401
|
Development of a Precision Medicine Workflow in Hematological Cancers, Aalborg University Hospital, Denmark. Cancers (Basel) 2020; 12:cancers12020312. [PMID: 32013121 PMCID: PMC7073219 DOI: 10.3390/cancers12020312] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/10/2020] [Accepted: 01/27/2020] [Indexed: 12/17/2022] Open
Abstract
Within recent years, many precision cancer medicine initiatives have been developed. Most of these have focused on solid cancers, while the potential of precision medicine for patients with hematological malignancies, especially in the relapse situation, are less elucidated. Here, we present a demographic unbiased and observational prospective study at Aalborg University Hospital Denmark, referral site for 10% of the Danish population. We developed a hematological precision medicine workflow based on sequencing analysis of whole exome tumor DNA and RNA. All steps involved are outlined in detail, illustrating how the developed workflow can provide relevant molecular information to multidisciplinary teams. A group of 174 hematological patients with progressive disease or relapse was included in a non-interventional and population-based study, of which 92 patient samples were sequenced. Based on analysis of small nucleotide variants, copy number variants, and fusion transcripts, we found variants with potential and strong clinical relevance in 62% and 9.5% of the patients, respectively. The most frequently mutated genes in individual disease entities were in concordance with previous studies. We did not find tumor mutational burden or micro satellite instability to be informative in our hematologic patient cohort.
Collapse
|
402
|
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed cancer. This review gives an overview of the current knowledge of molecular mechanisms of colorectal carcinogenesis and the role of molecular testing in the management of CRC. The majority of CRCs arise from precursor lesions such as adenoma, transforming to adenocarcinoma. Three molecular carcinogenesis pathways have been identified; (1) chromosomal instability, (2) microsatellite instability (MSI), and (3) CpG island methylator phenotype, each account for ~85%, 15%, and 17%, respectively. Evaluation of MSI status, extended RAS mutation analysis, and BRAF mutation analysis are recommended by the guideline published by joint effort from professional societies. MSI testing is important for identification of Lynch syndrome patients and prognostic and predictive markers. Extended RAS testing is an important predictive marker for antiepidermal growth factor receptor therapy. BRAF p.V600 mutation status can be used as prognostic marker, but not predictive marker for antiepidermal growth factor receptor therapies. Emerging technologies utilizing high throughput sequencing have introduced novel biomarkers and testing strategies. Tumor mutation burden predicts immunotherapy response in addition to MSI status. Liquid biopsy can be utilized when adequate tissue sample is not available or for monitoring therapy response. However, assay standardization and guidelines and recommendations for utilization of these assay will be needed. The advancement in CRC research and technologies will allow better prognostication and therapy stratification for the management of patients with CRCs.
Collapse
|
403
|
Tella SH, Kommalapati A, Borad MJ, Mahipal A. Second-line therapies in advanced biliary tract cancers. Lancet Oncol 2020; 21:e29-e41. [DOI: 10.1016/s1470-2045(19)30733-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/14/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023]
|
404
|
Pietrantonio F, Randon G, Romagnoli D, Di Donato S, Benelli M, de Braud F. Biomarker-guided implementation of the old drug temozolomide as a novel treatment option for patients with metastatic colorectal cancer. Cancer Treat Rev 2020; 82:101935. [DOI: 10.1016/j.ctrv.2019.101935] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 12/21/2022]
|
405
|
Radosevich JA, Babich M. Labyrinthin, The Tumor Marker Recognized By MCA 44-3A6: A Case For Pan-Tumor Markers As Targets To Treat Cancer. Onco Targets Ther 2019; 12:9351-9354. [PMID: 31807015 PMCID: PMC6844151 DOI: 10.2147/ott.s220445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 10/04/2019] [Indexed: 11/23/2022] Open
Abstract
A paradigm shift is currently underway on the relationship between cancer treatment markers and therapies. Labyrinthin is a prime example of such a marker because it is a pan-cancer target for adenocarcinomas. This movement supports the idea that we must change our thinking from various cancer types (eg, lung, breast, colon) to “cancer arising” in a given tissue or organ. In doing so, this would further support the efforts toward pan-treatments rather than organ-specific treatments.
Collapse
Affiliation(s)
- James A Radosevich
- LabyRx Immunologic Therapeutics (USA) Limited, Sacramento, California, USA
| | - Michael Babich
- LabyRx Immunologic Therapeutics (USA) Limited, Sacramento, California, USA
| |
Collapse
|
406
|
Treatment with checkpoint inhibitors in a metastatic colorectal cancer patient with molecular and immunohistochemical heterogeneity in MSI/dMMR status. J Immunother Cancer 2019; 7:297. [PMID: 31703605 PMCID: PMC6842181 DOI: 10.1186/s40425-019-0788-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/23/2019] [Indexed: 01/25/2023] Open
Abstract
Background Analysis of deficiency in DNA mismatch repair (dMMR) is currently considered a standard molecular test in all patients with colorectal cancer (CRC) for its implications in screening, prognosis and prediction of benefit from immune checkpoint inhibitors. While the molecular heterogeneity of CRC has been extensively studied in recent years, specific data on dMMR status are lacking, and its clinical consequences are unknown. Case presentation We report the case of a metastatic CRC (mCRC) patient with immunohistochemical and molecular heterogeneity in dMMR/microsatellite instability status in the primary tumour. The patient was treated with nivolumab plus ipilimumab and achieved a deep and lasting response with clear clinical benefit. Whole-exome sequencing and RNA-seq data are reported to support the evidence for molecular heterogeneity. Re-biopsy at the time of progression ruled out the selection of MMR proficient clones as an escape mechanism. A large single-institution retrospective dataset was interrogated to further explore the real incidence of heterogeneity in its different presentations. Conclusions The present case supports the efficacy of immune checkpoint inhibition in mCRC with heterogeneity in MMR/microsatellite instability status. Clinical issues that may arise in these rare patients are discussed in detail.
Collapse
|
407
|
Wu Y, Xu J, Du C, Wu Y, Xia D, Lv W, Hu J. The Predictive Value of Tumor Mutation Burden on Efficacy of Immune Checkpoint Inhibitors in Cancers: A Systematic Review and Meta-Analysis. Front Oncol 2019; 9:1161. [PMID: 31750249 PMCID: PMC6848266 DOI: 10.3389/fonc.2019.01161] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/17/2019] [Indexed: 12/22/2022] Open
Abstract
Background: Despite an increasing understanding about tumor mutation burden (TMB) in cancer immunity and cancer immunotherapy, the comprehensive cognition between TMB and efficiency of immune checkpoint inhibitors (ICIs) is still lacking. A systematic review and meta-analysis was conducted to evaluate the predictive value of TMB on efficacy of ICIs. Methods: Systematic literature search was conducted on PubMed, EMBASE, Web of Science and Cochrane Library up to June 16, 2019. Pooled odds ratio (OR) of objective response rate (ORR), hazard ratio (HR) of progression-free survival (PFS) and overall survival (OS) were estimated by inverse variance weighted fixed-effects model (I 2 ≤ 50%) or DerSimonian-Laird random-effects model (I 2 > 50%). In addition, heterogeneity analysis, sensitivity analysis, publication bias and subgroup analysis were conducted. Moreover, fractional polynomial regression was conducted to investigate the dose-response relationship between TMB cutoffs and efficacy of ICIs. Furthermore, we assessed ORR by TMB and programmed cell death ligand 1 (PD-L1) expression after layering each other in studies which the two could be both acquired. Results: Three thousand six hundred fifty-seven records were retrieved through database searching, and 29 studies with 4,431 patients were finally included in the meta-analysis. TMB high group had significantly improved ORR (pooled OR 3.31, 95% CI 2.61, 4.19, P < 0.001), PFS (pooled HR 0.59, 95% CI 0.49, 0.71, P < 0.001) and OS (pooled HR 0.68, 95% CI 0.53, 0.89, P = 0.004). Sensitivity analyses illustrated the results were stable, and publication bias was identified in ORR. Subgroup analyses showed the predictive value of TMB was significant in non-small-cell lung cancer (except for the OS) and melanoma. In addition, heterogeneity was substantial in targeted next generation sequencing group but tiny in whole exome sequencing group. Furthermore, TMB and PD-L1 expression were capable to predict improved ORR of ICIs after stratification of each other, with tiny heterogeneity. Conclusions: High tumor mutation burden predicted improved efficacy of immune checkpoint inhibitors in cancers, and targeted next generation sequencing for estimating tumor mutation burden in clinic should be standardized to eliminate heterogeneity in the future. Moreover, tumor mutation burden and programmed cell death ligand 1 expression were independent factors on predicting efficacy of immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Yongfeng Wu
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jinming Xu
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chengli Du
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yihua Wu
- Department of Toxicology, School of Public Health, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Dajing Xia
- Department of Toxicology, School of Public Health, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wang Lv
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jian Hu
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
408
|
Sahin IH, Akce M, Alese O, Shaib W, Lesinski GB, El-Rayes B, Wu C. Immune checkpoint inhibitors for the treatment of MSI-H/MMR-D colorectal cancer and a perspective on resistance mechanisms. Br J Cancer 2019; 121:809-818. [PMID: 31607751 PMCID: PMC6889302 DOI: 10.1038/s41416-019-0599-y] [Citation(s) in RCA: 228] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/01/2019] [Accepted: 09/16/2019] [Indexed: 12/13/2022] Open
Abstract
Metastatic colorectal cancer (CRC) with a mismatch repair-deficiency (MMR-D)/microsatellite instability-high (MSI-H) phenotype carries unique characteristics such as increased tumour mutational burden and tumour-infiltrating lymphocytes. Studies have shown a sustained clinical response to immune checkpoint inhibitors with dramatic clinical improvement in patients with MSI-H/MMR-D CRC. However, the observed response rates range between 30% and 50% suggesting the existence of intrinsic resistance mechanisms. Moreover, disease progression after an initial positive response to immune checkpoint inhibitor treatment points to acquired resistance mechanisms. In this review article, we discuss the clinical trials that established the efficacy of immune checkpoint inhibitors in patients with MSI-H/MMR-D CRC, consider biomarkers of the immune response and elaborate on potential mechanisms related to intrinsic and acquired resistance. We also provide a perspective on possible future therapeutic approaches that might improve clinical outcomes, particularly in patients with actionable resistance mechanisms.
Collapse
Affiliation(s)
- Ibrahim Halil Sahin
- Emory University School of Medicine, Winship Cancer Institute, Atlanta, USA.
| | - Mehmet Akce
- Emory University School of Medicine, Winship Cancer Institute, Atlanta, USA
| | - Olatunji Alese
- Emory University School of Medicine, Winship Cancer Institute, Atlanta, USA
| | - Walid Shaib
- Emory University School of Medicine, Winship Cancer Institute, Atlanta, USA
| | - Gregory B Lesinski
- Emory University School of Medicine, Winship Cancer Institute, Atlanta, USA
| | - Bassel El-Rayes
- Emory University School of Medicine, Winship Cancer Institute, Atlanta, USA
| | - Christina Wu
- Emory University School of Medicine, Winship Cancer Institute, Atlanta, USA
| |
Collapse
|
409
|
Jácome AA, Eng C. Role of immune checkpoint inhibitors in the treatment of colorectal cancer: focus on nivolumab. Expert Opin Biol Ther 2019; 19:1247-1263. [DOI: 10.1080/14712598.2019.1680636] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Alexandre A. Jácome
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cathy Eng
- Gastrointestinal Oncology department, Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| |
Collapse
|
410
|
Takada K, Sugita S, Murase K, Kikuchi T, Oomori G, Ito R, Hayasaka N, Miyanishi K, Iyama S, Ikeda H, Kobune M, Emori M, Kato J, Hasegawa T. Exceptionally rapid response to pembrolizumab in a SMARCA4-deficient thoracic sarcoma overexpressing PD-L1: A case report. Thorac Cancer 2019; 10:2312-2315. [PMID: 31617320 PMCID: PMC6885443 DOI: 10.1111/1759-7714.13215] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 09/20/2019] [Indexed: 11/30/2022] Open
Abstract
SMARCA4-deficient thoracic sarcoma (SMARCA4-DTS) is a new clinical entity characterized by SMARCA4 inactivation and has a dismal prognosis because of rapid growth. Effective treatments for SMARCA4-DTS have not yet been developed. Most recently, anti-programmed cell death 1 receptor (PD-1) blockade has been effective for SMARCA4-deficient lung cancer and malignant rhabdoid tumor-like tumors. Here, we describe a patient with SMARCA4-DTC who experienced a marked response to the administration of pembrolizumab. A 70-year-old female was referred to our department for treatment of SMARCA4-DTC. Positron emission tomography-computed tomography had revealed a left mediastinal tumor, peritoneal dissemination and multiple cutaneous metastases at diagnosis. Immunohistochemical analyses revealed 60% of tumor cells expressed programmed cell death ligand 1 (PD-L1). The patient was given pembrolizumab as first-line treatment. Pembrolizumab suppressed tumor growth dramatically, with only one dose leading to a partial response. Our case suggests the immunohistochemical analysis of PD-L1 expression be undertaken for patients with SMARCA4-DTS and that pembrolizumab treatment may be a promising strategy for PD-L1-positive SMARCA4-DTS.
Collapse
Affiliation(s)
- Kohichi Takada
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Shintaro Sugita
- Department of Surgical Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kazuyuki Murase
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tomoki Kikuchi
- Department of Surgical Pathology, Asahikawa Red-cross Hospital, Asahikawa, Japan
| | - Ginji Oomori
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Ryo Ito
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Naotaka Hayasaka
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Koji Miyanishi
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Satoshi Iyama
- Department of Hematology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroshi Ikeda
- Department of Hematology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masayoshi Kobune
- Department of Hematology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Makoto Emori
- Department of Orthopedic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Junji Kato
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tadashi Hasegawa
- Department of Surgical Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
411
|
Evrard C, Tachon G, Randrian V, Karayan-Tapon L, Tougeron D. Microsatellite Instability: Diagnosis, Heterogeneity, Discordance, and Clinical Impact in Colorectal Cancer. Cancers (Basel) 2019; 11:E1567. [PMID: 31618962 PMCID: PMC6826728 DOI: 10.3390/cancers11101567] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/11/2019] [Accepted: 10/13/2019] [Indexed: 12/17/2022] Open
Abstract
Tumor DNA mismatch repair (MMR) deficiency testing is important to the identification of Lynch syndrome and decision making regarding adjuvant chemotherapy in stage II colorectal cancer (CRC) and has become an indispensable test in metastatic tumors due to the high efficacy of immune checkpoint inhibitor (ICI) in deficient MMR (dMMR) tumors. CRCs greatly benefit from this testing as approximately 15% of them are dMMR but only 3% to 5% are at a metastatic stage. MMR status can be determined by two different methods, microsatellite instability (MSI) testing on tumor DNA, and immunohistochemistry of the MMR proteins on tumor tissue. Recent studies have reported a rate of 3% to 10% of discordance between these two tests. Moreover, some reports suggest possible intra- and inter-tumoral heterogeneity of MMR and MSI status. These issues are important to know and to clarify in order to define therapeutic strategy in CRC. This review aims to detail the standard techniques used for the determination of MMR and MSI status, along with their advantages and limits. We review the discordances that may arise between these two tests, tumor heterogeneity of MMR and MSI status, and possible explanations. We also discuss the strategies designed to distinguish sporadic versus germline dMMR/MSI CRC. Finally, we present new and accurate methods aimed at determining MMR/MSI status.
Collapse
Affiliation(s)
- Camille Evrard
- Department of Medical Oncology, Poitiers University Hospital, 86021 Poitiers, France.
| | - Gaëlle Tachon
- Department of Cancer biology, Poitiers University Hospital, 86021 Poitiers, France.
- Faculty of medicine, University of Poitiers, 86000 Poitiers, France.
- Laboratory of Experimental and Clinical Neuroscience, Institut national de la santé et de la recherche médicale (INSERM) 1084, F-86073 Poitiers, France.
| | - Violaine Randrian
- Faculty of medicine, University of Poitiers, 86000 Poitiers, France.
- Department of Gastroenterology, Poitiers University Hospital, 86021 Poitiers, France.
| | - Lucie Karayan-Tapon
- Department of Cancer biology, Poitiers University Hospital, 86021 Poitiers, France.
- Faculty of medicine, University of Poitiers, 86000 Poitiers, France.
- Laboratory of Experimental and Clinical Neuroscience, Institut national de la santé et de la recherche médicale (INSERM) 1084, F-86073 Poitiers, France.
| | - David Tougeron
- Department of Medical Oncology, Poitiers University Hospital, 86021 Poitiers, France.
- Faculty of medicine, University of Poitiers, 86000 Poitiers, France.
- Department of Gastroenterology, Poitiers University Hospital, 86021 Poitiers, France.
| |
Collapse
|
412
|
Zhang C, Shen L, Qi F, Wang J, Luo J. Multi-omics analysis of tumor mutation burden combined with immune infiltrates in bladder urothelial carcinoma. J Cell Physiol 2019; 235:3849-3863. [PMID: 31596511 DOI: 10.1002/jcp.29279] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/27/2019] [Indexed: 12/24/2022]
Abstract
To explore the prognosis of tumor mutation burden (TMB) and underlying relationships with tumor-infiltrating immune cells in bladder cancer (BLCA). Transcriptome profiles and somatic mutation data from The Cancer Genome Atlas database by the GDC tool. A total of 437 samples were included, consisted of 412 BLCA patients and matched 25 normal samples. Specific mutation information was summarized and illustrated in waterfall plot. Higher TMB levels revealed improved overall survival (OS) and lower tumor recurrence. We found 68 differentially expressed genes in two TMB groups and identified eight independent hub TMB-related signature. Pathway analysis suggested that differential TMB-related signature correlated with multiple cancer-related crosstalk, including cell cycle, DNA replication, cellular senescence, and p53 signaling pathway. Besides, the tumor mutation burden related signature (TMBRS) model based on eight signature possessed well predictive value with area under curve (AUC) = 0.753, and patients with higher TMBRS scores showed worse OS outcomes (p < .001). Moreover, we exhibited the inferred immune cell fractions in box plot and differential abundance of immune cells were shown in the heatmap. The Wilcoxon rank-sum test suggested that CD8+ T cell (p = .001) and memory activated CD4+ T cell (p = .004) showed higher infiltrating levels in high-TMB group, while the density of resting mast cells showed lower infiltrating level in high-TMB group (p = .016). Finally, it is significant to note that CD8+ T cell and memory activated CD4+ T cell subsets not only revealed higher infiltrating abundance in high-TMB group but correlated with prolonged OS and lower risk of tumor recurrence, respectively.
Collapse
Affiliation(s)
- Chuanjie Zhang
- Department of Urinary Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Luping Shen
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Feng Qi
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - JinCheng Wang
- Department of Hepatobiliary Surgery of Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Jun Luo
- Department of Urology, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
413
|
Guler I, Askan G, Klostergaard J, Sahin IH. Precision medicine for metastatic colorectal cancer: an evolving era. Expert Rev Gastroenterol Hepatol 2019; 13:919-931. [PMID: 31475851 DOI: 10.1080/17474124.2019.1663174] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Metastatic colorectal cancer (CRC) remains a dilemma for cancer researchers with an increasing incidence in the younger patient population. Until the last decade, limited therapeutic options were available for metastatic CRC patients leading to relatively poor clinical outcomes.Areas covered: With advances in genome sequencing technology and reductions in the cost of next-generation sequencing, molecular profiling has become more accessible for cancer researchers and clinical investigators, which has furthered our understanding of the molecular behavior of CRC. This progress has recently translated into significant advances in molecular-based therapeutics and led to the development of new target-specific agents in metastatic CRC patients. In this review article, we extensively elaborate on genomic alterations seen in CRC patients including, but not limited to, EGFR, MMR, BRAF, HER2, NTRKs, FGFR, BRCA1/2, PALB2, POLE, and POLD1 genes, all of which are potentially actionable by either an FDA-approved agent or in a clinical trial setting.Expert opinion: We strongly recommend molecular profiling in metastatic CRC patients during the early course of their disease, as this may provide therapeutic and prognostic information that can guide clinicians to practice precision medicine. Patients with potentially actionable genes should be considered for targeting agents based on molecular alterations.
Collapse
Affiliation(s)
- Irem Guler
- Department of Medicine, Baskent University School of Medicine, Ankara, Turkey
| | - Gokce Askan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jim Klostergaard
- Department of Molecular and Cellular Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Ibrahim Halil Sahin
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
414
|
Taieb J. Hereditary gastrointestinal cancers: why genetic counseling matters. Ann Oncol 2019; 30:1535-1536. [PMID: 31504125 DOI: 10.1093/annonc/mdz254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023] Open
Affiliation(s)
- J Taieb
- Department of Gastroenterology and Digestive Oncology, Georges Pompidou European Hospital, Sorbonne Paris Cité, Paris Descartes University, Paris, France.
| |
Collapse
|
415
|
The Tumor Microenvironment in Colorectal Cancer Therapy. Cancers (Basel) 2019; 11:cancers11081172. [PMID: 31416205 PMCID: PMC6721633 DOI: 10.3390/cancers11081172] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 07/26/2019] [Accepted: 08/09/2019] [Indexed: 12/13/2022] Open
Abstract
The current standard-of-care for metastatic colorectal cancer (mCRC) includes chemotherapy and anti-angiogenic or anti-epidermal growth factor receptor (EGFR) monoclonal antibodies, even though the addition of anti-angiogenic agents to backbone chemotherapy provides little benefit for overall survival. Since the approval of anti-angiogenic monoclonal antibodies bevacizumab and aflibercept, for the management of mCRC over a decade ago, extensive efforts have been devoted to discovering predictive factors of the anti-angiogenic response, unsuccessfully. Recent evidence has suggested a potential correlation between angiogenesis and immune phenotypes associated with colorectal cancer. Here, we review evidence of interactions between tumor angiogenesis, the immune microenvironment, and metabolic reprogramming. More specifically, we will highlight such interactions as inferred from our novel immune-metabolic (IM) signature, which groups mCRC into three distinct clusters, namely inflamed-stromal-dependent (IM Cluster 1), inflamed-non stromal-dependent (IM Cluster 2), and non-inflamed or cold (IM Cluster 3), and discuss the merits of the IM classification as a guide to new immune-metabolic combinatorial therapeutic strategies in mCRC.
Collapse
|