.2016.12.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/13/2016] [Accepted: 12/22/2016] [Indexed: 06/06/2023]
Abstract
Although serine/threonine (ST) kinase is known to induce host cell death in GF-1 cells, it remains unclear how ST kinase induces mitochondrial function loss. In the present study, we addressed the issue of mitochondrial function loss by determining whether the Bcl-2 family members Bcl-2 and Bcl-xL can prevent ST kinase-induced cell death activity via interacting with the pro-apoptotic gene Bax. Grouper fin cells (GF-1) carrying EGFP-Bal-xL and EGFP-Bcl-2 fused genes were selected, established in cell culture, and used to examine the involvement of Bcl-2 and Bcl-xL overexpression in protection of GF-1 cells from the effects of the giant sea perch iridovirus (GSIV) ST kinase gene. Using the TUNEL assay, we found that EGFP-Bcl-2 and EGFP-Bcl-xL reduced GSIV ST kinase-induced apoptosis to 20% all at 24 h and 48 h post-transfection (pt). Also, Bcl-2 and Bcl-xL substantially reduced the percentage of cells with GSIV ST kinase-induced loss of mitochondrial membrane potential (Δψps) at 24 and 48 hpt, respectively, and this reduction correlated with a 30% and 50% enhancement of host cell viability at 24 and 48 hpt as compared with vector control. Moreover, analysis of the effect of Bcl-2 and Bcl-xL interaction with Bax targeted to mitochondria during ST kinase expression at 48 hpt found that Bcl-2 and Bcl-xL also interacted with Bax to block cytochrome c release. Finally, Bcl-2 and Bcl-xL overexpression caused blockage of ST kinase function at 48 hpt, which was correlated with preventing caspase-9 and -3 cleavage and activation, thereby blocking downstream death signaling events. Taken together, our results suggest that the ST kinase-induced Bax/mitochondria-mediated cell death pathway can be blocked by the interaction of Bcl-2 and Bcl-xL with Bax to inhibit cytochrome c release during MMP loss. This rescue activity also correlated with inhibition of caspase-9 and -3 activation, thereby enhancing cell viability.
Collapse
Affiliation(s)
- Latif Reshi
- Lab of Molecular Virology and Biotechnology, Institute of Biotechnology, National Cheng Kung University, No. 1 University Road, Tainan City 701, Taiwan, ROC; Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, No. 1 University Road, Tainan City 701, Taiwan, ROC
| | - Hua-Ven Wang
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, No. 1 University Road, Tainan City 701, Taiwan, ROC
| | - Cho-Fat Hui
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei 115, Taiwan, ROC
| | - Yu-Chin Su
- Lab of Molecular Virology and Biotechnology, Institute of Biotechnology, National Cheng Kung University, No. 1 University Road, Tainan City 701, Taiwan, ROC
| | - Jiann-Ruey Hong
- Lab of Molecular Virology and Biotechnology, Institute of Biotechnology, National Cheng Kung University, No. 1 University Road, Tainan City 701, Taiwan, ROC; Department of Biotechnology and Bioindustry, National Cheng Kung University, No. 1 University Road, Tainan City 701, Taiwan, ROC.
| |
Collapse
|
416
|
Guamán-Ortiz LM, Orellana MIR, Ratovitski EA. Natural Compounds As Modulators of Non-apoptotic Cell Death in Cancer Cells. Curr Genomics 2017; 18:132-155. [PMID: 28367073 PMCID: PMC5345338 DOI: 10.2174/1389202917666160803150639] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 11/24/2015] [Accepted: 11/28/2015] [Indexed: 02/07/2023] Open
Abstract
Cell death is an innate capability of cells to be removed from microenvironment, if and when they are damaged by multiple stresses. Cell death is often regulated by multiple molecular pathways and mechanism, including apoptosis, autophagy, and necroptosis. The molecular network underlying these processes is often intertwined and one pathway can dynamically shift to another one acquiring certain protein components, in particular upon treatment with various drugs. The strategy to treat human cancer ultimately relies on the ability of anticancer therapeutics to induce tumor-specific cell death, while leaving normal adjacent cells undamaged. However, tumor cells often develop the resistance to the drug-induced cell death, thus representing a great challenge for the anticancer approaches. Numerous compounds originated from the natural sources and biopharmaceutical industries are applied today in clinics showing advantageous results. However, some exhibit serious toxic side effects. Thus, novel effective therapeutic approaches in treating cancers are continued to be developed. Natural compounds with anticancer activity have gained a great interest among researchers and clinicians alike since they have shown more favorable safety and efficacy then the synthetic marketed drugs. Numerous studies in vitro and in vivo have found that several natural compounds display promising anticancer potentials. This review underlines certain information regarding the role of natural compounds from plants, microorganisms and sea life forms, which are able to induce non-apoptotic cell death in tumor cells, namely autophagy and necroptosis.
Collapse
Affiliation(s)
- Luis Miguel Guamán-Ortiz
- 1 Departamento de Ciencias de la Salud, Universidad Técnica Particular de Loja, Loja, Ecuador ; 2 Head and Neck Cancer Research Division, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Maria Isabel Ramirez Orellana
- 1 Departamento de Ciencias de la Salud, Universidad Técnica Particular de Loja, Loja, Ecuador ; 2 Head and Neck Cancer Research Division, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Edward A Ratovitski
- 1 Departamento de Ciencias de la Salud, Universidad Técnica Particular de Loja, Loja, Ecuador ; 2 Head and Neck Cancer Research Division, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
417
|
Tang HM, Talbot CC, Fung MC, Tang HL. Molecular signature of anastasis for reversal of apoptosis. F1000Res 2017; 6:43. [PMID: 28299189 DOI: 10.12688/f1000research.10568.1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/10/2017] [Indexed: 12/22/2022] Open
Abstract
Anastasis (Greek for "rising to life") is a cell recovery phenomenon that rescues dying cells from the brink of cell death. We recently discovered anastasis to occur after the execution-stage of apoptosis in vitro and in vivo. Promoting anastasis could in principle preserve injured cells that are difficult to replace, such as cardiomyocytes and neurons. Conversely, arresting anastasis in dying cancer cells after cancer therapies could improve treatment efficacy. To develop new therapies that promote or inhibit anastasis, it is essential to identify the key regulators and mediators of anastasis - the therapeutic targets. Therefore, we performed time-course microarray analysis to explore the molecular mechanisms of anastasis during reversal of ethanol-induced apoptosis in mouse primary liver cells. We found striking changes in transcription of genes involved in multiple pathways, including early activation of pro-cell survival, anti-oxidation, cell cycle arrest, histone modification, DNA-damage and stress-inducible responses, and at delayed times, angiogenesis and cell migration. Validation with RT-PCR confirmed similar changes in the human liver cancer cell line, HepG2, during anastasis. Here, we present the time-course whole-genome gene expression dataset revealing gene expression profiles during the reversal of apoptosis. This dataset provides important insights into the physiological, pathological, and therapeutic implications of anastasis.
Collapse
Affiliation(s)
- Ho Man Tang
- Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, USA
| | - C Conover Talbot
- Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Ming Chiu Fung
- School of Life Sciences, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ho Lam Tang
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, USA
| |
Collapse
|
418
|
Abstract
Anastasis (Greek for "rising to life") is a cell recovery phenomenon that rescues dying cells from the brink of cell death. We recently discovered anastasis to occur after the execution-stage of apoptosis
in vitro and
in vivo. Promoting anastasis could in principle preserve injured cells that are difficult to replace, such as cardiomyocytes and neurons. Conversely, arresting anastasis in dying cancer cells after cancer therapies could improve treatment efficacy. To develop new therapies that promote or inhibit anastasis, it is essential to identify the key regulators and mediators of anastasis – the therapeutic targets. Therefore, we performed time-course microarray analysis to explore the molecular mechanisms of anastasis during reversal of ethanol-induced apoptosis in mouse primary liver cells. We found striking changes in transcription of genes involved in multiple pathways, including early activation of pro-cell survival, anti-oxidation, cell cycle arrest, histone modification, DNA-damage and stress-inducible responses, and at delayed times, angiogenesis and cell migration. Validation with RT-PCR confirmed similar changes in the human liver cancer cell line, HepG2, during anastasis. Here, we present the time-course whole-genome gene expression dataset revealing gene expression profiles during the reversal of apoptosis. This dataset provides important insights into the physiological, pathological, and therapeutic implications of anastasis.
Collapse
Affiliation(s)
- Ho Man Tang
- Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, USA
| | - C Conover Talbot
- Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Ming Chiu Fung
- School of Life Sciences, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ho Lam Tang
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, USA
| |
Collapse
|
419
|
Khan C, Muliyil S, Ayyub C, Rao BJ. DNA damage signalling in D. melanogaster requires non-apoptotic function of initiator caspase Dronc. J Cell Sci 2017; 130:2984-2995. [DOI: 10.1242/jcs.200782] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 07/24/2017] [Indexed: 01/31/2023] Open
Abstract
ϒH2Av response constitutes an important signalling event in DNA damage sensing ensuring effective repair by recruiting DNA repair machinery. In contrast, the occurrence of ϒH2Av response has also been reported in dying cells where it is shown to require activation of CAD (caspase activated DNase). Moreover, caspases are known to be required downstream of DNA damage for cell death execution. We show, for the first time, that initiator caspase Dronc, independent of executioner caspases, acts as an upstream regulator of DNA Damage Response (DDR) by facilitating ϒH2Av signalling perhaps involving non-apoptotic function. Such ϒH2Av response is mediated by ATM rather than ATR, suggesting that Dronc function is required upstream of ATM. In contrast, ϒH2Av appearance during cell death requires effector caspase and is associated with fragmented nuclei. Our study uncovers a novel function of Dronc in response to DNA damage aimed at promoting DDR via ϒH2Av signalling in intact nuclei. We propose that Dronc plays a dual role that can either initiate DDR or apoptosis depending upon the level and the required threshold of its activation in damaged cells.
Collapse
Affiliation(s)
- Chaitali Khan
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai 400005, India
| | - Sonia Muliyil
- Current affiliation: Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Champakali Ayyub
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai 400005, India
| | - B. J. Rao
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai 400005, India
| |
Collapse
|
420
|
Abstract
Leucine-rich repeat kinase 2 (LRRK2) has been implicated in a wide range of cellular processes, including the catabolic pathways collectively described as autophagy. In this chapter, the evidence linking LRRK2 to autophagy will be examined, along with how regulation of autophagy and lysosomal pathways may provide a nexus between the physiological function of this protein and the different diseases with which it has been associated. Data from cellular and animal models for LRRK2 function and dysfunction support a role in the regulation and control of autophagic pathways in the cell, although the extant results do not provide a clear indication as to whether LRRK2 is a positive or negative regulator of these pathways, and there are conflicting data as to the impact of mutations in LRRK2 causative for Parkinson's disease. Given that LRRK2 is a priority drug target for Parkinson's, the evidence suggesting that knockout or inhibition of LRRK2 can result in deregulation of autophagy may have important implications and is discussed in the context of our wider understanding of LRRK2.
Collapse
Affiliation(s)
- Claudia Manzoni
- School of Pharmacy, University of Reading, Whiteknights, Reading, UK
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| | - Patrick A Lewis
- School of Pharmacy, University of Reading, Whiteknights, Reading, UK.
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK.
| |
Collapse
|
421
|
Bravo-San Pedro JM, Pietrocola F, Sica V, Izzo V, Sauvat A, Kepp O, Maiuri MC, Kroemer G, Galluzzi L. High-Throughput Quantification of GFP-LC3 + Dots by Automated Fluorescence Microscopy. Methods Enzymol 2016; 587:71-86. [PMID: 28253977 DOI: 10.1016/bs.mie.2016.10.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Macroautophagy is a specific variant of autophagy that involves a dedicated double-membraned organelle commonly known as autophagosome. Various methods have been developed to quantify the size of the autophagosomal compartment, which is an indirect indicator of macroautophagic responses, based on the peculiar ability of microtubule-associated protein 1 light chain 3 beta (MAP1LC3B; best known as LC3) to accumulate in forming autophagosomes upon maturation. One particularly convenient method to monitor the accumulation of mature LC3 within autophagosomes relies on a green fluorescent protein (GFP)-tagged variant of this protein and fluorescence microscopy. In physiological conditions, cells transfected temporarily or stably with a GFP-LC3-encoding construct exhibit a diffuse green fluorescence over the cytoplasm and nucleus. Conversely, in response to macroautophagy-promoting stimuli, the GFP-LC3 signal becomes punctate and often (but not always) predominantly cytoplasmic. The accumulation of GFP-LC3 in cytoplasmic dots, however, also ensues the blockage of any of the steps that ensure the degradation of mature autophagosomes, calling for the implementation of strategies that accurately discriminate between an increase in autophagic flux and an arrest in autophagic degradation. Various cell lines have been engineered to stably express GFP-LC3, which-combined with the appropriate controls of flux, high-throughput imaging stations, and automated image analysis-offer a relatively straightforward tool to screen large chemical or biological libraries for inducers or inhibitors of autophagy. Here, we describe a simple and robust method for the high-throughput quantification of GFP-LC3+ dots by automated fluorescence microscopy.
Collapse
Affiliation(s)
- J M Bravo-San Pedro
- Gustave Roussy Cancer Campus, Villejuif, France; INSERM, U1138, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France.
| | - F Pietrocola
- Gustave Roussy Cancer Campus, Villejuif, France; INSERM, U1138, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France
| | - V Sica
- Gustave Roussy Cancer Campus, Villejuif, France; INSERM, U1138, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Faculté de Medicine, Université Paris Saclay/Paris XI, Le Kremlin-Bicêtre, France
| | - V Izzo
- Gustave Roussy Cancer Campus, Villejuif, France; INSERM, U1138, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France
| | - A Sauvat
- INSERM, U1138, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - O Kepp
- INSERM, U1138, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - M C Maiuri
- Gustave Roussy Cancer Campus, Villejuif, France; INSERM, U1138, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France
| | - G Kroemer
- INSERM, U1138, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Karolinska University Hospital, Stockholm, Sweden
| | - L Galluzzi
- Gustave Roussy Cancer Campus, Villejuif, France; INSERM, U1138, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Weill Cornell Medical College, New York, NY, United States.
| |
Collapse
|
422
|
Zhang F, Zhang L, Qi Y, Xu H. Mitochondrial cAMP signaling. Cell Mol Life Sci 2016; 73:4577-4590. [PMID: 27233501 PMCID: PMC5097110 DOI: 10.1007/s00018-016-2282-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/25/2016] [Accepted: 05/20/2016] [Indexed: 12/19/2022]
Abstract
Cyclic adenosine 3, 5'-monophosphate (cAMP) is a ubiquitous second messenger regulating many biological processes, such as cell migration, differentiation, proliferation and apoptosis. cAMP signaling functions not only on the plasma membrane, but also in the nucleus and in organelles such as mitochondria. Mitochondrial cAMP signaling is an indispensable part of the cytoplasm-mitochondrion crosstalk that maintains mitochondrial homeostasis, regulates mitochondrial dynamics, and modulates cellular stress responses and other signaling pathways. Recently, the compartmentalization of mitochondrial cAMP signaling has attracted great attentions. This new input should be carefully taken into account when we interpret the findings of mitochondrial cAMP signaling. In this review, we summarize previous and recent progress in our understanding of mitochondrial cAMP signaling, including the components of the signaling cascade, and the function and regulation of this signaling pathway in different mitochondrial compartments.
Collapse
Affiliation(s)
- Fan Zhang
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Liping Zhang
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yun Qi
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Hong Xu
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
423
|
Morrice JR, Gregory-Evans CY, Shaw CA. Necroptosis in amyotrophic lateral sclerosis and other neurological disorders. Biochim Biophys Acta Mol Basis Dis 2016; 1863:347-353. [PMID: 27902929 DOI: 10.1016/j.bbadis.2016.11.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/28/2016] [Accepted: 11/24/2016] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the progressive degeneration of upper and lower motor neurons. Cell death in ALS and in general was previously believed to exist as a dichotomy between apoptosis and necrosis. Most research investigating cell death mechanisms in ALS was conducted before the discovery of programmed necrosis thus did not use selective cell death pathway-specific markers. Recently, a new form of programmed cell death, termed "necroptosis", has been characterized and has been recently implicated in ALS as a primary mechanism driving motor neuron cell death in different forms of ALS. The present review is aimed at summarizing cell death pathways that are currently implicated in ALS and highlighting the emerging evidence on necroptosis as a major driver of motor neuron cell death.
Collapse
Affiliation(s)
- Jessica R Morrice
- Department of Pathology, University of British Columbia, 828 W. 10th Ave, Vancouver, BC V5Z 1L8, Canada
| | - Cheryl Y Gregory-Evans
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Christopher A Shaw
- Department of Pathology, University of British Columbia, 828 W. 10th Ave, Vancouver, BC V5Z 1L8, Canada; Program in Experimental Medicine, University of British Columbia, Vancouver, BC, Canada; Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada; Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
424
|
Upregulation of NRF2 through autophagy/ERK 1/2 ameliorates ionizing radiation induced cell death of human osteosarcoma U-2 OS. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 813:10-17. [PMID: 28010924 DOI: 10.1016/j.mrgentox.2016.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 11/15/2016] [Accepted: 11/21/2016] [Indexed: 01/14/2023]
Abstract
The antioxidative response mediated by transcription factor NRF2 is thought to be a pivotal cellular defense system against various extrinsic stresses. It has been reported that activation of the NRF2 pathway confers cells with resistance to ionizing radiation-induced damage. However, the underlying mechanism remains largely unknown. In the current research, it was found that α-particle radiation has the ability to stimulate NRF2 expression in human osteosarcoma U-2 OS cells. Knockdown of cellular NRF2 level by shRNA-mediated gene silencing decreased the survival rate, increased the micronucleus formation rate and apoptosis rate in irradiated cells. Consistently, knockdown of NRF2 resulted in decreased expression of p65 and Bcl-2, and increased expression of p53 and Bax. Besides, it was observed that increased expression of NRF2 was partially dependent on radiation induced phosphorylation of ERK 1/2. Further results showed that radiation promoted autophagy flux which leads to the enhanced phosphorylation of ERK 1/2, as evidenced by the resultls that knockdown of ATG5 (Autophagy protein 5) gene by shRNA suppressed both radiation induced ERK 1/2 phosphorylation and NRF2 upregulation. Based on these results, it is proposed that attenuation of NRF2 antioxidative pathway can sensitize U-2 OS cells to radiation, where NRF2 antioxidative response is regulated by autophagy mediated activation of ERK 1/2 kinases.
Collapse
|
425
|
Olvera-García G, Aguilar-García T, Gutiérrez-Jasso F, Imaz-Rosshandler I, Rangel-Escareño C, Orozco L, Aguilar-Delfín I, Vázquez-Pérez JA, Zúñiga J, Pérez-Patrigeon S, Espinosa E. A transcriptome-based model of central memory CD4 T cell death in HIV infection. BMC Genomics 2016; 17:956. [PMID: 27875993 PMCID: PMC5120471 DOI: 10.1186/s12864-016-3308-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 11/17/2016] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Human central memory CD4 T cells are characterized by their capacity of proliferation and differentiation into effector memory CD4 T cells. Homeostasis of central memory CD4 T cells is considered a key factor sustaining the asymptomatic stage of Human Immunodeficiency Virus type 1 (HIV-1) infection, while progression to acquired immunodeficiency syndrome is imputed to central memory CD4 T cells homeostatic failure. We investigated if central memory CD4 T cells from patients with HIV-1 infection have a gene expression profile impeding proliferation and survival, despite their activated state. METHODS Using gene expression microarrays, we analyzed mRNA expression patterns in naive, central memory, and effector memory CD4 T cells from healthy controls, and naive and central memory CD4 T cells from patients with HIV-1 infection. Differentially expressed genes, defined by Log2 Fold Change (FC) ≥ |0.5| and Log (odds) > 0, were used in pathway enrichment analyses. RESULTS Central memory CD4 T cells from patients and controls showed comparable expression of differentiation-related genes, ruling out an effector-like differentiation of central memory CD4 T cells in HIV infection. However, 210 genes were differentially expressed in central memory CD4 T cells from patients compared with those from controls. Expression of 75 of these genes was validated by semi quantitative RT-PCR, and independently reproduced enrichment results from this gene expression signature. The results of functional enrichment analysis indicated movement to cell cycle phases G1 and S (increased CCNE1, MKI67, IL12RB2, ADAM9, decreased FGF9, etc.), but also arrest in G2/M (increased CHK1, RBBP8, KIF11, etc.). Unexpectedly, the results also suggested decreased apoptosis (increased CSTA, NFKBIA, decreased RNASEL, etc.). Results also suggested increased IL-1β, IFN-γ, TNF, and RANTES (CCR5) activity upstream of the central memory CD4 T cells signature, consistent with the demonstrated milieu in HIV infection. CONCLUSIONS Our findings support a model where progressive loss of central memory CD4 T cells in chronic HIV-1 infection is driven by increased cell cycle entry followed by mitotic arrest, leading to a non-apoptotic death pathway without actual proliferation, possibly contributing to increased turnover.
Collapse
Affiliation(s)
- Gustavo Olvera-García
- Department of Research in Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, Mexico City, Mexico
| | - Tania Aguilar-García
- Department of Research in Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, Mexico City, Mexico
| | - Fany Gutiérrez-Jasso
- Department of Research in Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, Mexico City, Mexico
| | - Iván Imaz-Rosshandler
- Computational Genomics Department, Instituto Nacional de Medicina Genómica, Periferico Sur 4809, Mexico City, Mexico
| | - Claudia Rangel-Escareño
- Computational Genomics Department, Instituto Nacional de Medicina Genómica, Periferico Sur 4809, Mexico City, Mexico
| | - Lorena Orozco
- Laboratory of Immunogenomics and Metabolic Diseases, Instituto Nacional de Medicina Genómica, Periferico Sur 4809, Mexico City, Mexico
| | - Irma Aguilar-Delfín
- Laboratory of Immunogenomics and Metabolic Diseases, Instituto Nacional de Medicina Genómica, Periferico Sur 4809, Mexico City, Mexico
| | - Joel A Vázquez-Pérez
- Department of Virology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, Mexico City, Mexico
| | - Joaquín Zúñiga
- Department of Research in Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, Mexico City, Mexico
| | - Santiago Pérez-Patrigeon
- Infectious Immunopathogenesis Laboratory, Department of Infectious Diseases, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Avenida Vasco de Quiroga 15, Mexico City, Mexico
| | - Enrique Espinosa
- Department of Research in Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, Mexico City, Mexico.
| |
Collapse
|
426
|
Activating autophagy to potentiate immunogenic chemotherapy and radiation therapy. Nat Rev Clin Oncol 2016; 14:247-258. [PMID: 27845767 DOI: 10.1038/nrclinonc.2016.183] [Citation(s) in RCA: 244] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autophagy is fundamental to the maintenance of intracellular homeostasis in virtually all human cells. Accordingly, defective autophagy predisposes healthy cells to undergoing malignant transformation. By contrast, malignant cells are able to harness autophagy to thrive, despite adverse microenvironmental conditions, and to resist therapeutic challenges. Thus, inhibition of autophagy has been proposed as a strategy to kill cancer cells or sensitize them to therapy; however, autophagy is also critical for optimal immune function, and mediates cell-extrinsic homeostatic effects owing to its central role in danger signalling by neoplastic cells responding to immunogenic chemotherapy and/or radiation therapy. In this Perspective, we discuss accumulating preclinical and clinical evidence in support of the all-too-often dismissed possibility that activating autophagy might be a relevant clinical objective that enables an increase in the effectiveness of immunogenic chemotherapy and/or radiation therapy.
Collapse
|
427
|
Liyanage SU, Coyaud E, Laurent EMN, Hurren R, Maclean N, Wood SR, Kazak L, Shamas-Din A, Holt I, Raught B, Schimmer A. Characterizing the mitochondrial DNA polymerase gamma interactome by BioID identifies Ruvbl2 localizes to the mitochondria. Mitochondrion 2016; 32:31-35. [PMID: 27845271 DOI: 10.1016/j.mito.2016.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/13/2016] [Accepted: 11/02/2016] [Indexed: 10/20/2022]
Abstract
Human mitochondrial DNA (mtDNA) is replicated by the mitochondrial DNA polymerase gamma (POLG). Using proximity dependent biotin labelling (BioID), we characterized the POLG interactome and identified new interaction partners involved in mtDNA maintenance, transcription, translation and protein quality control. We also identified interaction with the nuclear AAA+ ATPase Ruvbl2, suggesting mitochondrial localization for this protein. Ruvbl2 was detected in mitochondria-enriched fractions in leukemic cells. Additionally, transgenic overexpression of Ruvbl2 from an alternative translation initiation site resulted in mitochondrial co-localization. Overall, POLG interactome mapping identifies novel proteins which support mitochondrial biogenesis and a potential novel mitochondrial isoform of Ruvbl2.
Collapse
Affiliation(s)
- Sanduni U Liyanage
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, ON, Canada
| | - Etienne Coyaud
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Estelle M N Laurent
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Rose Hurren
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Neil Maclean
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Stuart R Wood
- Medical Research Council, Mitochondrial Biology Unit, Cambridge, UK
| | - Lawrence Kazak
- Medical Research Council, Mitochondrial Biology Unit, Cambridge, UK
| | - Aisha Shamas-Din
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Ian Holt
- Medical Research Council, Mitochondrial Biology Unit, Cambridge, UK
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Aaron Schimmer
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, ON, Canada.
| |
Collapse
|
428
|
Imagawa Y, Saitoh T, Tsujimoto Y. Vital staining for cell death identifies Atg9a-dependent necrosis in developmental bone formation in mouse. Nat Commun 2016; 7:13391. [PMID: 27811852 PMCID: PMC5097171 DOI: 10.1038/ncomms13391] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/27/2016] [Indexed: 02/06/2023] Open
Abstract
Programmed cell death has a crucial role in various biological events, including developmental morphogenesis. Recent evidence indicates that necrosis contributes to programmed cell death in addition to apoptosis, but it is unclear whether necrosis acts as a compensatory mechanism for failure of apoptosis or has an intrinsic role during development. In contrast to apoptosis, there have been no techniques for imaging physiological necrosis in vivo. Here we employ vital staining using propidium iodide to identify cells with plasma membrane disruption (necrotic cells) in mouse embryos. We discover a form of necrosis at the bone surface, which does not occur in embryos with deficiency of the autophagy-related gene Atg9a, although it is unaffected by Atg5 knockout. We also find abnormalities of the bone surface in Atg9a knockout mice, suggesting an important role of Atg9a-dependent necrosis in bone surface formation. These findings suggest that necrosis has an active role in developmental morphogenesis.
Collapse
Affiliation(s)
- Yusuke Imagawa
- Department of Molecular and Cellular Biology, Research Institute of Osaka Medical Center for Cancer and Cardiovascular Diseases, 1-3-2 Nakamichi, Higashinari-ku, Osaka 537-8511, Japan.,Laboratory of Molecular Genetics, Department of Medical Genetics, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tatsuya Saitoh
- Department of Inflammation Biology, Institute for Enzyme Research, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan.,Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshihide Tsujimoto
- Department of Molecular and Cellular Biology, Research Institute of Osaka Medical Center for Cancer and Cardiovascular Diseases, 1-3-2 Nakamichi, Higashinari-ku, Osaka 537-8511, Japan.,Laboratory of Molecular Genetics, Department of Medical Genetics, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
429
|
Abstract
Immunogenicity depends on two key factors: antigenicity and adjuvanticity. The presence of exogenous or mutated antigens explains why infected cells and malignant cells can initiate an adaptive immune response provided that the cells also emit adjuvant signals as a consequence of cellular stress and death. Several infectious pathogens have devised strategies to control cell death and limit the emission of danger signals from dying cells, thereby avoiding immune recognition. Similarly, cancer cells often escape immunosurveillance owing to defects in the molecular machinery that underlies the release of endogenous adjuvants. Here, we review current knowledge on the mechanisms that underlie the activation of immune responses against dying cells and their pathophysiological relevance.
Collapse
|
430
|
Denardin CC, Martins LAM, Parisi MM, Vieira MQ, Terra SR, Barbé-Tuana FM, Borojevic R, Vizzotto M, Emanuelli T, Guma FCR. Autophagy induced by purple pitanga (Eugenia uniflora L.) extract triggered a cooperative effect on inducing the hepatic stellate cell death. Cell Biol Toxicol 2016; 33:197-206. [PMID: 27744523 DOI: 10.1007/s10565-016-9366-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 10/07/2016] [Indexed: 12/18/2022]
Abstract
Activated hepatic stellate cells (HSC) are the major source of collagen I in liver fibrosis. Eugenia uniflora L. is a tree species that is widely distributed in South America. E. uniflora L. fruit-popularly known as pitanga-has been shown to exert beneficial properties. Autophagy contributes to the maintenance of cellular homeostasis and survival under stress situation, but it has also been suggested to be an alternative cell death pathway. Mitochondria play a pivotal role on signaling cell death. Mitophagy of damaged mitochondria is an important cell defense mechanism against organelle-mediated cell death signaling. We previously found that purple pitanga extract induced mitochondrial dysfunction, cell cycle arrest, and death by apoptosis and necrosis in GRX cells, a well-established activated HSC line. We evaluated the effects of 72-h treatment with crescent concentrations of purple pitanga extract (5 to 100 μg/mL) on triggering autophagy in GRX cells, as this is an important mechanism to cells under cytotoxic conditions. We found that all treated cells presented an increase in the mRNA expression of autophagy-related protein 7 (ATG7). Concomitantly, flow cytometry and ultrastructural analysis of treated cells revealed an increase of autophagosomes/autolysosomes that consequentially led to an increased mitophagy. As purple pitanga extract was previously found to be broadly cytotoxic to GRX cells, we postulated that autophagy contributes to this scenario, where cell death seems to be an inevitable fate. Altogether, the effectiveness on inducing activated HSC death can make purple pitanga extract a good candidate on treating liver fibrosis.
Collapse
Affiliation(s)
- Cristiane C Denardin
- Programa de Pós-Graduação em Ciências Biológicas-Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
- Curso de Farmácia, Universidade Federal do Pampa (UNIPAMPA), Campus Uruguaiana, Uruguaiana, RS, Brasil
| | - Leo A M Martins
- Programa de Pós-Graduação em Ciências Biológicas-Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Mariana M Parisi
- Programa de Pós-Graduação em Ciências Biológicas-Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Moema Queiroz Vieira
- Programa de Pós-Graduação em Ciências Biológicas-Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Silvia R Terra
- Programa de Pós-Graduação em Ciências Biológicas-Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Florencia M Barbé-Tuana
- Programa de Pós-Graduação em Ciências Biológicas-Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Radovan Borojevic
- Departamento de Histologia e Embriologia, ICB, UFRJ, Rio de Janeiro, RJ, Brasil
| | - Márcia Vizzotto
- Empresa Brasileira de Pesquisa Agropecuária de Clima Temperado, Pelotas, RS, Brasil
| | - Tatiana Emanuelli
- Núcleo Integrado de Desenvolvimento em Análises Laboratoriais (NIDAL), Departamento de Tecnologia e Ciência de Alimentos, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil
| | - Fátima Costa Rodrigues Guma
- Programa de Pós-Graduação em Ciências Biológicas-Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil.
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, Lab 21, CEP: 90035-003, Porto Alegre, RS, Brasil.
- Centro de Microscopia e Microanálise, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil.
| |
Collapse
|
431
|
Ohashi W, Kimura S, Iwanaga T, Furusawa Y, Irié T, Izumi H, Watanabe T, Hijikata A, Hara T, Ohara O, Koseki H, Sato T, Robine S, Mori H, Hattori Y, Watarai H, Mishima K, Ohno H, Hase K, Fukada T. Zinc Transporter SLC39A7/ZIP7 Promotes Intestinal Epithelial Self-Renewal by Resolving ER Stress. PLoS Genet 2016; 12:e1006349. [PMID: 27736879 PMCID: PMC5065117 DOI: 10.1371/journal.pgen.1006349] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 09/08/2016] [Indexed: 01/12/2023] Open
Abstract
Zinc transporters play a critical role in spatiotemporal regulation of zinc homeostasis. Although disruption of zinc homeostasis has been implicated in disorders such as intestinal inflammation and aberrant epithelial morphology, it is largely unknown which zinc transporters are responsible for the intestinal epithelial homeostasis. Here, we show that Zrt-Irt-like protein (ZIP) transporter ZIP7, which is highly expressed in the intestinal crypt, is essential for intestinal epithelial proliferation. Mice lacking Zip7 in intestinal epithelium triggered endoplasmic reticulum (ER) stress in proliferative progenitor cells, leading to significant cell death of progenitor cells. Zip7 deficiency led to the loss of Olfm4+ intestinal stem cells and the degeneration of post-mitotic Paneth cells, indicating a fundamental requirement for Zip7 in homeostatic intestinal regeneration. Taken together, these findings provide evidence for the importance of ZIP7 in maintenance of intestinal epithelial homeostasis through the regulation of ER function in proliferative progenitor cells and maintenance of intestinal stem cells. Therapeutic targeting of ZIP7 could lead to effective treatment of gastrointestinal disorders. Intestinal epithelium undergoes continuous self-renewal to maintain intestinal homeostasis. Given that dysregulation of zinc flux causes intestinal disorders, appropriate spatiotemporal regulation of zinc in the intracellular compartments should be a prerequisite for the intestinal epithelial self-renewal process. Zinc transporters such as Zrt-Irt-like proteins (ZIPs) are essential to fine-tune intracellular zinc flux. However, the link between specific zinc transporter(s) and intestinal epithelial self-renewal remains to be elucidated. Here, we found that ZIP7 is highly expressed in the intestinal crypts. The finding motivated us to further analyze the role of ZIP7 in intestinal homeostasis. ZIP7 deficiency greatly enhanced ER stress response in proliferative progenitor cells, which induced apoptotic cell death. This abnormality disrupted epithelial proliferation and intestinal stemness. Based on these observations, we reason that ZIP7-dependent zinc transport facilitates the vigorous epithelial proliferation in the intestine by ameliorating ER stress.
Collapse
Affiliation(s)
- Wakana Ohashi
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama, Japan
| | - Shunsuke Kimura
- Laboratory of Histology and Cytology, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Toshihiko Iwanaga
- Laboratory of Histology and Cytology, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yukihiro Furusawa
- Division of Biochemistry, Faculty of Pharmacy, Keio University, Minato-ku, Tokyo, Japan
- Division of Mucosal Barriology, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Tarou Irié
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Shinagawa-ku, Tokyo, Japan
| | - Hironori Izumi
- Department of Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama, Japan
| | - Takashi Watanabe
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Atsushi Hijikata
- Nagahama Institute of Bio-Science and Technology, Tamura, Nagahama, Shiga, Japan
| | - Takafumi Hara
- Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro, Tokushima, Japan
| | - Osamu Ohara
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- Department of Technology Development, Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Toshiro Sato
- Department of Gastroenterology, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Sylvie Robine
- Equipe de Morphogenese et Signalisation cellulaires UMR 144 CNRS/Institut Curie, Paris, France
| | - Hisashi Mori
- Department of Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama, Japan
| | - Yuichi Hattori
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama, Japan
| | - Hiroshi Watarai
- Division of Stem Cell Cellomics, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Kenji Mishima
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Shinagawa-ku, Tokyo, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Koji Hase
- Division of Biochemistry, Faculty of Pharmacy, Keio University, Minato-ku, Tokyo, Japan
- Division of Mucosal Barriology, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
- * E-mail: (KH); (TF)
| | - Toshiyuki Fukada
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Shinagawa-ku, Tokyo, Japan
- Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro, Tokushima, Japan
- * E-mail: (KH); (TF)
| |
Collapse
|
432
|
The defender against apoptotic cell death 1 gene is required for tissue growth and efficient N-glycosylation in Drosophila melanogaster. Dev Biol 2016; 420:186-195. [PMID: 27693235 DOI: 10.1016/j.ydbio.2016.09.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/14/2016] [Accepted: 09/23/2016] [Indexed: 12/20/2022]
Abstract
How organ growth is regulated in multicellular organisms is a long-standing question in developmental biology. It is known that coordination of cell apoptosis and proliferation is critical in cell number and overall organ size control, while how these processes are regulated is still under investigation. In this study, we found that functional loss of a gene in Drosophila, named Drosophila defender against apoptotic cell death 1 (dDad1), leads to a reduction of tissue growth due to increased apoptosis and lack of cell proliferation. The dDad1 protein, an orthologue of mammalian Dad1, was found to be crucial for protein N-glycosylation in developing tissues. Our study demonstrated that loss of dDad1 function activates JNK signaling and blocking the JNK pathway in dDad1 knock-down tissues suppresses cell apoptosis and partially restores organ size. In addition, reduction of dDad1 triggers ER stress and activates unfolded protein response (UPR) signaling, prior to the activation of JNK signaling. Furthermore, Perk-Atf4 signaling, one branch of UPR pathways, appears to play a dual role in inducing cell apoptosis and mediating compensatory cell proliferation in this dDad1 knock-down model.
Collapse
|
433
|
Gebremeskel S, Johnston B. Concepts and mechanisms underlying chemotherapy induced immunogenic cell death: impact on clinical studies and considerations for combined therapies. Oncotarget 2016; 6:41600-19. [PMID: 26486085 PMCID: PMC4747176 DOI: 10.18632/oncotarget.6113] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 09/22/2015] [Indexed: 01/12/2023] Open
Abstract
Chemotherapy has historically been thought to induce cancer cell death in an immunogenically silent manner. However, recent studies have demonstrated that therapeutic outcomes with specific chemotherapeutic agents (e.g. anthracyclines) correlate strongly with their ability to induce a process of immunogenic cell death (ICD) in cancer cells. This process generates a series of signals that stimulate the immune system to recognize and clear tumor cells. Extensive studies have revealed that chemotherapy-induced ICD occurs via the exposure/release of calreticulin (CALR), ATP, chemokine (C–X–C motif) ligand 10 (CXCL10) and high mobility group box 1 (HMGB1). This review provides an in-depth look into the concepts and mechanisms underlying CALR exposure, activation of the Toll-like receptor 3/IFN/CXCL10 axis, and the release of ATP and HMGB1 from dying cancer cells. Factors that influence the impact of ICD in clinical studies and the design of therapies combining chemotherapy with immunotherapy are also discussed.
Collapse
Affiliation(s)
- Simon Gebremeskel
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, Canada.,Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| | - Brent Johnston
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada.,Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| |
Collapse
|
434
|
Voltan R, Secchiero P, Casciano F, Milani D, Zauli G, Tisato V. Redox signaling and oxidative stress: Cross talk with TNF-related apoptosis inducing ligand activity. Int J Biochem Cell Biol 2016; 81:364-374. [PMID: 27686849 DOI: 10.1016/j.biocel.2016.09.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/21/2016] [Accepted: 09/24/2016] [Indexed: 02/06/2023]
Abstract
Redox regulation plays a key role in several physiopathological contexts and free radicals, from nitric oxide and superoxide anion up to other forms of reactive oxygen species (ROS), have been demonstrated to be involved in different biological and regulatory processes. The data reported in the current literature describe a link between ROS, inflammation and programmed cell death that is attracting interest as new pathways to be explored and targeted for therapeutic purposes. In this light, there is also growing attention to the involvement of this link in the activity of the TNF-related apoptosis inducing ligand (TRAIL). TRAIL is a member of the TNF ligands super family able to mediate multiple intracellular signals, with the potential to lead to a range of biological effects in different cell types. In particular, the hallmark of TRAIL is the ability to induce selective apoptosis in transformed cells leaving normal cells almost unaffected and this feature has already opened the door to several clinical studies for cancer treatment. Moreover, TRAIL plays a role in several physiological and pathological processes of both innate and adaptive immune systems and of the cardiovascular context, with a strong clinical potential. Nonetheless, several issues still need to be clarified about the signaling mediated by TRAIL to gain deeper insight into its therapeutic potential. In this light, the aim of this review is to summarize the main preclinical evidences about the interplay between TRAIL and redox signaling, with particular emphasis to the implications in vascular physiopathology and cancer.
Collapse
Affiliation(s)
- Rebecca Voltan
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy
| | - Paola Secchiero
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy
| | - Fabio Casciano
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy
| | - Daniela Milani
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy
| | - Giorgio Zauli
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy
| | - Veronica Tisato
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy.
| |
Collapse
|
435
|
Caspase Inhibition Prevents Tumor Necrosis Factor-α-Induced Apoptosis and Promotes Necrotic Cell Death in Mouse Hepatocytes in Vivo and in Vitro. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2623-36. [PMID: 27616656 DOI: 10.1016/j.ajpath.2016.06.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/24/2016] [Accepted: 06/09/2016] [Indexed: 02/07/2023]
Abstract
How different cell death modes and cell survival pathways cross talk remains elusive. We determined the interrelation of apoptosis, necrosis, and autophagy in tumor necrosis factor (TNF)-α/actinomycin D (ActD) and lipopolysaccharide/D-galactosamine (GalN)-induced hepatotoxicity in vitro and in vivo. We found that TNF-α/ActD-induced apoptosis was completely blocked by a general caspase inhibitor ZVAD-fmk at 24 hours but hepatocytes still died by necrosis at 48 hours. Inhibition of caspases also protected mice against lipopolysaccharide/GalN-induced apoptosis and liver injury at the early time point, but this protection was diminished after prolonged treatment by switching apoptosis to necrosis. Inhibition of receptor-interacting protein kinase (RIP)1 by necrostatin 1 partially inhibited TNF-α/ZVAD-induced necrosis in primary hepatocytes. Pharmacologic inhibition of autophagy or genetic deletion of Atg5 in hepatocytes did not protect against TNF-α/ActD/ZVAD-induced necrosis. Moreover, pharmacologic inhibition of RIP1 or genetic deletion of RIP3 failed to protect and even exacerbated liver injury after mice were treated with lipopolysaccharide/GalN and a pan-caspase inhibitor. In conclusion, our results suggest that different cell death mode and cell survival pathways are closely integrated during TNF-α-induced liver injury when both caspases and NF-κB are blocked. Moreover, results from our study also raised concerns about the safety of currently ongoing clinical trials that use caspase inhibitors.
Collapse
|
436
|
Ronchetti SA, Machiavelli LI, Quinteros FA, Duvilanski BH, Cabilla JP. Nitric Oxide Plays a Key Role in Ovariectomy-Induced Apoptosis in Anterior Pituitary: Interplay between Nitric Oxide Pathway and Estrogen. PLoS One 2016; 11:e0162455. [PMID: 27611913 PMCID: PMC5017659 DOI: 10.1371/journal.pone.0162455] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 08/23/2016] [Indexed: 01/01/2023] Open
Abstract
Changes in the estrogenic status produce deep changes in pituitary physiology, mainly because estrogens (E2) are one of the main regulators of pituitary cell population. Also, E2 negatively regulate pituitary neuronal nitric oxide synthase (nNOS) activity and expression and may thereby modulate the production of nitric oxide (NO), an important regulator of cell death and survival. Little is known about how ovary ablation affects anterior pituitary cell remodelling and molecular mechanisms that regulate this process have not yet been elucidated. In this work we used freshly dispersed anterior pituitaries as well as cell cultures from ovariectomized female rats in order to study whether E2 deficiency induces apoptosis in the anterior pituitary cells, the role of NO in this process and effects of E2 on the NO pathway. Our results showed that cell activity gradually decreases after ovariectomy (OVX) as a consequence of cell death, which is completely prevented by a pan-caspase inhibitor. Furthermore, there is an increase of fragmented nuclei and DNA cleavage thereby presenting the first direct evidence of the existence of apoptosis in the anterior pituitary gland after OVX. NO production and soluble guanylyl cyclase (sGC) expression in anterior pituitary cells increased concomitantly to the apoptosis. Inhibition of both, NO synthase (NOS) and sGC activities prevented the drop of cell viability after OVX, showing for the first time that increased NO levels and sGC activity observed post-OVX play a key role in the induction of apoptosis. Conversely, E2 and prolactin treatments decreased nNOS expression and activity in pituitary cells from OVX rats in a time- and E2 receptor-dependent manner, thus suggesting interplay between NO and E2 pathways in anterior pituitary.
Collapse
Affiliation(s)
- Sonia A. Ronchetti
- Departamento de Química Biológica, IQUIFIB, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Investigaciones Biomédicas (INBIOMED) UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Leticia I. Machiavelli
- Departamento de Química Biológica, IQUIFIB, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Fernanda A. Quinteros
- Departamento de Química Biológica, IQUIFIB, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Beatriz H. Duvilanski
- Departamento de Química Biológica, IQUIFIB, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Investigaciones Biomédicas (INBIOMED) UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jimena P. Cabilla
- Departamento de Química Biológica, IQUIFIB, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Investigaciones Biomédicas (INBIOMED) UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
437
|
Koren E, Fuchs Y. The bad seed: Cancer stem cells in tumor development and resistance. Drug Resist Updat 2016; 28:1-12. [DOI: 10.1016/j.drup.2016.06.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 06/11/2016] [Accepted: 06/19/2016] [Indexed: 12/17/2022]
|
438
|
Kosic M, Arsikin-Csordas K, Paunovic V, Firestone RA, Ristic B, Mircic A, Petricevic S, Bosnjak M, Zogovic N, Mandic M, Bumbasirevic V, Trajkovic V, Harhaji-Trajkovic L. Synergistic Anticancer Action of Lysosomal Membrane Permeabilization and Glycolysis Inhibition. J Biol Chem 2016; 291:22936-22948. [PMID: 27587392 DOI: 10.1074/jbc.m116.752113] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Indexed: 12/21/2022] Open
Abstract
We investigated the in vitro and in vivo anticancer effect of combining lysosomal membrane permeabilization (LMP)-inducing agent N-dodecylimidazole (NDI) with glycolytic inhibitor 2-deoxy-d-glucose (2DG). NDI-triggered LMP and 2DG-mediated glycolysis block synergized in inducing rapid ATP depletion, mitochondrial damage, and reactive oxygen species production, eventually leading to necrotic death of U251 glioma cells but not primary astrocytes. NDI/2DG-induced death of glioma cells was partly prevented by lysosomal cathepsin inhibitor E64 and antioxidant α-tocopherol, suggesting the involvement of LMP and oxidative stress in the observed cytotoxicity. LMP-inducing agent chloroquine also displayed a synergistic anticancer effect with 2DG, whereas glucose deprivation or glycolytic inhibitors iodoacetate and sodium fluoride synergistically cooperated with NDI, thus further indicating that the anticancer effect of NDI/2DG combination was indeed due to LMP and glycolysis block. The two agents synergistically induced ATP depletion, mitochondrial depolarization, oxidative stress, and necrotic death also in B16 mouse melanoma cells. Moreover, the combined oral administration of NDI and 2DG reduced in vivo melanoma growth in C57BL/6 mice by inducing necrotic death of tumor cells, without causing liver, spleen, or kidney toxicity. Based on these results, we propose that NDI-triggered LMP causes initial mitochondrial damage that is further increased by 2DG due to the lack of glycolytic ATP required to maintain mitochondrial health. This leads to a positive feedback cycle of mitochondrial dysfunction, ATP loss, and reactive oxygen species production, culminating in necrotic cell death. Therefore, the combination of LMP-inducing agents and glycolysis inhibitors seems worthy of further exploration as an anticancer strategy.
Collapse
Affiliation(s)
- Milica Kosic
- From the Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade, Serbia
| | - Katarina Arsikin-Csordas
- From the Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade, Serbia
| | - Verica Paunovic
- From the Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade, Serbia
| | - Raymond A Firestone
- From the Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade, Serbia
| | - Biljana Ristic
- From the Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade, Serbia
| | - Aleksandar Mircic
- the Institute of Histology and Embryology, School of Medicine, University of Belgrade, Visegradska 26, 11000 Belgrade, Serbia
| | - Sasa Petricevic
- the Institute of Biomedical Research, Galenika a.d., Pasterova 2, 11000 Belgrade, Serbia, and
| | - Mihajlo Bosnjak
- the Institute of Histology and Embryology, School of Medicine, University of Belgrade, Visegradska 26, 11000 Belgrade, Serbia
| | - Nevena Zogovic
- the Institute for Biological Research, University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia
| | - Milos Mandic
- From the Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade, Serbia
| | - Vladimir Bumbasirevic
- the Institute of Histology and Embryology, School of Medicine, University of Belgrade, Visegradska 26, 11000 Belgrade, Serbia
| | - Vladimir Trajkovic
- From the Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade, Serbia,
| | - Ljubica Harhaji-Trajkovic
- the Institute for Biological Research, University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia
| |
Collapse
|
439
|
Abstract
The tumour-host microenvironment plays key roles in cancer, but the mechanisms involved are not fully understood. Two new studies provide insight into this problem by showing that through cell competition, a fitness-sensing process that usually eliminates defective cells, pre-cancerous lesions signal the death of surrounding tissue that in turn promotes their neoplastic transformation.
Collapse
Affiliation(s)
- Jesus Gil
- MRC Clinical Sciences Centre, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK.
| | - Tristan Rodriguez
- BHF Centre for Research excellence, National Heart and Lung Institute, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK.
| |
Collapse
|
440
|
Matt S, Hofmann TG. The DNA damage-induced cell death response: a roadmap to kill cancer cells. Cell Mol Life Sci 2016; 73:2829-50. [PMID: 26791483 PMCID: PMC11108532 DOI: 10.1007/s00018-016-2130-4] [Citation(s) in RCA: 206] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/11/2015] [Accepted: 01/04/2016] [Indexed: 12/19/2022]
Abstract
Upon massive DNA damage cells fail to undergo productive DNA repair and trigger the cell death response. Resistance to cell death is linked to cellular transformation and carcinogenesis as well as radio- and chemoresistance, making the underlying signaling pathways a promising target for therapeutic intervention. Diverse DNA damage-induced cell death pathways are operative in mammalian cells and finally culminate in the induction of programmed cell death via activation of apoptosis or necroptosis. These signaling routes affect nuclear, mitochondria- and plasma membrane-associated key molecules to activate the apoptotic or necroptotic response. In this review, we highlight the main signaling pathways, molecular players and mechanisms guiding the DNA damage-induced cell death response.
Collapse
Affiliation(s)
- Sonja Matt
- German Cancer Research Center (dkfz), Cellular Senescence Group, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Thomas G Hofmann
- German Cancer Research Center (dkfz), Cellular Senescence Group, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
441
|
Qi X, Chen L, Zhang C, Xu X, Zhang Y, Bai Y, Liu H. NiCoMnO4: A Bifunctional Affinity Probe for His-Tagged Protein Purification and Phosphorylation Sites Recognition. ACS APPLIED MATERIALS & INTERFACES 2016; 8:18675-18683. [PMID: 27381638 DOI: 10.1021/acsami.6b04280] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A bifunctional affinity probe NiCoMnO4 was designed and prepared with controllable morphology and size using facile methods. It was observed that the probe could be applied in His-tagged proteins purification and phosphopeptides enrichment simply through the buffer modulation. NiCoMnO4 particles showed satisfactory cycling performance for His-tagged proteins purification and broad pH-tolerance of loading buffer for phosphopeptides affinity. Therefore, a high-throughput, cost-effective, and efficient protein/peptide purification method was developed within 10 min based on the novel bifunctional affinity probe.
Collapse
Affiliation(s)
- Xiaoyue Qi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Long Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Chaoqun Zhang
- Beijing Nuclear Magnetic Resonance Center, College of Life Science, Peking University , Beijing 100871, China
| | - Xinyuan Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Yiding Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Yu Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| |
Collapse
|
442
|
Abstract
Apoptosis is a form of programmed cell death that is critical for basic human development and physiology. One of the more important surprises in cell biology in the last two decades is the extent to which mitochondria represent a physical point of convergence for many apoptosis-inducing signals in mammalian cells. Mitochondria not only adjudicate the decision of whether or not to commit to cell death, but also release toxic proteins culminating in widespread proteolysis, nucleolysis, and cell engulfment. Interactions among BCL-2 family proteins at the mitochondrial outer membrane control the release of these toxic proteins and, by extension, control cellular commitment to apoptosis. This pathway is particularly relevant to cancer treatment, as most cancer chemotherapies trigger mitochondrial-mediated apoptosis. In this Review, we discuss recent advances in the BCL-2 family interactions, their control by upstream factors, and how the mitochondria itself alters these interactions. We also highlight recent clinical insights into mitochondrial-mediated apoptosis and novel cancer therapies that exploit this pathway.
Collapse
Affiliation(s)
- Patrick D Bhola
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Anthony Letai
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| |
Collapse
|
443
|
Ishaq M, Ojha R, Sharma K, Sharma G, Singh SK, Majumdar S. Functional inhibition of Hsp70 by Pifithrin-μ switches Gambogic acid induced caspase dependent cell death to caspase independent cell death in human bladder cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2560-2573. [PMID: 27395830 DOI: 10.1016/j.bbamcr.2016.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/27/2016] [Accepted: 07/03/2016] [Indexed: 12/31/2022]
Abstract
Heat shock protein-70kDa (Hsp70) is a member of molecular chaperone family, involved in the proper folding of various proteins. Hsp70 is important for tumor cell survival and is also reported to be involved in enhancing the drug resistance of various cancer types. Hsp70 controls apoptosis both upstream and downstream of the mitochondria by regulating the mitochondrial membrane permeabilization (MMP) and apoptosome formation respectively. In the present study, we have elucidated the role of Hsp70 in Gambogic acid (GA) induced apoptosis in bladder cancer cells. We observed that functional inhibition of Hsp70 by Pifithrin-μ switches GA induced caspase dependent (apoptotic) cell death to caspase independent cell death. However, this cell death was not essentially necrotic in nature, as shown by the observations like intact plasma membranes, cytochrome-c release and no significant effect on nuclear condensation/fragmentation. Inhibition of Hsp70 by Pifithrin-μ shows differential effect on MMP. GA induced MMP and cytochrome-c release was inhibited by Pifithrin-μ at 12h but enhanced at 24h. Pifithrin-μ also reverted back GA inhibited autophagy which resulted in the degradation of accumulated ubiquitinated proteins. Our results demonstrate that Hsp70 plays an important role in GA induced apoptosis by regulating caspase activation. Therefore, inhibition of Hsp70 may hamper with the caspase dependent apoptotic pathways induced by most anti-cancer drugs and reduce their efficacy. However, the combination therapy with Pifithrin-μ may be particularly useful in targeting apoptotic resistant cancer cells as Pifithrin-μ may initiate alternative cell death program in these resistant cells.
Collapse
Affiliation(s)
- Mohammad Ishaq
- Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh 160 036, India
| | - Rani Ojha
- Department of Urology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160 012, India
| | - Kapil Sharma
- Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh 160 036, India
| | - Gaurav Sharma
- Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh 160 036, India
| | - Shrawan K Singh
- Department of Urology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160 012, India
| | - Sekhar Majumdar
- Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh 160 036, India.
| |
Collapse
|
444
|
Xu Y, Wang J, Song X, Qu L, Wei R, He F, Wang K, Luo B. RIP3 induces ischemic neuronal DNA degradation and programmed necrosis in rat via AIF. Sci Rep 2016; 6:29362. [PMID: 27377128 PMCID: PMC4932529 DOI: 10.1038/srep29362] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 06/17/2016] [Indexed: 01/05/2023] Open
Abstract
We have reported that nuclear translocation of Receptor-interacting protein 3 (RIP3) involves in neuronal programmed necrosis after 20-min global cerebral ischemia/reperfusion (I/R) injury. Herein, the underlying mechanisms and the nuclear role of RIP3 were investigated further. The necroptosis inhibitor necrostatin-1 (Nec-1), the autophagy inhibitor 3-methyladenine (3-MA), and the caspase-3 inhibitor acetyl-L-aspartyl-L-methionyl-L-glutaminyl-L-aspart-1-al (Ac-DMQD-CHO) were administered intracerebroventricularly 1 h before ischemia. Protein expression, location and interaction was determined by western blot, immunofluorescence or immunoprecipitation. Most CA1 neuronal death induced by 20-min global cerebral I/R injury was TUNEL-positive. Neuronal death and rat mortality rates were greatly inhibited by Nec-1 and 3-MA pre-treatment, but not by Ac-DMQD-CHO. And no activation of caspase-3 was detected after I/R injury. Caspase-8 was expressed richly in GFAP-positive astrocytes and Iba-1-positive microglia, but was not detected in Neun-positive neurons. The nuclear translocation and co-localization of RIP3 and AIF, and their interaction were detected after I/R injury. These processes were inhibited by Nec-1 and 3-MA pre-treatment, but not by Ac-DMQD-CHO. The formation of an RIP3-AIF complex and its nuclear translocation are critical to ischemic neuronal DNA degradation and programmed necrosis. Neurons are more likely to enter the programmed necrosis signal pathway for the loss of caspase-8 suppression.
Collapse
Affiliation(s)
- Yang Xu
- Department of Neurology, Brain Medical Centre, First Affiliated Hospital, Zhejiang University School of Medicine, 89 Qingchun Road, Hangzhou 310003, China
| | - Jingye Wang
- Department of Neurology, First Affiliated Hospital, Anhui Medical University, 218 Jixi Road, Hefei 230022, China
| | - Xinghui Song
- Facility for Biochemistry and Molecular medicine Core Facilities, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Lindi Qu
- Department of Neurology, First Affiliated Hospital, Anhui Medical University, 218 Jixi Road, Hefei 230022, China
| | - Ruili Wei
- Department of Neurology, Brain Medical Centre, First Affiliated Hospital, Zhejiang University School of Medicine, 89 Qingchun Road, Hangzhou 310003, China
| | - Fangping He
- Department of Neurology, Brain Medical Centre, First Affiliated Hospital, Zhejiang University School of Medicine, 89 Qingchun Road, Hangzhou 310003, China
| | - Kai Wang
- Department of Neurology, First Affiliated Hospital, Anhui Medical University, 218 Jixi Road, Hefei 230022, China
| | - Benyan Luo
- Department of Neurology, Brain Medical Centre, First Affiliated Hospital, Zhejiang University School of Medicine, 89 Qingchun Road, Hangzhou 310003, China
| |
Collapse
|
445
|
Daneva A, Gao Z, Van Durme M, Nowack MK. Functions and Regulation of Programmed Cell Death in Plant Development. Annu Rev Cell Dev Biol 2016; 32:441-468. [PMID: 27298090 DOI: 10.1146/annurev-cellbio-111315-124915] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Programmed cell death (PCD) is a collective term for diverse processes causing an actively induced, tightly controlled cellular suicide. PCD has a multitude of functions in the development and health of multicellular organisms. In comparison to intensively studied forms of animal PCD such as apoptosis, our knowledge of the regulation of PCD in plants remains limited. Despite the importance of PCD in plant development and as a response to biotic and abiotic stresses, the complex molecular networks controlling different forms of plant PCD are only just beginning to emerge. With this review, we provide an update on the considerable progress that has been made over the last decade in our understanding of PCD as an inherent part of plant development. We highlight both functions of developmental PCD and central aspects of its molecular regulation.
Collapse
Affiliation(s)
- Anna Daneva
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium; .,Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Zhen Gao
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium; .,Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Matthias Van Durme
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium; .,Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Moritz K Nowack
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium; .,Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| |
Collapse
|
446
|
Verbandt S, Cammue BPA, Thevissen K. Yeast as a model for the identification of novel survival-promoting compounds applicable to treat degenerative diseases. Mech Ageing Dev 2016; 161:306-316. [PMID: 27287065 DOI: 10.1016/j.mad.2016.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/31/2016] [Accepted: 06/07/2016] [Indexed: 12/18/2022]
Abstract
Programmed cell death (PCD) plays an important role in development and normal metabolic functioning of organisms. Excessive cell death is the cause of many degenerative diseases, like neurodegenerative disorders and Wilson's disease, for which current therapies remain insufficient. Current therapies are mainly focused on decreasing the disease symptoms following cell death, rather than blocking the cell death process itself. The latter can be obtained by either decreasing the presence of the toxic trigger (like protein aggregation in case of many commonly known neurodegenerative diseases) or by blocking death-inducing signaling cascade(s). Given the high conservation in PCD processes between yeast and mammalian cells, in this review, we will focus on yeast as a model organism to study PCD-related diseases as well as on its use for drug discovery purposes. More specifically, we will provide a comprehensive overview of new compounds, which were identified in yeast-based drug screens, that either decrease the amount of toxic trigger or inhibit PCD signaling cascades under PCD-inducing conditions.
Collapse
Affiliation(s)
- Sara Verbandt
- Centre of Microbial and Plant Genetics CMPG, KU Leuven, Kasteelpark Arenberg 20, Box 2460, 3001, Leuven, Belgium
| | - Bruno P A Cammue
- Centre of Microbial and Plant Genetics CMPG, KU Leuven, Kasteelpark Arenberg 20, Box 2460, 3001, Leuven, Belgium; Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium.
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics CMPG, KU Leuven, Kasteelpark Arenberg 20, Box 2460, 3001, Leuven, Belgium
| |
Collapse
|
447
|
Philipp S, Sosna J, Adam D. Cancer and necroptosis: friend or foe? Cell Mol Life Sci 2016; 73:2183-93. [PMID: 27048810 PMCID: PMC11108265 DOI: 10.1007/s00018-016-2193-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 01/12/2023]
Abstract
Regulated cell death is one major factor to ensure homoeostasis in multicellular organisms. For decades, apoptosis was considered as the sole form of regulated cell death, whereas necrosis was believed to be accidental and unregulated. Due to this view, research on necrosis was somewhat neglected, especially in the field of anti-cancer treatment. However, new interest in necrosis has been sparked by the recent discovery of different forms of necrosis that show indeed regulated pathways. More and more studies now address the molecular pathways of regulated necrosis and its connections within the cellular signaling networks. Necroptosis, a subform of regulated necrosis, has so far hardly been focused on with regard to a future treatment of cancer patients and may emerge as a novel and effective approach to eliminate tumor cells. However, and similar to apoptosis, tumor cells can develop resistances against necroptosis to ensure their own survival. In this context, new molecules that enhance necroptosis are currently being identified to overcome such resistances. This review discusses cancer and necroptosis as friends or foes, i.e. the options to exploit necroptosis in anti-cancer therapies ("foes"), but also potential limitations that may block or actually cause necroptosis to act in a protumoral manner ("friends"). The balance between these two possible roles will determine whether necroptosis can indeed be used as a promising tool for early diagnosis of tumors, prevention of metastasis and anti-cancer treatment.
Collapse
Affiliation(s)
- Stephan Philipp
- Institut für Immunologie, Christian-Albrechts-Universität, Michaelisstraße 5, 24105, Kiel, Germany
| | - Justyna Sosna
- Institut für Immunologie, Christian-Albrechts-Universität, Michaelisstraße 5, 24105, Kiel, Germany
| | - Dieter Adam
- Institut für Immunologie, Christian-Albrechts-Universität, Michaelisstraße 5, 24105, Kiel, Germany.
| |
Collapse
|
448
|
Izzo V, Bravo-San Pedro JM, Sica V, Kroemer G, Galluzzi L. Mitochondrial Permeability Transition: New Findings and Persisting Uncertainties. Trends Cell Biol 2016; 26:655-667. [PMID: 27161573 DOI: 10.1016/j.tcb.2016.04.006] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 04/13/2016] [Accepted: 04/14/2016] [Indexed: 12/15/2022]
Abstract
Several insults cause the inner mitochondrial membrane to abruptly lose osmotic homeostasis, hence initiating a regulated variant of cell death known as 'mitochondrial permeability transition' (MPT)-driven necrosis. MPT provides an etiological contribution to several human disorders characterized by the acute loss of post-mitotic cells, including cardiac and cerebral ischemia. Nevertheless, the precise molecular determinants of MPT remain elusive, which considerably hampers the development of clinically implementable cardio- or neuroprotective strategies targeting this process. We summarize recent findings shedding new light on the supramolecular entity that mediates MPT, the so-called 'permeability transition pore complex' (PTPC). Moreover, we discuss hitherto unresolved controversies on MPT and analyze the major obstacles that still preclude the complete understanding and therapeutic targeting of this process.
Collapse
Affiliation(s)
- Valentina Izzo
- Equipe 11 labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1138, 75006 Paris, France; Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France; Université Pierre et Marie Curie/Paris VI, 75006 Paris, France
| | - José Manuel Bravo-San Pedro
- Equipe 11 labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1138, 75006 Paris, France; Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France; Université Pierre et Marie Curie/Paris VI, 75006 Paris, France
| | - Valentina Sica
- Equipe 11 labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1138, 75006 Paris, France; Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France; Université Pierre et Marie Curie/Paris VI, 75006 Paris, France; Faculté de Medicine, Université Paris Sud/Paris XI, 94270 Le Kremlin-Bicêtre, France
| | - Guido Kroemer
- Equipe 11 labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1138, 75006 Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France; Université Pierre et Marie Curie/Paris VI, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France; Department of Women's and Children's Health, Karolinska University Hospital, 17176 Stockholm, Sweden.
| | - Lorenzo Galluzzi
- Equipe 11 labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1138, 75006 Paris, France; Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France; Université Pierre et Marie Curie/Paris VI, 75006 Paris, France.
| |
Collapse
|
449
|
Kalinec G, Thein P, Park C, Kalinec F. HEI-OC1 cells as a model for investigating drug cytotoxicity. Hear Res 2016; 335:105-117. [DOI: 10.1016/j.heares.2016.02.019] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 02/24/2016] [Accepted: 02/26/2016] [Indexed: 12/17/2022]
|
450
|
Lee TV, Kamber Kaya HE, Simin R, Baehrecke EH, Bergmann A. The initiator caspase Dronc is subject of enhanced autophagy upon proteasome impairment in Drosophila. Cell Death Differ 2016; 23:1555-64. [PMID: 27104928 DOI: 10.1038/cdd.2016.40] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 03/20/2016] [Accepted: 03/21/2016] [Indexed: 11/09/2022] Open
Abstract
A major function of ubiquitylation is to deliver target proteins to the proteasome for degradation. In the apoptotic pathway in Drosophila, the inhibitor of apoptosis protein 1 (Diap1) regulates the activity of the initiator caspase Dronc (death regulator Nedd2-like caspase; caspase-9 ortholog) by ubiquitylation, supposedly targeting Dronc for degradation by the proteasome. Using a genetic approach, we show that Dronc protein fails to accumulate in epithelial cells with impaired proteasome function suggesting that it is not degraded by the proteasome, contrary to the expectation. Similarly, decreased autophagy, an alternative catabolic pathway, does not result in increased Dronc protein levels. However, combined impairment of the proteasome and autophagy triggers accumulation of Dronc protein levels suggesting that autophagy compensates for the loss of the proteasome with respect to Dronc turnover. Consistently, we show that loss of the proteasome enhances endogenous autophagy in epithelial cells. We propose that enhanced autophagy degrades Dronc if proteasome function is impaired.
Collapse
Affiliation(s)
- T V Lee
- Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - H E Kamber Kaya
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - R Simin
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - E H Baehrecke
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - A Bergmann
- Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|