401
|
Zhang Y, Shimizu H, Siu KL, Mahajan A, Chen JN, Cai H. NADPH oxidase 4 induces cardiac arrhythmic phenotype in zebrafish. J Biol Chem 2014; 289:23200-23208. [PMID: 24962575 DOI: 10.1074/jbc.m114.587196] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Oxidative stress has been implicated in cardiac arrhythmia, although a causal relationship remains undefined. We have recently demonstrated a marked up-regulation of NADPH oxidase isoform 4 (NOX4) in patients with atrial fibrillation, which is accompanied by overproduction of reactive oxygen species (ROS). In this study, we investigated the impact on the cardiac phenotype of NOX4 overexpression in zebrafish. One-cell stage embryos were injected with NOX4 RNA prior to video recording of a GFP-labeled (myl7:GFP zebrafish line) beating heart in real time at 24-31 h post-fertilization. Intriguingly, NOX4 embryos developed cardiac arrhythmia that is characterized by irregular heartbeats. When quantitatively analyzed by an established LQ-1 program, the NOX4 embryos displayed much more variable beat-to-beat intervals (mean S.D. of beat-to-beat intervals was 0.027 s/beat in control embryos versus 0.038 s/beat in NOX4 embryos). Both the phenotype and the increased ROS in NOX4 embryos were attenuated by NOX4 morpholino co-injection, treatments of the embryos with polyethylene glycol-conjugated superoxide dismutase, or NOX4 inhibitors fulvene-5, 6-dimethylamino-fulvene, and proton sponge blue. Injection of NOX4-P437H mutant RNA had no effect on the cardiac phenotype or ROS production. In addition, phosphorylation of calcium/calmodulin-dependent protein kinase II was increased in NOX4 embryos but diminished by polyethylene glycol-conjugated superoxide dismutase, whereas its inhibitor KN93 or AIP abolished the arrhythmic phenotype. Taken together, our data for the first time uncover a novel pathway that underlies the development of cardiac arrhythmia, namely NOX4 activation, subsequent NOX4-specific NADPH-driven ROS production, and redox-sensitive CaMKII activation. These findings may ultimately lead to novel therapeutics targeting cardiac arrhythmia.
Collapse
Affiliation(s)
- Yixuan Zhang
- Divisions of Molecular Medicine and Cardiology, Departments of Anesthesiology and Medicine, Cardiovascular Research Laboratories, David Geffen School of Medicine at UCLA and Los Angeles, California 90095
| | - Hirohito Shimizu
- Department of Molecular, Cell and Developmental Biology, UCLA, Los Angeles, California 90095
| | - Kin Lung Siu
- Divisions of Molecular Medicine and Cardiology, Departments of Anesthesiology and Medicine, Cardiovascular Research Laboratories, David Geffen School of Medicine at UCLA and Los Angeles, California 90095
| | - Aman Mahajan
- Divisions of Molecular Medicine and Cardiology, Departments of Anesthesiology and Medicine, Cardiovascular Research Laboratories, David Geffen School of Medicine at UCLA and Los Angeles, California 90095
| | - Jau-Nian Chen
- Department of Molecular, Cell and Developmental Biology, UCLA, Los Angeles, California 90095
| | - Hua Cai
- Divisions of Molecular Medicine and Cardiology, Departments of Anesthesiology and Medicine, Cardiovascular Research Laboratories, David Geffen School of Medicine at UCLA and Los Angeles, California 90095.
| |
Collapse
|
402
|
Johnson BM, Garrity DM, Dasi LP. Quantifying function in the early embryonic heart. J Biomech Eng 2014; 135:041006. [PMID: 24231901 DOI: 10.1115/1.4023701] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 02/19/2013] [Indexed: 11/08/2022]
Abstract
Congenital heart defects arise during the early stages of development, and studies have linked abnormal blood flow and irregular cardiac function to improper cardiac morphogenesis. The embryonic zebrafish offers superb optical access for live imaging of heart development. Here, we build upon previously used techniques to develop a methodology for quantifying cardiac function in the embryonic zebrafish model. Imaging was performed using bright field microscopy at 1500 frames/s at 0.76 μm/pixel. Heart function was manipulated in a wild-type zebrafish at ∼55 h post fertilization (hpf). Blood velocity and luminal diameter were measured at the atrial inlet and atrioventricular junction (AVJ) by analyzing spatiotemporal plots. Control volume analysis was used to estimate the flow rate waveform, retrograde fractions, stroke volume, and cardiac output. The diameter and flow waveforms at the inlet and AVJ are highly repeatable between heart beats. We have developed a methodology for quantifying overall heart function, which can be applied to early stages of zebrafish development.
Collapse
|
403
|
Han Y, Zhang JP, Qian JQ, Hu CQ. Cardiotoxicity evaluation of anthracyclines in zebrafish (Danio rerio). J Appl Toxicol 2014; 35:241-52. [PMID: 24853142 DOI: 10.1002/jat.3007] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 01/12/2014] [Accepted: 02/10/2014] [Indexed: 12/14/2022]
Abstract
Drug-induced cardiotoxicity is a leading factor for drug withdrawals, and limits drug efficacy and clinical use. Therefore, new alternative animal models and methods for drug safety evaluation have been given great attention. Anthracyclines (ANTs) are widely prescribed anticancer agents that have a cumulative dose relationship with cardiotoxicity. We performed experiments to study the toxicity of ANTs in early developing zebrafish embryos, especially their effects on the heart. LC50 values for daunorubicin, pirarubicin, doxorubicin (DOX), epirubicin and DOX-liposome at 72 h post-fertilization were 122.7 μM, 111.9 μM, 31.2 μM, 108.3 μM and 55.8 μM, respectively. At the same time, zebrafish embryos were exposed to ANTs in three exposure stages and induced incomplete looping of the heart tube, pericardia edema and bradycardia in a dose-dependent manner, eventually leading to death. DOX caused the greatest heart defects in the treatment stages and its liposome reduced the effects on the heart, while daunorubicin produced the least toxicity. Genes and proteins related to heart development were also identified to be sensitive to ANT exposure and downregulated by ANTs. It revealed ANTs could disturb the heart formation and development. ANTs induced cardiotoxicity in zebrafish has similar effects in mammalian models, indicating that zebrafish may have a potential value for assessment of drug-induced developmental cardiotoxicity.
Collapse
Affiliation(s)
- Ying Han
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | | | | | | |
Collapse
|
404
|
Inhibition of the cardiac ATP-dependent potassium current by KB-R7943. Comp Biochem Physiol A Mol Integr Physiol 2014; 175:38-45. [PMID: 24845199 DOI: 10.1016/j.cbpa.2014.05.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/12/2014] [Accepted: 05/13/2014] [Indexed: 11/23/2022]
Abstract
KB-R7943 (2-[2-[4-(4-nitrobenzyloxy)phenyl]ethyl]isothiourea) was developed as a specific inhibitor of the sarcolemmal sodium-calcium exchanger (NCX) with potential experimental and therapeutic use. However, in cardiomyocytes KB-R7943 also effectively blocks several K(+) currents including the delayed rectifier, IKr, and background inward rectifier, IK1. In the present study we analyze the effects of KB-R7943 on the ATP-dependent potassium current (IKATP) recorded by whole-cell patch-clamp in ventricular cardiomyocytes from a mammal (mouse) and a fish (crucian carp). IKATP was induced by external application of a mitochondrial uncoupler CCCP (3×10(-7) M) and internal perfusion of the cell with ATP-free pipette solution. A weakly inwardly rectifying current with a large outward component, recorded in the presence of CCCP, was blocked with 10(-5) M glibenclamide by 56.1±4.6% and 56.9±3.6% in crucian carp and mouse ventricular myocytes, respectively. In fish cardiomyocytes IKATP was blocked by KB-R7943 with an IC50 value of 3.14×10(-7) M, while in mammalian cells IC50 was 2.8×10(-6) M (P<0.05). 10(-5) M KB-R7943 inhibited CCCP-induced IKATP by 99.9±0.13% and 97.5±1.2% in crucian carp and mouse ventricular myocytes, respectively. In crucian carp the IKATP is about an order of magnitude more sensitive to KB-R7943 than the background IK1, but in mammals IKATP and IK1 are almost equally sensitive to KB-R7943. Therefore, the ability of KB-R7943 to block IKATP should be taken into account together with INCX inhibition when investigating possible cardioprotective effects of this compound.
Collapse
|
405
|
Plavicki JS, Hofsteen P, Yue MS, Lanham KA, Peterson RE, Heideman W. Multiple modes of proepicardial cell migration require heartbeat. BMC DEVELOPMENTAL BIOLOGY 2014; 14:18. [PMID: 24885804 PMCID: PMC4048602 DOI: 10.1186/1471-213x-14-18] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 05/06/2014] [Indexed: 11/10/2022]
Abstract
Background The outermost layer of the vertebrate heart, the epicardium, forms from a cluster of progenitor cells termed the proepicardium (PE). PE cells migrate onto the myocardium to give rise to the epicardium. Impaired epicardial development has been associated with defects in valve development, cardiomyocyte proliferation and alignment, cardiac conduction system maturation and adult heart regeneration. Zebrafish are an excellent model for studying cardiac development and regeneration; however, little is known about how the zebrafish epicardium forms. Results We report that PE migration occurs through multiple mechanisms and that the zebrafish epicardium is composed of a heterogeneous population of cells. Heterogeneity is first observed within the PE and persists through epicardium formation. Using in vivo imaging, histology and confocal microscopy, we show that PE cells migrate through a cellular bridge that forms between the pericardial mesothelium and the heart. We also observed the formation of PE aggregates on the pericardial surface, which were released into the pericardial cavity. It was previously reported that heartbeat-induced pericardiac fluid advections are necessary for PE cluster formation and subsequent epicardium development. We manipulated heartbeat genetically and pharmacologically and found that PE clusters clearly form in the absence of heartbeat. However, when heartbeat was inhibited the PE failed to migrate to the myocardium and the epicardium did not form. We isolated and cultured hearts with only a few epicardial progenitor cells and found a complete epicardial layer formed. However, pharmacologically inhibiting contraction in culture prevented epicardium formation. Furthermore, we isolated control and silent heart (sih) morpholino (MO) injected hearts prior to epicardium formation (60 hpf) and co-cultured these hearts with “donor” hearts that had an epicardium forming (108 hpf). Epicardial cells from donor hearts migrated on to control but not sih MO injected hearts. Conclusions Epicardial cells stem from a heterogeneous population of progenitors, suggesting that the progenitors in the PE have distinct identities. PE cells attach to the heart via a cellular bridge and free-floating cell clusters. Pericardiac fluid advections are not necessary for the development of the PE cluster, however heartbeat is required for epicardium formation. Epicardium formation can occur in culture without normal hydrodynamic and hemodynamic forces, but not without contraction.
Collapse
Affiliation(s)
- Jessica S Plavicki
- Department of Pharmaceutical Sciences, 777 Highland Avenue, Madison, WI 53705-2222, USA.
| | | | | | | | | | | |
Collapse
|
406
|
De Luca E, Zaccaria GM, Hadhoud M, Rizzo G, Ponzini R, Morbiducci U, Santoro MM. ZebraBeat: a flexible platform for the analysis of the cardiac rate in zebrafish embryos. Sci Rep 2014. [PMCID: PMC4790192 DOI: 10.1038/srep04898] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Heartbeat measurement is important in assesssing cardiac function because variations in heart rhythm can be the cause as well as an effect of hidden pathological heart conditions. Zebrafish (Danio rerio) has emerged as one of the most useful model organisms for cardiac research. Indeed, the zebrafish heart is easily accessible for optical analyses without conducting invasive procedures and shows anatomical similarity to the human heart. In this study, we present a non-invasive, simple, cost-effective process to quantify the heartbeat in embryonic zebrafish. To achieve reproducibility, high throughput and flexibility (i.e., adaptability to any existing confocal microscope system and with a user-friendly interface that can be easily used by researchers), we implemented this method within a software program. We show here that this platform, called ZebraBeat, can successfully detect heart rate variations in embryonic zebrafish at various developmental stages, and it can record cardiac rate fluctuations induced by factors such as temperature and genetic- and chemical-induced alterations. Applications of this methodology may include the screening of chemical libraries affecting heart rhythm and the identification of heart rhythm variations in mutants from large-scale forward genetic screens.
Collapse
|
407
|
Lai YC, Chang WT, Lin KY, Liau I. Optical assessment of the cardiac rhythm of contracting cardiomyocytes in vitro and a pulsating heart in vivo for pharmacological screening. BIOMEDICAL OPTICS EXPRESS 2014; 5:1616-1625. [PMID: 24877019 PMCID: PMC4026895 DOI: 10.1364/boe.5.001616] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/15/2014] [Accepted: 04/15/2014] [Indexed: 06/03/2023]
Abstract
Our quest in the pathogenesis and therapies targeting human heart diseases requires assessment of the contractile dynamics of cardiac models of varied complexity, such as isolated cardiomyocytes and the heart of a model animal. It is hence beneficial to have an integral means that can interrogate both cardiomyocytes in vitro and a heart in vivo. Herein we report an application of dual-beam optical reflectometry to determine noninvasively the rhythm of two representative cardiac models-chick embryonic cardiomyocytes and the heart of zebrafish. We probed self-beating cardiomyocytes and revealed the temporally varying contractile frequency with a short-time Fourier transform. Our unique dual-beam setup uniquely records the atrial and ventricular pulsations of zebrafish simultaneously. To minimize the cross talk between signals associated with atrial and ventricular chambers, we particularly modulated the two probe beams at distinct frequencies and extracted the signals specific to individual cardiac chambers with phase-sensitive detection. With this setup, we determined the atrio-ventricular interval, a parameter that is manifested by the electrical conduction from the atrium to the ventricle. To demonstrate pharmacological applications, we characterized zebrafish treated with various cardioactive and cardiotoxic drugs, and identified abnormal cardiac rhythms and atrioventricular (AV) blocks of varied degree. In light of its potential capability to assess cardiac models both in vitro and in vivo and to screen drugs with cardioactivity or toxicity, we expect this approach to have broad applications ranging from cardiopharmacology to developmental biology.
Collapse
Affiliation(s)
- Yu-Cheng Lai
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 300, Taiwan
- Equal contribution
| | - Wei-Tien Chang
- National Taiwan University Hospital and College of Medicine, Taipei 100, Taiwan
- Equal contribution
| | - Kuen-You Lin
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Ian Liau
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
408
|
Pi-Roig A, Martin-Blanco E, Minguillon C. Distinct tissue-specific requirements for the zebrafish tbx5 genes during heart, retina and pectoral fin development. Open Biol 2014; 4:140014. [PMID: 24759614 PMCID: PMC4043114 DOI: 10.1098/rsob.140014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The transcription factor Tbx5 is expressed in the developing heart, eyes and anterior appendages. Mutations in human TBX5 cause Holt-Oram syndrome, a condition characterized by heart and upper limb malformations. Tbx5-knockout mouse embryos have severely impaired forelimb and heart morphogenesis from the earliest stages of their development. However, zebrafish embryos with compromised tbx5 function show a complete absence of pectoral fins, while heart development is disturbed at significantly later developmental stages and eye development remains to be thoroughly analysed. We identified a novel tbx5 gene in zebrafish--tbx5b--that is co-expressed with its paralogue, tbx5a, in the developing eye and heart and hypothesized that functional redundancy could be occurring in these organs in embryos with impaired tbx5a function. We have now investigated the consequences of tbx5a and/or tbx5b downregulation in zebrafish to reveal that tbx5 genes have essential roles in the establishment of cardiac laterality, dorsoventral retina axis organization and pectoral fin development. Our data show that distinct relationships between tbx5 paralogues are required in a tissue-specific manner to ensure the proper morphogenesis of the three organs in which they are expressed. Furthermore, we uncover a novel role for tbx5 genes in the establishment of correct heart asymmetry in zebrafish embryos.
Collapse
Affiliation(s)
- Aina Pi-Roig
- CSIC-Institut de Biologia Molecular de Barcelona, Department of Developmental Biology, Parc Científic de Barcelona, C/Baldiri Reixac, 10, Barcelona 08028, Spain
| | | | | |
Collapse
|
409
|
Abstract
The epicardium is the mesothelial outer layer of the vertebrate heart. It plays an important role during cardiac development by, among other functions, nourishing the underlying myocardium, contributing to cardiac fibroblasts and giving rise to the coronary vasculature. The epicardium also exerts key functions during injury responses in the adult and contributes to cardiac repair. In this article, we review current knowledge on the cellular and molecular mechanisms underlying epicardium formation in the zebrafish, a teleost fish, which is rapidly gaining status as an animal model in cardiovascular research, and compare it with the mechanisms described in other vertebrate models. We moreover describe the expression patterns of a subset of available zebrafish Wilms' tumor 1 transgenic reporter lines and discuss their specificity, applicability and limitations in the study of epicardium formation.
Collapse
|
410
|
Bonetti M, Paardekooper Overman J, Tessadori F, Noël E, Bakkers J, den Hertog J. Noonan and LEOPARD syndrome Shp2 variants induce heart displacement defects in zebrafish. Development 2014; 141:1961-70. [PMID: 24718990 DOI: 10.1242/dev.106310] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Germline mutations in PTPN11, encoding Shp2, cause Noonan syndrome (NS) and LEOPARD syndrome (LS), two developmental disorders that are characterized by multiple overlapping symptoms. Interestingly, Shp2 catalytic activity is enhanced by NS mutations and reduced by LS mutations. Defective cardiac development is a prominent symptom of both NS and LS, but how the Shp2 variants affect cardiac development is unclear. Here, we have expressed the most common NS and LS Shp2-variants in zebrafish embryos to investigate their role in cardiac development in vivo. Heart function was impaired in embryos expressing NS and LS variants of Shp2. The cardiac anomalies first occurred during elongation of the heart tube and consisted of reduced cardiomyocyte migration, coupled with impaired leftward heart displacement. Expression of specific laterality markers was randomized in embryos expressing NS and LS variants of Shp2. Ciliogenesis and cilia function in Kupffer's vesicle was impaired, likely accounting for the left/right asymmetry defects. Mitogen-activated protein kinase (MAPK) signaling was activated to a similar extent in embryos expressing NS and LS Shp2 variants. Interestingly, inhibition of MAPK signaling prior to gastrulation rescued cilia length and heart laterality defects. These results suggest that NS and LS Shp2 variant-mediated hyperactivation of MAPK signaling leads to impaired cilia function in Kupffer's vesicle, causing left-right asymmetry defects and defective early cardiac development.
Collapse
Affiliation(s)
- Monica Bonetti
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht 3584 CT, The Netherlands
| | | | | | | | | | | |
Collapse
|
411
|
Shin SH, Lee S, Bae JS, Jee JG, Cha HJ, Lee YM. Thymosin beta4 regulates cardiac valve formation via endothelial-mesenchymal transformation in zebrafish embryos. Mol Cells 2014; 37:330-6. [PMID: 24732964 PMCID: PMC4012082 DOI: 10.14348/molcells.2014.0003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 01/20/2014] [Accepted: 02/28/2014] [Indexed: 11/28/2022] Open
Abstract
Thymosin beta4 (TB4) has multiple functions in cellular response in processes as diverse as embryonic organ development and the pathogeneses of disease, especially those associated with cardiac coronary vessels. However, the specific roles played by TB4 during heart valve development in vertebrates are largely unknown. Here, we identified a novel function of TB4 in endothelialmesenchymal transformation (EMT) in cardiac valve endocardial cushions in zebrafish. The expressions of thymosin family members in developing zebrafish embryos were determined by whole mount in situ hybridization. Of the thymosin family members only zTB4 was expressed in the developing heart region. Cardiac valve development at 48 h post fertilization was defected in zebrafish TB4 (zTB4) morpholino-injected embryos (morphants). In zTB4 morphants, abnormal linear heart tube development was observed. The expressions of bone morphogenetic protein (BMP) 4, notch1b, and hyaluronic acid synthase (HAS) 2 genes were also markedly reduced in atrio-ventricular canal (AVC). Endocardial cells in the AVC region were stained with anti-Zn5 antibody reactive against Dm-grasp (an EMT marker) to observe EMT in developing cardiac valves in zTB4 morphants. EMT marker expression in valve endothelial cells was confirmed after transfection with TB4 siRNA in the presence of transforming growth factor β (TGFβ) by RT-PCR and immunofluorescent assay. Zn5-positive endocardial AVC cells were not observed in zTB4 morphants, and knockdown of TB4 suppressed TGF-β-induced EMT in ovine valve endothelial cells. Taken together, our results demonstrate that TB4 plays a pivotal role in cardiac valve formation by increasing EMT.1.
Collapse
Affiliation(s)
- Sun-Hye Shin
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 702-701,
Korea
- School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu 702-701,
Korea
| | - Sangkyu Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 702-701,
Korea
| | - Jong-Sup Bae
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 702-701,
Korea
| | - Jun-Goo Jee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 702-701,
Korea
| | - Hee-Jae Cha
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan 602-703,
Korea
| | - You Mie Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 702-701,
Korea
- School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu 702-701,
Korea
| |
Collapse
|
412
|
Qiao L, Gao H, Zhang T, Jing L, Xiao C, Xiao Y, Luo N, Zhu H, Meng W, Xu H, Mo X. Snail modulates the assembly of fibronectin via α5 integrin for myocardial migration in zebrafish embryos. Sci Rep 2014; 4:4470. [PMID: 24667151 PMCID: PMC3966048 DOI: 10.1038/srep04470] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 03/07/2014] [Indexed: 02/05/2023] Open
Abstract
The Snail family member snail encodes a zinc finger-containing transcriptional factor that is involved in heart formation. Yet, little is known about how Snail regulates heart development. Here, we identified that one of the duplicated snail genes, snai1b, was expressed in the heart region of zebrafish embryos. Depletion of Snai1b function dramatically reduced expression of α5 integrin, disrupted Fibronectin layer in the heart region, especially at the midline, and prevented migration of cardiac precursors, resulting in defects in cardiac morphology and function in zebrafish embryos. Injection of α5β1 protein rescued the Fibronectin layer and then the myocardial precursor migration in snai1b knockdown embryos. The results provide the molecular mechanism how Snail controls the morphogenesis of heart during embryonic development.
Collapse
Affiliation(s)
- Liangjun Qiao
- 1] Laboratory of Stem Cell Biology, Center for Medical Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China [2]
| | - Hongwei Gao
- 1] Laboratory of Stem Cell Biology, Center for Medical Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China [2]
| | - Ting Zhang
- Laboratory of Stem Cell Biology, Center for Medical Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lulu Jing
- Laboratory of Stem Cell Biology, Center for Medical Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chun Xiao
- Laboratory of Stem Cell Biology, Center for Medical Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yue Xiao
- Laboratory of Stem Cell Biology, Center for Medical Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ning Luo
- Laboratory of Stem Cell Biology, Center for Medical Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hongyan Zhu
- Laboratory of Stem Cell Biology, Center for Medical Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wentong Meng
- Laboratory of Stem Cell Biology, Center for Medical Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hong Xu
- Laboratory of Stem Cell Biology, Center for Medical Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xianming Mo
- Laboratory of Stem Cell Biology, Center for Medical Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
413
|
Lin E, Ribeiro A, Ding W, Hove-Madsen L, Sarunic MV, Beg MF, Tibbits GF. Optical mapping of the electrical activity of isolated adult zebrafish hearts: acute effects of temperature. Am J Physiol Regul Integr Comp Physiol 2014; 306:R823-36. [PMID: 24671241 DOI: 10.1152/ajpregu.00002.2014] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The zebrafish (Danio rerio) has emerged as an important model for developmental cardiovascular (CV) biology; however, little is known about the cardiac function of the adult zebrafish enabling it to be used as a model of teleost CV biology. Here, we describe electrophysiological parameters, such as heart rate (HR), action potential duration (APD), and atrioventricular (AV) delay, in the zebrafish heart over a range of physiological temperatures (18-28°C). Hearts were isolated and incubated in a potentiometric dye, RH-237, enabling electrical activity assessment in several distinct regions of the heart simultaneously. Integration of a rapid thermoelectric cooling system facilitated the investigation of acute changes in temperature on critical electrophysiological parameters in the zebrafish heart. While intrinsic HR varied considerably between fish, the ex vivo preparation exhibited impressively stable HRs and sinus rhythm for more than 5 h, with a mean HR of 158 ± 9 bpm (means ± SE; n = 20) at 28°C. Atrial and ventricular APDs at 50% repolarization (APD50) were 33 ± 1 ms and 98 ± 2 ms, respectively. Excitation originated in the atrium, and there was an AV delay of 61 ± 3 ms prior to activation of the ventricle at 28°C. APD and AV delay varied between hearts beating at unique HRs; however, APD and AV delay did not appear to be statistically dependent on intrinsic basal HR, likely due to the innate beat-to-beat variability within each heart. As hearts were cooled to 18°C (by 1°C increments), HR decreased by ~40%, and atrial and ventricular APD50 increased by a factor of ~3 and 2, respectively. The increase in APD with cooling was disproportionate at different levels of repolarization, indicating unique temperature sensitivities for ion currents at different phases of the action potential. The effect of temperature was more apparent at lower levels of repolarization and, as a whole, the atrial APD was the cardiac parameter most affected by acute temperature change. In conclusion, this study describes a preparation enabling the in-depth analysis of transmembrane potential dynamics in whole zebrafish hearts. Because the zebrafish offers some critical advantages over the murine model for cardiac electrophysiology, optical mapping studies utilizing zebrafish offer insightful information into the understanding and treatment of human cardiac arrhythmias, as well as serving as a model for other teleosts.
Collapse
Affiliation(s)
- Eric Lin
- Molecular Cardiac Physiology Group, Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Amanda Ribeiro
- Molecular Cardiac Physiology Group, Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Weiguang Ding
- Medical Image Analysis Laboratory, School of Engineering Science, Simon Fraser University, Burnaby, Canada
| | - Leif Hove-Madsen
- Cardiovascular Research Centre, CSIC-ICCC, Hospital de Sant Pau, Barcelona, Spain
| | - Marinko V Sarunic
- Biomedical Optics Research Group, School of Engineering Science, Simon Fraser University, Burnaby, Canada; and
| | - Mirza Faisal Beg
- Medical Image Analysis Laboratory, School of Engineering Science, Simon Fraser University, Burnaby, Canada
| | - Glen F Tibbits
- Molecular Cardiac Physiology Group, Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada; Cardiovascular Sciences, Child and Family Research Institute, Vancouver, Canada
| |
Collapse
|
414
|
Dvornikov AV, Dewan S, Alekhina OV, Pickett FB, de Tombe PP. Novel approaches to determine contractile function of the isolated adult zebrafish ventricular cardiac myocyte. J Physiol 2014; 592:1949-56. [PMID: 24591576 DOI: 10.1113/jphysiol.2014.270678] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The zebrafish (Danio rerio) has been used extensively in cardiovascular biology, but mainly in the study of heart development. The relative ease of its genetic manipulation may indicate the suitability of this species as a cost-effective model system for the study of cardiac contractile biology. However, whether the zebrafish heart is an appropriate model system for investigations pertaining to mammalian cardiac contractile structure-function relationships remains to be resolved. Myocytes were isolated from adult zebrafish hearts by enzymatic digestion, attached to carbon rods, and twitch force and intracellular Ca(2+) were measured. We observed the modulation of twitch force, but not of intracellular Ca(2+), by both extracellular [Ca(2+)] and sarcomere length. In permeabilized cells/myofibrils, we found robust myofilament length-dependent activation. Moreover, modulation of myofilament activation-relaxation and force redevelopment kinetics by varied Ca(2+) activation levels resembled that found previously in mammalian myofilaments. We conclude that the zebrafish is a valid model system for the study of cardiac contractile structure-function relationships.
Collapse
Affiliation(s)
- Alexey V Dvornikov
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, 2160 South First Avenue, Maywood, IL 60153, USA.
| | | | | | | | | |
Collapse
|
415
|
Lin KY, Chang WT, Lai YC, Liau I. Toward functional screening of cardioactive and cardiotoxic drugs with zebrafish in vivo using pseudodynamic three-dimensional imaging. Anal Chem 2014; 86:2213-20. [PMID: 24456565 DOI: 10.1021/ac403877h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Given the high mortality in patients with cardiovascular diseases and the life-threatening consequences of drugs with unforeseen adverse effects on hearts, a critical evaluation of the pharmacological response of cardiovascular function on model animals is important especially in the early stages of drug development. We report a proof-of-principle study to demonstrate the utility of zebrafish as an analytical platform to predict the cardiac response of new drugs or chemicals on human beings. With pseudodynamic 3D imaging, we derive individual parameters that are central to the cardiac function of zebrafish, including the ventricular stroke volume, ejection fraction, cardiac output, heart rate, diastolic filling function, and ventricular mass. We evaluate both inotropic and chronotropic responses of the heart of zebrafish treated with drugs that are commonly prescribed and possess varied known cardiac activities. We reveal deranged cardiac function of a zebrafish model of cardiomyopathy induced with a cardiotoxic drug. The cardiac function of zebrafish exhibits a pharmacological response similar to that of human beings. We compare also cardiac parameters obtained in this work with those derived with conventional 2D approximation and show that the latter tends to overestimate the cardiac parameters and produces results of greater variation. In view of the growing interest of using zebrafish in both fundamental and translational biomedical research, we envisage that our approach should benefit not only contemporary pharmaceutical development but also exploratory research such as gene, stem cell, or regenerative therapies targeting congenital or acquired heart diseases.
Collapse
Affiliation(s)
- Kuen-You Lin
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University , Hsinchu 300, Taiwan
| | | | | | | |
Collapse
|
416
|
Ota S, Kawahara A. Zebrafish: a model vertebrate suitable for the analysis of human genetic disorders. Congenit Anom (Kyoto) 2014; 54:8-11. [PMID: 24279334 DOI: 10.1111/cga.12040] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 11/10/2013] [Indexed: 12/14/2022]
Abstract
Zebrafish is a popular model vertebrate because of its conservation of a significant number of morphological and physiological processes in vertebrate organogenesis. A number of zebrafish mutants isolated from chemical mutagenesis screens exhibit characterized morphological defects that often resemble the symptoms of human genetic disorders. Recent innovations in genome-editing technologies, such as transcription activator-like effector nucleases (TALEN) and the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system, enable us to investigate the loss-of-function phenotypes of developmentally regulated genes in zebrafish. This review highlights recent advances in reverse genetic technologies for zebrafish and presents possible applications of zebrafish for the study of human genetic disorders.
Collapse
Affiliation(s)
- Satoshi Ota
- Laboratory for Cardiovascular Molecular Dynamics, RIKEN Quantitative Biology Center (QBiC), Suita, Japan
| | | |
Collapse
|
417
|
Bontems F, Fish RJ, Borlat I, Lembo F, Chocu S, Chalmel F, Borg JP, Pineau C, Neerman-Arbez M, Bairoch A, Lane L. C2orf62 and TTC17 are involved in actin organization and ciliogenesis in zebrafish and human. PLoS One 2014; 9:e86476. [PMID: 24475127 PMCID: PMC3903541 DOI: 10.1371/journal.pone.0086476] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 12/09/2013] [Indexed: 11/18/2022] Open
Abstract
Vertebrate genomes contain around 20,000 protein-encoding genes, of which a large fraction is still not associated with specific functions. A major task in future genomics will thus be to assign physiological roles to all open reading frames revealed by genome sequencing. Here we show that C2orf62, a highly conserved protein with little homology to characterized proteins, is strongly expressed in testis in zebrafish and mammals, and in various types of ciliated cells during zebrafish development. By yeast two hybrid and GST pull-down, C2orf62 was shown to interact with TTC17, another uncharacterized protein. Depletion of either C2orf62 or TTC17 in human ciliated cells interferes with actin polymerization and reduces the number of primary cilia without changing their length. Zebrafish embryos injected with morpholinos against C2orf62 or TTC17, or with mRNA coding for the C2orf62 C-terminal part containing a RII dimerization/docking (R2D2) - like domain show morphological defects consistent with imperfect ciliogenesis. We provide here the first evidence for a C2orf62-TTC17 axis that would regulate actin polymerization and ciliogenesis.
Collapse
Affiliation(s)
- Franck Bontems
- Department of Human Protein Sciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Richard J. Fish
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Irene Borlat
- Department of Human Protein Sciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Frédérique Lembo
- CRCM - Inserm U1068, Marseille, France
- Institut Paoli-Calmettes, Marseille, France
- CNRS UMR7258, Marseille, France
- Aix-Marseille University, Marseille, France
| | | | | | - Jean-Paul Borg
- CRCM - Inserm U1068, Marseille, France
- Institut Paoli-Calmettes, Marseille, France
- CNRS UMR7258, Marseille, France
- Aix-Marseille University, Marseille, France
| | | | - Marguerite Neerman-Arbez
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Amos Bairoch
- Department of Human Protein Sciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- SIB-Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Lydie Lane
- Department of Human Protein Sciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- SIB-Swiss Institute of Bioinformatics, Geneva, Switzerland
| |
Collapse
|
418
|
Selb J, Ogden TM, Dubb J, Fang Q, Boas DA. Comparison of a layered slab and an atlas head model for Monte Carlo fitting of time-domain near-infrared spectroscopy data of the adult head. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:16010. [PMID: 24407503 PMCID: PMC3886581 DOI: 10.1117/1.jbo.19.1.016010] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 12/11/2013] [Accepted: 12/13/2013] [Indexed: 05/18/2023]
Abstract
Near-infrared spectroscopy (NIRS) estimations of the adult brain baseline optical properties based on a homogeneous model of the head are known to introduce significant contamination from extracerebral layers. More complex models have been proposed and occasionally applied to in vivo data, but their performances have never been characterized on realistic head structures. Here we implement a flexible fitting routine of time-domain NIRS data using graphics processing unit based Monte Carlo simulations. We compare the results for two different geometries: a two-layer slab with variable thickness of the first layer and a template atlas head registered to the subject's head surface. We characterize the performance of the Monte Carlo approaches for fitting the optical properties from simulated time-resolved data of the adult head. We show that both geometries provide better results than the commonly used homogeneous model, and we quantify the improvement in terms of accuracy, linearity, and cross-talk from extracerebral layers.
Collapse
Affiliation(s)
- Juliette Selb
- Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Optics Division, Building 149, 13th Street, Charlestown, Massachusetts 02129
- Address all correspondence to: Juliette Selb, E-mail:
| | - Tyler M. Ogden
- Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Optics Division, Building 149, 13th Street, Charlestown, Massachusetts 02129
| | - Jay Dubb
- Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Optics Division, Building 149, 13th Street, Charlestown, Massachusetts 02129
| | - Qianqian Fang
- Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Optics Division, Building 149, 13th Street, Charlestown, Massachusetts 02129
| | - David A. Boas
- Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Optics Division, Building 149, 13th Street, Charlestown, Massachusetts 02129
| |
Collapse
|
419
|
Liang B, Soka M, Christensen AH, Olesen MS, Larsen AP, Knop FK, Wang F, Nielsen JB, Andersen MN, Humphreys D, Mann SA, Huttner IG, Vandenberg JI, Svendsen JH, Haunsø S, Preiss T, Seebohm G, Olesen SP, Schmitt N, Fatkin D. Genetic variation in the two-pore domain potassium channel, TASK-1, may contribute to an atrial substrate for arrhythmogenesis. J Mol Cell Cardiol 2013; 67:69-76. [PMID: 24374141 DOI: 10.1016/j.yjmcc.2013.12.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 12/09/2013] [Accepted: 12/17/2013] [Indexed: 12/22/2022]
Abstract
The two-pore domain potassium channel, K2P3.1 (TASK-1) modulates background conductance in isolated human atrial cardiomyocytes and has been proposed as a potential drug target for atrial fibrillation (AF). TASK-1 knockout mice have a predominantly ventricular phenotype however, and effects of TASK-1 inactivation on atrial structure and function have yet to be demonstrated in vivo. The extent to which genetic variation in KCNK3, that encodes TASK-1, might be a determinant of susceptibility to AF is also unknown. To address these questions, we first evaluated the effects of transient knockdown of the zebrafish kcnk3a and kcnk3b genes and cardiac phenotypes were evaluated using videomicroscopy. Combined kcnk3a and kcnk3b knockdown in 72 hour post fertilization embryos resulted in lower heart rate (p<0.001), marked increase in atrial diameter (p<0.001), and mild increase in end-diastolic ventricular diameter (p=0.01) when compared with control-injected embryos. We next performed genetic screening of KCNK3 in two independent AF cohorts (373 subjects) and identified three novel KCNK3 variants. Two of these variants, present in one proband with familial AF, were located at adjacent nucleotides in the Kozak sequence and reduced expression of an engineered reporter. A third missense variant, V123L, in a patient with lone AF, reduced resting membrane potential and altered pH sensitivity in patch-clamp experiments, with structural modeling predicting instability in the vicinity of the TASK-1 pore. These in vitro data suggest that the double Kozak variants and V123L will have loss-of-function effects on ITASK. Cardiac action potential modeling predicted that reduced ITASK prolongs atrial action potential duration, and that this is potentiated by reciprocal changes in activity of other ion channel currents. Our findings demonstrate the functional importance of ITASK in the atrium and suggest that inactivation of TASK-1 may have diverse effects on atrial size and electrophysiological properties that can contribute to an arrhythmogenic substrate.
Collapse
Affiliation(s)
- Bo Liang
- Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, Copenhagen, Denmark
| | - Magdalena Soka
- Molecular Cardiology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | - Alex Horby Christensen
- Molecular Cardiology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | - Morten S Olesen
- Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, Copenhagen, Denmark
| | - Anders P Larsen
- Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, Copenhagen, Denmark; Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
| | - Filip K Knop
- Molecular Cardiology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | - Fan Wang
- Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, Copenhagen, Denmark
| | - Jonas B Nielsen
- Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, Copenhagen, Denmark
| | - Martin N Andersen
- Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, Copenhagen, Denmark
| | - David Humphreys
- Molecular Genetics Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | - Stefan A Mann
- Molecular Cardiology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | - Inken G Huttner
- Molecular Cardiology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | - Jamie I Vandenberg
- Molecular Cardiology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia; Faculty of Medicine, University of New South Wales, Kensington, New South Wales, Australia
| | - Jesper H Svendsen
- Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, Copenhagen, Denmark
| | - Stig Haunsø
- Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Preiss
- John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Guiscard Seebohm
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, Germany
| | - Søren-Peter Olesen
- Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, Copenhagen, Denmark
| | - Nicole Schmitt
- Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, Copenhagen, Denmark.
| | - Diane Fatkin
- Molecular Cardiology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia; Faculty of Medicine, University of New South Wales, Kensington, New South Wales, Australia; Cardiology Department, St Vincent's Hospital, Darlinghurst, New South Wales, Australia
| |
Collapse
|
420
|
Ryan S, Willer J, Marjoram L, Bagwell J, Mankiewicz J, Leshchiner I, Goessling W, Bagnat M, Katsanis N. Rapid identification of kidney cyst mutations by whole exome sequencing in zebrafish. Development 2013; 140:4445-51. [PMID: 24130329 DOI: 10.1242/dev.101170] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Forward genetic approaches in zebrafish have provided invaluable information about developmental processes. However, the relative difficulty of mapping and isolating mutations has limited the number of new genetic screens. Recent improvements in the annotation of the zebrafish genome coupled to a reduction in sequencing costs prompted the development of whole genome and RNA sequencing approaches for gene discovery. Here we describe a whole exome sequencing (WES) approach that allows rapid and cost-effective identification of mutations. We used our WES methodology to isolate four mutations that cause kidney cysts; we identified novel alleles in two ciliary genes as well as two novel mutants. The WES approach described here does not require specialized infrastructure or training and is therefore widely accessible. This methodology should thus help facilitate genetic screens and expedite the identification of mutants that can inform basic biological processes and the causality of genetic disorders in humans.
Collapse
Affiliation(s)
- Sean Ryan
- Department of Cell Biology, Duke University, 333 B, Nanaline Duke Building, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
421
|
Yang J, Hartjes KA, Nelson TJ, Xu X. Cessation of contraction induces cardiomyocyte remodeling during zebrafish cardiogenesis. Am J Physiol Heart Circ Physiol 2013; 306:H382-95. [PMID: 24322613 DOI: 10.1152/ajpheart.00721.2013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Contraction regulates heart development via a complex mechanotransduction process controlled by various mechanical forces. Here, we exploit zebrafish embryos as an in vivo animal model to discern the contribution from different mechanical forces and identify the underlying mechanotransductive signaling pathways of cardiogenesis. We treated 2 days postfertilization zebrafish embryos with Blebbistatin, a myosin II inhibitor, to stop cardiac contraction, which induces a response termed cessation of contraction-induced cardiomyocyte (CM) enlargement (CCE). Accompanying the CCE, lateral fusion of myofibrils was attenuated within CMs. The CCE can be blunted by loss of blood in tail-docked zebrafish but not in cloche mutant fish, suggesting that transmural pressure rather than shear stress is accountable for the chamber enlargement. By screening a panel of small molecule inhibitors, our data suggested essential functions of phosphoinositide 3-kinase signaling and protein synthesis in CCE, which are independent of the sarcomere integrity. In summary, we defined a unique CCE response in genetically tractable zebrafish embryos. A panel of assays was established to verify the contribution from extrinsic forces and interrogate underlying signaling pathways.
Collapse
Affiliation(s)
- Jingchun Yang
- Department of Biochemistry and Molecular Biology, Division of Cardiovascular Diseases, Mayo Clinic College of Medicine, Rochester, Minnesota
| | | | | | | |
Collapse
|
422
|
Abstract
Recent advances in the burgeoning field of genome engineering are accelerating the realization of personalized therapeutics for cardiovascular disease. In the postgenomic era, sequence-specific gene-editing tools enable the functional analysis of genetic alterations implicated in disease. In partnership with high-throughput model systems, efficient gene manipulation provides an increasingly powerful toolkit to study phenotypes associated with patient-specific genetic defects. Herein, this review emphasizes the latest developments in genome engineering and how applications within the field are transforming our understanding of personalized medicine with an emphasis on cardiovascular diseases.
Collapse
Affiliation(s)
- Jarryd M Campbell
- Center for Translational Science Activities, Mayo Clinic, Rochester, MN 55905, USA.
| | | | | | | | | |
Collapse
|
423
|
Opitz R, Antonica F, Costagliola S. New model systems to illuminate thyroid organogenesis. Part I: an update on the zebrafish toolbox. Eur Thyroid J 2013; 2:229-42. [PMID: 24783054 PMCID: PMC3923603 DOI: 10.1159/000357079] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 11/07/2013] [Indexed: 12/16/2022] Open
Abstract
Thyroid dysgenesis (TD) resulting from defects during embryonic thyroid development represents a major cause of congenital hypothyroidism. The pathogenetic mechanisms of TD in human newborns, however, are still poorly understood and disease-causing genetic variants have been identified in only a small percentage of TD cases. This limited understanding of the pathogenesis of TD is partly due to a lack of knowledge on how intrinsic factors and extrinsic signalling cues orchestrate the differentiation of thyroid follicular cells and the morphogenesis of thyroid tissue. Recently, embryonic stem cells and zebrafish embryos emerged as novel model systems that allow for innovative experimental approaches in order to decipher cellular and molecular mechanisms of thyroid development and to unravel pathogenic mechanisms of TD. Zebrafish embryos offer several salient properties for studies on thyroid organogenesis including rapid and external development, optical transparency, ease of breeding, relative short generation time and amenability for genome editing. In this review, we will highlight recent advances in the zebrafish toolkit to visualize cellular dynamics of organ development and discuss specific prospects of the zebrafish model for studies on vertebrate thyroid development and human congenital thyroid diseases.
Collapse
Affiliation(s)
- Robert Opitz
- Institute of Interdisciplinary Research in Molecular Human Biology, Université Libre de Bruxelles, Brussels, Belgium
| | - Francesco Antonica
- Institute of Interdisciplinary Research in Molecular Human Biology, Université Libre de Bruxelles, Brussels, Belgium
| | - Sabine Costagliola
- Institute of Interdisciplinary Research in Molecular Human Biology, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
424
|
Khodiyar VK, Howe D, Talmud PJ, Breckenridge R, Lovering RC. From zebrafish heart jogging genes to mouse and human orthologs: using Gene Ontology to investigate mammalian heart development. F1000Res 2013; 2:242. [PMID: 24627794 DOI: 10.12688/f1000research.2-242.v1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/11/2013] [Indexed: 12/17/2022] Open
Abstract
For the majority of organs in developing vertebrate embryos, left-right asymmetry is controlled by a ciliated region; the left-right organizer node in the mouse and human, and the Kuppfer's vesicle in the zebrafish. In the zebrafish, laterality cues from the Kuppfer's vesicle determine asymmetry in the developing heart, the direction of 'heart jogging' and the direction of 'heart looping'. 'Heart jogging' is the term given to the process by which the symmetrical zebrafish heart tube is displaced relative to the dorsal midline, with a leftward 'jog'. Heart jogging is not considered to occur in mammals, although a leftward shift of the developing mouse caudal heart does occur prior to looping, which may be analogous to zebrafish heart jogging. Previous studies have characterized 30 genes involved in zebrafish heart jogging, the majority of which have well defined orthologs in mouse and human and many of these orthologs have been associated with early mammalian heart development. We undertook manual curation of a specific set of genes associated with heart development and we describe the use of Gene Ontology term enrichment analyses to examine the cellular processes associated with heart jogging. We found that the human, mouse and zebrafish 'heart jogging orthologs' are involved in similar organ developmental processes across the three species, such as heart, kidney and nervous system development, as well as more specific cellular processes such as cilium development and function. The results of these analyses are consistent with a role for cilia in the determination of left-right asymmetry of many internal organs, in addition to their known role in zebrafish heart jogging. This study highlights the importance of model organisms in the study of human heart development, and emphasises both the conservation and divergence of developmental processes across vertebrates, as well as the limitations of this approach.
Collapse
Affiliation(s)
- Varsha K Khodiyar
- Cardiovascular GO Annotation Initiative, Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, London, WC1E 6JF, UK
| | - Doug Howe
- The Zebrafish Model Organism Database, University of Oregon, Eugene, OR, 97403-5291, USA
| | - Philippa J Talmud
- Cardiovascular GO Annotation Initiative, Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, London, WC1E 6JF, UK
| | - Ross Breckenridge
- Centre for Metabolism and Experimental Therapeutics, University College London, London, WC1E 6JF, UK
| | - Ruth C Lovering
- Cardiovascular GO Annotation Initiative, Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, London, WC1E 6JF, UK
| |
Collapse
|
425
|
Khodiyar VK, Howe D, Talmud PJ, Breckenridge R, Lovering RC. From zebrafish heart jogging genes to mouse and human orthologs: using Gene Ontology to investigate mammalian heart development. F1000Res 2013; 2:242. [PMID: 24627794 PMCID: PMC3931453 DOI: 10.12688/f1000research.2-242.v2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/10/2014] [Indexed: 01/15/2023] Open
Abstract
For the majority of organs in developing vertebrate embryos, left-right asymmetry is controlled by a ciliated region; the left-right organizer node in the mouse and human, and the Kuppfer’s vesicle in the zebrafish. In the zebrafish, laterality cues from the Kuppfer’s vesicle determine asymmetry in the developing heart, the direction of ‘heart jogging’ and the direction of ‘heart looping’. ‘Heart jogging’ is the term given to the process by which the symmetrical zebrafish heart tube is displaced relative to the dorsal midline, with a leftward ‘jog’. Heart jogging is not considered to occur in mammals, although a leftward shift of the developing mouse caudal heart does occur prior to looping, which may be analogous to zebrafish heart jogging. Previous studies have characterized 30 genes involved in zebrafish heart jogging, the majority of which have well defined orthologs in mouse and human and many of these orthologs have been associated with early mammalian heart development. We undertook manual curation of a specific set of genes associated with heart development and we describe the use of Gene Ontology term enrichment analyses to examine the cellular processes associated with heart jogging. We found that the human, mouse and zebrafish ‘heart jogging orthologs’ are involved in similar organ developmental processes across the three species, such as heart, kidney and nervous system development, as well as more specific cellular processes such as cilium development and function. The results of these analyses are consistent with a role for cilia in the determination of left-right asymmetry of many internal organs, in addition to their known role in zebrafish heart jogging. This study highlights the importance of model organisms in the study of human heart development, and emphasises both the conservation and divergence of developmental processes across vertebrates, as well as the limitations of this approach.
Collapse
Affiliation(s)
- Varsha K Khodiyar
- Cardiovascular GO Annotation Initiative, Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, London, WC1E 6JF, UK
| | - Doug Howe
- The Zebrafish Model Organism Database, University of Oregon, Eugene, OR, 97403-5291, USA
| | - Philippa J Talmud
- Cardiovascular GO Annotation Initiative, Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, London, WC1E 6JF, UK
| | - Ross Breckenridge
- Centre for Metabolism and Experimental Therapeutics, University College London, London, WC1E 6JF, UK
| | - Ruth C Lovering
- Cardiovascular GO Annotation Initiative, Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, London, WC1E 6JF, UK
| |
Collapse
|
426
|
Dauber A, Golzio C, Guenot C, Jodelka FM, Kibaek M, Kjaergaard S, Leheup B, Martinet D, Nowaczyk MJM, Rosenfeld JA, Zeesman S, Zunich J, Beckmann JS, Hirschhorn JN, Hastings ML, Jacquemont S, Katsanis N. SCRIB and PUF60 are primary drivers of the multisystemic phenotypes of the 8q24.3 copy-number variant. Am J Hum Genet 2013; 93:798-811. [PMID: 24140112 DOI: 10.1016/j.ajhg.2013.09.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 09/10/2013] [Accepted: 09/16/2013] [Indexed: 11/19/2022] Open
Abstract
Copy-number variants (CNVs) represent a significant interpretative challenge, given that each CNV typically affects the dosage of multiple genes. Here we report on five individuals with coloboma, microcephaly, developmental delay, short stature, and craniofacial, cardiac, and renal defects who harbor overlapping microdeletions on 8q24.3. Fine mapping localized a commonly deleted 78 kb region that contains three genes: SCRIB, NRBP2, and PUF60. In vivo dissection of the CNV showed discrete contributions of the planar cell polarity effector SCRIB and the splicing factor PUF60 to the syndromic phenotype, and the combinatorial suppression of both genes exacerbated some, but not all, phenotypic components. Consistent with these findings, we identified an individual with microcephaly, short stature, intellectual disability, and heart defects with a de novo c.505C>T variant leading to a p.His169Tyr change in PUF60. Functional testing of this allele in vivo and in vitro showed that the mutation perturbs the relative dosage of two PUF60 isoforms and, subsequently, the splicing efficiency of downstream PUF60 targets. These data inform the functions of two genes not associated previously with human genetic disease and demonstrate how CNVs can exhibit complex genetic architecture, with the phenotype being the amalgam of both discrete dosage dysfunction of single transcripts and also of binary genetic interactions.
Collapse
Affiliation(s)
- Andrew Dauber
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
427
|
Poon KL, Brand T. The zebrafish model system in cardiovascular research: A tiny fish with mighty prospects. Glob Cardiol Sci Pract 2013; 2013:9-28. [PMID: 24688998 PMCID: PMC3963735 DOI: 10.5339/gcsp.2013.4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 01/29/2013] [Indexed: 12/26/2022] Open
Affiliation(s)
- Kar Lai Poon
- Harefield Heart Science Centre, National Heart and Lung Institute, Imperial College London, Hill End Road, Harefield, Middlesex, UB9 6JH, United Kingdom
| | - Thomas Brand
- Harefield Heart Science Centre, National Heart and Lung Institute, Imperial College London, Hill End Road, Harefield, Middlesex, UB9 6JH, United Kingdom
| |
Collapse
|
428
|
Sergeeva IA, Hooijkaas IB, Van Der Made I, Jong WM, Creemers EE, Christoffels VM. A transgenic mouse model for the simultaneous monitoring of ANF and BNP gene activity during heart development and disease. Cardiovasc Res 2013; 101:78-86. [DOI: 10.1093/cvr/cvt228] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
429
|
Li J, Zhang DS, Ye JC, Li CM, Qi M, Liang DD, Xu XR, Xu L, Liu Y, Zhang H, Zhang YY, Deng FF, Feng J, Shi D, Chen JJ, Li L, Chen G, Sun YF, Peng LY, Chen YH. Dynamin-2 mediates heart failure by modulating Ca2+-dependent cardiomyocyte apoptosis. Int J Cardiol 2013; 168:2109-19. [DOI: 10.1016/j.ijcard.2013.01.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 11/26/2012] [Accepted: 01/13/2013] [Indexed: 12/26/2022]
|
430
|
Mikut R, Dickmeis T, Driever W, Geurts P, Hamprecht FA, Kausler BX, Ledesma-Carbayo MJ, Marée R, Mikula K, Pantazis P, Ronneberger O, Santos A, Stotzka R, Strähle U, Peyriéras N. Automated processing of zebrafish imaging data: a survey. Zebrafish 2013; 10:401-21. [PMID: 23758125 PMCID: PMC3760023 DOI: 10.1089/zeb.2013.0886] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Due to the relative transparency of its embryos and larvae, the zebrafish is an ideal model organism for bioimaging approaches in vertebrates. Novel microscope technologies allow the imaging of developmental processes in unprecedented detail, and they enable the use of complex image-based read-outs for high-throughput/high-content screening. Such applications can easily generate Terabytes of image data, the handling and analysis of which becomes a major bottleneck in extracting the targeted information. Here, we describe the current state of the art in computational image analysis in the zebrafish system. We discuss the challenges encountered when handling high-content image data, especially with regard to data quality, annotation, and storage. We survey methods for preprocessing image data for further analysis, and describe selected examples of automated image analysis, including the tracking of cells during embryogenesis, heartbeat detection, identification of dead embryos, recognition of tissues and anatomical landmarks, and quantification of behavioral patterns of adult fish. We review recent examples for applications using such methods, such as the comprehensive analysis of cell lineages during early development, the generation of a three-dimensional brain atlas of zebrafish larvae, and high-throughput drug screens based on movement patterns. Finally, we identify future challenges for the zebrafish image analysis community, notably those concerning the compatibility of algorithms and data formats for the assembly of modular analysis pipelines.
Collapse
Affiliation(s)
- Ralf Mikut
- Karlsruhe Institute of Technology, Karlsruhe, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
431
|
Tokarz J, Möller G, de Angelis MH, Adamski J. Zebrafish and steroids: what do we know and what do we need to know? J Steroid Biochem Mol Biol 2013; 137:165-73. [PMID: 23376612 DOI: 10.1016/j.jsbmb.2013.01.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 12/26/2012] [Accepted: 01/01/2013] [Indexed: 01/23/2023]
Abstract
Zebrafish, Danio rerio, has long been used as a model organism in developmental biology. Nowadays, due to their advantages compared to other model animals, the fish gain popularity and are also increasingly used in endocrinology. This review focuses on an important aspect of endocrinology in zebrafish by summarizing the progress in steroid hormone related research. We present the state of the art of research on steroidogenesis, the action of steroid hormones, and steroid catabolism and cover the incremental usage of zebrafish as a test animal in endocrine disruption research. By this approach, we demonstrate that some aspects of steroid hormone research are well characterized (e.g., expression patterns of the genes involved), while other aspects such as functional analyses of enzymes, steroid hormone elimination, or the impact of steroid hormones on embryonic development or sex differentiation have not been extensively studied and are poorly understood. This article is part of a Special Issue entitled 'CSR 2013'.
Collapse
Affiliation(s)
- Janina Tokarz
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | | | | | | |
Collapse
|
432
|
Abramochkin DV, Alekseeva EI, Vornanen M. Inhibition of the cardiac inward rectifier potassium currents by KB-R7943. Comp Biochem Physiol C Toxicol Pharmacol 2013; 158:181-6. [PMID: 23973826 DOI: 10.1016/j.cbpc.2013.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/14/2013] [Accepted: 08/15/2013] [Indexed: 11/19/2022]
Abstract
KB-R7943 (2-[2-[4-(4-nitrobenzyloxy)phenyl]ethyl]isothiourea) was developed as a specific inhibitor of the sarcolemmal sodium-calcium exchanger (NCX) with potential experimental and therapeutic use. However, KB-R7943 is shown to be a potent blocker of several ion currents including inward and delayed rectifier K(+) currents of cardiomyocytes. To further characterize KB-R7943 as a blocker of the cardiac inward rectifiers we compared KB-R7943 sensitivity of the background inward rectifier (IK1) and the carbacholine-induced inward rectifier (IKACh) currents in mammalian (Rattus norvegicus; rat) and fish (Carassius carassius; crucian carp) cardiac myocytes. The basal IK1 of ventricular myocytes was blocked with apparent IC50-values of 4.6×10(-6) M and 3.5×10(-6) M for rat and fish, respectively. IKACh was almost an order of magnitude more sensitive to KB-R7943 than IK1 with IC50-values of 6.2×10(-7) M for rat and 2.5×10(-7) M for fish. The fish cardiac NCX current was half-maximally blocked at the concentration of 1.9-3×10(-6) M in both forward and reversed mode of operation. Thus, the sensitivity of three cardiac currents to KB-R7943 block increases in the order IK1~INCX<IKACh. Therefore, the ability of KB-R7943 to block inward rectifier potassium currents, in particular IKACh, should be taken into account when interpreting the data with this inhibitor from in vivo and in vitro experiments in both mammalian and fish models.
Collapse
Affiliation(s)
- Denis V Abramochkin
- Department of Human and Animal Physiology, Moscow State University, Leninskiye Gory, 1, 12, Moscow 119991, Russia; Department of Fundamental and Applied Physiology, Pirogov Russian National Research Medical University, Ostrovityanova Street, 1, Moscow 117997, Russia.
| | | | | |
Collapse
|
433
|
Gemberling M, Bailey TJ, Hyde DR, Poss KD. The zebrafish as a model for complex tissue regeneration. Trends Genet 2013; 29:611-20. [PMID: 23927865 DOI: 10.1016/j.tig.2013.07.003] [Citation(s) in RCA: 376] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 06/21/2013] [Accepted: 07/08/2013] [Indexed: 12/22/2022]
Abstract
For centuries, philosophers and scientists have been fascinated by the principles and implications of regeneration in lower vertebrate species. Two features have made zebrafish an informative model system for determining mechanisms of regenerative events. First, they are highly regenerative, able to regrow amputated fins, as well as a lesioned brain, retina, spinal cord, heart, and other tissues. Second, they are amenable to both forward and reverse genetic approaches, with a research toolset regularly updated by an expanding community of zebrafish researchers. Zebrafish studies have helped identify new mechanistic underpinnings of regeneration in multiple tissues and, in some cases, have served as a guide for contemplating regenerative strategies in mammals. Here, we review the recent history of zebrafish as a genetic model system for understanding how and why tissue regeneration occurs.
Collapse
Affiliation(s)
- Matthew Gemberling
- Department of Cell Biology and Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
434
|
Lin CY, Huang CC, Wang WD, Hsiao CD, Cheng CF, Wu YT, Lu YF, Hwang SPL. Low temperature mitigates cardia bifida in zebrafish embryos. PLoS One 2013; 8:e69788. [PMID: 23922799 PMCID: PMC3724881 DOI: 10.1371/journal.pone.0069788] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 06/12/2013] [Indexed: 11/18/2022] Open
Abstract
The coordinated migration of bilateral cardiomyocytes and the formation of the cardiac cone are essential for heart tube formation. We investigated gene regulatory mechanisms involved in myocardial migration, and regulation of the timing of cardiac cone formation in zebrafish embryos. Through screening of zebrafish treated with ethylnitrosourea, we isolated a mutant with a hypomorphic allele of mil (s1pr2)/edg5, called s1pr2as10 (as10). Mutant embryos with this allele expressed less mil/edg5 mRNA and exhibited cardia bifida prior to 28 hours post-fertilization. Although the bilateral hearts of the mutants gradually fused together, the resulting formation of two atria and one tightly-packed ventricle failed to support normal blood circulation. Interestingly, cardia bifida of s1pr2as10 embryos could be rescued and normal circulation could be restored by incubating the embryos at low temperature (22.5°C). Rescue was also observed in gata5 and bon cardia bifida morphants raised at 22.5°C. The use of DNA microarrays, digital gene expression analyses, loss-of-function, as well as mRNA and protein rescue experiments, revealed that low temperature mitigates cardia bifida by regulating the expression of genes encoding components of the extracellular matrix (fibronectin 1, tenascin-c, tenascin-w). Furthermore, the addition of N-acetyl cysteine (NAC), a reactive oxygen species (ROS) scavenger, significantly decreased the effect of low temperature on mitigating cardia bifida in s1pr2as10 embryos. Our study reveals that temperature coordinates the development of the heart tube and somitogenesis, and that extracellular matrix genes (fibronectin 1, tenascin-c and tenascin-w) are involved.
Collapse
Affiliation(s)
- Che-Yi Lin
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
435
|
8-Oxoguanine DNA glycosylase 1 (ogg1) maintains the function of cardiac progenitor cells during heart formation in zebrafish. Exp Cell Res 2013; 319:2954-63. [PMID: 23892003 DOI: 10.1016/j.yexcr.2013.07.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 07/08/2013] [Accepted: 07/10/2013] [Indexed: 11/27/2022]
Abstract
Genomic damage may devastate the potential of progenitor cells and consequently impair early organogenesis. We found that ogg1, a key enzyme initiating the base-excision repair, was enriched in the embryonic heart in zebrafish. So far, little is known about DNA repair in cardiogenesis. Here, we addressed the critical role of ogg1 in cardiogenesis for the first time. ogg1 mainly expressed in the anterior lateral plate mesoderm (ALPM), the primary heart tube, and subsequently the embryonic myocardium by in situ hybridisation. Loss of ogg1 resulted in severe cardiac morphogenesis and functional abnormalities, including the short heart length, arrhythmia, decreased cardiomyocytes and nkx2.5(+) cardiac progenitor cells. Moreover, the increased apoptosis and repressed proliferation of progenitor cells caused by ogg1 deficiency might contribute to the heart phenotype. The microarray analysis showed that the expression of genes involved in embryonic heart tube morphogenesis and heart structure were significantly changed due to the lack of ogg1. Among those, foxh1 is an important partner of ogg1 in the cardiac development in response to DNA damage. Our work demonstrates the requirement of ogg1 in cardiac progenitors and heart development in zebrafish. These findings may be helpful for understanding the aetiology of congenital cardiac deficits.
Collapse
|
436
|
Abstract
Zebrafish (Danio rerio) are an excellent vertebrate model for studying heart development, regeneration and cardiotoxicity. Zebrafish embryos exposed during the temporal window of epicardium development to the aryl hydrocarbon receptor (AHR) agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exhibit severe heart malformations. TCDD exposure prevents both proepicardial organ (PE) and epicardium development. Exposure later in development, after the epicardium has formed, does not produce cardiac toxicity. It is not until the adult zebrafish heart is stimulated to regenerate does TCDD again cause detrimental effects. TCDD exposure prior to ventricular resection prevents cardiac regeneration. It is likely that TCDD-induced inhibition of epicardium development and cardiac regeneration occur via a common mechanism. Here, we describe experiments that focus on the epicardium as a target and sensor of zebrafish heart toxicity.
Collapse
Affiliation(s)
- Peter Hofsteen
- Department of Pharmaceutical Sciences, University of Wisconsin, 777 Highland Ave, Madison, WI 53705, USA
| | - Jessica Plavicki
- Department of Pharmaceutical Sciences, University of Wisconsin, 777 Highland Ave, Madison, WI 53705, USA
| | - Richard E. Peterson
- Department of Pharmaceutical Sciences, University of Wisconsin, 777 Highland Ave, Madison, WI 53705, USA
| | - Warren Heideman
- Department of Pharmaceutical Sciences, University of Wisconsin, 777 Highland Ave, Madison, WI 53705, USA
| |
Collapse
|
437
|
Liu YQ, Song GX, Liu HL, Wang XJ, Shen YH, Zhou LJ, Jin J, Liu M, Shi CM, Qian LM. Silencing of FABP3 leads to apoptosis-induced mitochondrial dysfunction and stimulates Wnt signaling in zebrafish. Mol Med Rep 2013; 8:806-12. [PMID: 23846528 DOI: 10.3892/mmr.2013.1586] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 07/04/2013] [Indexed: 11/06/2022] Open
Abstract
Fatty acid binding protein 3 (FABP3, also termed heart-type fatty acid binding protein) is a member of the intracellular lipid-binding protein family that may be essential in fatty acid transport, cell growth, cellular signaling and gene transcription. Previously, we demonstrated that FABP3 was involved in apoptosis-associated congenital cardiac malformations; however, its mechanism of regulation remains unclear. Apoptosis has increasingly been considered to be important in cardiac development. In the present study, a zebrafish model was used to investigate the involvement of FABP3‑morpholino (MO)-induced apoptosis and mitochondrial dysfunction in cardiac development. During the early stages of cardiac development, injection of FABP3‑MO into zebrafish resulted in significant impairment in cardiac development and promoted the rate of apoptosis which was correlated with significant dysfunction of the mitochondria. For example, the ATP content was markedly decreased at 24 and 48 h post-fertilization (pf), reactive oxygen species production was significantly enhanced at 24 and 48 h pf and the mitochondrial DNA copy number was reduced at 24, 48 and 72 h pf. Additionally, Nkx2.5 expression was upregulated in FABP3-MO zebrafish, and Wnt signaling molecules (Wnt1, Wnt5 and Wnt11) were also highly expressed in FABP3-MO zebrafish at 24, 48 and 72 h pf. In conclusion, the results indicated that FABP3 knockdown exhibited significant toxic effects on cardiac development and mitochondrial function, which may be responsible for the knockdown of FABP3-induced apoptosis. Apoptosis was one of the mechanisms underlying this effect, and was correlated with the activation of Wnt signaling. These studies identified FABP3 as a candidate gene underlying the etiology of congenital heart defects.
Collapse
Affiliation(s)
- Yao-Qiu Liu
- State Key Laboratory of Reproductive Medicine, Department of Pediatrics, Nanjing Maternity and Child Health Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, P.R China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
438
|
Wang X, Zhou L, Jin J, Yang Y, Song G, Shen Y, Liu H, Liu M, Shi C, Qian L. Knockdown of FABP3 impairs cardiac development in Zebrafish through the retinoic acid signaling pathway. Int J Mol Sci 2013; 14:13826-41. [PMID: 23823803 PMCID: PMC3742220 DOI: 10.3390/ijms140713826] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 06/01/2013] [Accepted: 06/26/2013] [Indexed: 11/16/2022] Open
Abstract
Fatty acid-binding protein 3 (FABP3) is a member of the intracellular lipid-binding protein family, and is primarily expressed in cardiac muscle tissue. Previously, we found that FABP3 is highly expressed in patients with ventricular-septal defects and is often used as a plasma biomarker in idiopathic dilated cardiomyopathy, and may play a significant role in the development of these defects in humans. In the present study, we aimed to investigate the role of FABP3 in the embryonic development of the zebrafish heart, and specifically how morpholino (MO) mediated knockdown of FABP3 would affect heart development in this species. Our results revealed that knockdown of FABP3 caused significant impairment of cardiac development observed, including developmental delay, pericardial edema, a linear heart tube phenotype, incomplete cardiac loop formation, abnormal positioning of the ventricles and atria, downregulated expression of cardiac-specific markers and decreased heart rate. Mechanistically, our data showed that the retinoic acid (RA) catabolizing enzyme Cyp26a1 was upregulated in FABP3-MO zebrafish, as indicated by in situ hybridization and real-time PCR. On the other hand, the expression level of the RA synthesizing enzyme Raldh2 did not significantly change in FABP3-MO injected zebrafish. Collectively, our results indicated that FABP3 knockdown had significant effects on cardiac development, and that dysregulated RA signaling was one of the mechanisms underlying this effect. As a result, these studies identify FABP3 as a candidate gene underlying the etiology of congenital heart defects.
Collapse
Affiliation(s)
- Xuejie Wang
- Department of Emergency, Subei People Hospital, Yangzhou, Jiangsu 225001, China; E-Mail:
| | - Lijuan Zhou
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; E-Mails: (L.Z.); (J.J.); (Y.Y.); (G.S.); (H.L.); (M.L.)
| | - Jin Jin
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; E-Mails: (L.Z.); (J.J.); (Y.Y.); (G.S.); (H.L.); (M.L.)
| | - Yang Yang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; E-Mails: (L.Z.); (J.J.); (Y.Y.); (G.S.); (H.L.); (M.L.)
| | - Guixian Song
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; E-Mails: (L.Z.); (J.J.); (Y.Y.); (G.S.); (H.L.); (M.L.)
| | - Yahui Shen
- State Key Laboratory of Reproductive Medicine, Department of Pediatrics, Nanjing Maternity and Child Health Hospital Affiliated to Nanjing Medical University, Nanjing 210029, China; E-Mail:
| | - Hailang Liu
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; E-Mails: (L.Z.); (J.J.); (Y.Y.); (G.S.); (H.L.); (M.L.)
| | - Ming Liu
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; E-Mails: (L.Z.); (J.J.); (Y.Y.); (G.S.); (H.L.); (M.L.)
| | - Chunmei Shi
- State Key Laboratory of Reproductive Medicine, Department of Pediatrics, Nanjing Maternity and Child Health Hospital Affiliated to Nanjing Medical University, Nanjing 210029, China; E-Mail:
- Authors to whom correspondence should be addressed; E-Mails: (C.S.); (L.Q.); Tel.: +86-25-5222-6266 (C.S.); +86-25-8686-2994(L.Q.); Fax: +86-25-8446-0509 (C.S.); +86-25-8446-0507 (L.Q.)
| | - Lingmei Qian
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; E-Mails: (L.Z.); (J.J.); (Y.Y.); (G.S.); (H.L.); (M.L.)
- Authors to whom correspondence should be addressed; E-Mails: (C.S.); (L.Q.); Tel.: +86-25-5222-6266 (C.S.); +86-25-8686-2994(L.Q.); Fax: +86-25-8446-0509 (C.S.); +86-25-8446-0507 (L.Q.)
| |
Collapse
|
439
|
Gays D, Santoro MM. The admiR-able advances in cardiovascular biology through the zebrafish model system. Cell Mol Life Sci 2013; 70:2489-503. [PMID: 23069988 PMCID: PMC11113687 DOI: 10.1007/s00018-012-1181-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 09/12/2012] [Accepted: 09/24/2012] [Indexed: 12/30/2022]
Abstract
MicroRNAs are small non-coding RNAs endogenously expressed by all tissues during development and adulthood. They regulate gene expression by controlling the stability of targeted messenger RNA. In cardiovascular tissues microRNAs play a role by modulating essential genes involved in heart and blood vessel development and homeostasis. The zebrafish (Danio rerio) system is a recognized vertebrate model system useful to study cardiovascular biology; recently, it has been used to investigate microRNA functions during natural and pathological states. In this review, we will illustrate the advantages of the zebrafish model in the study of microRNAs in heart and vascular cells, providing an update on recent discoveries using the zebrafish to identify new microRNAs and their targeted genes in cardiovascular tissues. Lastly, we will provide evidence that the zebrafish is an optimal model system to undercover new microRNA functions in vertebrates and to improve microRNA-based therapeutic approaches.
Collapse
Affiliation(s)
- Dafne Gays
- Department of Biology, Biochemistry and Genetics, Molecular Biotechnology Center, University of Turin, Via Nizza 52, 10126 Turin, Italy
| | - Massimo Mattia Santoro
- Department of Biology, Biochemistry and Genetics, Molecular Biotechnology Center, University of Turin, Via Nizza 52, 10126 Turin, Italy
| |
Collapse
|
440
|
Huang WC, Yang CC, Chen IH, Liu YML, Chang SJ, Chuang YJ. Treatment of Glucocorticoids Inhibited Early Immune Responses and Impaired Cardiac Repair in Adult Zebrafish. PLoS One 2013; 8:e66613. [PMID: 23805247 PMCID: PMC3689762 DOI: 10.1371/journal.pone.0066613] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 05/08/2013] [Indexed: 01/11/2023] Open
Abstract
Myocardial injury, such as myocardial infarction (MI), can lead to drastic heart damage. Zebrafish have the extraordinary ability to regenerate their heart after a severe injury. Upon ventricle resection, fibrin clots seal the wound and serve as a matrix for recruiting myeloid-derived phagocytes. Accumulated neutrophils and macrophages not only reduce the risk of infection but also secrete cytokines and growth factors to promote tissue repair. However, the underlying cellular and molecular mechanisms for how immune responses are regulated during the early stages of cardiac repair are still unclear. We investigated the role and programming of early immune responses during zebrafish heart regeneration. We found that zebrafish treated with an anti-inflammatory glucocorticoid had significantly reduced heart regenerative capacities, consistent with findings in other higher vertebrates. Moreover, inhibiting the inflammatory response led to excessive collagen deposition. A microarray approach was used to assess the differential expression profiles between zebrafish hearts with normal or impaired healing. Combining cytokine profiling and immune-staining, our data revealed that impaired heart regeneration could be due to reduced phagocyte recruitment, leading to diminished angiogenesis and cell proliferation post-cardiac injury. Despite their robust regenerative ability, our study revealed that glucocorticoid treatment could effectively hinder cardiac repair in adult zebrafish by interfering with the inflammatory response. Our findings may help to clarify the initiation of cardiac repair, which could be used to develop a therapeutic intervention that may enhance cardiac repair in humans to compensate for the loss of cardiomyocytes after an MI.
Collapse
Affiliation(s)
- Wei-Chang Huang
- Department of Medical Science & Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Chung-Chi Yang
- Department of Medical Science & Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
- Division of Cardiology, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
| | - I-Hui Chen
- Department of Medical Science & Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Min Lawrence Liu
- Department of Medical Science & Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
- Division of Cardiology, Department of Internal Medicine, Mackay Memorial Hospital Hsinchu Branch, Hsinchu, Taiwan
| | - Shing-Jyh Chang
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital Hsinchu Branch, Hsinchu, Taiwan
| | - Yung-Jen Chuang
- Department of Medical Science & Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
- * E-mail:
| |
Collapse
|
441
|
Spaink HP, Cui C, Wiweger MI, Jansen HJ, Veneman WJ, Marín-Juez R, de Sonneville J, Ordas A, Torraca V, van der Ent W, Leenders WP, Meijer AH, Snaar-Jagalska BE, Dirks RP. Robotic injection of zebrafish embryos for high-throughput screening in disease models. Methods 2013; 62:246-54. [PMID: 23769806 DOI: 10.1016/j.ymeth.2013.06.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 05/31/2013] [Accepted: 06/03/2013] [Indexed: 12/31/2022] Open
Abstract
The increasing use of zebrafish larvae for biomedical research applications is resulting in versatile models for a variety of human diseases. These models exploit the optical transparency of zebrafish larvae and the availability of a large genetic tool box. Here we present detailed protocols for the robotic injection of zebrafish embryos at very high accuracy with a speed of up to 2000 embryos per hour. These protocols are benchmarked for several applications: (1) the injection of DNA for obtaining transgenic animals, (2) the injection of antisense morpholinos that can be used for gene knock-down, (3) the injection of microbes for studying infectious disease, and (4) the injection of human cancer cells as a model for tumor progression. We show examples of how the injected embryos can be screened at high-throughput level using fluorescence analysis. Our methods open up new avenues for the use of zebrafish larvae for large compound screens in the search for new medicines.
Collapse
Affiliation(s)
- Herman P Spaink
- Department of Molecular Cell Biology, Institute of Biology, Leiden University, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
442
|
Duan J, Yu Y, Li Y, Yu Y, Sun Z. Cardiovascular toxicity evaluation of silica nanoparticles in endothelial cells and zebrafish model. Biomaterials 2013; 34:5853-62. [PMID: 23663927 DOI: 10.1016/j.biomaterials.2013.04.032] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 04/16/2013] [Indexed: 01/13/2023]
Abstract
Environmental exposure to nanomaterials is inevitable as nanomaterials become part of our daily life, and as a result, nanotoxicity research is gaining attention. However, most investigators focus on the evaluation of overall toxicity instead of a certain organism system. In this regard, the evaluation of cardiovascular effects of silica nanoparticles was preformed in vitro and in vivo. It's worth noting that silica nanoparticles induced cytotoxicity as well as oxidative stress and apoptosis. ROS and apoptosis were considered as major factor to endothelial cells dysfunction, involved in several molecular mechanisms of cardiovascular diseases. In vivo study, mortality, malformation, heart rate and whole-embryo cellular death were measured in zebrafish embryos. Results showed that silica nanoparticles induced pericardia toxicity and caused bradycardia. We also examined the expression of cardiovascular-related proteins in embryos by western blot analysis. Silica nanoparticles inhibited the expression of p-VEGFR2 and p-ERK1/2 as well as the downregulation of MEF2C and NKX2.5, revealed that silica nanoparticles could inhibit the angiogenesis and disturb the heart formation and development. In summary, our results suggest that exposure to silica nanoparticles is a possible risk factor to cardiovascular system.
Collapse
Affiliation(s)
- Junchao Duan
- School of Public Health, Capital Medical University, Beijing 100069, PR China
| | | | | | | | | |
Collapse
|
443
|
Guner-Ataman B, Paffett-Lugassy N, Adams MS, Nevis KR, Jahangiri L, Obregon P, Kikuchi K, Poss KD, Burns CE, Burns CG. Zebrafish second heart field development relies on progenitor specification in anterior lateral plate mesoderm and nkx2.5 function. Development 2013; 140:1353-63. [PMID: 23444361 DOI: 10.1242/dev.088351] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Second heart field (SHF) progenitors perform essential functions during mammalian cardiogenesis. We recently identified a population of cardiac progenitor cells (CPCs) in zebrafish expressing latent TGFβ-binding protein 3 (ltbp3) that exhibits several defining characteristics of the anterior SHF in mammals. However, ltbp3 transcripts are conspicuously absent in anterior lateral plate mesoderm (ALPM), where SHF progenitors are specified in higher vertebrates. Instead, ltbp3 expression initiates at the arterial pole of the developing heart tube. Because the mechanisms of cardiac development are conserved evolutionarily, we hypothesized that zebrafish SHF specification also occurs in the ALPM. To test this hypothesis, we Cre/loxP lineage traced gata4(+) and nkx2.5(+) ALPM populations predicted to contain SHF progenitors, based on evolutionary conservation of ALPM patterning. Traced cells were identified in SHF-derived distal ventricular myocardium and in three lineages in the outflow tract (OFT). We confirmed the extent of contributions made by ALPM nkx2.5(+) cells using Kaede photoconversion. Taken together, these data demonstrate that, as in higher vertebrates, zebrafish SHF progenitors are specified within the ALPM and express nkx2.5. Furthermore, we tested the hypothesis that Nkx2.5 plays a conserved and essential role during zebrafish SHF development. Embryos injected with an nkx2.5 morpholino exhibited SHF phenotypes caused by compromised progenitor cell proliferation. Co-injecting low doses of nkx2.5 and ltbp3 morpholinos revealed a genetic interaction between these factors. Taken together, our data highlight two conserved features of zebrafish SHF development, reveal a novel genetic relationship between nkx2.5 and ltbp3, and underscore the utility of this model organism for deciphering SHF biology.
Collapse
Affiliation(s)
- Burcu Guner-Ataman
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
444
|
Mishra S, Guan J, Plovie E, Seldin DC, Connors LH, Merlini G, Falk RH, MacRae CA, Liao R. Human amyloidogenic light chain proteins result in cardiac dysfunction, cell death, and early mortality in zebrafish. Am J Physiol Heart Circ Physiol 2013; 305:H95-103. [PMID: 23624626 DOI: 10.1152/ajpheart.00186.2013] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Systemic amyloid light-chain (AL) amyloidosis is associated with rapidly progressive and fatal cardiomyopathy resulting from the direct cardiotoxic effects of circulating AL light chain (AL-LC) proteins and the indirect effects of AL fibril tissue infiltration. Cardiac amyloidosis is resistant to standard heart failure therapies, and, to date, there are limited treatment options for these patients. The mechanisms underlying the development of cardiac amyloidosis and AL-LC cardiotoxicity are largely unknown, and their study has been limited by the lack of a suitable in vivo model system. Here, we establish an in vivo zebrafish model of human AL-LC-induced cardiotoxicity. AL-LC isolated from AL cardiomyopathy patients or control nonamyloidogenic LC protein isolated from multiple myeloma patients (Con-LC) was directly injected into the circulation of zebrafish at 48 h postfertilization. AL-LC injection resulted in impaired cardiac function, pericardial edema, and increased cell death relative to Con-LC, culminating in compromised survival with 100% mortality within 2 wk, independent of AL fibril deposition. Prior work has implicated noncanonical p38 MAPK activation in the pathogenesis of AL-LC-induced cardiotoxicity, and p38 MAPK inhibition via SB-203580 rescued AL-LC-induced cardiac dysfunction and cell death and attenuated mortality in zebrafish. This in vivo zebrafish model of AL-LC cardiotoxicity demonstrates that antagonism of p38 MAPK within the AL-LC cardiotoxic signaling response may serve to improve cardiac function and mortality in AL cardiomyopathy. Furthermore, this in vivo model system will allow for further study of the molecular underpinnings of AL cardiotoxicity and identification of novel therapeutic strategies.
Collapse
Affiliation(s)
- Shikha Mishra
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
445
|
Devakanmalai GS, Zumrut HE, Ozbudak EM. Cited3 activates Mef2c to control muscle cell differentiation and survival. Biol Open 2013; 2:505-14. [PMID: 23789100 PMCID: PMC3654270 DOI: 10.1242/bio.20132550] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 03/25/2013] [Indexed: 01/13/2023] Open
Abstract
Vertebrate muscle development occurs through sequential differentiation of cells residing in somitic mesoderm – a process that is largely governed by transcriptional regulators. Our recent spatiotemporal microarray study in zebrafish has identified functionally uncharacterized transcriptional regulators that are expressed at the initial stages of myogenesis. cited3 is one such novel gene encoding a transcriptional coactivator, which is expressed in the precursors of oxidative slow-twitch myofibers. Our experiments placed cited3 into a gene regulatory network, where it acts downstream of Hedgehog signaling and myoD/myf5 but upstream of mef2c. Knockdown of expression of cited3 by antisense morpholino oligonucleotides impaired muscle cell differentiation and growth, caused muscle cell death and eventually led to total immotility. Transplantation experiments demonstrated that Cited3 cell-autonomously activates the expression of mef2c in slow myofibers, while it non-cell-autonomously regulates expression of structural genes in fast myofibers. Restoring expression of cited3 or mef2c rescued all the cited3 loss-of-function phenotypes. Protein truncation experiments revealed the functional necessity of C-terminally conserved domain of Cited3, which is known to mediate interactions of Cited-family proteins with histone acetylases. Our findings demonstrate that Cited3 is a critical transcriptional coactivator functioning during muscle differentiation and its absence leads to defects in terminal differentiation and survival of muscle cells.
Collapse
|
446
|
Jean MJ, Deverteuil P, Lopez NH, Tapia JD, Schoffstall B. Adult zebrafish hearts efficiently compensate for excessive forced overload cardiac stress with hyperplastic cardiomegaly. Biores Open Access 2013; 1:88-91. [PMID: 23515072 PMCID: PMC3559224 DOI: 10.1089/biores.2012.0201] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although human cardiomyocytes (CMs) are capable of some cell division, this response is neither sufficient to repair damaged cardiac tissue nor efficient to compensate for pathological stress. Danio rerio (zebrafish) CMs have been shown to have high proliferative capability to completely repair hearts after injury; however, no reports have focused on their physiological and cellular response to cardiac overload stress. We hypothesized that forced excessive long-term cardiac overload stress would elicit a proliferative response similar to regenerative cardiac repair in zebrafish. We completed a 10-week forced fast-speed swimming exercise regimen, comparing exercised hearts to nonexercised controls for physiological function and histological evidence of cell proliferation. Our results indicate that exercised heart ventricles are 33% larger, yet exhibit no significant changes in cardiac physiological function as evaluated by the heart rate and the percent shortening fraction. We found 8% more CM nuclei per cross-sectional area within exercised ventricular tissue, indicating that cardiomegaly was not due to individual cell hypertrophy, but due to hyperplasia. This novel zebrafish cardiac stress model may be used to identify genes or proteins with therapeutic potential for treating cardiac stress pathologies, as well as molecules that could be used as initiators of cardiac cell proliferation in humans.
Collapse
Affiliation(s)
- Maxime J Jean
- Department of Biology, College of Arts and Sciences, Barry University , Miami Shores, Florida
| | | | | | | | | |
Collapse
|
447
|
Mahabir S, Chatterjee D, Buske C, Gerlai R. Maturation of shoaling in two zebrafish strains: a behavioral and neurochemical analysis. Behav Brain Res 2013; 247:1-8. [PMID: 23518435 DOI: 10.1016/j.bbr.2013.03.013] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 03/06/2013] [Accepted: 03/11/2013] [Indexed: 01/15/2023]
Abstract
Abnormal social behavior is a hallmark of several human neuropsychiatric and neurodevelopmental disorders for which appropriate treatment is lacking. The zebrafish has been proposed as a tool with which these disorders may be modeled and their mechanisms analyzed. A potential starting point of such analyses is the identification of genetic differences between distinct zebrafish strains. Here we compare AB and TU, two well established zebrafish strains, and characterize the developmental trajectories of their shoaling (social) behavior and of the levels of dopamine, serotonin as well as a metabolite of each of these neurotransmitters, DOPAC and 5HIAA from whole brain extracts. Using a novel video-tracking software application, we demonstrate significant strain dependent changes in the maturation of shoaling between day 7 and day 87 post-fertilization. Using high-precision liquid chromatography specifically adapted to zebrafish, we uncover a significant age×strain interaction in dopamine and DOPAC that apparently correlates well with the behavioral differences found between the strains. We also report on strain differences in serotonin and 5HIAA. We discuss possible mechanistic analyses that will address causality and conclude that zebrafish will be a useful tool with which the neurobiological and genetic bases of social behavior may be analyzed in vertebrates.
Collapse
Affiliation(s)
- Samantha Mahabir
- Department of Cell & Systems Biology University of Toronto, Canada
| | | | | | | |
Collapse
|
448
|
Xie X, Tan J, Wei D, Lei D, Yin T, Huang J, Zhang X, Qiu J, Tang C, Wang G. In vitro and in vivo investigations on the effects of low-density lipoprotein concentration polarization and haemodynamics on atherosclerotic localization in rabbit and zebrafish. J R Soc Interface 2013; 10:20121053. [PMID: 23449959 DOI: 10.1098/rsif.2012.1053] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Atherosclerosis (AS) commonly occurs in the regions of the arterial tree with haemodynamic peculiarities, including local flow field disturbances, and formation of swirling flow and vortices. The aim of our study was to confirm low-density lipoprotein (LDL) concentration polarization in the vascular system in vitro and in vivo, and investigate the effects of LDL concentration polarization and flow field alterations on atherosclerotic localization. Red fluorescent LDL was injected into optically transparent Flk1: GFP zebrafish embryos, and the LDL distribution in the vascular lumen was investigated in vivo using laser scanning confocal microscopy. LDL concentration at the vascular luminal surface was found to be higher than that in the bulk. The flow field conditions in blood vessel segments were simulated and measured, and obvious flow field disturbances were found in the regions of vascular geometry change. The LDL concentration at the luminal surface of bifurcation was significantly higher than that in the straight segment, possibly owing to the atherogenic effect of disturbed flow. Additionally, a stenosis model of rabbit carotid arteries was generated. Atherosclerotic plaques were found to have occurred in the stenosis group and were more severe in the stenosis group on a high-fat diet. Our findings provide the first ever definite proof that LDL concentration polarization occurs in the vascular system in vivo. Both lipoprotein concentration polarization and flow field changes are involved in the infiltration/accumulation of atherogenic lipids within the location of arterial luminal surface and promote the development of AS.
Collapse
Affiliation(s)
- Xiang Xie
- Chongqing University, Chongqing, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
449
|
Aryl Phosphate Esters Within a Major PentaBDE Replacement Product Induce Cardiotoxicity in Developing Zebrafish Embryos: Potential Role of the Aryl Hydrocarbon Receptor. Toxicol Sci 2013; 133:144-56. [DOI: 10.1093/toxsci/kft020] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
450
|
Terriente J, Pujades C. Use of Zebrafish Embryos for Small Molecule Screening Related to Cancer. Dev Dyn 2013. [DOI: 10.1002/dvdy.23912] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Javier Terriente
- Department of Experimental and Health Sciences; Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona; PRBB; Barcelona; Spain
| | - Cristina Pujades
- Department of Experimental and Health Sciences; Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona; PRBB; Barcelona; Spain
| |
Collapse
|