401
|
Roth JJ, Santi M, Rorke-Adams LB, Harding BN, Busse TM, Tooke LS, Biegel JA. Diagnostic application of high resolution single nucleotide polymorphism array analysis for children with brain tumors. Cancer Genet 2014; 207:111-23. [PMID: 24767714 DOI: 10.1016/j.cancergen.2014.03.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 03/09/2014] [Accepted: 03/10/2014] [Indexed: 12/21/2022]
Abstract
Single nucleotide polymorphism (SNP) array analysis is currently used as a first tier test for pediatric brain tumors at The Children's Hospital of Philadelphia. The results from 100 consecutive patients are summarized in the present report. Eighty-seven percent of the tumors had at least one pathogenic copy number alteration. Nineteen of 56 low grade gliomas (LGGs) demonstrated a duplication in 7q34, which resulted in a KIAA1549-BRAF fusion. Chromosome band 7q34 deletions, which resulted in a FAM131B-BRAF fusion, were identified in one pilocytic astrocytoma (PA) and one dysembryoplastic neuroepithelial tumor (DNT). One ganglioglioma (GG) demonstrated a 6q23.3q26 deletion that was predicted to result in a MYB-QKI fusion. Gains of chromosomes 5, 6, 7, 11, and 20 were seen in a subset of LGGs. Monosomy 6, deletion of 9q and 10q, and an i(17)(q10) were each detected in the medulloblastomas (MBs). Deletions and regions of loss of heterozygosity that encompassed TP53, RB1, CDKN2A/B, CHEK2, NF1, and NF2 were identified in a variety of tumors, which led to a recommendation for germline testing. A BRAF p.Thr599dup or p.V600E mutation was identified by Sanger sequencing in one and five gliomas, respectively, and a somatic TP53 mutation was identified in a fibrillary astrocytoma. No TP53 hot-spot mutations were detected in the MBs. SNP array analysis of pediatric brain tumors can be combined with pathologic examination and molecular analyses to further refine diagnoses, offer more accurate prognostic assessments, and identify patients who should be referred for cancer risk assessment.
Collapse
Affiliation(s)
- Jacquelyn J Roth
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA.
| | - Mariarita Santi
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA; Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Lucy B Rorke-Adams
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA; Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Brian N Harding
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA; Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Tracy M Busse
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Laura S Tooke
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Jaclyn A Biegel
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA; Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA.
| |
Collapse
|
402
|
Ruiz Salas V, Alegre M, Garcés JR, Puig L. Locally advanced and metastatic basal cell carcinoma: molecular pathways, treatment options and new targeted therapies. Expert Rev Anticancer Ther 2014; 14:741-9. [DOI: 10.1586/14737140.2014.895326] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
403
|
Chan IS, Guy CD, Machado MV, Wank A, Kadiyala V, Michelotti G, Choi S, Swiderska-Syn M, Karaca G, Pereira TA, Yip-Schneider MT, Schmidt CM, Diehl AM. Alcohol activates the hedgehog pathway and induces related procarcinogenic processes in the alcohol-preferring rat model of hepatocarcinogenesis. Alcohol Clin Exp Res 2014; 38:787-800. [PMID: 24164383 PMCID: PMC4054878 DOI: 10.1111/acer.12279] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 08/18/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND Alcohol consumption promotes hepatocellular carcinoma (HCC). The responsible mechanisms are not well understood. Hepatocarcinogenesis increases with age and is enhanced by factors that impose a demand for liver regeneration. Because alcohol is hepatotoxic, habitual alcohol ingestion evokes a recurrent demand for hepatic regeneration. The alcohol-preferring (P) rat model mimics the level of alcohol consumption by humans who habitually abuse alcohol. Previously, we showed that habitual heavy alcohol ingestion amplified age-related hepatocarcinogenesis in P rats, with over 80% of alcohol-consuming P rats developing HCCs after 18 months of alcohol exposure, compared with only 5% of water-drinking controls. METHODS Herein, we used quantitative real-time PCR and quantitative immunocytochemistry to compare liver tissues from alcohol-consuming P rats and water-fed P rat controls after 6, 12, or 18 months of drinking. We aimed to identify potential mechanisms that might underlie the differences in liver cancer formation and hypothesized that chronic alcohol ingestion would activate Hedgehog (HH), a regenerative signaling pathway that is overactivated in HCC. RESULTS Chronic alcohol ingestion amplified age-related degenerative changes in hepatocytes, but did not cause appreciable liver inflammation or fibrosis even after 18 months of heavy drinking. HH signaling was also enhanced by alcohol exposure, as evidenced by increased levels of mRNAs encoding HH ligands, HH-regulated transcription factors, and HH target genes. Immunocytochemistry confirmed increased alcohol-related accumulation of HH ligand-producing cells and HH-responsive target cells. HH-related regenerative responses were also induced in alcohol-exposed rats. Three of these processes (i.e., deregulated progenitor expansion, the reverse Warburg effect, and epithelial-to-mesenchymal transitions) are known to promote cancer growth in other tissues. CONCLUSIONS Alcohol-related changes in Hedgehog signaling and resultant deregulation of liver cell replacement might promote hepatocarcinogenesis.
Collapse
Affiliation(s)
- Isaac S. Chan
- Department of Medicine, Duke University, Durham, North Carolina
- Department of Genetics, The University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Cynthia D. Guy
- Department of Pathology, Duke University, Durham, North Carolina
| | | | - Abigail Wank
- Department of Medicine, Duke University, Durham, North Carolina
| | - Vishnu Kadiyala
- Department of Medicine, Duke University, Durham, North Carolina
| | | | - Steve Choi
- Department of Medicine, Duke University, Durham, North Carolina
| | | | - Gamze Karaca
- Department of Medicine, Duke University, Durham, North Carolina
| | | | | | - C. Max Schmidt
- Department of Surgery, Indiana University, Indianapolis, Indiana
| | - Anna Mae Diehl
- Department of Medicine, Duke University, Durham, North Carolina
| |
Collapse
|
404
|
Xie F, Xu X, Xu A, Liu C, Liang F, Xue M, Bai L. Aberrant activation of Sonic hedgehog signaling in chronic cholecystitis and gallbladder carcinoma. Hum Pathol 2014; 45:513-21. [DOI: 10.1016/j.humpath.2013.10.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 10/15/2013] [Accepted: 10/16/2013] [Indexed: 12/20/2022]
|
405
|
Pierer G, Pülzl P, Deluca J, Müller H, Zelger B, Putzer D, Eisendle K. Extraordinary Giant Basal Cell Carcinoma with Full-Thickness Infiltration of the Abdominal Wall: Single-Staged Resection and Simultaneous Reconstruction. J Cutan Med Surg 2014; 18:127-31. [DOI: 10.2310/7750.2013.13083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background: Basal cell carcinoma (BCC) is the most frequent form of invasive skin cancer. BCCs usually show a slow progression and rarely metastasize; however, around 1% achieve a “giant” size, larger than 5 cm in diameter. Rarely, BCCs larger than 20 cm are reported in the literature. Objective: We report a case of a giant BCC, measuring 25 × 13 × 5 cm, involving the abdominal wall. The article describes the curative surgical procedure, which resulted in an excellent aesthetic result.
Collapse
Affiliation(s)
| | - Petra Pülzl
- Authors who contributed equally to this work
| | | | | | | | | | | |
Collapse
|
406
|
Affiliation(s)
- Gefei Alex Zhu
- Department of Dermatology, Stanford University School of Medicine, 450 Broadway St., Redwood City, CA 94063 USA
| | - Andrew Chen
- Division of Plastic Surgery, Henry Ford Hospital and Wayne State University, 2799 W. Grand Blvd., Detroit, MI 48202 USA
| | - Anne L. S. Chang
- Department of Dermatology, Stanford University School of Medicine, 450 Broadway St., Redwood City, CA 94063 USA
| |
Collapse
|
407
|
|
408
|
Dobbelstein M, Moll U. Targeting tumour-supportive cellular machineries in anticancer drug development. Nat Rev Drug Discov 2014; 13:179-96. [DOI: 10.1038/nrd4201] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
409
|
Matsushita S, Onishi H, Nakano K, Nagamatsu I, Imaizumi A, Hattori M, Oda Y, Tanaka M, Katano M. Hedgehog signaling pathway is a potential therapeutic target for gallbladder cancer. Cancer Sci 2014; 105:272-80. [PMID: 24438533 PMCID: PMC4317941 DOI: 10.1111/cas.12354] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 01/09/2013] [Accepted: 01/13/2014] [Indexed: 12/16/2022] Open
Abstract
Gallbladder cancer (GBC) is a particularly deadly type of cancer with a 5-year survival rate of only 10%. New effective therapeutic strategies are greatly needed. Recently, we have shown that Hedgehog (Hh) signaling is reactivated in various types of cancer and is a potential therapeutic target. However, little is known about the biological significance of Hh signaling in human GBC. In this study, we determined whether Hh signaling could be a therapeutic target in GBC. The Hh transcription factor Gli1 was detected in the nucleus of GBC cells but not in the nucleus of normal gallbladder cells. The expression levels of Sonic Hh (Shh) and Smoothened (Smo) in human GBC specimens (n = 37) were higher than those in normal gallbladder tissue. The addition of exogenous Shh ligand augmented the anchor-dependent and anchor-independent proliferation and invasiveness of GBC cells in vitro. In contrast, inhibiting the effector Smo decreased the anchor-dependent and anchor-independent proliferation. Furthermore, the suppression of Smo decreased GBC cell invasiveness through the inhibition of MMP-2 and MMP-9 expression and inhibited the epithelial–mesenchymal transition. In a xenograft model, tumor volume in Smo siRNA-transfected GBC cells was significantly lower than in control tumors. These results suggest that Hh signaling is elevated in GBC and may be involved in the acquisition of malignant phenotypes, and that Hh signaling may be a potential therapeutic target for GBC.
Collapse
Affiliation(s)
- Shojiro Matsushita
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
410
|
Chen Q, Xu R, Zeng C, Lu Q, Huang D, Shi C, Zhang W, Deng L, Yan R, Rao H, Gao G, Luo S. Down-regulation of Gli transcription factor leads to the inhibition of migration and invasion of ovarian cancer cells via integrin β4-mediated FAK signaling. PLoS One 2014; 9:e88386. [PMID: 24533083 PMCID: PMC3922814 DOI: 10.1371/journal.pone.0088386] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 01/06/2014] [Indexed: 01/25/2023] Open
Abstract
Background Recent evidence suggests that aberrant activation of Hedgehog (Hh) signaling by Gli transcription factors is characteristic of a variety of aggressive human carcinomas including ovarian cancer. Therefore, chemotherapeutic agents that inhibit activation of Gli transcription factors have emerged as promising novel therapeutic drugs for ovarian cancer. Results In this study, we show that activation of Hh signaling promoted cellular migration and invasion, whereas blockade of Hh signaling with GANT61 suppressed cellular migration and invasion in ovarian cancer cells. After treatment with GANT61, cDNA microarray analyses revealed changes in many genes such as Integrin β4 subunit (ITGB4), focal adhesion kinase (FAK), etc. Furthermore, ITGB4 expression was up-regulated by Sonic Hedgehog (Shh) ligand and down-regulated by Hh signaling inhibitor. The Shh-mediated ovarian cell migration and invasion was blocked by neutralizing antibodies to ITGB4. In addition, phosphorylations of FAK were increased by Shh and decreased by Hh signaling inhibitor. Inhibition of Gli1 expression using siRNA mimicked the effects of GANT61 treatment, supporting the specificity of GANT61. Further investigations showed that activation of FAK was required for Shh-mediated cell migration and invasion. Finally, we found that down-regulation of Gli reduced the expression of ITGB4 and the phosphorylated FAK, resulting in the inhibition of tumor growth in vivo. Conclusions The Hh signaling pathway induces cell migration and invasion through ITGB4-mediated activation of FAK in ovarian cancer. Our findings suggest that the diminishment of crosstalk between phosphorylated FAK and ITGB4 due to the down-regulation of Gli family transcription factors might play a pivotal role for inhibiting ovarian cancer progression.
Collapse
Affiliation(s)
- Qi Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Rong Xu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Chunyan Zeng
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Quqin Lu
- Department of Biostatistics & Epidemiology, School of Public Health, Nanchang University, Nanchang, Jiangxi, China
| | - Dengliang Huang
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Chao Shi
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Weilong Zhang
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Libin Deng
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Runwei Yan
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Hai Rao
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Guolan Gao
- Department of Obstetrics and Gynecology, General Hospital of Beijing Aeronautics, Beijing, China
- * E-mail: (SL); (GG)
| | - Shiwen Luo
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- * E-mail: (SL); (GG)
| |
Collapse
|
411
|
Abstract
Advanced basal cell carcinomas are a subset of basal cell carcinomas that can be difficult to treat either due to their local invasiveness, proximity to vital structures, or metastasis. The incidence of all basal cell carcinoma is increasing in the United States, although it is not known whether advanced basal cell carcinomas (aBCCs) are also increasing. Recently, highly targeted therapy based on knowledge of the basal cell carcinoma pathogenesis has become available either commercially or through human clinical trials. These orally available drugs inhibit the Hedgehog signaling pathway, and lead to advanced basal cell carcinoma shrinkage that can enable preservation of adjacent vital organs. In this review, we outline the role of Hedgehog pathway inhibitors as well as other treatment modalities such as excision, radiotherapy and more traditional chemotherapy in treating advanced basal cell carcinomas. We also highlight current gaps in knowledge regarding the use and side effects of this targeted therapy.
Collapse
Affiliation(s)
- Shalini V. Mohan
- Department of Dermatology, Stanford University School of Medicine, 450 Broadway St, MC 5334, Pavilion C, 2nd floor, Redwood City, CA 94063 USA
| | - Anne Lynn S. Chang
- Department of Dermatology, Stanford University School of Medicine, 450 Broadway St, MC 5334, Pavilion C, 2nd floor, Redwood City, CA 94063 USA
| |
Collapse
|
412
|
Busch AM, Galimberti F, Nehls KE, Roengvoraphoj M, Sekula D, Li B, Guo Y, Direnzo J, Fiering SN, Spinella MJ, Robbins DJ, Memoli VA, Freemantle SJ, Dmitrovsky E. All-trans-retinoic acid antagonizes the Hedgehog pathway by inducing patched. Cancer Biol Ther 2014; 15:463-72. [PMID: 24496080 DOI: 10.4161/cbt.27821] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Male germ cell tumors (GCTs) are a model for a curable solid tumor. GCTs can differentiate into mature teratomas. Embryonal carcinomas (ECs) represent the stem cell compartment of GCTs and are the malignant counterpart to embryonic stem (ES) cells. GCTs and EC cells are useful to investigate differentiation therapy and chemotherapy response. This study explored mechanistic interactions between all-trans-retinoic acid (RA), which induces differentiation of EC and ES cells, and the Hedgehog (Hh) pathway, a regulator of self-renewal and proliferation. RA was found to induce mRNA and protein expression of Patched 1 (Ptch1), the Hh ligand receptor and negative regulator of this pathway. PTCH1 is also a target gene of Hh signaling through Smoothened (Smo) activation. Yet, this observed RA-mediated Ptch1 induction was independent of Smo. It occurred despite co-treatment with RA and Smo inhibitors. Retinoid induction of Ptch1 also occurred in other RA-responsive cancer cell lines and in normal ES cells. Notably, this enhanced Ptch1 expression was preceded by induction of the homeobox transcription factor Meis1, a direct RA target. Direct interaction between Meis1 and Ptch1 was confirmed using chromatin immunoprecipitation assays. To establish the translational relevance of this work, Ptch1 expression was shown to be deregulated in human ECs relative to mature teratoma and the normal seminiferous tubule. Taken together, these findings reveal a previously unrecognized mechanism through which RA can inhibit the Hh pathway via Ptch1 induction. Engaging this pathway is a new way to repress the Hh pathway that can be translated into the cancer clinic.
Collapse
Affiliation(s)
- Alexander M Busch
- Department of Pharmacology and Toxicology; Geisel School of Medicine at Dartmouth; Hanover, NH USA
| | - Fabrizio Galimberti
- Department of Pharmacology and Toxicology; Geisel School of Medicine at Dartmouth; Hanover, NH USA
| | | | - Monic Roengvoraphoj
- Department of Medicine; Geisel School of Medicine at Dartmouth; Hanover, NH USA; Norris Cotton Cancer Center; Geisel School of Medicine at Dartmouth; Hanover, NH USA; Dartmouth-Hitchcock Medical Center; Lebanon, NH USA
| | - David Sekula
- Department of Pharmacology and Toxicology; Geisel School of Medicine at Dartmouth; Hanover, NH USA
| | - Bin Li
- Molecular Oncology Program; Department of Surgery; Miller School of Medicine; University of Miami; Miami, FL USA
| | - Yongli Guo
- Department of Pharmacology and Toxicology; Geisel School of Medicine at Dartmouth; Hanover, NH USA
| | - James Direnzo
- Department of Pharmacology and Toxicology; Geisel School of Medicine at Dartmouth; Hanover, NH USA; Norris Cotton Cancer Center; Geisel School of Medicine at Dartmouth; Hanover, NH USA; Dartmouth-Hitchcock Medical Center; Lebanon, NH USA
| | - Steven N Fiering
- Norris Cotton Cancer Center; Geisel School of Medicine at Dartmouth; Hanover, NH USA; Dartmouth-Hitchcock Medical Center; Lebanon, NH USA; Department of Immunology and Microbiology; Geisel School of Medicine at Dartmouth; Hanover, NH USA; Department of Genetics; Geisel School of Medicine at Dartmouth; Hanover, NH USA
| | - Michael J Spinella
- Department of Pharmacology and Toxicology; Geisel School of Medicine at Dartmouth; Hanover, NH USA; Norris Cotton Cancer Center; Geisel School of Medicine at Dartmouth; Hanover, NH USA; Dartmouth-Hitchcock Medical Center; Lebanon, NH USA
| | - David J Robbins
- Molecular Oncology Program; Department of Surgery; Miller School of Medicine; University of Miami; Miami, FL USA
| | - Vincent A Memoli
- Norris Cotton Cancer Center; Geisel School of Medicine at Dartmouth; Hanover, NH USA; Dartmouth-Hitchcock Medical Center; Lebanon, NH USA; Department of Pathology; Geisel School of Medicine at Dartmouth; Hanover, NH USA
| | - Sarah J Freemantle
- Department of Pharmacology and Toxicology; Geisel School of Medicine at Dartmouth; Hanover, NH USA
| | - Ethan Dmitrovsky
- Department of Pharmacology and Toxicology; Geisel School of Medicine at Dartmouth; Hanover, NH USA; Department of Medicine; Geisel School of Medicine at Dartmouth; Hanover, NH USA; Norris Cotton Cancer Center; Geisel School of Medicine at Dartmouth; Hanover, NH USA; Dartmouth-Hitchcock Medical Center; Lebanon, NH USA
| |
Collapse
|
413
|
Kim DJ, Kim J, Spaunhurst K, Montoya J, Khodosh R, Chandra K, Fu T, Gilliam A, Molgo M, Beachy PA, Tang JY. Open-label, exploratory phase II trial of oral itraconazole for the treatment of basal cell carcinoma. J Clin Oncol 2014; 32:745-51. [PMID: 24493717 DOI: 10.1200/jco.2013.49.9525] [Citation(s) in RCA: 184] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Itraconazole, a US Food and Drug Administration-approved antifungal drug, inhibits the Hedgehog (HH) signaling pathway, a crucial driver of basal cell carcinoma (BCC) tumorigenesis, and reduces BCC growth in mice. We assessed the effect of itraconazole on the HH pathway and on tumor size in human BCC tumors. PATIENTS AND METHODS Patients with ≥ one BCC tumor > 4 mm in diameter were enrolled onto two cohorts to receive oral itraconazole 200 mg twice per day for 1 month (cohort A) or 100 mg twice per day for an average of 2.3 months (cohort B). The primary end point was change in biomarkers: Ki67 tumor proliferation and HH activity (GLI1 mRNA). Secondary end points included change in tumor size in a subset of patients with multiple tumors. RESULTS A total of 29 patients were enrolled, of whom 19 were treated with itraconazole. Itraconazole treatment was associated with two adverse events (grade 2 fatigue and grade 4 congestive heart failure). Itraconazole reduced cell proliferation by 45% (P = .04), HH pathway activity by 65% (P = .03), and reduced tumor area by 24% (95% CI, 18.2% to 30.0%). Of eight patients with multiple nonbiopsied tumors, four achieved partial response, and four had stable disease. Tumors from untreated control patients and from those previously treated with vismodegib showed no significant changes in proliferation or tumor size. CONCLUSION Itraconazole has anti-BCC activity in humans. These results provide the basis for larger trials of longer duration to measure the clinical efficacy of itraconazole, especially relative to other HH pathway inhibitors.
Collapse
Affiliation(s)
- Daniel J Kim
- Daniel J. Kim, James Kim, Katrina Spaunhurst, Rita Khodosh, Kalyani Chandra, Teresa Fu, Philip A. Beachy, and Jean Y. Tang, Stanford University, Stanford; Anita Gilliam, Palo Alto Medical Foundation, Palo Alto, CA; James Kim, University of Texas Southwestern, Dallas, TX; Javier Montoya and Monserrat Molgo, Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
414
|
Affiliation(s)
- Luc Dirix
- Sint-Augustinus Cancer Center, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
415
|
Ultraviolets A et dommages de l’ADN : leur place dans la cancérogenèse cutanée. BULLETIN DE L'ACADÉMIE NATIONALE DE MÉDECINE 2014. [DOI: 10.1016/s0001-4079(19)31342-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
416
|
Ali FR, Lear JT. Systemic treatments for basal cell carcinoma (BCC): the advent of dermato-oncology in BCC. Br J Dermatol 2014; 169:53-7. [PMID: 23488543 DOI: 10.1111/bjd.12311] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2013] [Indexed: 11/28/2022]
Abstract
Basal cell carcinoma (BCC) is the most common cancer in the U.K. and its incidence is increasing. Vismodegib, a hedgehog pathway inhibitor, has recently been licensed by the U.S. Food and Drug Administration for treatment of advanced BCC. Phase 2 trials have demonstrated efficacy in cases of locally advanced and metastatic BCC, as well as cases of hereditary basal cell naevus (Gorlin) syndrome. Side-effects are frequent and considerable and include myalgia, taste disturbance, alopecia, weight loss and fatigue. Further research is needed to investigate means of circumventing these side-effects, and longitudinal data are required to assess the long-term benefits of, and the nature of resistance to, this novel class of agents. Alternative hedgehog inhibitors are currently in clinical development. We review the current data pertaining to this novel treatment modality and discuss its likely future role in the management of BCC.
Collapse
Affiliation(s)
- F R Ali
- Dermatology Centre, Manchester Academic Health Science Centre, Salford Royal NHS Foundation Trust, University of Manchester, Manchester M6 8HD, UK
| | | |
Collapse
|
417
|
Abstract
Over the past two decades, advances in the fields of cancer genetics and molecular biology have elucidated molecular pathways that cause numerous cutaneous malignancies. This in turn has spurred the rational design of molecularly targeted therapies. In this review, we discuss the molecular pathways critical to the development of nonmelanoma skin cancers and the novel pharmacologic agents that target them. Included is a review of vismodegib for basal cell carcinoma, cetuximab for squamous cell carcinomas, imatinib for dermatofibrosarcoma protuberans, and sirolimus for Kaposi's sarcoma.
Collapse
Affiliation(s)
- Lucinda S Liu
- Department of Dermatology, Yale School of Medicine, New Haven, CT 06520-8059, USA
| | | |
Collapse
|
418
|
Wu TM, Wang DC, Xiang P, Zhang JN, Sang YX, Lin HJ, Chen J, Xie G, Song H, Zhao YL, Xie YM. Synthesis and biological evaluation of novel benzamide derivatives as potent smoothened antagonists. Bioorg Med Chem Lett 2014; 24:1426-31. [PMID: 24491459 DOI: 10.1016/j.bmcl.2014.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/30/2013] [Accepted: 01/06/2014] [Indexed: 02/05/2023]
Abstract
A series of novel benzamide derivatives were prepared and evaluated using cell-based measurements. Among these compounds, 10f significantly inhibited Hedgehog signaling and showed equivalent or more potency than GDC-0449 in different tests. Furthermore, compound 10f potently inhibited the proliferation of Daoy, a medulloblastoma cell line that is reported to be resistant to GDC-0449, which indicated a promising prospect in the treatment of Hedgehog signaling pathway related cancer in clinical trial.
Collapse
Affiliation(s)
- Tian-Ming Wu
- State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Dao-Cai Wang
- Department of Pharmaceutical and Biological Engineering, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Pu Xiang
- State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Jian-Nan Zhang
- State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Ya-Xiong Sang
- State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Hong-Jun Lin
- State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Jie Chen
- State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Gang Xie
- State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Hang Song
- Department of Pharmaceutical and Biological Engineering, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Ying-Lan Zhao
- State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China.
| | - Yong-Mei Xie
- State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
419
|
Huang L, Walter V, Hayes DN, Onaitis M. Hedgehog-GLI signaling inhibition suppresses tumor growth in squamous lung cancer. Clin Cancer Res 2014; 20:1566-75. [PMID: 24423612 DOI: 10.1158/1078-0432.ccr-13-2195] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE Lung squamous cell carcinoma (LSCC) currently lacks effective targeted therapies. Previous studies reported overexpression of Hedgehog (HH)-GLI signaling components in LSCC. However, they addressed neither the tumor heterogeneity nor the requirement for HH-GLI signaling. Here, we investigated the role of HH-GLI signaling in LSCC, and studied the therapeutic potential of HH-GLI suppression. EXPERIMENTAL DESIGN Gene expression datasets of two independent LSCC patient cohorts were analyzed to study the activation of HH-GLI signaling. Four human LSCC cell lines were examined for HH-GLI signaling components. Cell proliferation and apoptosis were assayed in these cells after blocking the HH-GLI pathway by lentiviral-shRNA knockdown or small-molecule inhibitors. Xenografts in immunodeficient mice were used to determine the in vivo efficacy of GLI inhibitor GANT61. RESULTS In both cohorts, activation of HH-GLI signaling was significantly associated with the classical subtype of LSCC. In cell lines, genetic knockdown of Smoothened (SMO) produced minor effects on cell survival, whereas GLI2 knockdown significantly reduced proliferation and induced extensive apoptosis. Consistently, the SMO inhibitor GDC-0449 resulted in limited cytotoxicity in LSCC cells, whereas the GLI inhibitor GANT61 was very effective. Importantly, GANT61 demonstrated specific in vivo antitumor activity in xenograft models of GLI(+) cell lines. CONCLUSION Our studies demonstrate an important role for GLI2 in LSCC, and suggest GLI inhibition as a novel and potent strategy to treat a subset of patients with LSCC.
Collapse
Affiliation(s)
- Lingling Huang
- Authors' Affiliations: Department of Surgery, Duke University, Durham and Department of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | | | | | | |
Collapse
|
420
|
Wollina U, Pabst F, Krönert C, Schorcht J, Haroske G, Klemm E, Kittner T. High-risk basal cell carcinoma: an update. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/edm.10.27] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
421
|
Dessinioti C, Antoniou C, Stratigos AJ. New targeted approaches for the treatment and prevention of nonmelanoma skin cancer. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/edm.11.70] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
422
|
Palladium-catalyzed carbonylative synthesis of N-(2-cyanoaryl)benzamides and sequential synthesis of quinazolinones. Tetrahedron 2014. [DOI: 10.1016/j.tet.2013.11.055] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
423
|
Expanded access study of patients with advanced basal cell carcinoma treated with the Hedgehog pathway inhibitor, vismodegib. J Am Acad Dermatol 2014; 70:60-9. [DOI: 10.1016/j.jaad.2013.09.012] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 09/03/2013] [Accepted: 09/05/2013] [Indexed: 11/23/2022]
|
424
|
Cortés J, Calvo E, Vivancos A, Perez-Garcia J, Recio JA, Seoane J. New approach to cancer therapy based on a molecularly defined cancer classification. CA Cancer J Clin 2014; 64:70-4. [PMID: 24249308 DOI: 10.3322/caac.21211] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 10/04/2013] [Accepted: 10/07/2013] [Indexed: 01/23/2023] Open
Abstract
Translational and clinical cancer research, as well as clinical trials and treatment of cancer, are essentially structured based on the organ in which tumors originate. However, the recent explosion of knowledge about the molecular characteristics of tumors is opening a new way to tackle cancer. This article proposes a different approach to the classification of cancer with important implications for treatment and for basic, translational, and clinical research. The authors postulate that cancers from diverse organs of origin with similar molecular traits should be managed together. The common molecular features observed in different tumors determine clinical actions in a better way than organ-based classification. Thus, comparisons between tumors residing in different locations but with shared molecular characteristics will improve the therapeutic approach and the understanding of the biology of cancer.
Collapse
Affiliation(s)
- Javier Cortés
- Head of the Breast Cancer and Melanoma Programs, Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Barcelona, Spain; Medical Oncologist, Medica Scientia Innovation Research (MedSIR), Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
425
|
Abstract
Vismodegib (GDC-0449, Erivedge®) is a novel small molecule antagonist of the hedgehog (Hh) pathway that binds to smoothened (SMO) and leads to inhibition of an aberrant activation of the Hh pathway. Dysregulated Hh signaling results in uncontrolled proliferation in basal cell carcinoma (BCC) and has also been found present in medulloblastoma, and many other cancers such as those of gastrointestinal tract, brain, lung, breast, and prostate. In January 2012, vismodegib became the first agent to target the Hh pathway to receive approval by the United States Food and Drug Administration (FDA) and in July 2013 approval by the European Medicines Agency (EMA) followed for the treatment of adult patients with symptomatic metastatic BCC, or locally advanced BCC inappropriate for surgery or radiotherapy. At the moment, many trials are ongoing to further investigate the role of vismodegib in other malignancies than BCC.
Collapse
Affiliation(s)
- F Meiss
- Department of Dermatology and Venereology, Freiburg University Medical Center, Albert-Ludwigs-University, Hauptstr. 7, 79104, Freiburg, Germany,
| | | |
Collapse
|
426
|
Molecular oncology of basal cell carcinomas. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
427
|
Ruiz-Salas V, Alegre M, López-Ferrer A, Garcés JR. Vismodegib: a review. ACTAS DERMO-SIFILIOGRAFICAS 2013; 105:744-51. [PMID: 24359667 DOI: 10.1016/j.ad.2013.09.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 09/19/2013] [Accepted: 09/28/2013] [Indexed: 12/31/2022] Open
Abstract
In January 2012, vismodegib (Erivedge, manufactured by Genentech) became the first selective inhibitor of the Hedgehog signaling pathway to be approved by the US Food and Drug Administration for the treatment of locally advanced and metastatic basal cell carcinoma. The drug selectively binds to Smoothened, a 7-helix transmembrane receptor, thereby inhibiting activation of transcription factors of the glioma-associated oncogene family and suppressing tumor proliferation and growth. Studies published to date have assessed the efficacy of vismodegib according to clinical and radiologic outcomes but little information is available on the molecular mechanisms underpinning the proven clinical efficacy of the drug. This review will cover recent data on the Hedgehog signaling pathway and data from clinical trials with vismodegib in the treatment of basal cell carcinoma, and will consider its use in other types of tumor.
Collapse
Affiliation(s)
- V Ruiz-Salas
- Servicio de Dermatología, Hospital de la Santa Creu i Sant Pau, Barcelona, España.
| | - M Alegre
- Servicio de Dermatología, Hospital de la Santa Creu i Sant Pau, Barcelona, España
| | - A López-Ferrer
- Servicio de Dermatología, Hospital de la Santa Creu i Sant Pau, Barcelona, España
| | - J R Garcés
- Servicio de Dermatología, Hospital de la Santa Creu i Sant Pau, Barcelona, España
| |
Collapse
|
428
|
Aditya S, Rattan A. Vismodegib: A smoothened inhibitor for the treatment of advanced basal cell carcinoma. Indian Dermatol Online J 2013; 4:365-8. [PMID: 24350028 PMCID: PMC3853913 DOI: 10.4103/2229-5178.120685] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Incidence of basal cell carcinoma (BCC), the most common skin cancer in humans, is rising. Surgery is the mainstay of treatment but there is no standard of care for locally advanced or metastatic disease. Hedgehog signaling proteins are critical for cell growth and differentiation during embryogenesis; Hh pathway is silenced in adults. Dysregulated or aberrant Hh signaling has been implicated in the pathogenesis of BCC. This hyperactive pathway can be inhibited by use of smoothened inhibitors such as vismodegib. Food and drug administration approved this oral, once-daily medication in 2012 to treat adults with metastatic BCC or locally advanced, recurrent BCC after surgery and also for patients with locally advanced BCC who are not candidates for surgery or radiation treatment. Clinical studies have shown it to be highly efficacious and the most common adverse effects include, muscle spasms, alopecia and dysgeusia. Use of targeted biologic modifiers, exemplified by Hh directed therapeutics offer a new hope to patients with high-surgical morbidity or inoperable tumors.
Collapse
Affiliation(s)
- Suruchi Aditya
- Department of Pharmacology, Dr. Harvansh Singh Judge Institute of Dental Sciences, Chandigarh, India
| | - Aditya Rattan
- Department of cardiology, Heartline, SCO-58, Panchkula, Haryana, India
| |
Collapse
|
429
|
Wu C, Gudivada RC, Aronow BJ, Jegga AG. Computational drug repositioning through heterogeneous network clustering. BMC SYSTEMS BIOLOGY 2013; 7 Suppl 5:S6. [PMID: 24564976 PMCID: PMC4029299 DOI: 10.1186/1752-0509-7-s5-s6] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Given the costly and time consuming process and high attrition rates in drug discovery and development, drug repositioning or drug repurposing is considered as a viable strategy both to replenish the drying out drug pipelines and to surmount the innovation gap. Although there is a growing recognition that mechanistic relationships from molecular to systems level should be integrated into drug discovery paradigms, relatively few studies have integrated information about heterogeneous networks into computational drug-repositioning candidate discovery platforms. RESULTS Using known disease-gene and drug-target relationships from the KEGG database, we built a weighted disease and drug heterogeneous network. The nodes represent drugs or diseases while the edges represent shared gene, biological process, pathway, phenotype or a combination of these features. We clustered this weighted network to identify modules and then assembled all possible drug-disease pairs (putative drug repositioning candidates) from these modules. We validated our predictions by testing their robustness and evaluated them by their overlap with drug indications that were either reported in published literature or investigated in clinical trials. CONCLUSIONS Previous computational approaches for drug repositioning focused either on drug-drug and disease-disease similarity approaches whereas we have taken a more holistic approach by considering drug-disease relationships also. Further, we considered not only gene but also other features to build the disease drug networks. Despite the relative simplicity of our approach, based on the robustness analyses and the overlap of some of our predictions with drug indications that are under investigation, we believe our approach could complement the current computational approaches for drug repositioning candidate discovery.
Collapse
|
430
|
Kellner J, Liu B, Kang Y, Li Z. Fact or fiction--identifying the elusive multiple myeloma stem cell. J Hematol Oncol 2013; 6:91. [PMID: 24314019 PMCID: PMC4029203 DOI: 10.1186/1756-8722-6-91] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 12/03/2013] [Indexed: 12/21/2022] Open
Abstract
Multiple Myeloma (MM) is a debilitating disease of proliferating and malignant plasma cells that is currently incurable. The ability of monoclonal recurrence of disease suggests it might arise from a stem cell-like population capable of self-renewal. The difficulty to isolate the cancer stem-like cell in MM has introduced confusion toward this hypothesis. However, recent evidence has suggested that MM originates from the B cell lineage with memory-B cell like features, allowing for self-renewal of the progenitor-like status and differentiation to a monoclonal plasma cell population. Furthermore, this tumor-initiating cell uses signaling pathways and microenvironment similar to the hematopoietic stem cell, though hijacking these mechanisms to create and favor a more tumorigenic environment. The bone marrow niche allows for pertinent evasion, either through avoiding immunosurveillance or through direct interaction with the stroma, inducing quiescence and thus drug resistance. Understanding the interaction of the MM stem cell to the microenvironment and the mechanisms utilized by various stem cell-like populations to allow persistence and therapy-resistance can enable for better targeting of this cell population and potential eradication of the disease.
Collapse
Affiliation(s)
| | | | | | - Zihai Li
- Hollings Cancer Center, 29425 Charleston, SC, USA.
| |
Collapse
|
431
|
Hauschild A, Breuninger H, Kaufmann R, Kortmann RD, Klein M, Werner J, Reifenberger J, Dirschka T, Garbe C. Brief S2k guidelines--Basal cell carcinoma of the skin. J Dtsch Dermatol Ges 2013; 11 Suppl 3:10-5, 11-6. [PMID: 23734889 DOI: 10.1111/ddg.12015_3] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Axel Hauschild
- Department of Dermatology, University Hospital Schleswig-Holstein, Kiel, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
432
|
Abstract
PURPOSE In the treatment of rhabdomyosarcoma (RMS), invasion and metastasis remain the most critical determinants of resectability and survival. The objective of this study was to determine whether Hedgehog (Hh) signaling plays a role in the invasion of RMS. METHODS Two kinds of specific Hh signaling inhibitors, cyclopamine and forskolin, were used to suppress activated Hh signals in three RMS cell lines. The effects of the Hh signaling inhibitors on tumor cell invasion and motility were investigated using Matrigel invasion assays and wound closure assays, respectively. RESULTS The number of invaded cells counted in six random microscopic fields in the Matrigel chambers was significantly decreased by both cyclopamine and forskolin in every RMS cell line. Furthermore, the wound closure assays revealed that a blockade of the Hh signaling pathway by the Hh inhibitors strongly impairs RMS cell motility, as visualized by the delayed closure of the gaps generated in the cultured cell monolayers of the three RMS cell lines. CONCLUSIONS Both the invasive capacity and motility of RMS cells are significantly suppressed by Hh signaling inhibitors, demonstrating that the Hh pathway plays an important role in the invasion of RMS. Hh inhibitors may provide a new paradigm for the treatment of RMS.
Collapse
Affiliation(s)
- Takaharu Oue
- Division of Pediatric Surgery, Department of Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan,
| | | | | | | | | |
Collapse
|
433
|
Nachtergaele S, Whalen DM, Mydock LK, Zhao Z, Malinauskas T, Krishnan K, Ingham PW, Covey DF, Siebold C, Rohatgi R. Structure and function of the Smoothened extracellular domain in vertebrate Hedgehog signaling. eLife 2013; 2:e01340. [PMID: 24171105 PMCID: PMC3809587 DOI: 10.7554/elife.01340] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 09/26/2013] [Indexed: 12/14/2022] Open
Abstract
The Hedgehog (Hh) signal is transduced across the membrane by the heptahelical protein Smoothened (Smo), a developmental regulator, oncoprotein and drug target in oncology. We present the 2.3 Å crystal structure of the extracellular cysteine rich domain (CRD) of vertebrate Smo and show that it binds to oxysterols, endogenous lipids that activate Hh signaling. The oxysterol-binding groove in the Smo CRD is analogous to that used by Frizzled 8 to bind to the palmitoleyl group of Wnt ligands and to similar pockets used by other Frizzled-like CRDs to bind hydrophobic ligands. The CRD is required for signaling in response to native Hh ligands, showing that it is an important regulatory module for Smo activation. Indeed, targeting of the Smo CRD by oxysterol-inspired small molecules can block signaling by all known classes of Hh activators and by clinically relevant Smo mutants. DOI:http://dx.doi.org/10.7554/eLife.01340.001.
Collapse
MESH Headings
- Animals
- Binding Sites
- Crystallography, X-Ray
- Embryo, Nonmammalian
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Gene Expression Regulation, Developmental
- Hedgehog Proteins/chemistry
- Hedgehog Proteins/genetics
- Hedgehog Proteins/metabolism
- Ligands
- Mice
- Models, Molecular
- Protein Binding
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Signal Transduction
- Smoothened Receptor
- Sterols/chemistry
- Structure-Activity Relationship
- Zebrafish/genetics
- Zebrafish/growth & development
- Zebrafish/metabolism
- Zebrafish Proteins/antagonists & inhibitors
- Zebrafish Proteins/chemistry
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
Collapse
Affiliation(s)
- Sigrid Nachtergaele
- Department of Biochemistry, Stanford University School of Medicine, Stanford, United States
| | - Daniel M Whalen
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Laurel K Mydock
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, United States
| | - Zhonghua Zhao
- A*STAR Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Tomas Malinauskas
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Kathiresan Krishnan
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, United States
| | - Philip W Ingham
- A*STAR Institute of Molecular and Cell Biology, Singapore, Singapore
- Lee Kong Chian School of Medicine, Imperial College London/Nanyang Technological University, Singapore, Singapore
| | - Douglas F Covey
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, United States
| | - Christian Siebold
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Rajat Rohatgi
- Department of Biochemistry, Stanford University School of Medicine, Stanford, United States
- Department of Medicine, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
434
|
Poggi L, Kolesar JM. Vismodegib for the treatment of basal cell skin cancer. Am J Health Syst Pharm 2013; 70:1033-8. [PMID: 23719880 DOI: 10.2146/ajhp120311] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
PURPOSE The pharmacology, clinical efficacy, adverse effects, cost, and place in therapy of vismodegib are reviewed. SUMMARY Vismodegib, the first oral treatment for basal cell carcinoma (BCC), was recently approved for the treatment of patients with locally advanced or metastatic BCC whose cancer is refractory to standard treatments or who are not candidates for surgery or radiation. Vismodegib is a small molecule that potently inhibits signal transduction in the hedgehog signaling pathway, demonstrates nonlinear pharmacokinetics, and has a half-life of 13 days. Agents that increase gastrointestinal pH may reduce the solubility and bioavailability of vismodegib. It is effective in both locally advanced and metastatic BCCs, with response rates ranging from 30% to 60% in two clinical trials. Vismodegib is available as a 150-mg capsule, and the approved dosage is 150 mg orally once daily. The most common adverse effects of vismodegib include mild-to-moderate hair loss, muscle cramps, taste disturbance, and weight loss. The estimated cost of one month of treatment with vismodegib is $7500. CONCLUSION Vismodegib was recently approved for the treatment of locally advanced or metastatic BCC that is refractory to standard treatments or if patients are not candidates for surgery or radiation. Vismodegib may have little effect on the treatment of BCC, given its high cost, the high cure rates achieved with standard therapies, and its unacceptable toxicity profile in patients with a non-life-threatening disease. However, vismodegib's novel mechanism of action, oral dosage form, preliminary efficacy, and tolerability compared with cytotoxic chemotherapy may make it an attractive candidate for the treatment of other cancers.
Collapse
Affiliation(s)
- Laura Poggi
- School of Pharmacy, University of Wisconsin-Madison, Madison. WI, USA
| | | |
Collapse
|
435
|
Alexander BM, Ligon KL, Wen PY. Enhancing radiation therapy for patients with glioblastoma. Expert Rev Anticancer Ther 2013; 13:569-81. [PMID: 23617348 DOI: 10.1586/era.13.44] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Radiation therapy has been the foundation of therapy following maximal surgical resection in patients with newly diagnosed glioblastoma for decades and the primary therapy for unresected tumors. Using the standard approach with radiation and temozolomide, however, outcomes are poor, and glioblastoma remains an incurable disease with the majority of recurrences and progression within the radiation treatment field. As such, there is much interest in elucidating the mechanisms of resistance to radiation therapy and in developing novel approaches to overcoming this treatment resistance.
Collapse
Affiliation(s)
- Brian M Alexander
- Department of Radiation Oncology, Dana-Farber/Brigham and Women's Cancer Center, 75 Francis Street, ASB1-L2, Boston, MA 02115, USA.
| | | | | |
Collapse
|
436
|
Alonso-Corral MJ, Gómez-Avivar MP, Berenguel-Ibañez MM, Ruiz-Villaverde R. Palmar basal cell carcinoma: an unusual site? ACTAS DERMO-SIFILIOGRAFICAS 2013; 105:623-4. [PMID: 24139466 DOI: 10.1016/j.ad.2013.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/01/2013] [Accepted: 07/22/2013] [Indexed: 10/26/2022] Open
Affiliation(s)
- M J Alonso-Corral
- Servicio de Dermatología, Complejo Hospitalario Torrecárdenas, Almería, España
| | - M P Gómez-Avivar
- Servicio de Dermatología, Complejo Hospitalario Torrecárdenas, Almería, España
| | - M M Berenguel-Ibañez
- Servicio de Anatomía Patológica, Complejo Hospitalario Torrecárdenas, Almería, España
| | - R Ruiz-Villaverde
- Servicio de Dermatología, Complejo Hospitalario de Jaén, Jaén, España.
| |
Collapse
|
437
|
Proctor AE, Thompson LA, O'Bryant CL. Vismodegib: an inhibitor of the Hedgehog signaling pathway in the treatment of basal cell carcinoma. Ann Pharmacother 2013; 48:99-106. [PMID: 24259609 DOI: 10.1177/1060028013506696] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE To review vismodegib, the first Food and Drug Administration (FDA)-approved Hedgehog (Hh) signaling pathway inhibitor, in the treatment of advanced basal cell carcinoma (BCC). DATA SOURCES MEDLINE and PubMed were searched using the terms vismodegib, GDC-0449, RG3616, and basal cell carcinoma for relevant clinical trials through September 2013. The FDA Web site, the National Clinical Trials registry, and abstracts from the American Society of Clinical Oncology (ASCO) were also evaluated to identify unpublished data and future clinical trials. STUDY SELECTION/DATA EXTRACTION All identified clinical and preclinical studies published in the English language were assessed, including selected references from the bibliographies of articles. DATA SYNTHESIS Activation of the Hh signaling pathway is well documented in BCC. Vismodegib is a small-molecule inhibitor of Hh signaling that acts by antagonizing the protein Smoothened (SMO), thereby preventing downstream transcriptional activation of genes involved in cell proliferation and survival. Vismodegib was approved by the FDA in January 2012 for the treatment of recurrent, locally advanced BCC (laBCC), or metastatic BCC (mBCC) for which surgery or radiation cannot be utilized. A pivotal phase 2 trial evaluating 104 patients demonstrated that treatment with vismodegib, 150 mg orally once daily, resulted in a 30% and 43% objective response rate in patients with mBCC and laBCC, respectively. The most common adverse effects from vismodegib were mild to moderate and included muscle spasms, dysgeusia, decreased weight, fatigue, alopecia, and diarrhea. However, clinical studies noted a high incidence of discontinuation of therapy by patients for reasons other than disease progression. CONCLUSIONS The approval of vismodegib represents the only targeted, prospectively studied treatment option for patients with advanced BCC. Further research assessing the utility of vismodegib in the treatment of other malignancies and the development of resistance patterns will more clearly define the role of Hedgehog inhibition in the broader scheme of oncological disorders.
Collapse
Affiliation(s)
- Amber E Proctor
- University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO, USA
| | | | | |
Collapse
|
438
|
Manji A, Brana I, Amir E, Tomlinson G, Tannock IF, Bedard PL, Oza A, Siu LL, Razak ARA. Evolution of clinical trial design in early drug development: systematic review of expansion cohort use in single-agent phase I cancer trials. J Clin Oncol 2013; 31:4260-7. [PMID: 24127441 DOI: 10.1200/jco.2012.47.4957] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE To evaluate the use and objectives of expansion cohorts in phase I cancer trials and to explore trial characteristics associated with their use. METHODS We performed a systematic review of MEDLINE and EMBASE, limiting studies to single-agent phase I trials recruiting adults and published after 2006. Eligibility assessment and data extraction were performed by two reviewers. Data were assessed descriptively, and associations were tested by univariable and multivariable logistic regression. RESULTS We identified 611 unique phase I cancer trials, of which 149 (24%) included an expansion cohort. The trials were significantly more likely to use an expansion cohort if they were published more recently, were multicenter, or evaluated a noncytotoxic agent. Objectives of the expansion cohort were reported in 74% of trials. In these trials, safety (80%), efficacy (45%), pharmacokinetics (28%), pharmacodynamics (23%), and patient enrichment (14%) were cited as objectives. Among expansion cohorts with safety objectives, the recommended phase II dose was modified in 13% and new toxicities were described in 54% of trials. Among trials aimed at assessing efficacy, only 11% demonstrated antitumor activity assessed by response criteria that was not previously observed during dose escalation. CONCLUSION The utilization of expansion cohorts has increased with time. Safety and efficacy are common objectives, but 26% fail to report explicit aims. Expansion cohorts may provide useful supplementary data for phase I trials, particularly with regard to toxicity and definition of recommended dose for phase II studies.
Collapse
Affiliation(s)
- Arif Manji
- Arif Manji, Irene Brana, Eitan Amir, Ian F. Tannock, Philippe L. Bedard, Amit Oza, Lillian L. Siu, and Albiruni R. Abdul Razak, Princess Margaret Cancer Centre, University Health Network; George Tomlinson, University of Toronto; and Arif Manji, Hospital for Sick Children, Toronto, and Southlake Regional Health Centre, Newmarket, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
439
|
Xie J, Bartels CM, Barton SW, Gu D. Targeting hedgehog signaling in cancer: research and clinical developments. Onco Targets Ther 2013; 6:1425-35. [PMID: 24143114 PMCID: PMC3797650 DOI: 10.2147/ott.s34678] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Since its first description in Drosophila by Drs Nusslein-Volhard and Wieschaus in 1980, hedgehog (Hh) signaling has been implicated in regulation of cell differentiation, proliferation, tissue polarity, stem cell maintenance, and carcinogenesis. The first link of Hh signaling to cancer was established through studies of Gorlin syndrome in 1996 by two independent teams. Later, it was shown that Hh signaling may be involved in many types of cancer, including skin, leukemia, lung, brain, and gastrointestinal cancers. In early 2012, the US Food and Drug Administration approved the clinical use of Hh inhibitor Erivedge/vismodegib for treatment of locally advanced and metastatic basal cell carcinomas. With further investigation, it is possible to see more clinical applications of Hh signaling inhibitors. In this review, we will summarize major advances in the last 3 years in our understanding of Hh signaling activation in human cancer, and recent developments in preclinical and clinical studies using Hh signaling inhibitors.
Collapse
Affiliation(s)
- Jingwu Xie
- Wells Center for Pediatric Research, Division of Hematology and Oncology, Department of Pediatrics, Indiana University Simon Cancer Center, Indiana University, Indianapolis, IN, USA
| | | | | | | |
Collapse
|
440
|
You M, Varona-Santos J, Singh S, Robbins DJ, Savaraj N, Nguyen DM. Targeting of the Hedgehog signal transduction pathway suppresses survival of malignant pleural mesothelioma cells in vitro. J Thorac Cardiovasc Surg 2013; 147:508-16. [PMID: 24094913 DOI: 10.1016/j.jtcvs.2013.08.035] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 08/05/2013] [Accepted: 08/09/2013] [Indexed: 12/26/2022]
Abstract
OBJECTIVE The present study sought to determine whether the Hedgehog (Hh) pathway is active and regulates the cell growth of cultured malignant pleural mesothelioma (MPM) cells and to evaluate the efficacy of pathway blockade using smoothened (SMO) antagonists (SMO inhibitor GDC-0449 or the antifungal drug itraconazole [ITRA]) or Gli inhibitors (GANT61 or the antileukemia drug arsenic trioxide [ATO]) in suppressing MPM viability. METHODS Selective knockdown of SMO to inhibit Hh signaling was achieved by small interfering RNA in 3 representative MPM cells. The growth inhibitory effect of GDC-0449, ITRA, GANT61, and ATO was evaluated in 8 MPM lines, with cell viability quantified using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cell death was determined by annexinV/propidium iodide staining and flow cytometry. RESULTS SMO small interfering RNA mediated a two- to more than fivefold reduction of SMO and Gli1 gene expression as determined by real-time quantitative reverse-transcriptase polymerase chain reaction, indicating significant Hh pathway blockade. This was associated with significantly reduced cell viability (34% ± 7% to 61% ± 14% of nontarget small interfering RNA controls; P = .0024 to P = .043). Treating MPM cells with Hh inhibitors resulted in a 1.5- to 4-fold reduction of Gli1 expression. These 4 Hh antagonists strongly suppressed MPM cell viability. More importantly, ITRA, ATO, GANT61 induced significant apoptosis in the representative MPM cells. CONCLUSIONS Hh signaling is active in MPM and regulates cell viability. ATO and ITRA were as effective as the prototypic SMO inhibitor GDC-0449 and the Gli inhibitor GANT61 in suppressing Hh signaling in MPM cells. Pharmaceutical agents Food and Drug Administration-approved for other indications but recently found to have anti-Hh activity, such as ATO or ITRA, could be repurposed to treat MPM.
Collapse
Affiliation(s)
- Min You
- Thoracic Surgery Section, Division of Cardiothoracic Surgery, Department of Surgery, Sylvester Comprehensive Cancer Center, Leonard M. Miller School of Medicine, University of Miami, Miami, Fla
| | - Javier Varona-Santos
- Thoracic Surgery Section, Division of Cardiothoracic Surgery, Department of Surgery, Sylvester Comprehensive Cancer Center, Leonard M. Miller School of Medicine, University of Miami, Miami, Fla
| | - Samer Singh
- Molecular Oncology Program, Department of Surgery, Sylvester Comprehensive Cancer Center, Leonard M. Miller School of Medicine, University of Miami, Miami, Fla
| | - David J Robbins
- Molecular Oncology Program, Department of Surgery, Sylvester Comprehensive Cancer Center, Leonard M. Miller School of Medicine, University of Miami, Miami, Fla
| | - Niramol Savaraj
- Division of Oncology, Department of Medicine, Miami Veterans Affairs Medical Center, Sylvester Comprehensive Cancer Center, Leonard M. Miller School of Medicine, University of Miami, Miami, Fla
| | - Dao M Nguyen
- Thoracic Surgery Section, Division of Cardiothoracic Surgery, Department of Surgery, Sylvester Comprehensive Cancer Center, Leonard M. Miller School of Medicine, University of Miami, Miami, Fla.
| |
Collapse
|
441
|
Kerl K, Holsten T, Frühwald MC. Rhabdoid tumors: clinical approaches and molecular targets for innovative therapy. Pediatr Hematol Oncol 2013; 30:587-604. [PMID: 23848359 DOI: 10.3109/08880018.2013.791737] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Rhabdoid tumors are rare but highly aggressive tumors with a predilection for infants and young children. The majority of these tumors harbor biallelic mutations in SMARCB1/INI1/hSNF5. Rather rare cases with mutations in other SWI/SNF core members such as BRG1 are on record. Rhabdoid tumors have only recently been registered and treated according to specifically designed treatment recommendations and in the framework of clinical trials. Within the last decade, prognosis has improved significantly but at least 50% of patients still relapse and subsequently almost inevitably succumb to their disease. This review summarizes past and current clinical approaches and presents an overview of the rationales for targeted therapy with potential for future clinical treatment trials for rhabdoid tumors.
Collapse
Affiliation(s)
- Kornelius Kerl
- Institute of Molecular Tumor Biology (IMTB), Westfalian Wilhelms University (WWU), M¨unster, Germany, Robert-Koch Strasse 43, 48149M¨unster, Germany
| | | | | |
Collapse
|
442
|
Gajjar A, Stewart CF, Ellison DW, Kaste S, Kun LE, Packer RJ, Goldman S, Chintagumpala M, Wallace D, Takebe N, Boyett JM, Gilbertson RJ, Curran T. Phase I study of vismodegib in children with recurrent or refractory medulloblastoma: a pediatric brain tumor consortium study. Clin Cancer Res 2013; 19:6305-12. [PMID: 24077351 DOI: 10.1158/1078-0432.ccr-13-1425] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
PURPOSE To investigate the safety, dose-limiting toxicities, and pharmacokinetics of the smoothened inhibitor vismodegib in children with refractory or relapsed medulloblastoma. EXPERIMENTAL DESIGN Initially, vismodegib was administered daily at 85 mg/m(2) and escalated to 170 mg/m(2). The study was then revised to investigate a flat-dosing schedule of 150 mg for patients with small body surface area (BSA, 0.67-1.32 m(2)) or 300 mg for those who were larger (BSA, 1.33-2.20 m(2)). Pharmacokinetics were performed during the first course of therapy, and the right knees of all patients were imaged to monitor bone toxicity. Immunohistochemical analysis was done to identify patients with Sonic Hedgehog (SHH)-subtype medulloblastoma. RESULTS Thirteen eligible patients were enrolled in the initial study: 6 received 85 mg/m(2) vismodegib, and 7 received 170 mg/m(2). Twenty eligible patients were enrolled in the flat-dosing part of the study: 10 at each dosage level. Three dose-limiting toxicities were observed, but no drug-related bone toxicity was documented. The median (range) vismodegib penetration in the cerebrospinal fluid (CSF) was 0.53 (0.26-0.78), when expressed as a ratio of the concentration of vismodegib in the CSF to that of the unbound drug in plasma. Antitumor activity was seen in 1 of 3 patients with SHH-subtype disease whose tumors were evaluable, and in none of the patients in the other subgroups. CONCLUSIONS Vismodegib was well tolerated in children with recurrent or refractory medulloblastoma; only two dose-limiting toxicities were observed with flat dosing. The recommended phase II study dose is 150 or 300 mg, depending on the patient's BSA. Clin Cancer Res; 19(22); 6305-12. ©2013 AACR.
Collapse
Affiliation(s)
- Amar Gajjar
- Authors' Affiliations: Departments of Oncology, Pharmaceutical Sciences, Pathology, Radiological Sciences, Biostatistics, and Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, Tennessee; Center for Neuroscience Research, Children's National Medical Center, Washington, DC; Division of Hematology-Oncology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois; Department of Pediatrics, Texas Children's Hospital, Houston, Texas; Investigational Drug Branch, Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, Maryland; and Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
443
|
Alexander BM, Lee EQ, Reardon DA, Wen PY. Current and future directions for Phase II trials in high-grade glioma. Expert Rev Neurother 2013; 13:369-87. [PMID: 23545053 DOI: 10.1586/ern.12.158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Despite surgery, radiation and chemotherapy, the prognosis for high-grade glioma (HGG) is poor. Our understanding of the molecular pathways involved in gliomagenesis and progression has increased in recent years, leading to the development of novel agents that specifically target these pathways. Results from most single-agent trials have been modest at best, however. Despite the initial success of antiangiogenesis agents in HGG, the clinical benefit is short-lived and most patients eventually progress. Several novel agents, multi-targeted agents and combination therapies are now in clinical trials for HGG and several more strategies are being pursued.
Collapse
Affiliation(s)
- Brian M Alexander
- Department of Radiation Oncology, Dana-Farber/Brigham and Women's Cancer Center, Harvard Medical School, 75 Francis Street, ASB1-L2, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
444
|
Abstract
BACKGROUND Locally or widely metastatic medullary thyroid carcinoma (MTC) is difficult to treat, and therapeutic options are limited. Recently, kinase inhibitors have shown partial efficacy in this cancer, but there is a continued need for the development of novel therapeutics. Within this context, the Hedgehog (Hh) pathway has been implicated in several types of human tumors, and early clinical trials with Hh antagonists have validated Hh as a novel therapeutic target. For the first time, we evaluated Hh pathway activity in MTC, and examined the effect of Hh pathway perturbation in highly characterized MTC cell lines. METHODS We examined immunohistochemical expression of the Hh signaling mediators Sonic Hedgehog (Shh) and Glioblastoma (Gli)2 in paraffin-embedded normal versus histologically characterized human MTC tissue. We examined pharmacologic disruption of Hh signaling in vitro using two established MTC cell lines (TT and MZ-CRC-1). Hh signaling was either pharmacologically activated (SAG) or inhibited (GDC-0449) in MTC cell lines; Hh activity was assessed by quantitative real-time polymerase chain reaction, Western blot analysis, and quantification of cellular growth and apoptotic activity. RESULTS Our data showed increased expression of Hh signaling factors in human MTC compared to normal tissue. In vitro, activation of the Hh pathway resulted in increased expression of key Hh signaling components Smoothened (Smo) and Gli2. Conversely, inhibition of the Hh pathway decreased expression of these genes, leading to significantly reduced cellular growth and increased apoptosis. CONCLUSIONS Hedgehog signaling components are markedly upregulated in MTC. Hh pathway inhibitors have potential as novel therapeutic options in patients with metastatic and/or surgically unresectable MTC.
Collapse
Affiliation(s)
- Brittany Bohinc
- 1 Division of Endocrinology, Diabetes, and Metabolism, Duke University Medical Center , Durham, North Carolina
| | | | | |
Collapse
|
445
|
Zheng X, Zeng W, Gai X, Xu Q, Li C, Liang Z, Tuo H, Liu Q. Role of the Hedgehog pathway in hepatocellular carcinoma (review). Oncol Rep 2013; 30:2020-6. [PMID: 23970376 DOI: 10.3892/or.2013.2690] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 08/02/2013] [Indexed: 01/20/2023] Open
Abstract
The Hedgehog (Hh) pathway is an evolutionarily conserved signaling mechanism that controls many aspects of cell differentiation and the development of tissues and organs during embryogenesis. Early investigations have focused on the effects of Hh activity on the development of organs including skin, gut, the nervous system and bone. However, in addition to normal developmental processes, these investigations also found that Hh signaling is involved in aberrant proliferation and malignant transformation. Consequently, the role of Hh in cancer pathology, and its modulation by environmental factors is the subject of many investigations. Numerous environmental toxins, alcohol, and hepatitis viruses can cause hepatocellular carcinoma (HCC), which is the most common form of liver cancer. Significant hyperactivation of Hh signaling has been observed in liver injury and cirrhosis which often leads to the development of HCC lesions. Moreover, Hh activity plays an important role in the progression of HCC. Here, we review findings relevant to our understanding of the role of Hh signaling in HCC pathogenesis.
Collapse
Affiliation(s)
- Xin Zheng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
446
|
Targeted therapy for orbital and periocular basal cell carcinoma and squamous cell carcinoma. Ophthalmic Plast Reconstr Surg 2013; 29:87-92. [PMID: 23446297 DOI: 10.1097/iop.0b013e3182831bf3] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE To review the literature on targeted therapy for orbital and periocular basal cell carcinoma (BCC) and cutaneous squamous cell carcinoma (SCC) and provide examples of patients recently treated with such therapy. METHODS The authors reviewed the literature on clinical results of targeted therapy and the molecular basis for targeted therapy in orbital and periocular BCC and cutaneous SCC. The authors also present representative cases from their practice. RESULTS Mutation in the patched 1 gene (PTCH1) has been implicated in BCC, and overexpression of epidermal growth factor receptor (EGFR) has been shown in SCC. Vismodegib, an inhibitor of smoothened, which is activated upon binding of hedgehog to Ptc, has been shown to significantly decrease BCC tumor size or even produce complete resolution, especially in cases of basal cell nevus syndrome. Similarly, EGFR inhibitors have been shown to significantly decrease SCC tumor size in cases of locally advanced and metastatic disease. The authors describe successful outcomes after vismodegib treatment in a patient with basal cell nevus syndrome with numerous bulky lesions of the eyelid and periocular region and erlotinib (EGFR inhibitor) treatment in a patient with SCC who was deemed not to be a good surgical candidate because of advanced SCC of the orbit with metastasis to the regional lymph nodes, advanced age, and multiple medical comorbidities. CONCLUSIONS Targeted therapy using hedgehog pathway and EGFR inhibitors shows significant promise in treatment of orbital and periocular BCC and cutaneous SCC, respectively. Such targeted therapy may be appropriate for patients who are not good candidates for surgery.
Collapse
|
447
|
Myers BR, Sever N, Chong YC, Kim J, Belani JD, Rychnovsky S, Bazan JF, Beachy PA. Hedgehog pathway modulation by multiple lipid binding sites on the smoothened effector of signal response. Dev Cell 2013; 26:346-57. [PMID: 23954590 DOI: 10.1016/j.devcel.2013.07.015] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 07/17/2013] [Accepted: 07/18/2013] [Indexed: 01/06/2023]
Abstract
Hedgehog (Hh) signaling during development and in postembryonic tissues requires activation of the 7TM oncoprotein Smoothened (Smo) by mechanisms that may involve endogenous lipidic modulators. Exogenous Smo ligands previously identified include the plant sterol cyclopamine (and its therapeutically useful synthetic mimics) and hydroxylated cholesterol derivatives (oxysterols); Smo is also highly sensitive to cellular sterol levels. The relationships between these effects are unclear because the relevant Smo structural determinants are unknown. We identify the conserved extracellular cysteine-rich domain (CRD) as the site of action for oxysterols on Smo, involving residues structurally analogous to those contacting the Wnt lipid adduct in the homologous Frizzled CRD; this modulatory effect is distinct from that of cyclopamine mimics, from Hh-mediated regulation, and from the permissive action of cellular sterol pools. These results imply that Hh pathway activity is sensitive to lipid binding at several Smo sites, suggesting mechanisms for tuning by multiple physiological inputs.
Collapse
Affiliation(s)
- Benjamin R Myers
- Department of Biochemistry, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | |
Collapse
|
448
|
Nakamura S, Nagano S, Nagao H, Ishidou Y, Yokouchi M, Abematsu M, Yamamoto T, Komiya S, Setoguchi T. Arsenic trioxide prevents osteosarcoma growth by inhibition of GLI transcription via DNA damage accumulation. PLoS One 2013; 8:e69466. [PMID: 23861973 PMCID: PMC3704531 DOI: 10.1371/journal.pone.0069466] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 06/11/2013] [Indexed: 12/21/2022] Open
Abstract
The Hedgehog pathway is activated in various types of malignancies. We previously reported that inhibition of SMO or GLI prevents osteosarcoma growth in vitro and in vivo. Recently, it has been reported that arsenic trioxide (ATO) inhibits cancer growth by blocking GLI transcription. In this study, we analyzed the function of ATO in the pathogenesis of osteosarcoma. Real-time PCR showed that ATO decreased the expression of Hedgehog target genes, including PTCH1, GLI1, and GLI2, in human osteosarcoma cell lines. WST-1 assay and colony formation assay revealed that ATO prevented osteosarcoma growth. These findings show that ATO prevents GLI transcription and osteosarcoma growth in vitro. Flow cytometric analysis showed that ATO promoted apoptotic cell death. Comet assay showed that ATO treatment increased accumulation of DNA damage. Western blot analysis showed that ATO treatment increased the expression of γH2AX, cleaved PARP, and cleaved caspase-3. In addition, ATO treatment decreased the expression of Bcl-2 and Bcl-xL. These findings suggest that ATO treatment promoted apoptotic cell death caused by accumulation of DNA damage. In contrast, Sonic Hedgehog treatment decreased the expression of γH2AX induced by cisplatin treatment. ATO re-induced the accumulation of DNA damage attenuated by Sonic Hedgehog treatment. These findings suggest that ATO inhibits the activation of Hedgehog signaling and promotes apoptotic cell death in osteosarcoma cells by accumulation of DNA damage. Finally, examination of mouse xenograft models showed that ATO administration prevented the growth of osteosarcoma in nude mice. Because ATO is an FDA-approved drug for treatment of leukemia, our findings suggest that ATO is a new therapeutic option for treatment of patients with osteosarcoma.
Collapse
Affiliation(s)
- Shunsuke Nakamura
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Satoshi Nagano
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Hiroko Nagao
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yasuhiro Ishidou
- Department of Medical Joint Materials, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Masahiro Yokouchi
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Masahiko Abematsu
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
- The Near-Future Locomotor Organ Medicine Creation Course (Kusunoki Kai),Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Takuya Yamamoto
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Setsuro Komiya
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Takao Setoguchi
- The Near-Future Locomotor Organ Medicine Creation Course (Kusunoki Kai),Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
- * E-mail:
| |
Collapse
|
449
|
Peukert S, He F, Dai M, Zhang R, Sun Y, Miller-Moslin K, McEwan M, Lagu B, Wang K, Yusuff N, Bourret A, Ramamurthy A, Maniara W, Amaral A, Vattay A, Wang A, Guo R, Yuan J, Green J, Williams J, Buonamici S, Kelleher JF, Dorsch M. Discovery of NVP-LEQ506, a Second-Generation Inhibitor of Smoothened. ChemMedChem 2013; 8:1261-5. [DOI: 10.1002/cmdc.201300217] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Indexed: 01/17/2023]
|
450
|
Affiliation(s)
- Craig A Elmets
- Department of Dermatology and the UAB Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham VA Medical Center, Birmingham Alabama, USA.
| | | |
Collapse
|