401
|
Li Y, Schlamp CL, Poulsen KP, Nickells RW. Bax-dependent and independent pathways of retinal ganglion cell death induced by different damaging stimuli. Exp Eye Res 2000; 71:209-13. [PMID: 10930325 DOI: 10.1006/exer.2000.0873] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
402
|
Zhu LP, Yu XD, Ling S, Brown RA, Kuo TH. Mitochondrial Ca(2+)homeostasis in the regulation of apoptotic and necrotic cell deaths. Cell Calcium 2000; 28:107-17. [PMID: 10970767 DOI: 10.1054/ceca.2000.0138] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Using distinct models of apoptosis and necrosis, we have investigated the effect of mitochondrial Ca(2+)(Ca(m)) homeostasis in the regulation of cell death in neuroblastoma cells as well as cardiac myocytes. The steady state level of Ca(m)was determined as the FCCP-releasable Ca(2+). Culturing cells with low concentration of extracellular Ca(2+)(Ca(o)) or with EGTA triggered an early reduction in both the Ca(m)store and the membrane potential (DeltaPsi(m)). This was followed by the detection of cytochrome c release, caspase activation, and apoptosis. Inhibitors of the mitochondrial permeability transition pore such as cyclosporin A and Bcl-2 blocked the release of Ca(m)and inhibited apoptosis. In contrast, mitochondrial Ca(2+)overload resulted in necrotic cell death. Culturing cells in the presence of excess Ca(o)led to increased Ca(m)load together with a decrease of DeltaPsi(m)that reached maximum at 1 h, with necrosis occurring at 2 h. While the decline of Ca(m)and DeltaPsi(m)was a coupled reaction for apoptosis, this relationship was uncoupled during necrosis. Clonazepam, a relatively specific inhibitor of the mitochondrial Na/Ca exchanger, was able to protect the cells from necrosis by reducing Ca(m)overload. Importantly, combination of clonazepam and cyclosporin showed a cooperative effect in further reducing the Ca(m)overload and abolished cell death. The data imply the participation of Ca(m)homeostasis in the regulation of apoptosis and necrosis.
Collapse
Affiliation(s)
- L P Zhu
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | | | |
Collapse
|
403
|
Vande Velde C, Cizeau J, Dubik D, Alimonti J, Brown T, Israels S, Hakem R, Greenberg AH. BNIP3 and genetic control of necrosis-like cell death through the mitochondrial permeability transition pore. Mol Cell Biol 2000; 20:5454-68. [PMID: 10891486 PMCID: PMC85997 DOI: 10.1128/mcb.20.15.5454-5468.2000] [Citation(s) in RCA: 468] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Many apoptotic signaling pathways are directed to mitochondria, where they initiate the release of apoptogenic proteins and open the proposed mitochondrial permeability transition (PT) pore that ultimately results in the activation of the caspase proteases responsible for cell disassembly. BNIP3 (formerly NIP3) is a member of the Bcl-2 family that is expressed in mitochondria and induces apoptosis without a functional BH3 domain. We report that endogenous BNIP3 is loosely associated with mitochondrial membrane in normal tissue but fully integrates into the mitochondrial outer membrane with the N terminus in the cytoplasm and the C terminus in the membrane during induction of cell death. Surprisingly, BNIP3-mediated cell death is independent of Apaf-1, caspase activation, cytochrome c release, and nuclear translocation of apoptosis-inducing factor. However, cells transfected with BNIP3 exhibit early plasma membrane permeability, mitochondrial damage, extensive cytoplasmic vacuolation, and mitochondrial autophagy, yielding a morphotype that is typical of necrosis. These changes were accompanied by rapid and profound mitochondrial dysfunction characterized by opening of the mitochondrial PT pore, proton electrochemical gradient (Deltapsim) suppression, and increased reactive oxygen species production. The PT pore inhibitors cyclosporin A and bongkrekic acid blocked mitochondrial dysregulation and cell death. We propose that BNIP3 is a gene that mediates a necrosis-like cell death through PT pore opening and mitochondrial dysfunction.
Collapse
Affiliation(s)
- C Vande Velde
- The Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, Manitoba R3E 0V9
| | | | | | | | | | | | | | | |
Collapse
|
404
|
Gamen S, Anel A, Pérez-Galán P, Lasierra P, Johnson D, Piñeiro A, Naval J. Doxorubicin treatment activates a Z-VAD-sensitive caspase, which causes deltapsim loss, caspase-9 activity, and apoptosis in Jurkat cells. Exp Cell Res 2000; 258:223-35. [PMID: 10912804 DOI: 10.1006/excr.2000.4924] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Doxorubicin induces caspase-3 activation and apoptosis in Jurkat cells but inhibition of this enzyme did not prevent cell death, suggesting that another caspase(s) is critically implicated. Western blot analysis of cell extracts indicated that caspases 2, 3, 4, 6, 7, 8, 9, and 10 were activated by doxorubicin. Cotreatment of cells with the caspase inhibitors Ac-DEVD-CHO, Z-VDVAD-fmk, Z-IETD-fmk, and Z-LEHD-fmk alone or in combination, or overexpression of CrmA, prevented many morphological features of apoptosis but not loss of mitochondrial membrane potential (delta(psi)m), phospatidilserine exposure, and cell death. Western blot analysis of cells treated with doxorubicin in the presence of inhibitors allowed elucidation of the sequential order of caspase activation. Z-IETD-fmk or Z-LEHD-fmk, which inhibit caspase-9 activity, blocked the activation of all caspases studied, lamin B degradation, and the development of apoptotic morphology, but not cell death. All morphological and biochemical features of apoptosis, as well as cell death, were prevented by cotreatment of cells with the general caspase inhibitor Z-VAD-fmk or by overexpression of Bcl-2. Doxorubicin cytotoxicity was also blocked by the protein synthesis inhibitor cycloheximide. Delayed addition of Z-VAD-fmk after doxorubicin treatment, but prior to the appearance of cells displaying a low delta(psi)m, prevented cell death. These results, taken together, suggest that the key mediator of doxorubicin-induced apoptosis in Jurkat cells may be an inducible, Z-VAD-sensitive caspase (caspase-X), which would cause delta(psi)m loss, release of apoptogenic factors from mitochondria, and cell death.
Collapse
Affiliation(s)
- S Gamen
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Hospital Clínico Universitario, Universidad de Zaragoza, Spain
| | | | | | | | | | | | | |
Collapse
|
405
|
Abstract
Programmed cell death or apoptosis is central both in physiology during development and in disease. The mechanism of apoptosis is under the control of antiapoptotic survival genes of the Bcl-2 family and proapoptotic death receptors of the TNF superfamily (Fas, TNFR, TRAILR). Following death signal, the death receptor binds to its own receptor and initiates, through binding of adaptors, a cascade of events mediated by the autoproteolytic activation of specific enzymes called caspases. This enzyme activation is ultimately responsible for the dissembly of basic nuclear and cytoplasmic cell structures leading to cell death. In certain cell systems, antiapoptotic genes of the Bcl-2 family prevent the proapoptotic pathway. One of their roles is to maintain mitochondrial function integrity. In autoimmune destructive thyroiditis high levels of apoptosis have been demonstrated particularly within the destructed follicles near the infiltrated areas in comparison to Graves' disease and non autoimmune glands. In Hashimoto's thyroiditis Fas expression has been found increased on thyrocytes and in vitro can be modulated by proinflammatory cytokines. FasL expression on thyrocytes remains controversial. Thyroid cells from Graves' disease and multinodular glands are known to kill Fas expressing target cells although Hashimoto's thyrocytes are not efficient effector cells. Intrathyroidal lymphocytes from Hashimoto's thyroids maintain functional killer activity. These findings would suggest that intrathyroidal lymphocytes could be responsible for thyrocyte death in vivo. Whether this mechanism is Fas/FasL, TRAIL/TRAILR dependent can not be confirmed as specific blocking reagents were not able to inhibit cell induced death. In Hashimoto's thyroiditis an impairment of Bcl-2 and Bcl-X anitapoptotic genes on thyrocytes has also been detected. Bcl-X expression can be down-regulated in vitro by incubation with cytokines. These findings suggest that thyrocyte death may not exclusively be the result of specific interactions between death receptor and their ligands but it may involve simultaneous impairment of protective genes of the Bcl-2 family. Whether the impairment of the Bcl-2 family is a direct consequence of environmental stimuli or is the result of an intrinsic thyrocyte (mitochondrial?) alteration is as yet not known.
Collapse
Affiliation(s)
- F F Palazzo
- Department of Surgery, St. Bartholomew's & Royal London Hospital Medical School, United Kingdom
| | | | | | | |
Collapse
|
406
|
van Golen CM, Castle VP, Feldman EL. IGF-I receptor activation and BCL-2 overexpression prevent early apoptotic events in human neuroblastoma. Cell Death Differ 2000; 7:654-65. [PMID: 10889510 DOI: 10.1038/sj.cdd.4400693] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The type I insulin-like growth factor receptor (IGF-IR) is important for mitogenesis, transformation, and survival of tumor cells. The current study examines the effect of IGF-IR expression and activation on apoptosis in SHEP human neuroblastoma cells. SHEP cells undergo apoptosis which is prevented by IGF-I addition or overexpression of the IGF-IR (SHEP/IGF-IR cells). High mannitol treatment activates caspase-3 by 1 h in SHEP cells while caspase-3 activation is delayed by 3 h in SHEP/IGF-IR cells. Transfection with Bcl-2 (SHEP/Bcl-2 cells) prevents serum withdrawal and mannitol induced apoptosis and caspase-3 activation. Mannitol induces mitochondrial membrane depolarization in both SHEP and SHEP/IGF-IR cells. IGF-IR activation or overexpression of Bcl-2 in SHEP cells prevents mitochondrial membrane depolarization. Collectively, these results suggest that IGF-IR or Bcl-2 overexpression in neuroblastoma cells promotes cell survival by preventing mitochondrial membrane depolarization and caspase-3 activation, ultimately leading to increased tumor growth.
Collapse
Affiliation(s)
- C M van Golen
- Department of Neurology and Neuroscience Program, University of Michigan, Ann Arbor, Michigan 48109-0588, USA
| | | | | |
Collapse
|
407
|
Wang JL, Liu D, Zhang ZJ, Shan S, Han X, Srinivasula SM, Croce CM, Alnemri ES, Huang Z. Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells. Proc Natl Acad Sci U S A 2000; 97:7124-9. [PMID: 10860979 PMCID: PMC16510 DOI: 10.1073/pnas.97.13.7124] [Citation(s) in RCA: 964] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bcl-2 and related proteins are key regulators of apoptosis or programmed cell death implicated in human disease including cancer. We recently showed that cell-permeable Bcl-2 binding peptides could induce apoptosis of human myeloid leukemia in vitro and suppress its growth in severe combined immunodeficient mice. Here we report the discovery of HA14-1, a small molecule (molecular weight = 409) and nonpeptidic ligand of a Bcl-2 surface pocket, by using a computer screening strategy based on the predicted structure of Bcl-2 protein. In vitro binding studies demonstrated the interaction of HA14-1 with this Bcl-2 surface pocket that is essential for Bcl-2 biological function. HA14-1 effectively induced apoptosis of human acute myeloid leukemia (HL-60) cells overexpressing Bcl-2 protein that was associated with the decrease in mitochondrial membrane potential and activation of caspase-9 followed by caspase-3. Cytokine response modifier A, a potent inhibitor of Fas-mediated apoptosis, did not block apoptosis induced by HA14-1. Whereas HA14-1 strongly induced the death of NIH 3T3 (Apaf-1(+/+)) cells, it had little apoptotic effect on Apaf-1-deficient (Apaf-1(-/-)) mouse embryonic fibroblast cells. These data are consistent with a mechanism by which HA14-1 induces the activation of Apaf-1 and caspases, possibly by binding to Bcl-2 protein and inhibiting its function. The discovery of this cell-permeable molecule provides a chemical probe to study Bcl-2-regulated apoptotic pathways in vivo and could lead to the development of new therapeutic agents.
Collapse
Affiliation(s)
- J L Wang
- Kimmel Cancer Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
408
|
Abstract
Apoptosis has been well established as a vital biological phenomenon that is important in the maintenance of cellular homeostasis. Three major protooncogene families and their encoded proteins function as mediators of apoptosis in various cell types and are the subject of this chapter. Protooncogenic proteins such as c-Myc/Max, c-Fos/c-Jun, and Bcl-2/Bax utilize a synergetic effect to enhance their roles in the pro- or antiapoptotic action. These family members activate and repress the expression of their target genes, control cell cycle progression, and execute programmed cell death. Repression or overproduction of these protooncogenic proteins induces apoptosis, which may vary as a result of either cell type specificity or the nature of the apoptotic stimuli. The proapoptotic and antiapoptotic proteins exert their effects in the membrane of cellular organelles. Here they generate cell-type-specific signals that activate the caspase family of proteases and their regulators for the execution of apoptosis.
Collapse
Affiliation(s)
- C S Teng
- Department of Anatomy, Physiological Sciences, and Radiology, North Carolina State University, Raleigh 27606, USA
| |
Collapse
|
409
|
Saldeen J. Cytokines induce both necrosis and apoptosis via a common Bcl-2-inhibitable pathway in rat insulin-producing cells. Endocrinology 2000; 141:2003-10. [PMID: 10830283 DOI: 10.1210/endo.141.6.7523] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The presence of activated macrophages within pancreatic islets in insulin-dependent diabetes mellitus suggests an involvement of beta-cell death by necrosis. The aim of this study was to investigate the frequencies and mechanisms of cytokine-induced beta-cell apoptosis and necrosis and the possible protection mediated by the antiapoptotic gene bcl-2. A combination of interleukin-1beta, interferon-gamma, and tumor necrosis factor-alpha increased both necrosis (17% of cells) and apoptosis (5% of cells) in isolated whole rat islets, as determined by vital staining and fluorescence microscopy. Hyperexpression of Bcl-2, achieved by stable transfection using a multicopy viral vector containing a bcl-2 complementary DNA in rat insulin-producing RINm5F cells, counteracted both apoptosis and necrosis. Cytokine-induced cleavage of the caspase-3 substrate poly(ADP-ribose) polymerase (which, in other cell types, may occur downstream or independently of a Bcl-2-preventable mitochondrial permeability transition) was observed in control- but neither in bcl-2-transfected cells nor in the presence of the iNOS inhibitor N(G)-methyl-L-arginine. Tumor necrosis factor-alpha alone did not clearly induce cell death or poly(ADP-ribose) polymerase-cleavage. These findings suggest that cytokines induce both necrosis and apoptosis in insulin-producing cells via a common Bcl-2-preventable nitric oxide-dependent pathway, which may involve mitochondrial permeability transition. The necrosis:apoptosis ratio might be increased by a relative lack of caspase activity.
Collapse
Affiliation(s)
- J Saldeen
- Department of Medical Cell Biology, Uppsala University, Sweden.
| |
Collapse
|
410
|
Haraguchi M, Torii S, Matsuzawa SI, Xie Z, Kitada S, Krajewski S, Yoshida H, Mak TW, Reed JC. Apoptotic protease activating factor 1 (Apaf-1)-independent cell death suppression by Bcl-2. J Exp Med 2000; 191:1709-20. [PMID: 10811864 PMCID: PMC2193150 DOI: 10.1084/jem.191.10.1709] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/1999] [Accepted: 03/09/2000] [Indexed: 12/19/2022] Open
Abstract
Reportedly, antiapoptotic Bcl-2 family proteins suppress apoptosis by binding to and inhibiting members of the CED-4 family of caspase activators. To explore this question, we used embryonic stem (ES) cells in which one (-/+) or both (-/-) copies of the gene encoding apoptotic protease activating factor 1 (Apaf-1), a CED-4 homologue, were disrupted by homologous recombination. Stable clones of heterozygous (-/+) and homozygous (-/-) Apaf-1 knockout ES cells that overexpressed Bcl-2 were generated. Withdrawal of serum growth factors or stimulation of heterozygous ES cells with staurosporine (STS), ultraviolet (UV)B irradiation, etoposide (VP16), or cisplatin induced apoptosis followed by cell death (determined by failure to exclude propidium iodide dye). These cell death stimuli also induced activation of several types of caspases and loss of mitochondrial membrane potential (DeltaPsi) in heterozygous (+/-) Apaf-1 knockout ES cells. In addition, overexpression of Bcl-2 protected against these events in Apaf-1-expressing ES cells. In contrast, STS, UVB, and VP16 induced little or no caspase activation and apoptosis in homozygous (-/-) Apaf-1 knockout ES cells. Nevertheless, Apaf-1-deficient ES cells subjected to these cell death stimuli or deprived of growth factors did eventually die through a nonapoptotic mechanism associated with loss of DeltaPsi. Moreover, Bcl-2 overprotection preserved DeltaPsi, reduced the percentage of Apaf-1(-/)- ES cells undergoing cell death, and increased clonigenic survival. The extent of Bcl-2-mediated cytoprotection was not significantly different for heterozygous (-/+) versus homozygous (-/-) Apaf-1 knockout cells. Furthermore, although Bcl-2 could be readily coimmunoprecipitated with Bax, associations with Apaf-1 were undetectable under conditions where Apaf-1 interactions with procaspase-9 were observed. We conclude that Bcl-2 has cytoprotective functions independent of Apaf-1, preserving mitochondrial function through a caspase-independent mechanism.
Collapse
Affiliation(s)
- Misako Haraguchi
- Burnham Institute Program on Apoptosis and Cell Death Regulation, La Jolla, California 92037
| | - Seiji Torii
- Burnham Institute Program on Apoptosis and Cell Death Regulation, La Jolla, California 92037
| | - Shu-ichi Matsuzawa
- Burnham Institute Program on Apoptosis and Cell Death Regulation, La Jolla, California 92037
| | - Zhihua Xie
- Burnham Institute Program on Apoptosis and Cell Death Regulation, La Jolla, California 92037
| | - Shinichi Kitada
- Burnham Institute Program on Apoptosis and Cell Death Regulation, La Jolla, California 92037
| | - Stanislaw Krajewski
- Burnham Institute Program on Apoptosis and Cell Death Regulation, La Jolla, California 92037
| | - Hiroki Yoshida
- Department of Cellular and Molecular Biology, Ontario Cancer Institute, Toronto, Ontario, Canada M5G 2C1
| | - Tak W. Mak
- Department of Cellular and Molecular Biology, Ontario Cancer Institute, Toronto, Ontario, Canada M5G 2C1
| | - John C. Reed
- Burnham Institute Program on Apoptosis and Cell Death Regulation, La Jolla, California 92037
| |
Collapse
|
411
|
Perlman H, Georganas C, Pagliari LJ, Koch AE, Haines K, Pope RM. Bcl-2 expression in synovial fibroblasts is essential for maintaining mitochondrial homeostasis and cell viability. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:5227-35. [PMID: 10799883 DOI: 10.4049/jimmunol.164.10.5227] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The regulation of proliferation and cell death is vital for homeostasis, but the mechanism that coordinately balances these events in rheumatoid arthritis (RA) remains largely unknown. In RA, the synovial lining thickens in part through increased proliferation and/or decreased synovial fibroblast cell death. Here we demonstrate that the anti-apoptotic protein, Bcl-2, is highly expressed in RA compared with osteoarthritis synovial tissues, particularly in the CD68-negative, fibroblast-like synoviocyte population. To determine the importance of endogenous Bcl-2, an adenoviral vector expressing a hammerhead ribozyme to Bcl-2 (Ad-Rbz-Bcl-2) mRNA was employed. Ad-Rbz-Bcl-2 infection resulted in reduced Bcl-2 expression and cell viability in synovial fibroblasts isolated from RA and osteoarthritis synovial tissues. In addition, Ad-Rbz-Bcl-2-induced mitochondrial permeability transition, cytochrome c release, activation of caspases 9 and 3, and DNA fragmentation. The general caspase inhibitor zVAD.fmk blocked caspase activation, poly(ADP-ribose) polymerase cleavage, and DNA fragmentation, but not loss of transmembrane potential or viability, indicating that cell death was independent of caspase activation. Ectopically expressed Bcl-xL inhibited Ad-Rbz-Bcl-2-induced mitochondrial permeability transition and apoptosis in Ad-Rbz-Bcl-2-transduced cells. Thus, forced down-regulation of Bcl-2 does not induce a compensatory mechanism to prevent loss of mitochondrial integrity and cell death in human fibroblasts.
Collapse
Affiliation(s)
- H Perlman
- Division of Rheumatology, Northwestern University Medical School, and Veterans Administration Chicago Healthcare System, Lakeside Division, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|
412
|
Pastorino JG, Hoek JB. Ethanol potentiates tumor necrosis factor-alpha cytotoxicity in hepatoma cells and primary rat hepatocytes by promoting induction of the mitochondrial permeability transition. Hepatology 2000; 31:1141-52. [PMID: 10796891 DOI: 10.1053/he.2000.7013] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In the present study, tumor necrosis factor-alpha (TNF-alpha) cytotoxicity is shown to be potentiated by ethanol exposure in vitro in the human hepatoma cell line, HepG2, and in rat primary hepatocytes. Exposure of HepG2 cells and primary hepatocytes for 48 hours to concentrations of ethanol ranging between 50 and 100 mmol/L significantly increased TNF-alpha cytotoxicity compared with cells treated with TNF-alpha alone. The cell killing was associated with, and dependent on, the development of the mitochondrial permeability transition (MPT). Two inhibitors of MPT pore opening, cyclosporin A and bongkrekic acid, prevented TNF-alpha cytotoxicity in the presence of ethanol. In addition to inhibiting cell death caused by TNF-alpha, blockade of MPT pore opening prevented mitochondrial depolarization, cytochrome c redistribution from the mitochondria to the cytosol, caspase 3 activation, and oligonucleosomal DNA fragmentation. Unlike the potentiation of TNF-alpha cytotoxicity by the translational inhibitor cycloheximide, ethanol promoted TNF-alpha-induced cell killing by a mechanism that was independent of caspase-8 activity. HepG2 cells overexpressing cytochrome-P4502E1 were even more sensitized by ethanol to induction of the MPT by TNF-alpha and the resultant cytotoxicity than wild-type HepG2 cells. In addition, primary hepatocytes isolated from chronically ethanol-fed rats showed enhanced susceptibility to TNF-alpha cytotoxicity compared with their isocalorically matched controls. Again as with the HepG2 cells, inhibiting MPT pore opening prevented the cytotoxicity of TNF-alpha in the primary hepatocytes isolated from ethanol-fed animals.
Collapse
Affiliation(s)
- J G Pastorino
- Thomas Jefferson University, Department of Pathology, Anatomy, and Cell Biology, Philadelphia, PA 19107, USA.
| | | |
Collapse
|
413
|
Abstract
Members of the Bcl-2 family of proteins are key regulators of apoptosis. Some of these proteins undergo posttranslational modification, such as phosphorylation or proteolysis, that serves to alter their function. Caspases are known to cleave Bid, a proapoptotic family member, as well as Bcl-2 and Bcl-X(L), two prosurvival family members, which activate their cytotoxic activity resulting in the release of cytochrome c from mitochondria. Previously we showed that Bax was cleaved by calpain rather than by caspases from full-length 21 kDa to generate a cleavage fragment of 18 kDa. Since cleavage of Bid serves to activate its cytotoxic activity, we wanted to determine if the p18 form of Bax exhibited increased cytotoxicity compared to p21 Bax. Using a transient transfection system in human embryonic kidney 293T cells we show that the p18 form of Bax displays a more potent ability to induce cell death. The pancaspase inhibitor Z-VAD-fmk completely blocked apoptosis induced by p21 Bax but only partially inhibited apoptosis induced by p18 Bax. Cyclosporin A, an inhibitor of the mitochondrial permeability transition (PT) pore, had no effect on Bax-mediated apoptosis of 293T cells suggesting that apoptosis was independent of the PT. Thus cleavage of p21 Bax during apoptosis to the p18 form may serve to increase the intrinsic cytotoxic properties of this proapoptotic molecule and enhance its cell death function at the mitochondria.
Collapse
Affiliation(s)
- D E Wood
- Department of Pathology, New York University School of Medicine and Kaplan Comprehensive Center, 550 First Avenue, New York, New York 10016, USA
| | | |
Collapse
|
414
|
Abstract
In many instances, permeabilization of mitochondrial membranes is a rate-limiting step of apoptotic or necrotic cell demise. This has important consequences for the pathophysiology of cell death, as well as for its pharmacological control.
Collapse
Affiliation(s)
- G Kroemer
- Centre National de la Recherche Scientifique, CNRS-ULR1599, Institut Gustave Roussy 24 rue Calmette Desmoulins, F-94805 Villejuif.
| | | |
Collapse
|
415
|
Gross A, Pilcher K, Blachly-Dyson E, Basso E, Jockel J, Bassik MC, Korsmeyer SJ, Forte M. Biochemical and genetic analysis of the mitochondrial response of yeast to BAX and BCL-X(L). Mol Cell Biol 2000; 20:3125-36. [PMID: 10757797 PMCID: PMC85607 DOI: 10.1128/mcb.20.9.3125-3136.2000] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The BCL-2 family includes both proapoptotic (e.g., BAX and BAK) and antiapoptotic (e.g., BCL-2 and BCL-X(L)) molecules. The cell death-regulating activity of BCL-2 members appears to depend on their ability to modulate mitochondrial function, which may include regulation of the mitochondrial permeability transition pore (PTP). We examined the function of BAX and BCL-X(L) using genetic and biochemical approaches in budding yeast because studies with yeast suggest that BCL-2 family members act upon highly conserved mitochondrial components. In this study we found that in wild-type yeast, BAX induced hyperpolarization of mitochondria, production of reactive oxygen species, growth arrest, and cell death; however, cytochrome c was not released detectably despite the induction of mitochondrial dysfunction. Coexpression of BCL-X(L) prevented all BAX-mediated responses. We also assessed the function of BCL-X(L) and BAX in the same strain of Saccharomyces cerevisiae with deletions of selected mitochondrial proteins that have been implicated in the function of BCL-2 family members. BAX-induced growth arrest was independent of the tested mitochondrial components, including voltage-dependent anion channel (VDAC), the catalytic beta subunit or the delta subunit of the F(0)F(1)-ATP synthase, mitochondrial cyclophilin, cytochrome c, and proteins encoded by the mitochondrial genome as revealed by [rho(0)] cells. In contrast, actual cell killing was dependent upon select mitochondrial components including the beta subunit of ATP synthase and mitochondrial genome-encoded proteins but not VDAC. The BCL-X(L) protection from either BAX-induced growth arrest or cell killing proved to be independent of mitochondrial components. Thus, BAX induces two cellular processes in yeast which can each be abrogated by BCL-X(L): cell arrest, which does not require aspects of mitochondrial biochemistry, and cell killing, which does.
Collapse
Affiliation(s)
- A Gross
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
416
|
Hausmann G, O'Reilly LA, van Driel R, Beaumont JG, Strasser A, Adams JM, Huang DC. Pro-apoptotic apoptosis protease-activating factor 1 (Apaf-1) has a cytoplasmic localization distinct from Bcl-2 or Bcl-x(L). J Cell Biol 2000; 149:623-34. [PMID: 10791976 PMCID: PMC2174854 DOI: 10.1083/jcb.149.3.623] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/1999] [Accepted: 03/23/2000] [Indexed: 12/26/2022] Open
Abstract
How Bcl-2 and its pro-survival relatives prevent activation of the caspases that mediate apoptosis is unknown, but they appear to act through the caspase activator apoptosis protease-activating factor 1 (Apaf-1). According to the apoptosome model, the Bcl-2-like proteins preclude Apaf-1 activity by sequestering the protein. To explore Apaf-1 function and to test this model, we generated monoclonal antibodies to Apaf-1 and used them to determine its localization within diverse cells by subcellular fractionation and confocal laser scanning microscopy. Whereas Bcl-2 and Bcl-x(L) were prominent on organelle membranes, endogenous Apaf-1 was cytosolic and did not colocalize with them, even when these pro-survival proteins were overexpressed or after apoptosis was induced. Immunogold electron microscopy confirmed that Apaf-1 was dispersed in the cytoplasm and not on mitochondria or other organelles. After the death stimuli, Bcl-2 and Bcl-x(L) precluded the release of the Apaf-1 cofactor cytochrome c from mitochondria and the formation of larger Apaf-1 complexes, which are steps that presage apoptosis. However, neither Bcl-2 nor Bcl-x(L) could prevent the in vitro activation of Apaf-1 induced by the addition of exogenous cytochrome c. Hence, rather than sequestering Apaf-1 as proposed by the apoptosome model, Bcl-2-like proteins probably regulate Apaf-1 indirectly by controlling upstream events critical for its activation.
Collapse
Affiliation(s)
- George Hausmann
- The Walter and Eliza Hall Institute of Medical Research, Post Office Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | - Lorraine A. O'Reilly
- The Walter and Eliza Hall Institute of Medical Research, Post Office Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | - Rosemary van Driel
- The Baker Medical Research Institute, Melbourne, Victoria 8008, Australia
| | - Jennifer G. Beaumont
- The Walter and Eliza Hall Institute of Medical Research, Post Office Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Post Office Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | - Jerry M. Adams
- The Walter and Eliza Hall Institute of Medical Research, Post Office Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | - David C.S. Huang
- The Walter and Eliza Hall Institute of Medical Research, Post Office Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| |
Collapse
|
417
|
Stefanelli C, Stanic' I, Zini M, Bonavita F, Flamigni F, Zambonin L, Landi L, Pignatti C, Guarnieri C, Caldarera CM. Polyamines directly induce release of cytochrome c from heart mitochondria. Biochem J 2000; 347 Pt 3:875-80. [PMID: 10769194 PMCID: PMC1221027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Cytochrome c release from mitochondria to the cytosol represents a critical step in apoptosis, correlated to the activation of the caspase cascade. In this report, we show that addition of micromolar concentrations of polyamines to isolated rat heart mitochondria induces the release of cytochrome c. Spermine, which is effective at concentrations of 10-100 microM, is more potent than spermidine, whereas putrescine has no effect up to 1 mM. The release of cytochrome c caused by spermine is a rapid, saturable and selective process that is independent of mitochondria damage. Spermine, unlike polylysine, is able to release a discrete amount of cytochrome c from intact, functional mitochondria. The cytochrome c-releasing power of spermine is not affected by cyclosporin A, differently from the effect of permeability transition inducers. In a cardiac cell-free model of apoptosis, the latent caspase activity of cytosolic extracts from cardiomyocytes could be activated by cytochrome c released from spermine-treated heart mitochondria. These data indicate a novel mechanism of cytochrome c release from the mitochondrion, and suggest that prolonged and sustained elevation of polyamines, characteristic of some pathologies such as heart hypertrophy, could be involved in the development of apoptosis.
Collapse
Affiliation(s)
- C Stefanelli
- Dipartimento di Biochimica 'G. Moruzzi', Università di Bologna, Via Irnerio, 48. I-40126 Bologna, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
418
|
Chen C, Lin H, Chen BD. Bcl-2 antibodies induce hemoglobin release by red blood cells loaded with in vitro translated Bcl-2 and its cleaved fragment. Biochem Biophys Res Commun 2000; 270:816-20. [PMID: 10772908 DOI: 10.1006/bbrc.2000.2520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Apoptosis induced by proteasome inhibitor in human THP-1 leukemia cells is associated with the cleavage of Bcl-2 into a shortened fragment, Bcl-2/Delta34. Both Bcl-2 and its cleaved fragment were located exclusively on the mitochondria of THP-1 cells. No translocation of Bcl-2 or Bcl-2/Delta34 to the cytosolic fraction was detected during apoptosis. Treatment of isolated mitochondria with recombinant caspase-3 induced the same cleavage of Bcl-2 in vitro and triggered the release of cytochrome c from the mitochondria. The ability of Bcl-2/Delta34 in regulating the opening of membrane "pores" was investigated using a sheep red blood cell (RBC) model with in vitro translated Bcl-2/Delta34 and Bcl-2 proteins. Bcl-2 and Bcl-2/Delta34 generated in vitro were relocated rapidly to sheep RBC but caused no hemoglobin release in either case. Addition of anti-Bcl-2 antibodies directly to the RBC that had been loaded with either Bcl-2 or Bcl-2/Delta34 resulted in a rapid release of hemoglobin from the blood cells. Treatment of the sheep RBC with anti-Bcl-2 or anti-sheep RBC antibodies alone did not trigger hemoglobin release from the RBC. Based on these findings, we proposed that, upon "enforced aggregation," both Bcl-2 and Bcl-2/Delta34 can form "pores" in membranes, which may contribute to the release of cytochrome c in apoptosis.
Collapse
Affiliation(s)
- C Chen
- Division of Hematology-Oncology, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan 48201, USA
| | | | | |
Collapse
|
419
|
Affiliation(s)
- B Antonsson
- Serono Pharmaceutical Research Institute, 14 chemin des Aulx, Plan-les-Ouates/Geneva, CH-1228, Switzerland
| | | |
Collapse
|
420
|
Abstract
Apoptosis research has recently experienced a change from a paradigm in which the nucleus determined the apoptotic process to a paradigm in which caspases and, more recently, mitochondria constitute the center of death control. Mitochondria undergo major changes in membrane integrity before classical signs of cell death become manifest. These changes concern both the inner and the outer mitochondrial membranes, leading to the dissipation of the inner transmembrane potential (DeltaPsi(m)) and/or the release of intermembrane proteins through the outer membrane. An ever-increasing number of endogenous, viral, or xenogeneic effectors directly act on mitochondria to trigger permeabilization. At least in some cases, this is achieved by a direct action on the permeability transition pore complex (PTPC), a multiprotein ensemble containing proteins from both mitochondrial membranes, which interact with pro- and antiapoptotic members of the Bcl-2 family. At present, it is elusive whether opening of the PTPC is the only physiological mechanism leading to mitochondrial membrane permeabilization. Proteins released from mitochondria during apoptosis include caspases (mainly caspases 2, 3, and 9), caspase activators (cytochrome c, hsp 10), as well as a caspase-independent death effector, AIF (apoptosis inducing factor). The functional hierarchy among these proteins and their actual impact on the decision between death and life is elusive.
Collapse
Affiliation(s)
- M Loeffler
- Centre National de la Recherche Scientifique, ERS1984, 19 rue Guy Môquet, Villejuif, F-94801, France
| | | |
Collapse
|
421
|
Fennell D, Cotter F. Stochastic modeling of apoptosis tolerance distributions measured by multivariate flow analysis of human leukemia cells. ACTA ACUST UNITED AC 2000. [DOI: 10.1002/(sici)1097-0320(20000401)39:4<266::aid-cyto4>3.0.co;2-d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
422
|
Abstract
Apoptosis is an essential physiological process by which multicellular organisms eliminate superfluous cells. An expanding family of Bcl-2 proteins plays a pivotal role in the decision step of apoptosis, and the differential expression of Bcl-2 members and their binding proteins allows the regulation of apoptosis in a tissue-specific manner mediated by diverse extra- and intracellular signals. The Bcl-2 proteins can be divided into three subgroups: 1) antiapoptotic proteins with multiple Bcl-2 homology (BH) domains and a transmembrane region, 2) proapoptotic proteins with the same structure but missing the BH4 domain, and 3) proapoptotic ligands with only the BH3 domain. In the mammalian ovary, a high rate of follicular cell apoptosis continues during reproductive life. With the use of the yeast two-hybrid system, the characterization of ovarian Bcl-2 genes serves as a paradigm to understand apoptosis regulation in a tissue-specific manner. We identified Mcl-1 as the main ovarian antiapoptotic Bcl-2 protein, the novel Bok (Bcl-2-related ovarian killer) as the proapoptotic protein, as well as BOD (Bcl-2-related ovarian death agonist) and BAD as the proapoptotic ligands. The activity of the proapoptotic ligand BAD is regulated by upstream follicle survival factors through its binding to constitutively expressed 14-3-3 or hormone-induced P11. In contrast, the channel-forming Mcl-1 and Bok regulate cytochrome c release and, together with the recently discovered Diva/Boo, control downstream apoptosis-activating factor (Apaf)-1 homologs and caspases. Elucidation of the role of Bcl-2 members and their interacting proteins in the tissue-specific regulation of apoptosis could facilitate an understanding of normal physiology and allow the development of new therapeutic approaches for pathological states.
Collapse
Affiliation(s)
- S Y Hsu
- Division of Reproductive Biology, Department of Gynecology and Obstetrics, Stanford University School of Medicine, Stanford, California 94305-5317, USA
| | | |
Collapse
|
423
|
Daugas E, Susin SA, Zamzami N, Ferri KF, Irinopoulou T, Larochette N, Prévost M, Leber B, Andrews D, Penninger J, Kroemer G. Mitochondrio‐nuclear translocation of AIF in apoptosis and necrosis. FASEB J 2000. [DOI: 10.1096/fasebj.14.5.729] [Citation(s) in RCA: 593] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Eric Daugas
- Centre National de la Recherche ScientifiqueUPR420 Villejuif F‐94801 France
- Assistance Publique‐Hôpitaux de ParisService de Néphrologie BHôpital Tenon F‐75020 France
| | - Santos A. Susin
- Centre National de la Recherche ScientifiqueUPR420 Villejuif F‐94801 France
| | - Naoufal Zamzami
- Centre National de la Recherche ScientifiqueUPR420 Villejuif F‐94801 France
| | - Karine F. Ferri
- Centre National de la Recherche ScientifiqueUPR420 Villejuif F‐94801 France
| | - Theano Irinopoulou
- Laboratoire d'Anatomopathologie et INSERM U430Hôpital Broussais Paris F‐75014 France
| | | | | | - Brian Leber
- McMaster University Medical Centre Hamilton Hamilton Ontario L8N 3Z5 Canada
| | - David Andrews
- Department of BiochemistryMcMaster University Hamilton Ontario L8N 3Z5 Canada
| | - Josef Penninger
- Unité d'Oncologie ViraleInstitut Pasteur Paris cedex 15 F‐75724 France
| | - Guido Kroemer
- The Amgen Institute and Ontario Cancer InstituteDepartment of Medical Biophysics and ImmunologyUniversity of Toronto Toronto Ontario M5G 2C1 Canada
| |
Collapse
|
424
|
Abstract
Mitochondrial Ca2+ sequestration likely contributes to cell death in excitotoxicity and ischemia reperfusion injury, and may also be involved in chronic forms of neurodegeneration in which a compromise in bioenergetic function alters cellular Ca2+ homeostasis. Bcl-2 overexpression is known to protect against Ca(2+)-mediated death; the mechanism of protection remains unresolved. Our data of the ability of Bcl-2 to potentiate mitochondrial Ca2+ uptake capacity and resistance to Ca(2+)-induced damage is discussed in light of current information on apoptotic signaling pathways.
Collapse
Affiliation(s)
- A N Murphy
- MitoKor, San Diego, California 92121, USA.
| |
Collapse
|
425
|
Jacotot E, Costantini P, Laboureau E, Zamzami N, Susin SA, Kroemer G. Mitochondrial membrane permeabilization during the apoptotic process. Ann N Y Acad Sci 2000; 887:18-30. [PMID: 10668461 DOI: 10.1111/j.1749-6632.1999.tb07919.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Apoptosis may be viewed as a triphasic process. During the pre-mitochondrial initiation phase, very different pro-apoptotic signal transduction or damage pathways can be activated. These pathways then converge on the mitochondrion, where they cause the permeabilization of the inner and/or outer membranes with consequent release of soluble intermembrane proteins into the cytosol. The process of mitochondrial membrane permeabilization would constitute the decision/effector phase of the apoptotic process. During the post-mitochondrial degradation phase downstream caspases and nucleases are activated and the cell acquires an apoptotic morphology. Recently, a number of different second messengers (calcium, ceramide derivatives, nitric oxide, reactive oxygen species) and pro-apoptotic proteins (Bax, Bak, Bid, and caspases) have been found to directly compromise the barrier function of mitochondrial membranes, when added to isolated mitochondria. The effects of several among these agents are mediated at least in part via the permeability transition pore complex (PTPC), a composite channel in which members of the Bcl-2 family interact with sessile transmembrane proteins such as the adenine nucleotide translocator. These findings suggest that the PTPC may constitute a pharmacological target for chemotherapy and cytoprotection.
Collapse
Affiliation(s)
- E Jacotot
- Centre National de la Recherche Scientifique, Unité Propre de Recherche 420, Villejuif, France
| | | | | | | | | | | |
Collapse
|
426
|
Rahmani Z, Huh KW, Lasher R, Siddiqui A. Hepatitis B virus X protein colocalizes to mitochondria with a human voltage-dependent anion channel, HVDAC3, and alters its transmembrane potential. J Virol 2000; 74:2840-6. [PMID: 10684300 PMCID: PMC111774 DOI: 10.1128/jvi.74.6.2840-2846.2000] [Citation(s) in RCA: 240] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Understanding the mechanism(s) of action of the hepatitis B virus (HBV)-encoded protein HBx is fundamental to elucidating the underlying mechanisms of chronic liver disease and hepatocellular carcinoma caused by HBV infection. In our continued attempts to identify cellular targets of HBx, we have previously reported the identification of a novel cellular protein with the aid of a yeast two-hybrid assay. This cellular gene was identified as a third member of the family of human genes that encode the voltage-dependent anion channel (HVDAC3). In the present study, physical interaction between HBx and HVDAC3 was established by standard in vitro and in vivo methods. Confocal laser microscopy of transfected cells with respective expression vectors colocalized HVDAC3 and HBx to mitochondria. This novel, heretofore unreported subcellular distribution of HBx in mitochondria implies a functional role of HBx in functions associated with mitochondria. Using a stable cationic fluorophore dye, CMXRos, we show that HBx expression in cultured human hepatoma cells leads to alteration of mitochondrial transmembrane potential. Such functional roles of HBx in affecting mitochondrial physiology have implications for HBV-induced liver injury and the development of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Z Rahmani
- Department of Microbiology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | |
Collapse
|
427
|
|
428
|
Goldstein JC, Waterhouse NJ, Juin P, Evan GI, Green DR. The coordinate release of cytochrome c during apoptosis is rapid, complete and kinetically invariant. Nat Cell Biol 2000; 2:156-62. [PMID: 10707086 DOI: 10.1038/35004029] [Citation(s) in RCA: 771] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Release of cytochrome c from mitochondria triggers activation of caspase proteases and death of a cell by apoptosis. However, the mechanism and kinetics of cytochrome c release remain unknown. Here we study this event by using green fluorescent protein (GFP)-tagged cytochrome c, and find that the release of cytochrome-c-GFP always precedes exposure of phosphatidylserine and the loss of plasma-membrane integrity - characteristics of apoptotic cells. Once initiated, the release of cytochrome- c-GFP continues until all of the protein is released from all mitochondria in individual cells, within about 5 minutes, regardless of the type or strength of stimulus or the time elapsed since the stimulus was applied. Temperatures ranging from 24 degrees C to 37 degrees C do not change the duration of release, and nor does the addition of caspase inhibitors. Further, we find that the electron-transport chain can maintain the mitochondrial transmembrane potential even after cytochrome c has been released.
Collapse
Affiliation(s)
- J C Goldstein
- Division of Cellular Immunology, La Jolla Institute for Allergy and Immunology, 10355 Science Center Drive, San Diego, California 92121, USA
| | | | | | | | | |
Collapse
|
429
|
Du J, Suzuki H, Nagase F, Akhand AA, Yokoyama T, Miyata T, Kurokawa K, Nakashima I. Methylglyoxal induces apoptosis in Jurkat leukemia T cells by activating c-Jun N-terminal kinase. J Cell Biochem 2000; 77:333-44. [PMID: 10723098 DOI: 10.1002/(sici)1097-4644(20000501)77:2<333::aid-jcb15>3.0.co;2-q] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Methylglyoxal (MG) is a physiological metabolite, but it is known to be toxic, inducing stress in cells and causing apoptosis. This study examines molecular mechanisms in the MG-induced signal transduction leading to apoptosis, focusing particularly on the role of JNK activation. We first confirmed that MG caused apoptosis in Jurkat cells and that it was cell type dependent because it failed to induce apoptosis in MOLT-4, HeLa, or COS-7 cells. A caspase inhibitor, Z-DEVD-fmk, completely blocked MG-induced poly(ADP-ribose)polymerase (PARP) cleavage and apoptosis, showing the critical role of caspase activation. Inhibition of JNK activity by a JNK inhibitor, curcumin, remarkably reduced MG-induced caspase-3 activation, PARP cleavage, and apoptosis. Stable expression of the dominant negative mutant of JNK also protected cells against apoptosis notably, although not completely. Correspondingly, loss of the mitochondrial membrane potential induced by MG was decreased by the dominant negative JNK. These results confirmed a crucial role of JNK working upstream of caspases, as well as an involvement of JNK in affecting the mitochondrial membrane potential.
Collapse
Affiliation(s)
- J Du
- Department of Immunology, Nagoya University School of Medicine, Aichi 466-8550, Japan
| | | | | | | | | | | | | | | |
Collapse
|
430
|
Induction of mitochondrial permeability transition and cytochrome C release in the absence of caspase activation is insufficient for effective apoptosis in human leukemia cells. Blood 2000. [DOI: 10.1182/blood.v95.5.1773.005k17_1773_1780] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Induction of mitochondrial permeability transition (MPT) and cytosolic translocation of cytochrome C are considered essential components of the apoptotic pathway. Hence, there is the realization that mitochondrial-specific drugs could have potential for use as chemotherapeutic agents to trigger apoptosis in tumor cells. Recently, we showed that photoproducts of merocyanine 540 (pMC540) induced tumor cell apoptosis. In this study, we focused on identifying mitochondrial-specific compounds from pMC540 and studied their apoptotic potential. One purified fraction, C5, induced a drop in mitochondrial transmembrane potential and cytosolic translocation of cytochrome C in HL60 human leukemia cells. Moreover, the addition of C5 to purified rat liver mitochondria induced MPT as indicated by mitochondrial matrix swelling, which was completely inhibited by cyclosporin A, an inhibitor of the inner-membrane pore. Supernatant of C5-treated mitochondria showed a dose-dependent increase in cytochrome C, which was also inhibited in the presence of cyclosporin A, strongly indicating a direct effect on the inner-membrane pore. Despite the strong mitochondrial reactivity, C5 elicited minimal cytotoxicity (less than 25%) against HL60 leukemia and M14 melanoma cells because of inefficient caspase activation. However, prior exposure to C5 significantly enhanced the apoptotic response to etoposide or the CD95 receptor. Thus, we demonstrate that MPT induction and cytochrome C release by the novel compound C5, in the absence of effective caspase activation, is insufficient for triggering efficient apoptosis in tumor cells. However, when used in combination with known apoptosis inducers, such compounds could enhance the sensitivity of tumor cells to apoptosis.
Collapse
|
431
|
Belka C, Rudner J, Wesselborg S, Stepczynska A, Marini P, Lepple-Wienhues A, Faltin H, Bamberg M, Budach W, Schulze-Osthoff K. Differential role of caspase-8 and BID activation during radiation- and CD95-induced apoptosis. Oncogene 2000; 19:1181-90. [PMID: 10713706 DOI: 10.1038/sj.onc.1203401] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Activation of the CD95 death receptor as well as ionizing radiation induces apoptotic cell death in human lymphoma cells. The activation of caspases is a hallmark of apoptosis induction irrespective of the apoptotic trigger. In contrast to death receptor signaling, the exact mechanisms of radiation-induced caspase activation are not well understood. We provide evidence that both, radiation and CD95 stimulation, induce the rapid activation of caspase-8 and BID followed by apoptosis in Jurkat T-cells. To analyse the relative position of caspase-8 within the apoptotic cascade we studied caspase activation and apoptosis in Jurkat cells overexpressing Bcl-2 or Bcl-xL. Caspase-8 activation, pro-apoptotic BID cleavage and apoptosis in response to radiation were abrogated in these cells, while the responses to CD95 stimulation were only partially attenuated by overexpression of Bcl-2 family members. In parallel, the breakdown of the mitochondrial transmembrane potential (DeltaPsim) in response to radiation was inhibited by overexpression of Bcl-2/Bcl-xL Jurkat cells genetically deficient for caspase-8 were found to be completely resistant towards CD95. However, radiation-induced apoptotic responses in caspase-8-negative cells displayed only a modest reduction. We conclude that ionizing radiation activates caspase-8 and BID downstream of mitochondrial damage suggesting that, in contrast to CD95, both events function as executioners rather than initiators of the apoptotic process.
Collapse
Affiliation(s)
- C Belka
- Department of Radiation Oncology, University of Tuebingen, Hoppe Seyler Str. 3, D-72076 Tuebingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
432
|
Hodny Z, Li R, Barath P, Nelson BD. Sp1 and chromatin environment are important contributors to the formation of repressive chromatin structures on the transfected human adenine nucleotide translocase-2 promoter. Biochem J 2000; 346 Pt 1:93-7. [PMID: 10657244 PMCID: PMC1220827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
The influence of chromatin on the human adenine nucleotide translocase isoform 2 (ANT2) promoter was investigated in transfected cells treated with the deacetylase inhibitors butyrate and trichostatin A (TSA). Both inhibitors activated the expression of reporter plasmids transfected into HeLa cells, indicating that the promoter was suppressed by hypoacetylated chromatin and activated by hyperacetylation. Inhibitor-dependent activation was traced to the two Sp1-activation elements within the proximal promoter region, indicating that the Sp1 elements are repressed by chromatin structure. Repressive chromatin structures were also formed on the promoter integrated into a stable chromatin environment, as shown by the effects of TSA and butyrate on 14 single-cell-derived NIH3T3 clones bearing the stable integrated ANT2 promoter. Both the basal expression of the luciferase reporter gene and the response to TSA and butyrate varied widely between clones. The range of basal expression (4000-fold) was due partially to variation in the formation of repressive chromatin, since clones with low basal expression were induced by TSA, but those with high basal expression were less effected. These data indicate that chromatin environment surrounding the integrated DNA exerts a strong influence on chromatin-dependent repression of the ANT2 promoter, and that the ability of Sp1 to activate ANT2 expression is compromised in the repressed state.
Collapse
Affiliation(s)
- Z Hodny
- Department of Biochemistry, Arrhenius Laboratories, Stockholm University, S-106 91 Stockholm, Sweden
| | | | | | | |
Collapse
|
433
|
Bode A, Dong Z. Apoptosis induction by arsenic: mechanisms of action and possible clinical applications for treating therapy-resistant cancers. Drug Resist Updat 2000; 3:21-29. [PMID: 11498362 DOI: 10.1054/drup.2000.0114] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Arsenic, a known carcinogen, may be useful in cancer treatment. Arsenic may be effective in counteracting drug resistance because it appears to induce apoptosis in tumor cells independently of p53 activation, thereby allowing it to be directed against p53-defective cancers. The role of MAP kinases in arsenic-induced apoptosis in tumor cells is important and may be influenced by reactive oxygen species or glutathione. This review focuses on recent findings from this and other laboratories regarding the mechanism(s) of arsenic-induced apoptosis in tumor cells and considers their relevance in the clinical treatment of therapy-resistant cancers. Copyright 2000 Harcourt Publishers Ltd.
Collapse
Affiliation(s)
- Ann Bode
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| | | |
Collapse
|
434
|
Brenner C, Cadiou H, Vieira HL, Zamzami N, Marzo I, Xie Z, Leber B, Andrews D, Duclohier H, Reed JC, Kroemer G. Bcl-2 and Bax regulate the channel activity of the mitochondrial adenine nucleotide translocator. Oncogene 2000; 19:329-36. [PMID: 10656679 DOI: 10.1038/sj.onc.1203298] [Citation(s) in RCA: 248] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Bcl-2 family protein including anti-apoptotic (Bcl-2) or pro-apoptotic (Bax) members can form ion channels when incorporated into synthetic lipid bilayers. This contrasts with the observation that Bcl-2 stabilizes the mitochondrial membrane barrier function and inhibits the permeability transition pore complex (PTPC). Here we provide experimental data which may explain this apparent paradox. Bax and adenine nucleotide translocator (ANT), the most abundant inner mitochondrial membrane protein, can interact in artificial lipid bilayers to yield an efficient composite channel whose electrophysiological properties differ quantitatively and qualitatively from the channels formed by Bax or ANT alone. The formation of this composite channel can be observed in conditions in which Bax protein alone has no detectable channel activity. Cooperative channel formation by Bax and ANT is stimulated by the ANT ligand atractyloside (Atr) but inhibited by ATP, indicating that it depends on the conformation of ANT. In contrast to the combination of Bax and ANT, ANT does not form active channels when incorporated into membranes with Bcl-2. Rather, ANT and Bcl-2 exhibit mutual inhibition of channel formation. Bcl-2 prevents channel formation by Atr-treated ANT and neutralizes the cooperation between Bax and ANT. Our data are compatible with a ménage à trois model of mitochondrial apoptosis regulation in which ANT, the likely pore forming protein within the PTPC, interacts with Bax or Bcl-2 which influence its pore forming potential in opposing manners.
Collapse
Affiliation(s)
- C Brenner
- Centre National de la Recherche Scientifique, UPR420, Villejuif, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
435
|
Costantini P, Belzacq AS, Vieira HL, Larochette N, de Pablo MA, Zamzami N, Susin SA, Brenner C, Kroemer G. Oxidation of a critical thiol residue of the adenine nucleotide translocator enforces Bcl-2-independent permeability transition pore opening and apoptosis. Oncogene 2000; 19:307-14. [PMID: 10645010 DOI: 10.1038/sj.onc.1203299] [Citation(s) in RCA: 220] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mitochondrial membrane permeabilization is a critical event in the process leading to physiological or chemotherapy-induced apoptosis. This permeabilization event is at least in part under the control of the permeability transition pore complex (PTPC), which interacts with oncoproteins from the Bcl-2 family as well as with tumor suppressor proteins from the Bax family, which inhibit or facilitate membrane permeabilization, respectively. Here we show that thiol crosslinking agents including diazenedicarboxylic acid bis 5N, N-dimethylamide (diamide), dithiodipyridine (DTDP), or bis-maleimido-hexane (BMH) can act on the adenine nucleotide translocator (ANT), one of the proteins within the PTPC. ANT alone reconstituted into artificial lipid bilayers suffices to confer a membrane permeabilization response to thiol crosslinking agents. Diamide, DTDP, and BMH but not tert-butylhydroperoxide or arsenite cause the oxidation of a critical cysteine residue (Cys 56) of ANT. Thiol modification within ANT is observed in intact cells, isolated mitochondria, and purified ANT. Recombinant Bcl-2 fails to prevent thiol modification of ANT. Concomitantly, a series of different thiol crosslinking agents (diamide, DTDP, and BMH, phenylarsine oxide) but not tert-butylhydroperoxide or arsenite induce mitochondrial membrane permeabilization and cell death irrespective of the expression level of Bcl-2. These data indicate that thiol crosslinkers cause a covalent modification of ANT which, beyond any control by Bcl-2, leads to mitochondrial membrane permeabilization and cell death.
Collapse
Affiliation(s)
- P Costantini
- Centre National de la Recherche Scientifique, ERS 1984, 19 rue Guy Môquet, F-94801 Villejuif, France
| | | | | | | | | | | | | | | | | |
Collapse
|
436
|
Jacotot E, Ravagnan L, Loeffler M, Ferri KF, Vieira HL, Zamzami N, Costantini P, Druillennec S, Hoebeke J, Briand JP, Irinopoulou T, Daugas E, Susin SA, Cointe D, Xie ZH, Reed JC, Roques BP, Kroemer G. The HIV-1 viral protein R induces apoptosis via a direct effect on the mitochondrial permeability transition pore. J Exp Med 2000; 191:33-46. [PMID: 10620603 PMCID: PMC2195797 DOI: 10.1084/jem.191.1.33] [Citation(s) in RCA: 340] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/1999] [Accepted: 10/15/1999] [Indexed: 01/28/2023] Open
Abstract
Viral protein R (Vpr) encoded by HIV-1 is a facultative inducer of apoptosis. When added to intact cells or purified mitochondria, micromolar and submicromolar doses of synthetic Vpr cause a rapid dissipation of the mitochondrial transmembrane potential (DeltaPsi(m)), as well as the mitochondrial release of apoptogenic proteins such as cytochrome c or apoptosis inducing factor. The same structural motifs relevant for cell killing are responsible for the mitochondriotoxic effects of Vpr. Both mitochondrial and cytotoxic Vpr effects are prevented by Bcl-2, an inhibitor of the permeability transition pore complex (PTPC). Coincubation of purified organelles revealed that nuclear apoptosis is only induced by Vpr when mitochondria are present yet can be abolished by PTPC inhibitors. Vpr favors the permeabilization of artificial membranes containing the purified PTPC or defined PTPC components such as the adenine nucleotide translocator (ANT) combined with Bax. Again, this effect is prevented by addition of recombinant Bcl-2. The Vpr COOH terminus binds purified ANT, as well as a molecular complex containing ANT and the voltage-dependent anion channel (VDAC), another PTPC component. Yeast strains lacking ANT or VDAC are less susceptible to Vpr-induced killing than control cells yet recover Vpr sensitivity when retransfected with yeast ANT or human VDAC. Hence, Vpr induces apoptosis via a direct effect on the mitochondrial PTPC.
Collapse
Affiliation(s)
- Etienne Jacotot
- Centre National de la Recherche Scientifique, F-94801 Villejuif, France
| | - Luigi Ravagnan
- Centre National de la Recherche Scientifique, F-94801 Villejuif, France
| | - Markus Loeffler
- Centre National de la Recherche Scientifique, F-94801 Villejuif, France
| | - Karine F. Ferri
- Centre National de la Recherche Scientifique, F-94801 Villejuif, France
| | | | - Naoufal Zamzami
- Centre National de la Recherche Scientifique, F-94801 Villejuif, France
| | - Paola Costantini
- Centre National de la Recherche Scientifique, F-94801 Villejuif, France
| | - Sabine Druillennec
- Unité de Pharmacochimie Moléculaire et Structurale, Institut National de la Santé et de Recherche Médicale (INSERM) U266, CNRS UMR 860, Université René Descartes (Paris V), 75006 Paris, France
| | - Johan Hoebeke
- Institut de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, 67084 Strasbourg, France
| | - Jean Paul Briand
- Institut de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, 67084 Strasbourg, France
| | | | - Eric Daugas
- Centre National de la Recherche Scientifique, F-94801 Villejuif, France
| | - Santos A. Susin
- Centre National de la Recherche Scientifique, F-94801 Villejuif, France
| | - Denis Cointe
- Laboratoire de Virologie et Immunologie, Hopital Antoine Beclère, 92141 Clamart, France
| | - Zhi Hua Xie
- The Burnham Institute, La Jolla, California 92037
| | - John C. Reed
- The Burnham Institute, La Jolla, California 92037
| | - Bernard P. Roques
- Unité de Pharmacochimie Moléculaire et Structurale, Institut National de la Santé et de Recherche Médicale (INSERM) U266, CNRS UMR 860, Université René Descartes (Paris V), 75006 Paris, France
| | - Guido Kroemer
- Centre National de la Recherche Scientifique, F-94801 Villejuif, France
| |
Collapse
|
437
|
Van Golen CM, Feldman EL. Insulin-like growth factor I is the key growth factor in serum that protects neuroblastoma cells from hyperosmotic-induced apoptosis. J Cell Physiol 2000; 182:24-32. [PMID: 10567913 DOI: 10.1002/(sici)1097-4652(200001)182:1<24::aid-jcp3>3.0.co;2-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Neuroblastoma is a childhood tumor of the peripheral nervous system that remains largely uncurable by conventional methods. Mannitol induces apoptosis in neuroblastoma cell types and insulin-like growth factor I (IGF-I) protects these cells from hyperosmotic-induced apoptosis by affecting apoptosis-regulatory proteins. In the current study, we investigate factors that enable SH-SY5Y neuroblastoma cells to survive in the presence of an apoptotic stimulus. When SH-SY5Y cells are exposed to high mannitol concentrations, more than 60% of the cells are apoptotic within 48 h. Normal CS prevents hyperosmotic-induced apoptosis in a dose-dependent manner, with 0.6% CS protecting 50% of the cells, and 3% CS rescuing more than 70% of the cells from apoptosis. Serum also delays the commitment point for SH-SY5Y cells from 9 h to 35 h. A survey of several growth factors, including epidermal growth factor (EGF), platelet-derived growth factor (PDGF), nerve growth factor (NGF), fibroblast growth factor (FGF), and IGF-I reveals that IGF-I is a component of serum necessary for protection of neuroblastoma cells from death. Mitochondrial membrane depolarization occurs in greater than 40% of the cells after mannitol exposure and caspase-3 activation is increased in high mannitol conditions after 9 h. IGF-I blocks both the mitochondrial membrane depolarization and caspase-3 activation normally induced by hyperosmotic treatment in neuroblastoma cells. Our results suggest that (1) IGF-I is a key factor in serum necessary for protection from death and (2) IGF-I acts upstream from the mitochondria and the caspases to prevent apoptosis in human neuroblastoma.
Collapse
Affiliation(s)
- C M Van Golen
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
438
|
Budihardjo I, Oliver H, Lutter M, Luo X, Wang X. Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol 1999; 15:269-90. [PMID: 10611963 DOI: 10.1146/annurev.cellbio.15.1.269] [Citation(s) in RCA: 1916] [Impact Index Per Article: 76.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Caspase activation plays a central role in the execution of apoptosis. The key components of the biochemical pathways of caspase activation have been recently elucidated. In this review, we focus on the two most well-studied pathways of caspase activation: the cell surface death receptor pathway and the mitochondria-initiated pathway. In the cell surface death receptor pathway, activation of caspase-8 following its recruitment to the death-inducing signaling complex (DISC) is the critical event that transmits the death signal. This event is regulated at several different levels by various viral and mammalian proteins. Activated caspase-8 can activate downstream caspases by direct cleavage or indirectly by cleaving Bid and inducing cytochrome c release from the mitochondria. In the mitochondrial-initiated pathway, caspase activation is triggered by the formation of a multimeric Apaf-1/cytochrome c complex that is fully functional in recruiting and activating procaspase-9. Activated caspase-9 will then cleave and activate downstream caspases such as caspase-3, -6, and -7. This pathway is regulated at several steps, including the release of cytochrome c from the mitochondria, the binding and hydrolysis of dATP/ATP by Apaf-1, and the inhibition of caspase activation by the proteins that belong to the inhibitors of apoptosis (IAP).
Collapse
Affiliation(s)
- I Budihardjo
- Howard Hughes Medical Institute, Dallas, Texas, USA
| | | | | | | | | |
Collapse
|
439
|
Bauer MK, Schubert A, Rocks O, Grimm S. Adenine nucleotide translocase-1, a component of the permeability transition pore, can dominantly induce apoptosis. J Cell Biol 1999; 147:1493-502. [PMID: 10613907 PMCID: PMC2174250 DOI: 10.1083/jcb.147.7.1493] [Citation(s) in RCA: 218] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/1999] [Accepted: 11/09/1999] [Indexed: 12/17/2022] Open
Abstract
Here, we describe the isolation of adenine nucleotide translocase-1 (ANT-1) in a screen for dominant, apoptosis-inducing genes. ANT-1 is a component of the mitochondrial permeability transition complex, a protein aggregate connecting the inner with the outer mitochondrial membrane that has recently been implicated in apoptosis. ANT-1 expression led to all features of apoptosis, such as phenotypic alterations, collapse of the mitochondrial membrane potential, cytochrome c release, caspase activation, and DNA degradation. Both point mutations that impair ANT-1 in its known activity to transport ADP and ATP as well as the NH(2)-terminal half of the protein could still induce apoptosis. Interestingly, ANT-2, a highly homologous protein could not lead to cell death, demonstrating the specificity of the signal for apoptosis induction. In contrast to Bax, a proapoptotic Bcl-2 gene, ANT-1 was unable to elicit a form of cell death in yeast. This and the observed repression of apoptosis by the ANT-1-interacting protein cyclophilin D suggest that the suicidal effect of ANT-1 is mediated by specific protein-protein interactions within the permeability transition pore.
Collapse
Affiliation(s)
| | - Alexis Schubert
- Max-Planck-Institute for Biochemistry, 82152 Martinsried, Germany
| | - Oliver Rocks
- Max-Planck-Institute for Biochemistry, 82152 Martinsried, Germany
| | - Stefan Grimm
- Max-Planck-Institute for Biochemistry, 82152 Martinsried, Germany
| |
Collapse
|
440
|
Apoptosis regulating proteins as targets of therapy for haematological malignancies. Expert Opin Investig Drugs 1999; 8:2027-2057. [PMID: 11139839 DOI: 10.1517/13543784.8.12.2027] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Most chemotherapeutic agents used in the treatment of haematological malignancies cause cell death by inducing apoptosis through undefined means. The discovery of the proteins involved in apoptosis and the description of apoptotic pathways suggest new potential targets for therapeutic intervention. Both 'intrinsic' and 'extrinsic' pathways can be activated separately, but activation of caspases appears central to most apoptotic pathways. Novel approaches attempt to induce apoptosis by directly targeting a portion of an apoptotic pathway. Agents that trigger signalling of Fas or tumour necrosis factor- (TNF-) related apoptosis inducing ligand (TRAIL) receptor seek to induce the extrinsic pathway at the cell surface. The BCL-2 family of proteins seems central to the regulation of those apoptotic pathways that involve mitochondrial sequestration or the release of cytochrome c, with subsequent activation of Apaf-1, caspase-9 and caspase-3. The activity of this family may depend upon both the phosphorylation state of different members and the relative level of pro- and anti-apoptotic members. New agents such as the staurosporine analogue UCN-01 and bryostatin are thought to affect apoptosis induction by altering BCL-2 phosphorylation. Others, such as BCL-2 antisense and ATRA attempt to modulate the protein levels to promote apoptosis. Direct activation of caspase-3 is a probable target, but as yet no agent with this direct function is in trial. Clinical trials of several agents have been completed or are underway. It is likely that agents that target particular points in apoptosis pathways will have antileukaemia/lymphoma activity, however, the optimal utilisation may involve combination with other more conventional agents that also activate apoptosis.
Collapse
|
441
|
Hortelano S, Alvarez AM, Boscá L. Nitric oxide induces tyrosine nitration and release of cytochrome c preceding an increase of mitochondrial transmembrane potential in macrophages. FASEB J 1999; 13:2311-7. [PMID: 10593878 DOI: 10.1096/fasebj.13.15.2311] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Treatment of elicited peritoneal macrophages or the macrophage cell line RAW 264.7 with high concentrations of nitric oxide donors is followed by apoptotic cell death. Analysis of the changes in the mitochondrial transmembrane potential (DeltaPsi(m)) with specific fluorescent probes showed a rapid and persistent increase of DeltaPsi(m), a potential that usually decreases in cells undergoing apoptosis through mitochondrial-dependent mechanisms. Using confocal microscopy, the release of cytochrome c from the mitochondria to the cytosol was characterized as an early event preceding the rise of DeltaPsi(m). The cytochrome c from cells treated with nitric oxide donors was modified chemically, probably through the formation of nitrotyrosine residues, suggesting the synthesis of peroxynitrite in the mitochondria. These results indicate that nitric oxide-dependent apoptosis in macrophages occurs in the presence of a sustained increase of DeltaPsi(m), and that the chemical modification and release of cytochrome c from the mitochondria precede the changes of DeltaPsi(m).-Hortelano, S., Alvarez, A. M., Boscá, L. Nitric oxide induces tyrosine nitration and release of cytochrome c preceding an increase of mitochondrial transmembrane potential in macrophages.
Collapse
Affiliation(s)
- S Hortelano
- Instituto de Bioquímica (Centro Mixto CSIC-UCM) Universidad Complutense, 28040 Madrid, Spain
| | | | | |
Collapse
|
442
|
Vander Heiden MG, Thompson CB. Bcl-2 proteins: regulators of apoptosis or of mitochondrial homeostasis? Nat Cell Biol 1999; 1:E209-16. [PMID: 10587660 DOI: 10.1038/70237] [Citation(s) in RCA: 501] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Programmed cell death (apoptosis) is used by multicellular organisms during development and to maintain homeostasis within mature tissues. One of the first genes shown to regulate apoptosis was bcl-2. Subsequently, a number of Bcl-2-related proteins have been identified. Despite overwhelming evidence that Bcl-2 proteins are evolutionarily conserved regulators of apoptosis, their precise biochemical function remains controversial. Three biochemical properties of Bcl-2 proteins have been identified: their ability to localize constitutively and/or inducibly to the outer mitochondrial, outer nuclear and endoplasmic reticular membranes, their ability to form heterodimers with proteins bearing an amphipathic helical BH3 domain, and their ability to form ion-conducting channels in synthetic membranes. The discovery that mitochondria can play a key part in the induction of apoptosis has focused attention on the role that Bcl-2 proteins may have in regulating either mitochondrial physiology or mitochondria-dependent caspase activation. Here we attempt to synthesize our current understanding of the part played by mitochondria in apoptosis with a consideration of how Bcl-2 proteins might control cell death through an ability to regulate mitochondrial physiology.
Collapse
Affiliation(s)
- M G Vander Heiden
- Committee on Immunology, University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
443
|
Mitochondrial permeability in neuronal death: possible relevance to the pathogenesis of Parkinson's disease. Parkinsonism Relat Disord 1999; 5:221-9. [DOI: 10.1016/s1353-8020(99)00041-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
444
|
Abstract
Cyclophilins are proteins which are remarkably conserved through evolution; moreover they have been found in every possible existing organism, which indicates their fundamental importance. Due to their enzymatic properties, multiplicity, cellular localization and role in protein folding they belong to the group of proteins termed molecular chaperones. All the proteins of the cyclophilin family possess enzymatic peptidyl-prolyl isomerase activity (PPI-ase), which is essential to protein folding in vivo. Recently PPI-ase activity was suggested as playing a role in regulation of transcription and differentiation. However, not all cyclophilin functions are explained by PPI-ase activity. For instance, one of the cyclophilins plays a regulatory role in the heat shock response and the mitochondrial cyclophilin (Cyclophilin D) is an integral part of the mitochondrial permeability transition complex, which is regarded as having a crucial role in mechanisms of cell death. In support of a role in the stress response, the expression of certain cyclophilins has recently been shown to be up-regulated under various stressful conditions. Current evidence of functional involvement of cyclophilins in various intracellular pathways is reviewed along with the indications that cyclophilin D (Cyp D) represents a crucial part of the mitochondrial permeability transition pore, which is detrimental in apoptotic and necrotic cell death. This review does not attempt to cover all the existing information related to cyclophilin family of proteins, but focus on the existing evidence of the involvement of these proteins in the intracellular stress response.
Collapse
Affiliation(s)
- L Andreeva
- Northwick Park Institute for Medical Research, St Thomas's Hospital, London, UK.
| | | | | |
Collapse
|
445
|
Liu G, Kleine L, Hébert RL. Advances in the signal transduction of ceramide and related sphingolipids. Crit Rev Clin Lab Sci 1999; 36:511-73. [PMID: 10656539 DOI: 10.1080/10408369991239240] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Recently, the sphingolipid metabolites ceramide, sphingosine, ceramide 1-P, and sphingosine 1-P have been implicated as second messengers involved in many different cellular functions. Publications on this topic are appearing at a rapidly increasing rate and new developments in this field are also appearing rapidly. It is thus important to summarize the results obtained from many different laboratories and from different fields of research to obtain a clearer picture of the importance of sphingolipid metabolites. This article reviews the studies from the last few years and includes the effects of a variety of extracellular agents on sphingolipid signal transduction pathways in different tissues and cells and on the mechanisms of regulation. Sphingomyelin exists in a number of functionally distinct pools and is composed of distinct molecular species. Sphingomyelin metabolites may be formed by many different pathways. For example, the generation of ceramide from sphingomyelin can be catalyzed by at least five different sphingomyelinases. A large variety of stimuli can induce the generation of ceramide, leading to activation or inhibition of various cellular events such as proliferation, differentiation, apoptosis, and inflammation. The effect of ceramide on these physiological processes is due to its many different downstream targets. It can activate ceramide-activated protein kinases and ceramide-activated protein phosphatases. It also activates or inhibits PKCs, PLD, PLA2, PC-PLC, nitric oxide synthase, and the ERK and SAPK/JNK signaling cascades. Ceramide activates or inhibits transcription factors, modulates calcium homeostasis and interacts with the retinoblastoma protein to regulate cell cycle progression. Most of the work in this field has involved the study of ceramide effects, but the roles of the other three sphingomyelin metabolites is now attracting much attention. The complex interactions between signaling components and ceramide and the controls regulating these interactions are now being identified and are presented in this review.
Collapse
Affiliation(s)
- G Liu
- Department of Cellular and Molecular Medicine, University of Ottawa, Ontario, Canada
| | | | | |
Collapse
|
446
|
|
447
|
Soltys BJ, Gupta RS. Mitochondrial proteins at unexpected cellular locations: export of proteins from mitochondria from an evolutionary perspective. INTERNATIONAL REVIEW OF CYTOLOGY 1999; 194:133-96. [PMID: 10494626 DOI: 10.1016/s0074-7696(08)62396-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Researchers in a wide variety of unrelated areas studying functions of different proteins are unexpectedly finding that their proteins of interest are actually mitochondrial proteins, although functions would appear to be extramitochondrial. We review the leading current examples of mitochondrial macromolecules indicated to be also present outside of mitochondria that apparently exit from mitochondria to arrive at their destinations. Mitochondrial chaperones, which have been implicated in growth and development, autoimmune diseases, cell mortality, antigen presentation, apoptosis, and resistance to antimitotic drugs, provide some of the best studied examples pointing to roles for mitochondria and mitochondrial proteins in diverse cellular phenomena. To explain the observations, we propose that specific export mechanisms exist by which certain proteins exit mitochondria, allowing these proteins to have additional functions at specific extramitochondrial sites. Several possible mechanisms by which mitochondrial proteins could be exported are discussed. Gram-negative proteobacteria, from which mitochondria evolved, contain a number of different mechanisms for protein export. It is likely that mitochondria either retained or evolved export mechanisms for certain specific proteins.
Collapse
Affiliation(s)
- B J Soltys
- Department of Biochemistry, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
448
|
Abstract
This article reviews the involvement of the mitochondrial permeability transition pore in necrotic and apoptotic cell death. The pore is formed from a complex of the voltage-dependent anion channel (VDAC), the adenine nucleotide translocase and cyclophilin-D (CyP-D) at contact sites between the mitochondrial outer and inner membranes. In vitro, under pseudopathological conditions of oxidative stress, relatively high Ca2+ and low ATP, the complex flickers into an open-pore state allowing free diffusion of low-Mr solutes across the inner membrane. These conditions correspond to those that unfold during tissue ischaemia and reperfusion, suggesting that pore opening may be an important factor in the pathogenesis of necrotic cell death following ischaemia/reperfusion. Evidence that the pore does open during ischaemia/reperfusion is discussed. There are also strong indications that the VDAC-adenine nucleotide translocase-CyP-D complex can recruit a number of other proteins, including Bax, and that the complex is utilized in some capacity during apoptosis. The apoptotic pathway is amplified by the release of apoptogenic proteins from the mitochondrial intermembrane space, including cytochrome c, apoptosis-inducing factor and some procaspases. Current evidence that the pore complex is involved in outer-membrane rupture and release of these proteins during programmed cell death is reviewed, along with indications that transient pore opening may provoke 'accidental' apoptosis.
Collapse
|
449
|
Abstract
Each day, approximately 50 to 70 billion cells perish in the average adult because of programmed cell death (PCD). Cell death in self-renewing tissues, such as the skin, gut, and bone marrow, is necessary to make room for the billions of new cells produced daily. So massive is the flux of cells through our bodies that, in a typical year, each of us will produce and, in parallel, eradicate a mass of cells equal to almost our entire body weight. The morphologic ritual cells go through when experiencing PCD has been termed apoptosis and is executed by a family of intracellular proteases, called caspases. Unlike accidental cell deaths caused by infarction and trauma, these physiologic deaths culminate in fragmentation of cells into membrane-encased bodies which are cleared through phagocytosis by neighboring cells without inciting inflammatory reactions or tissue scarring. Defects in the processes controlling PCD can extend cell life span, contributing to neoplastic cell expansion independently of cell division. Moreover, failures in normal apoptosis pathways contribute to carcinogenesis by creating a permissive environment for genetic instability and accumulation of gene mutations, promoting resistance to immune-based destruction, allowing disobeyance of cell cycle checkpoints that would normally induce apoptosis, facilitating growth factor/hormone-independent cell survival, supporting anchorage-independent survival during metastasis, reducing dependence on oxygen and nutrients, and conferring resistance to cytotoxic anticancer drugs and radiation. Elucidation of the genes that constitute the core machinery of the cell death pathway has provided new insights into tumor biology, revealing novel strategies for combating cancer.
Collapse
Affiliation(s)
- J C Reed
- The Burnham Institute, La Jolla, CA 92037, USA
| |
Collapse
|
450
|
Sugrue MM, Wang Y, Rideout HJ, Chalmers-Redman RM, Tatton WG. Reduced mitochondrial membrane potential and altered responsiveness of a mitochondrial membrane megachannel in p53-induced senescence. Biochem Biophys Res Commun 1999; 261:123-30. [PMID: 10405334 DOI: 10.1006/bbrc.1999.0984] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There is accumulating evidence that mitochondrial membrane potential (DeltaPsi(M)) is reduced in aged cells. In addition, a decrease of DeltaPsi(M) has been shown to be an early event in many forms of apoptosis. Here we use a mitochondrial potentiometric dye with in situ laser scanning confocal microscopic (LSCM) imaging to demonstrate that DeltaPsi(M) is dramatically decreased in both the p53-overexpressing, senescent EJ tumor cells and in pre-apoptotic PC12 cells compared to controls. Treatment with cyclosporin A (CSA), which facilitates closure of the mitochondrial permeability transition pore (PTP), was able to reverse the decrease in DeltaPsi(M) in pre-apoptotic PC12 cells but not in the senescent EJ-p53 cells. The capacity to prevent dissipation of DeltaPsi(M) in response to agents that facilitate PTP closure may differentiate cells entering apoptosis from those participating in senescence. Therefore, regulation of the closure of the mitochondrial PTP in the presence of decreased DeltaPsi(M) may be a decisional checkpoint in distinguishing between growth arrest pathways.
Collapse
Affiliation(s)
- M M Sugrue
- Department of Pediatrics, Division of Hematology/Oncology, Department of Neurology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, New York, 10029-6574, USA.
| | | | | | | | | |
Collapse
|