401
|
Intravenous sphingosylphosphorylcholine protects ischemic and postischemic myocardial tissue in a mouse model of myocardial ischemia/reperfusion injury. Mediators Inflamm 2011; 2010:425191. [PMID: 21274265 PMCID: PMC3022218 DOI: 10.1155/2010/425191] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 10/14/2010] [Accepted: 11/02/2010] [Indexed: 11/17/2022] Open
Abstract
HDL, through sphingosine-1-phosphate (S1P), exerts direct cardioprotective effects on ischemic myocardium. It remains unclear whether other HDL-associated sphingophospholipids have similar effects. We therefore examined if HDL-associated sphingosylphosphorylcholine (SPC) reduces infarct size in a mouse model of transient myocardial ischemia/reperfusion. Intravenously administered SPC dose-dependently reduced infarct size after 30 minutes of myocardial ischemia and 24 hours reperfusion compared to controls. Infarct size was also reduced by postischemic, therapeutical administration of SPC. Immunohistochemistry revealed reduced polymorphonuclear neutrophil recruitment to the infarcted area after SPC treatment, and apoptosis was attenuated as measured by TUNEL. In vitro, SPC inhibited leukocyte adhesion to TNFα-activated endothelial cells and protected rat neonatal cardiomyocytes from apoptosis. S1P3 was identified as the lysophospholipid receptor mediating the cardioprotection by SPC, since its effect was completely absent in S1P3-deficient mice. We conclude that HDL-associated SPC directly protects against myocardial reperfusion injury in vivo via the S1P3 receptor.
Collapse
|
402
|
Andersen AD, Bentzen BH, Salling H, Klingberg H, Kanneworff M, Grunnet M, Pedersen SF. The Cardioprotective Effect of Brief Acidic Reperfusion after Ischemia in Perfused Rat Hearts is not Mimicked by Inhibition of the Na +/H + Exchanger NHE1. Cell Physiol Biochem 2011; 28:13-24. [DOI: 10.1159/000331709] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2011] [Indexed: 01/09/2023] Open
|
403
|
Long-term Follow-up of Patients Undergoing Postconditioning During ST-Elevation Myocardial Infarction. J Cardiovasc Transl Res 2010; 4:92-8. [DOI: 10.1007/s12265-010-9252-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 11/18/2010] [Indexed: 10/18/2022]
|
404
|
Headrick JP, Peart JN, Reichelt ME, Haseler LJ. Adenosine and its receptors in the heart: regulation, retaliation and adaptation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:1413-28. [PMID: 21094127 DOI: 10.1016/j.bbamem.2010.11.016] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 11/05/2010] [Accepted: 11/07/2010] [Indexed: 10/18/2022]
Abstract
The purine nucleoside adenosine is an important regulator within the cardiovascular system, and throughout the body. Released in response to perturbations in energy state, among other stimuli, local adenosine interacts with 4 adenosine receptor sub-types on constituent cardiac and vascular cells: A(1), A(2A), A(2B), and A(3)ARs. These G-protein coupled receptors mediate varied responses, from modulation of coronary flow, heart rate and contraction, to cardioprotection, inflammatory regulation, and control of cell growth and tissue remodeling. Research also unveils an increasingly complex interplay between members of the adenosine receptor family, and with other receptor groups. Given generally favorable effects of adenosine receptor activity (e.g. improving the balance between myocardial energy utilization and supply, limiting injury and adverse remodeling, suppressing inflammation), the adenosine receptor system is an attractive target for therapeutic manipulation. Cardiovascular adenosine receptor-based therapies are already in place, and trials of new treatments underway. Although the complex interplay between adenosine receptors and other receptors, and their wide distribution and functions, pose challenges to implementation of site/target specific cardiovascular therapy, the potential of adenosinergic pharmacotherapy can be more fully realized with greater understanding of the roles of adenosine receptors under physiological and pathological conditions. This review addresses some of the major known and proposed actions of adenosine and adenosine receptors in the heart and vessels, focusing on the ability of the adenosine receptor system to regulate cell function, retaliate against injurious stressors, and mediate longer-term adaptive responses.
Collapse
Affiliation(s)
- John P Headrick
- Griffith Health Institute, Griffith University, Southport QLD, Australia.
| | | | | | | |
Collapse
|
405
|
Boengler K, Hilfiker-Kleiner D, Heusch G, Schulz R. Inhibition of permeability transition pore opening by mitochondrial STAT3 and its role in myocardial ischemia/reperfusion. Basic Res Cardiol 2010; 105:771-85. [PMID: 20960209 PMCID: PMC2978889 DOI: 10.1007/s00395-010-0124-1] [Citation(s) in RCA: 312] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 09/27/2010] [Accepted: 10/01/2010] [Indexed: 01/17/2023]
Abstract
The signal transducer and activator of transcription 3 (STAT3) contributes to cardioprotection by ischemic pre- and postconditioning. Mitochondria are central elements of cardioprotective signaling, most likely by delaying mitochondrial permeability transition pore (MPTP) opening, and STAT3 has recently been identified in mitochondria. We now characterized the mitochondrial localization of STAT3 and its impact on respiration and MPTP opening. STAT3 was mainly present in the matrix of subsarcolemmal and interfibrillar cardiomyocyte mitochondria. STAT1, but not STAT5 was also detected in mitochondria under physiological conditions. ADP-stimulated respiration was reduced in mitochondria from mice with a cardiomyocyte-specific deletion of STAT3 (STAT3-KO) versus wildtypes and in rat mitochondria treated with the STAT3 inhibitor Stattic (STAT3 inhibitory compound, 6-Nitrobenzo[b]thiophene 1,1-dioxide). Mitochondria from STAT3-KO mice and Stattic-treated rat mitochondria tolerated less calcium until MPTP opening occurred. STAT3 co-immunoprecipitated with cyclophilin D, the target of the cardioprotective agent and MPTP inhibitor cyclosporine A (CsA). However, CsA reduced infarct size to a similar extent in wildtype and STAT3-KO mice in vivo. Thus, STAT3 possibly contributes to cardioprotection by stimulation of respiration and inhibition of MPTP opening.
Collapse
Affiliation(s)
- Kerstin Boengler
- Institut für Pathophysiologie, Zentrum für Innere Medizin, Universitätsklinikum Essen, Hufelandstr. 55, 45122 Essen, Germany
| | - Denise Hilfiker-Kleiner
- Molekulare Kardiologie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Gerd Heusch
- Institut für Pathophysiologie, Zentrum für Innere Medizin, Universitätsklinikum Essen, Hufelandstr. 55, 45122 Essen, Germany
| | - Rainer Schulz
- Institut für Pathophysiologie, Zentrum für Innere Medizin, Universitätsklinikum Essen, Hufelandstr. 55, 45122 Essen, Germany
| |
Collapse
|
406
|
Ito H. The no-reflow phenomenon associated with percutaneous coronary intervention: its mechanisms and treatment. Cardiovasc Interv Ther 2010; 26:2-11. [DOI: 10.1007/s12928-010-0034-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Indexed: 11/28/2022]
|
407
|
Monassier JP, Shayne J, Sommier JM, Schultz R, Ider O. [Postconditioning in acute myocardial infarction: Primary angioplasty revisited?]. Ann Cardiol Angeiol (Paris) 2010; 59:294-305. [PMID: 20889138 DOI: 10.1016/j.ancard.2010.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 08/24/2010] [Indexed: 11/18/2022]
Abstract
Early reperfusion of ischemic myocardium is the mean to improve prognosis of acute myocardial infarction. Nevertheless, reperfusion injury due to immediate acidosis correction and subsequent Ca(2+) overload results in formation of the mitochondrial permeability transition pore. The consequence is the death of viable myocardium due to onconecrosis and apoptosis. Mechanical (Stuttering reperfusion) or pharmacological postconditioning (cyclosporine A, adenosine…) is able to prevent reperfusion injury resulting in more myocardial salvage.
Collapse
Affiliation(s)
- J-P Monassier
- Unité de cardiologie interventionnelle, fondation du Diaconat, 14, boulevard Roosevelt, 68067 Mulhouse cedex, France.
| | | | | | | | | |
Collapse
|
408
|
Translating novel strategies for cardioprotection: the Hatter Workshop Recommendations. Basic Res Cardiol 2010; 105:677-86. [PMID: 20865418 PMCID: PMC2965360 DOI: 10.1007/s00395-010-0121-4] [Citation(s) in RCA: 187] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 09/09/2010] [Accepted: 09/10/2010] [Indexed: 12/18/2022]
Abstract
Ischemic heart disease (IHD) is the leading cause of death worldwide. Novel cardioprotective strategies are therefore required to improve clinical outcomes in patients with IHD. Although a large number of novel cardioprotective strategies have been discovered in the research laboratory, their translation to the clinical setting has been largely disappointing. The reason for this failure can be attributed to a number of factors including the inadequacy of the animal ischemia–reperfusion injury models used in the preclinical cardioprotection studies and the inappropriate design and execution of the clinical cardioprotection studies. This important issue was the main topic of discussion of the UCL-Hatter Cardiovascular Institute 6th International Cardioprotection Workshop, the outcome of which has been published in this article as the “Hatter Workshop Recommendations”. These have been proposed to provide guidance on the design and execution of both preclinical and clinical cardioprotection studies in order to facilitate the translation of future novel cardioprotective strategies for patient benefit.
Collapse
|
409
|
Zhuo C, Wang Y, Wang X, Wang Y, Chen Y. Cardioprotection by ischemic postconditioning is abolished in depressed rats: role of Akt and signal transducer and activator of transcription-3. Mol Cell Biochem 2010; 346:39-47. [PMID: 20830508 DOI: 10.1007/s11010-010-0589-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2010] [Accepted: 08/28/2010] [Indexed: 11/24/2022]
Abstract
Ischemic postconditioning (IPC) represents one of the most effective cardioprotective strategies against myocardial ischemia/reperfusion. Depression is commonly present in patients with coronary heart disease. However, whether depression interferes with the cardioprotection of IPC during myocardial ischemia/reperfusion and their underlying mechanisms remain largely unknown. Isolated hearts from chronic mild stress induced-depressed rats and non-depressed rats were subjected to 30 min of regional ischemia followed by 120 min of reperfusion in the presence or absence of IPC (consisting of 6 cycles of 10 s of reperfusion and 10 s of ischemia immediately after the sustained ischemia). Myocardial infarct size, creatine kinase (CK) and cardiac troponin T (cTnT) release, cardiac function and phosphorylated AKT and signal transducer and activator of transcription-3 (STAT-3) were measured. IPC significantly prevented the hearts from myocardial ischemia/reperfusion injury by decreasing infarct size, and CK and cTnT release in coronary effluent, and improving cardiac functional recovery in non-depressed rats. However, these cardioprotective effects of IPC were not observed in depressed rats. In addition, IPC had no effects on the phosphorylation of AKT and STAT-3 at reperfusion in depressed hearts, although it markedly increased the phosphorylation of AKT and STAT-3 at reperfusion in non-depressed hearts. In conclusion, these data indicate that cardioprotection by IPC is abolished during myocardial ischemia/reperfusion in depressed rats, and the underlying mechanisms are probably related to the impaired activation of AKT and STAT-3 at reperfusion.
Collapse
Affiliation(s)
- Chuanjun Zhuo
- Department of Psychiatry, Anning Hospital of Tianjin City, No. 20 Yongping Lane, Dongli District, Tianjin, 300300, China
| | | | | | | | | |
Collapse
|
410
|
Cadenas S, Aragonés J, Landázuri MO. Mitochondrial reprogramming through cardiac oxygen sensors in ischaemic heart disease. Cardiovasc Res 2010; 88:219-28. [PMID: 20679415 DOI: 10.1093/cvr/cvq256] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Under hypoxic conditions, mitochondria can represent a threat to the cell because of their capacity to generate toxic reactive oxygen species (ROS). However, cardiomyocytes are equipped with an oxygen-sensing pathway that involves prolyl hydroxylase oxygen sensors and hypoxia-inducible factors (HIFs), which induces a tightly regulated programme to keep ischaemic mitochondrial activity under control. The aim of this review is to provide an update on the pathways leading to mitochondrial reprogramming, which occurs in the myocardium during ischaemia, with particular emphasis on those induced by HIF activation. We start by studying the mechanisms of mitochondrial damage during ischaemia and upon reperfusion, highlighting the importance of the formation of the mitochondrial permeability transition pore during reperfusion and its consequences for cardiomyocyte survival. Next, we analyse hypoxia-induced metabolic reprogramming through HIF and its important consequences for mitochondrial bioenergetics, as well as the phenomenon known as the hibernating myocardium. Subsequently, we examine the mechanisms underlying ischaemic preconditioning, focusing, in particular, on those that involve the HIF pathway, such as adenosine signalling, sub-lethal ROS generation, and nitric oxide production. Finally, the role of the mitochondrial uncoupling proteins in ischaemia tolerance is discussed.
Collapse
Affiliation(s)
- Susana Cadenas
- Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa , Diego de León 62, 28006 Madrid, Spain.
| | | | | |
Collapse
|
411
|
Lønborg J, Treiman M, Engstrøm T. Ischemic postconditioning: a clinical perspective. Interv Cardiol 2010. [DOI: 10.2217/ica.10.52] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
412
|
Brar BK, Helgeland E, Mahata SK, Zhang K, O'Connor DT, Helle KB, Jonassen AK. Human catestatin peptides differentially regulate infarct size in the ischemic-reperfused rat heart. ACTA ACUST UNITED AC 2010; 165:63-70. [PMID: 20655339 DOI: 10.1016/j.regpep.2010.07.153] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 06/29/2010] [Accepted: 07/08/2010] [Indexed: 01/06/2023]
Abstract
In acute myocardial infarction increased plasma levels of chromogranin A are correlated with decreased survival. At the human chromogranin A gene locus there are two naturally occurring amino acid substitution variants within the catestatin region, i.e. Gly³⁶⁴Ser and Pro³⁷⁰Leu, displaying differential potencies towards inhibition of nicotinic cholinergic agonist-evoked catecholamine secretion from sympathochromaffin cells and different degrees of processing from the prohormone. Here, we examine whether two of the variants and the wild type catestatin may affect the development of infarct size during ischemic reperfusion in the Langendorff rat heart model. The hearts were subjected to regional ischemia followed by reperfusion in the presence or absence of synthetic variants of human catestatin. Compared to the Gly³⁶⁴Ser variant both the wild type and Pro³⁷⁰Leu variants increased infarct size while decreasing the cardiac levels of phosphorylated Akt and two of its downstream targets, FoxO1 and BAD. In conclusion, these findings suggest that, in contrast to the Gly³⁶⁴Ser variant, wild type catestatin and the Pro³⁷⁰Leu variant (allele frequency ~0.3%) increased myocardial infarct size via a mechanism involving dephosphorylation of Akt and the two downstream targets during ischemic reperfusion in the isolated rat heart.
Collapse
|
413
|
Thielmann M, Kottenberg E, Boengler K, Raffelsieper C, Neuhaeuser M, Peters J, Jakob H, Heusch G. Remote ischemic preconditioning reduces myocardial injury after coronary artery bypass surgery with crystalloid cardioplegic arrest. Basic Res Cardiol 2010; 105:657-64. [PMID: 20495811 DOI: 10.1007/s00395-010-0104-5] [Citation(s) in RCA: 173] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 05/10/2010] [Accepted: 05/11/2010] [Indexed: 11/29/2022]
Abstract
Remote ischemic preconditioning (RIPC) with transient upper limb ischemia reduces myocardial injury in patients undergoing on-pump coronary artery bypass grafting (CABG) with cross-clamp fibrillation or blood cardioplegia for myocardial protection. Whether or not such protection is still operative when standard crystalloid cardioplegic arrest is used is uncertain. Fifty-three consecutive, non-diabetic patients with triple-vessel disease and 64 +/- 12 years of age (mean +/- SD), who underwent elective CABG surgery with crystalloid (Bretschneider) cardioplegic arrest, were allocated in a prospective, randomized, single-blinded protocol to receive either a RIPC protocol (3 cycles of 5 min transient left upper arm ischemia induced by inflating a blood pressure cuff to 200 mmHg with 5 min of reperfusion) or control, respectively, after induction of anesthesia. Cardiac troponin I (cTnI) concentration was measured preoperatively and over 72 h postoperatively, and the area under the curve (AUC) was calculated. Peak postoperative cTnI concentration was significantly reduced from 13.7 +/- 7.7 ng/mL in controls to 8.9 +/- 4.4 ng/mL in RIPC (P = 0.008). Mean cTnI concentration was significantly lower at 6, 12, 24, and 48 h after surgery (ANOVA; P < 0.0001) in the RIPC patients (N = 27) than in controls (N = 26), resulting in a 44.5% reduction of cTnI (AUC at 72 h). RIPC by repetitive inflation of a cuff around the left upper arm before surgery enhances myocardial protection in patients undergoing CABG surgery with antegrade cold crystalloid cardioplegia.
Collapse
Affiliation(s)
- Matthias Thielmann
- Department of Thoracic and Cardiovascular Surgery, West-German Heart Center Essen, University Hospital Essen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|