401
|
Quante T, Otto B, Brázdová M, Kejnovská I, Deppert W, Tolstonog GV. Mutant p53 is a transcriptional co-factor that binds to G-rich regulatory regions of active genes and generates transcriptional plasticity. Cell Cycle 2012; 11:3290-303. [PMID: 22894900 DOI: 10.4161/cc.21646] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The molecular mechanisms underlying mutant p53 (mutp53) "gain-of-function" (GOF) are still insufficiently understood, but there is evidence that mutp53 is a transcriptional regulator that is recruited by specialized transcription factors. Here we analyzed the binding sites of mutp53 and the epigenetic status of mutp53-regulated genes that had been identified by global expression profiling upon depletion of endogenous mutp53 (R273H) expression in U251 glioblastoma cells. We found that mutp53 preferentially and autonomously binds to G/C-rich DNA around transcription start sites (TSS) of many genes characterized by active chromatin marks (H3K4me3) and frequently associated with transcription-competent RNA polymerase II. Mutp53-bound regions overlap predominantly with CpG islands and are enriched in G4-motifs that are prone to form G-quadruplex structures. In line, mutp53 binds and stabilizes a well-characterized G-quadruplex structure in vitro. Hence, we assume that binding of mutp53 to G/C-rich DNA regions associated with a large set of cancer-relevant genes is an initial step in their regulation by mutp53. Using GAS1 and HTR2A as model genes, we show that mutp53 affects several parameters of active transcription. Finally, we discuss a dual mode model of mutp53 GOF, which includes both stochastic and deterministic components.
Collapse
|
402
|
PHF20 is an effector protein of p53 double lysine methylation that stabilizes and activates p53. Nat Struct Mol Biol 2012; 19:916-24. [PMID: 22864287 DOI: 10.1038/nsmb.2353] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Accepted: 07/06/2012] [Indexed: 12/26/2022]
Abstract
PHF20 is a multidomain protein and subunit of a lysine acetyltransferase complex that acetylates histone H4 and p53 but whose function is unclear. Using biochemical, biophysical and cellular approaches, we determined that PHF20 is a direct regulator of p53. A Tudor domain in PHF20 recognized p53 dimethylated at Lys370 or Lys382 and a homodimeric form of this Tudor domain could associate with the two dimethylated sites on p53 with enhanced affinity, indicating a multivalent interaction. Association with PHF20 promotes stabilization and activation of p53 by diminishing Mdm2-mediated p53 ubiquitylation and degradation. PHF20 contributes to upregulation of p53 in response to DNA damage, and ectopic expression of PHF20 in different cell lines leads to phenotypic changes that are hallmarks of p53 activation. Overall our work establishes that PHF20 functions as an effector of p53 methylation that stabilizes and activates p53.
Collapse
|
403
|
Pelisch F, Pozzi B, Risso G, Muñoz MJ, Srebrow A. DNA damage-induced heterogeneous nuclear ribonucleoprotein K sumoylation regulates p53 transcriptional activation. J Biol Chem 2012; 287:30789-99. [PMID: 22825850 DOI: 10.1074/jbc.m112.390120] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heterogeneous nuclear ribonucleoprotein (hnRNP) K is a nucleocytoplasmic shuttling protein that is a key player in the p53-triggered DNA damage response, acting as a cofactor for p53 in response to DNA damage. hnRNP K is a substrate of the ubiquitin E3 ligase MDM2 and, upon DNA damage, is de-ubiquitylated. In sharp contrast with the role and consequences of the other post-translational modifications, nothing is known about the role of SUMO conjugation to hnRNP K in p53 transcriptional co-activation. In the present work, we show that hnRNP K is modified by SUMO in lysine 422 within its KH3 domain, and sumoylation is regulated by the E3 ligase Pc2/CBX4. Most interestingly, DNA damage stimulates hnRNP K sumoylation through Pc2 E3 activity, and this modification is required for p53 transcriptional activation. Abrogation of hnRNP K sumoylation leads to an aberrant regulation of the p53 target gene p21. Our findings link the DNA damage-induced Pc2 activation to the p53 transcriptional co-activation through hnRNP K sumoylation.
Collapse
Affiliation(s)
- Federico Pelisch
- Instituto de Fisiología, Biología Molecular y Neurociencias-Consejo Nacional de Investigaciones Científicas y Técnicas; Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales-Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, Buenos Aires (C1428EHA), Argentina
| | | | | | | | | |
Collapse
|
404
|
Frontini M, Proietti-De-Santis L. Interaction between the Cockayne syndrome B and p53 proteins: implications for aging. Aging (Albany NY) 2012; 4:89-97. [PMID: 22383384 PMCID: PMC3314171 DOI: 10.18632/aging.100439] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The CSB protein plays a role in the transcription coupled repair (TCR) branch of the nucleotide excision repair pathway. CSB is very often found mutated in Cockayne syndrome, a segmental progeroid genetic disease characterized by organ degeneration and growth failure. The tumor suppressor p53 plays a pivotal role in triggering senescence and apoptosis and suppressing tumorigenesis. Although p53 is very important to avoid cancer, its excessive activity can be detrimental for the lifespan of the organism. This is why a network of positive and negative feedback loops, which most likely evolved to fine-tune the activity of this tumor suppressor, modulate its induction and activation. Accordingly, an unbalanced p53 activity gives rise to premature aging or cancer. The physical interaction between CSB and p53 proteins has been known for more than a decade but, despite several hypotheses, nobody has been able to show the functional consequences of this interaction. In this review we resume recent advances towards a more comprehensive understanding of the critical role of this interaction in modulating p53’s levels and activity, therefore helping the system find a reasonable equilibrium between the beneficial and the detrimental effects of its activity. This crosstalk re-establishes the physiological balance towards cell proliferation and survival instead of towards cell death, after stressors of a broad nature. Accordingly, cells bearing mutations in the csb gene are unable to re-establish this physiological balance and to properly respond to some stress stimuli and undergo massive apoptosis.
Collapse
Affiliation(s)
- Mattia Frontini
- Department of Haematology, University of Cambridge, CB2 0PT, Cambridge, United Kingdom
| | | |
Collapse
|
405
|
Transcriptional Regulation of the p53 Tumor Suppressor Gene in S-Phase of the Cell-Cycle and the Cellular Response to DNA Damage. Biochem Res Int 2012; 2012:808934. [PMID: 22830025 PMCID: PMC3400299 DOI: 10.1155/2012/808934] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 06/20/2012] [Accepted: 06/21/2012] [Indexed: 11/18/2022] Open
Abstract
The p53 tumor suppressor induces the transcription of genes that negatively regulate progression of the cell cycle in response to DNA damage or other cellular stressors and thus participates in maintaining genome stability. Numerous studies have demonstrated that p53 transcription is activated before or during early S-phase in cells progressing from G0/G1 into S-phase through the combined action of two DNA-binding factors RBP-Jκ and C/EBPβ-2. Here, we review evidence that this induction occurs to provide available p53 mRNA in order to prepare the cell for DNA damage in S-phase, this ensuring a rapid response to DNA damage before exiting this stage of the cell cycle.
Collapse
|
406
|
Differentiated embryo-chondrocyte expressed gene 1 regulates p53-dependent cell survival versus cell death through macrophage inhibitory cytokine-1. Proc Natl Acad Sci U S A 2012; 109:11300-5. [PMID: 22723347 DOI: 10.1073/pnas.1203185109] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Activation of p53 upon DNA damage induces an array of target genes, leading to cell cycle arrest and/or apoptosis. However, the mechanism by which the cell fate is controlled by p53 remains to be clarified. Previously, we showed that DEC1, a basic helix-loop-helix transcription factor and a target of p53, is capable of inducing cell cycle arrest and mediating DNA damage-induced premature senescence. Here, we found that ectopic expression of DEC1 inhibits, whereas knockdown of DEC1 enhances, DNA damage-induced cell death. Surprisingly, we showed that the anti-cell-death activity of DEC1 is p53 dependent, but DEC1 does not directly modulate p53 expression. Instead, we showed that DEC1 inhibits the ability of p53 to induce macrophage inhibitory cytokine-1 (MIC-1), but not other prosurvival/proapoptotic targets, including p21 and Puma. Importantly, we showed that upon binding to their respective response elements on the MIC-1 promoter, DEC1 and p53 physically interact on the MIC-1 promoter via the basic helix-loop-helix domain in DEC1 and the tetramerization domain in p53, which likely weakens the DNA-binding activity of p53 to the MIC-1 promoter. Finally, we found that depletion of MIC-1 abrogates the ability of DEC1 to attenuate DNA damage-induced cell death. Together, we hypothesize that DEC1 controls the response of p53-dependent cell survival vs. cell death to a stress signal through MIC-1.
Collapse
|
407
|
Magwood AC, Mundia MM, Baker MD. High levels of wild-type BRCA2 suppress homologous recombination. J Mol Biol 2012; 421:38-53. [PMID: 22579622 DOI: 10.1016/j.jmb.2012.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 04/23/2012] [Accepted: 05/03/2012] [Indexed: 11/26/2022]
Abstract
Endogenous levels of the BRCA2 (breast cancer susceptibility 2) protein promote homologous recombination by regulating the essential strand exchange protein RAD51. To examine BRCA2 function in homologous recombination, we expressed human BRCA2 in control mouse hybridoma cells, as well as those that were depleted of endogenous Brca2 by small interfering RNA. With moderate human BRCA2 expression, homologous recombination was stimulated. Conversely, a higher level of BRCA2 reduced homologous recombination and DNA-damage-induced Rad51 foci formation. Cells expressing high levels of BRCA2 feature normal growth, increased sensitivity to mitomycin C, and increased illegitimate recombination. BRCA2-overexpressing cells are also characterized by suppression of p53 transcriptional regulation and a corresponding reduction in the expression of the p53-responsive genes Noxa and p21. Notably, in cells expressing high levels of BRCA2, small interfering RNA depletion of human BRCA2 or ectopic expression of Rad51 increases homologous recombination and decreases illegitimate recombination. Thus, high levels of wild-type BRCA2 perturb Rad51-mediated homologous recombination, and relatively normal recombination responses can be restored by rebalancing recombination factors.
Collapse
Affiliation(s)
- Alissa C Magwood
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | |
Collapse
|
408
|
Apostolidis PA, Lindsey S, Miller WM, Papoutsakis ET. Proposed megakaryocytic regulon of p53: the genes engaged to control cell cycle and apoptosis during megakaryocytic differentiation. Physiol Genomics 2012; 44:638-50. [PMID: 22548738 DOI: 10.1152/physiolgenomics.00028.2012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
During endomitosis, megakaryocytes undergo several rounds of DNA synthesis without division leading to polyploidization. In primary megakaryocytes and in the megakaryocytic cell line CHRF, loss or knock-down of p53 enhances cell cycling and inhibits apoptosis, leading to increased polyploidization. To support the hypothesis that p53 suppresses megakaryocytic polyploidization, we show that stable expression of wild-type p53 in K562 cells (a p53-null cell line) attenuates the cells' ability to undergo polyploidization during megakaryocytic differentiation due to diminished DNA synthesis and greater apoptosis. This suggested that p53's effects during megakaryopoiesis are mediated through cell cycle- and apoptosis-related target genes, possibly by arresting DNA synthesis and promoting apoptosis. To identify candidate genes through which p53 mediates these effects, gene expression was compared between p53 knock-down (p53-KD) and control CHRF cells induced to undergo terminal megakaryocytic differentiation using microarray analysis. Among substantially downregulated p53 targets in p53-KD megakaryocytes were cell cycle regulators CDKN1A (p21) and PLK2, proapoptotic FAS, TNFRSF10B, CASP8, NOTCH1, TP53INP1, TP53I3, DRAM1, ZMAT3 and PHLDA3, DNA-damage-related RRM2B and SESN1, and actin component ACTA2, while antiapoptotic CKS1B, BCL2, GTSE1, and p53 family member TP63 were upregulated in p53-KD cells. Additionally, a number of cell cycle-related, proapoptotic, and cytoskeleton-related genes with known functions in megakaryocytes but not known to carry p53-responsive elements were differentially expressed between p53-KD and control CHRF cells. Our data support a model whereby p53 expression during megakaryopoiesis serves to control polyploidization and the transition from endomitosis to apoptosis by impeding cell cycling and promoting apoptosis. Furthermore, we identify a putative p53 regulon that is proposed to orchestrate these effects.
Collapse
Affiliation(s)
- Pani A Apostolidis
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA.
| | | | | | | |
Collapse
|
409
|
Hamard PJ, Lukin DJ, Manfredi JJ. p53 basic C terminus regulates p53 functions through DNA binding modulation of subset of target genes. J Biol Chem 2012; 287:22397-407. [PMID: 22514277 DOI: 10.1074/jbc.m111.331298] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The p53 gene encodes a transcription factor that is composed of several functional domains: the N-terminal transactivation domain, the central sequence-specific DNA binding domain, the tetramerization domain, and the highly basic C-terminal regulatory domain (CTD). The p53 CTD is a nonspecific DNA binding domain that is subject to extensive post-translational modifications. However, the functional significance of the p53 CTD remains unclear. The role of this domain in the regulation of p53 functions is explored by comparing the activity of ectopically expressed wild-type (WT) p53 protein to that of a truncated mutant lacking the 24 terminal amino acids (Δ24). Using quantitative real time PCR and chromatin Immuno-Precipitation experiments, a p53 CTD deletion is shown to alter the p53-dependent induction of a subset of its target genes due to impaired specific DNA binding. Moreover, p53-induced growth arrest and apoptosis both require an intact p53 CTD. These data indicate that the p53 CTD is a positive regulator of p53 tumor suppressor functions.
Collapse
Affiliation(s)
- Pierre-Jacques Hamard
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | |
Collapse
|
410
|
Jenkins LMM, Durell SR, Mazur SJ, Appella E. p53 N-terminal phosphorylation: a defining layer of complex regulation. Carcinogenesis 2012; 33:1441-9. [PMID: 22505655 DOI: 10.1093/carcin/bgs145] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The p53 tumor suppressor is a critical component of the cellular response to stress. As it can inhibit cell growth, p53 is mutated or functionally inactivated in most tumors. A multitude of protein-protein interactions with transcriptional cofactors are central to p53-dependent responses. In its activated state, p53 is extensively modified in both the N- and C-terminal regions of the protein. These modifications, especially phosphorylation of serine and threonine residues in the N-terminal transactivation domain, affect p53 stability and activity by modulating the affinity of protein-protein interactions. Here, we review recent findings from in vitro and in vivo studies on the role of p53 N-terminal phosphorylation. These modifications can either positively or negatively affect p53 and add a second layer of complex regulation to the divergent interactions of the p53 transactivation domain.
Collapse
Affiliation(s)
- Lisa M Miller Jenkins
- Laboratory of Cell Biology, National Cancer Institute, NIH, 37 Convent Drive, Room 2140, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
411
|
Piao J, Sakurai N, Iwamoto S, Nishioka J, Nakatani K, Komada Y, Mizutani S, Takagi M. Functional studies of a novel germline p53 splicing mutation identified in a patient with Li-Fraumeni-like syndrome. Mol Carcinog 2012; 52:770-6. [PMID: 22495821 DOI: 10.1002/mc.21912] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 02/23/2012] [Accepted: 03/17/2012] [Indexed: 11/11/2022]
Abstract
Most p53 mutations identified in Li-Fraumeni syndrome (LFS) are missense mutations; splicing mutations have rarely been reported. A novel splicing p53 mutation was identified in a patient with Li-Fraumeni-like syndrome (LFL). Usually, p53 missense mutants identified in LFS and cancer cells function as dominant negative mutations interfering with wild-type p53 function. However, the mechanism by which p53 haploinsufficiency causes carcinogenesis is not well characterized. In this study, we describe a novel splicing mutation that results in the loss-of-function of p53. These findings suggest a linkage between the loss-of-function type p53 mutation and a LFL phenotype.
Collapse
Affiliation(s)
- Jinhua Piao
- Department of Pediatrics and Developmental Biology, Graduate School of Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
412
|
Crosstalk between p53 and TGF-β Signalling. JOURNAL OF SIGNAL TRANSDUCTION 2012; 2012:294097. [PMID: 22545213 PMCID: PMC3321553 DOI: 10.1155/2012/294097] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 11/11/2011] [Indexed: 12/15/2022]
Abstract
Wild-type p53 and TGF-β are key tumour suppressors which regulate an array of cellular responses. TGF-β signals in part via the Smad signal transduction pathway. Wild-type p53 and Smads physically interact and coordinately induce transcription of a number of key tumour suppressive genes. Conversely mutant p53 generally subverts tumour suppressive TGF-β responses, diminishing transcriptional activation of key TGF-β target genes. Mutant p53 can also interact with Smads and this enables complex formation with the p53 family member p63 and blocks p63-mediated activation of metastasis suppressing genes to promote tumour progression. p53 and Smad function may also overlap during miRNA biogenesis as they can interact with the same components of the Drosha miRNA processing complex to promote maturation of specific subsets of miRNAs. This paper investigates the crosstalk between p53 and TGF-β signalling and the potential roles this plays in cancer biology.
Collapse
|
413
|
Jemaà M, Vitale I, Kepp O, Berardinelli F, Galluzzi L, Senovilla L, Mariño G, Malik SA, Rello-Varona S, Lissa D, Antoccia A, Tailler M, Schlemmer F, Harper F, Pierron G, Castedo M, Kroemer G. Selective killing of p53-deficient cancer cells by SP600125. EMBO Mol Med 2012; 4:500-14. [PMID: 22438244 PMCID: PMC3443949 DOI: 10.1002/emmm.201200228] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 01/16/2012] [Accepted: 02/02/2012] [Indexed: 12/11/2022] Open
Abstract
The genetic or functional inactivation of p53 is highly prevalent in human cancers. Using high-content videomicroscopy based on fluorescent TP53+/+ and TP53−/− human colon carcinoma cells, we discovered that SP600125, a broad-spectrum serine/threonine kinase inhibitor, kills p53-deficient cells more efficiently than their p53-proficient counterparts, in vitro. Similar observations were obtained in vivo, in mice carrying p53-deficient and -proficient human xenografts. Such a preferential cytotoxicity could be attributed to the failure of p53-deficient cells to undergo cell cycle arrest in response to SP600125. TP53−/− (but not TP53+/+) cells treated with SP600125 became polyploid upon mitotic abortion and progressively succumbed to mitochondrial apoptosis. The expression of an SP600125-resistant variant of the mitotic kinase MPS1 in TP53−/− cells reduced SP600125-induced polyploidization. Thus, by targeting MPS1, SP600125 triggers a polyploidization program that cannot be sustained by TP53−/− cells, resulting in the activation of mitotic catastrophe, an oncosuppressive mechanism for the eradication of mitosis-incompetent cells.
Collapse
|
414
|
Multifaceted functions of Siva-1: more than an Indian God of Destruction. Protein Cell 2012; 3:117-22. [PMID: 22426980 DOI: 10.1007/s13238-012-2018-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 02/04/2012] [Indexed: 10/28/2022] Open
Abstract
Siva-1, as a p53-inducible gene, has been shown to induce extensive apoptosis in a number of different cell lines. Recent evidence suggests that Siva-1 functions as a part of the auto-regulatory feedback loop that restrains p53 through facilitating Mdm2-mediated p53 degradation. Also, Siva-1 plays an important role in suppressing tumor metastasis. Here we review the current understanding of Siva-1-mediated apoptotic signaling pathway. We also add comments on the p53-Siva-1 feedback loop, the novel function of Siva-1 in suppressing tumor metastasis, and their potential implications.
Collapse
|
415
|
de Viron E, Michaux L, Put N, Bontemps F, Van Den Neste E. Present status and perspectives in functional analysis of p53 in chronic lymphocytic leukemia. Leuk Lymphoma 2012; 53:1445-51. [PMID: 22280536 DOI: 10.3109/10428194.2012.660630] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Aberrations of TP53 (mutations and/or deletions) are associated with a dismal prognosis in chronic lymphocytic leukemia (CLL). Complete loss of ATM is another mechanism of failed DNA damage response and also associated with poorer prognosis in CLL. However, p53 dysfunction may arise through alternative mechanisms unrelated to structural aberrations (deletion and/or mutation) of TP53 or ATM, and thus be undetectable by traditional DNA-directed approaches (fluorescence in situ hybridization [FISH], sequencing, karyotyping). In order to address the latter changes, and also to better understand the consequences of TP53/ATM aberrations, p53 functional assays have recently been developed. The purpose of dynamic assessment of p53 response in CLL is to carry out a comprehensive analysis of all mechanisms causing p53-deficient phenotype, including those unrelated to genomic aberrations of TP53 and ATM. The present review focuses on the current knowledge of p53 function assays in CLL, including important features such as technical issues, correlation with structural aberrations and clinical value.
Collapse
Affiliation(s)
- Emeline de Viron
- De Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | | | | | | | | |
Collapse
|
416
|
Aggarwal M, Brosh RM. Functional analyses of human DNA repair proteins important for aging and genomic stability using yeast genetics. DNA Repair (Amst) 2012; 11:335-48. [PMID: 22349084 DOI: 10.1016/j.dnarep.2012.01.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 01/24/2012] [Indexed: 12/18/2022]
Abstract
Model systems have been extremely useful for studying various theories of aging. Studies of yeast have been particularly helpful to explore the molecular mechanisms and pathways that affect aging at the cellular level in the simple eukaryote. Although genetic analysis has been useful to interrogate the aging process, there has been both interest and debate over how functionally conserved the mechanisms of aging are between yeast and higher eukaryotes, especially mammalian cells. One area of interest has been the importance of genomic stability for age-related processes, and the potential conservation of proteins and pathways between yeast and human. Translational genetics have been employed to examine the functional roles of mammalian proteins using yeast as a pliable model system. In the current review recent advancements made in this area are discussed, highlighting work which shows that the cellular functions of human proteins in DNA repair and maintenance of genomic stability can be elucidated by genetic rescue experiments performed in yeast.
Collapse
Affiliation(s)
- Monika Aggarwal
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, Baltimore, MD 21224, United States
| | | |
Collapse
|
417
|
Vadnais C, Davoudi S, Afshin M, Harada R, Dudley R, Clermont PL, Drobetsky E, Nepveu A. CUX1 transcription factor is required for optimal ATM/ATR-mediated responses to DNA damage. Nucleic Acids Res 2012; 40:4483-95. [PMID: 22319212 PMCID: PMC3378881 DOI: 10.1093/nar/gks041] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The p110 Cut homeobox 1 (CUX1) transcription factor regulates genes involved in DNA replication and chromosome segregation. Using a genome-wide-approach, we now demonstrate that CUX1 also modulates the constitutive expression of DNA damage response genes, including ones encoding ATM and ATR, as well as proteins involved in DNA damage-induced activation of, and signaling through, these kinases. Consistently, RNAi knockdown or genetic inactivation of CUX1 reduced ATM/ATR expression and negatively impacted hallmark protective responses mediated by ATM and ATR following exposure to ionizing radiation (IR) and UV, respectively. Specifically, abrogation of CUX1 strongly reduced ATM autophosphorylation after IR, in turn causing substantial decreases in (i) levels of phospho-Chk2 and p53, (ii) γ-H2AX and Rad51 DNA damage foci and (iii) the efficiency of DNA strand break repair. Similarly remarkable reductions in ATR-dependent responses, including phosphorylation of Chk1 and H2AX, were observed post-UV. Finally, multiple cell cycle checkpoints and clonogenic survival were compromised in CUX1 knockdown cells. Our results indicate that CUX1 regulates a transcriptional program that is necessary to mount an efficient response to mutagenic insult. Thus, CUX1 ensures not only the proper duplication and segregation of the genetic material, but also the preservation of its integrity.
Collapse
Affiliation(s)
- Charles Vadnais
- Goodman Cancer Centre, Department of Biochemistry, McGill University, 1160 Pine avenue West, Montreal, Quebec, Canada, H3A 1A3
| | | | | | | | | | | | | | | |
Collapse
|
418
|
MdmX is required for p53 interaction with and full induction of the Mdm2 promoter after cellular stress. Mol Cell Biol 2012; 32:1214-25. [PMID: 22290440 DOI: 10.1128/mcb.06150-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The activity of the tumor suppressor p53 is tightly controlled by its main negative regulator, Mdm2, which inhibits p53's transcriptional activity and targets it for degradation via the proteasome pathway. The closely related Mdm2 homolog, MdmX, is also considered to be a general inhibitor of transactivation by p53, through binding to the p53 activation domain. We show here that, unexpectedly, upon DNA damage and ribosomal stress, MdmX plays a positive role in p53-mediated activation of the Mdm2 gene, but not of numerous other p53 target genes including p21. Downregulation of MdmX results in lower levels of mature and nascent Mdm2 transcripts following cellular stress. This correlates with a longer p53 half-life following DNA damage. In vitro, Mdm2 inhibits the binding of p53 to DNA to a much greater extent than does MdmX, although MdmX does not stimulate p53 interaction with Mdm2 promoter DNA. Strikingly, however, MdmX is required for optimal p53 binding to the Mdm2 promoter in vivo. Thus, we have described a new mechanism by which MdmX can suppress p53, which is through transcriptional activation of p53's principal negative regulator, Mdm2.
Collapse
|
419
|
Wade M, Li YC, Matani AS, Braun SMG, Milanesi F, Rodewald LW, Wahl GM. Functional analysis and consequences of Mdm2 E3 ligase inhibition in human tumor cells. Oncogene 2012; 31:4789-97. [PMID: 22266850 PMCID: PMC3337965 DOI: 10.1038/onc.2011.625] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mdm2 is the major negative regulator of p53 tumor-suppressor activity. This oncoprotein is overexpressed in many human tumors that retain the wild-type p53 allele. As such, targeted inhibition of Mdm2 is being considered as a therapeutic anticancer strategy. The N-terminal hydrophobic pocket of Mdm2 binds to p53 and thereby inhibits the transcription of p53 target genes. Additionally, the C-terminus of Mdm2 contains a RING domain with intrinsic ubiquitin E3 ligase activity. By recruiting E2 ubiquitin-conjugating enzyme(s), Mdm2 acts as a molecular scaffold to facilitate p53 ubiquitination and proteasome-dependent degradation. Mdmx (Mdm4), an Mdm2 homolog, also has a RING domain and hetero-oligomerizes with Mdm2 to stimulate its E3 ligase activity. Recent studies have shown that C-terminal residues adjacent to the RING domain of both Mdm2 and Mdmx contribute to Mdm2 E3 ligase activity. However, the molecular mechanisms mediating this process remain unclear, and the biological consequences of inhibiting Mdm2/Mdmx co-operation or blocking Mdm2 ligase function are relatively unexplored. This study presents biochemical and cell biological data that further elucidate the mechanisms by which Mdm2 and Mdmx co-operate to regulate p53 level and activity. We use chemical and genetic approaches to demonstrate that functional inhibition of Mdm2 ubiquitin ligase activity is insufficient for p53 activation. This unexpected result suggests that concomitant treatment with Mdm2/Mdmx antagonists may be needed to achieve therapeutic benefit.
Collapse
Affiliation(s)
- M Wade
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA.
| | | | | | | | | | | | | |
Collapse
|
420
|
Functional interplay between p53 acetylation and H1.2 phosphorylation in p53-regulated transcription. Oncogene 2012; 31:4290-301. [PMID: 22249259 PMCID: PMC3330162 DOI: 10.1038/onc.2011.605] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Linker histone H1.2 has been shown to suppress p53-dependent transcription through the modulation of chromatin remodeling; however, little is known about the mechanisms governing the antagonistic effects of H1.2 in DNA damage response. Here we show that the repressive action of H1.2 on p53 function is negatively regulated via acetylation of p53 C-terminal regulatory domain and phosphorylation of H1.2 C-terminal tail. p53 acetylation by p300 impairs the interaction of p53 with H1.2 and triggers a rapid activation of p53-dependent transcription. Similarly, DNA-PK-mediated phosphorylation of H1.2 at T146 enhances p53 transcriptional activity by impeding H1.2 binding to p53 and thereby attenuating its suppressive effects on p53 transactivation. Consistent with these findings, point mutations mimicking modification states of H1.2 and p53 lead to a significant increase in p53-induced apoptosis. These data suggest that p53 acetylation-H1.2 phosphorylation cascade serves as a unique mechanism for triggering p53-dependent DNA damage response pathways.
Collapse
|
421
|
Stegh AH. Targeting the p53 signaling pathway in cancer therapy - the promises, challenges and perils. Expert Opin Ther Targets 2012; 16:67-83. [PMID: 22239435 DOI: 10.1517/14728222.2011.643299] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Research over the past three decades has identified p53 as a multi-functional transcription factor. p53 influences myriad, highly diverse cellular processes, and represents one of the most important and extensively studied tumor suppressors. Activated by various stresses, p53 blocks cancer progression by provoking transient or permanent growth arrest, by enabling DNA repair, or by advancing cellular death programs. This anti-cancer activity profile, together with genomic and mutational analyses documenting inactivation of p53 in more than 50% of human cancers, motivated drug development efforts to (re-) activate p53 in established tumors. AREAS COVERED The complexities of p53 signaling in cancer are summarized, including current strategies and challenges to restore p53's tumor suppressive function in established tumors, to inactivate p53 inhibitors, and to restore wild type function of p53 mutant proteins. EXPERT OPINION p53 represents an attractive target for the development of anti-cancer therapies. Whether p53 is 'druggable', however, remains an area of active research and discussion, as p53 has pro-survival functions and chronic p53 activation accelerates aging, which may compromise the long-term homeostasis of an organism. The complex biology and dual functions of p53 in cancer prevention and age-related cellular responses pose significant challenges to the development of p53-targeting cancer therapies.
Collapse
Affiliation(s)
- Alexander H Stegh
- Feinberg School of Medicine, The Robert H. Lurie Comprehensive Cancer Center, Davee Department of Neurology, Chicago, IL 60611, USA.
| |
Collapse
|
422
|
Kim H, Kim K, Choi J, Heo K, Baek HJ, Roeder RG, An W. p53 requires an intact C-terminal domain for DNA binding and transactivation. J Mol Biol 2011; 415:843-54. [PMID: 22178617 DOI: 10.1016/j.jmb.2011.12.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 11/23/2011] [Accepted: 12/03/2011] [Indexed: 02/08/2023]
Abstract
The tumor suppressor p53 plays a critical role in mediating cellular response to a wide range of environmental stresses. p53 regulates these processes mainly by acting as a short-lived DNA binding protein that stimulates transcription from numerous genes involved in cell cycle arrest, programmed cell death, and other processes. To investigate the importance of the C-terminal domain of p53, we generated a series of deletion and point mutations in this region and analyzed their effects on p53 transcription activity. Our results show that C-terminal deletion and point mutations at K320 and K382 abolish p53-mediated transcription in the context of DNA or chromatin. This defect is specific for DNA molecules because inactive mutants fail to bind a consensus p53 response element in both free DNA and nucleosomes. Chromatin immunoprecipitation assays further substantiate the importance of the p53 C-terminal domain for the targeted localization of p53 and the concomitant recruitment of p300 onto p53-responsive genes. Moreover, a synthetic peptide comprising the last 30 amino acids of p53 interacts with the N-terminal and C-terminal domains of p53 and antagonizes p53-dependent transcription. Taken together, our data reveal a functional requirement for the p53 C-terminal domain in p53 transactivation and support a working model in which the C-terminus serves as a positive regulator for N-terminal activation and central DNA binding domains.
Collapse
Affiliation(s)
- Hyunjung Kim
- Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | | | | | | | | | | | | |
Collapse
|
423
|
Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance. Proc Natl Acad Sci U S A 2011; 108:18708-13. [PMID: 22068913 DOI: 10.1073/pnas.1111840108] [Citation(s) in RCA: 329] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Although in vitro models have been a cornerstone of anti-cancer drug development, their direct applicability to clinical cancer research has been uncertain. Using a state-of-the-art Taqman-based quantitative RT-PCR assay, we investigated the multidrug resistance (MDR) transcriptome of six cancer types, in established cancer cell lines (grown in monolayer, 3D scaffold, or in xenograft) and clinical samples, either containing >75% tumor cells or microdissected. The MDR transcriptome was determined a priori based on an extensive curation of the literature published during the last three decades, which led to the enumeration of 380 genes. No correlation was found between clinical samples and established cancer cell lines. As expected, we found up-regulation of genes that would facilitate survival across all cultured cancer cell lines evaluated. More troubling, however, were data showing that all of the cell lines, grown either in vitro or in vivo, bear more resemblance to each other, regardless of the tissue of origin, than to the clinical samples they are supposed to model. Although cultured cells can be used to study many aspects of cancer biology and response of cells to drugs, this study emphasizes the necessity for new in vitro cancer models and the use of primary tumor models in which gene expression can be manipulated and small molecules tested in a setting that more closely mimics the in vivo cancer microenvironment so as to avoid radical changes in gene expression profiles brought on by extended periods of cell culture.
Collapse
|
424
|
Bansbach CE, Cortez D. Defining genome maintenance pathways using functional genomic approaches. Crit Rev Biochem Mol Biol 2011; 46:327-41. [PMID: 21787120 DOI: 10.3109/10409238.2011.588938] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Genome maintenance activities including DNA repair, cell division cycle control, and checkpoint signaling pathways preserve genome integrity and prevent disease. Defects in these pathways cause birth defects, neurodegeneration, premature aging, and cancer. Recent technical advances in functional genomic approaches such as expression profiling, proteomics, and RNA interference (RNAi) technologies have rapidly expanded our knowledge of the proteins that work in these pathways. In this review, we examine the use of these high-throughput methodologies in higher eukaryotic organisms for the interrogation of genome maintenance activities.
Collapse
Affiliation(s)
- Carol E Bansbach
- Department of Biochemistry, Vanderbilt University School of Medicine, Light Hall, Nashville, TN 37232, USA
| | | |
Collapse
|
425
|
Athar M, Elmets CA, Kopelovich L. Pharmacological activation of p53 in cancer cells. Curr Pharm Des 2011; 17:631-9. [PMID: 21391904 DOI: 10.2174/138161211795222595] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 03/04/2011] [Indexed: 12/25/2022]
Abstract
Tumor suppressor p53 is a transcription factor that regulates a large number of genes and guards against genomic instability. Under multiple cellular stress conditions, p53 functions to block cell cycle progression transiently unless proper DNA repair occurs. Failure of DNA repair mechanisms leads to p53-mediated induction of cell death programs. p53 also induces permanent cell cycle arrest known as cellular senescence. During neoplastic progression, p53 is often mutated and fails to efficiently perform these functions. It has been observed that cancers carrying a wild-type p53 may also have interrupted downstream p53 regulatory signaling leading to disruption in p53 functions. Therefore, strategies to reactivate p53 provide an attractive approach for blocking tumor pathogenesis and its progression. p53 activation may also lead to regression of existing early neoplastic lesions and therefore may be important in developing cancer chemoprevention protocols. A large number of small molecules capable of reactivating p53 have been developed and some are progressing through clinical trials for prospective human applications. However, several questions remain to be answered at this stage. For example, it is not certain if pharmacological activation of p53 will restore all of its multifaceted biological responses, assuming that the targeted cell is not killed following p53 activation. It remains to be demonstrated whether the distinct biological effects regulated by specific post-translationally modified p53 can effectively be restored by refolding mutant p53. Mutant p53 can be classified as a loss-of-function or gain-of-function protein depending on the type of mutation. It is also unclear whether reactivation of mutant p53 has similar consequences in cells carrying gain-of-function and loss-of-function p53 mutants. This review provides a description of various pharmacological approaches tested to activate p53 (both wild-type and mutant) and to assess the effects of activated p53 on neoplastic progression.
Collapse
Affiliation(s)
- Mohammad Athar
- Department of Dermatology, The University of Alabama at Birmingham, Volker Hall, Room 509, 1530 3rd Avenue South, Birmingham, Alabama 35294-0019, USA.
| | | | | |
Collapse
|
426
|
Zhang J, Kan S, Huang B, Hao Z, Mak TW, Zhong Q. Mule determines the apoptotic response to HDAC inhibitors by targeted ubiquitination and destruction of HDAC2. Genes Dev 2011; 25:2610-8. [PMID: 22016339 DOI: 10.1101/gad.170605.111] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Histone deacetylases (HDACs) are major epigenetic modulators involved in a broad spectrum of human diseases including cancers. Administration of HDAC inhibitors (HDACis) leads to growth inhibition, differentiation, and apoptosis of cancer cells. Understanding the regulatory mechanism of HDACs is imperative to harness the therapeutic potentials of HDACis. Here we show that HDACi- and DNA damage-induced apoptosis are severely compromised in mouse embryonic fibroblasts lacking a HECT domain ubiquitin ligase, Mule (Mcl-1 ubiquitin ligase E3). Mule specifically targets HDAC2 for ubiquitination and degradation. Accumulation of HDAC2 in Mule-deficient cells leads to compromised p53 acetylation as well as crippled p53 transcriptional activation, accumulation, and apoptotic response upon DNA damage and Nutlin-3 treatments. These defects in Mule-null cells can be partially reversed by HDACis and fully rescued by lowering the elevated HDAC2 in Mule-null cells to the normal levels as in wild-type cells. Taken together, our results reveal a critical regulatory mechanism of HDAC2 by Mule and suggest this pathway determines the cellular response to HDACis and DNA damage.
Collapse
Affiliation(s)
- Jing Zhang
- Division of Biochemistry and Molecular Biology, Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | | | | | | | | | | |
Collapse
|
427
|
Park JH, Magan N. Reverse transcriptase-coupled quantitative real time PCR analysis of cell-free transcription on the chromatin-assembled p21 promoter. PLoS One 2011; 6:e23617. [PMID: 21886803 PMCID: PMC3160311 DOI: 10.1371/journal.pone.0023617] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 07/21/2011] [Indexed: 11/28/2022] Open
Abstract
Background Cell-free eukaryotic transcription assays have contributed tremendously to the current understanding of the molecular mechanisms that govern transcription at eukaryotic promoters. Currently, the conventional G-less cassette transcription assay is one of the simplest and fastest methods for measuring transcription in vitro. This method requires several components, including the radioisotope labelling of RNA product during the transcription reaction followed by visualization of transcripts using autoradiography. Methodology/Principal Findings To further simplify and expedite the conventional G-less cassette transcription assay, we have developed a method to incorporate a reverse transcriptase-coupled quantitative real time PCR (RT-qPCR). By using DNA template depletion steps that include DNA template immobilization, Trizol extraction and DNase I treatment, we have successfully enriched p21 promoter-driven transcripts over DNA templates. The quantification results of RNA transcripts using the RT-qPCR assay were comparable to the results of the conventional G-less cassette transcription assay both in naked DNA and chromatin-assembled templates. Conclusions We first report a proof-of-concept demonstration that incorporating RT-qPCR in cell-free transcription assays can be a simpler and faster alternative method to the conventional radioisotope-mediated transcription assays. This method will be useful for developing high throughput in vitro transcription assays and provide quantitative data for RNA transcripts generated in a defined cell-free transcription reaction.
Collapse
Affiliation(s)
- Jeong Hyeon Park
- Institute of Molecular BioSciences, Massey University, Palmerston North, New Zealand.
| | | |
Collapse
|
428
|
Lake RJ, Basheer A, Fan HY. Reciprocally regulated chromatin association of Cockayne syndrome protein B and p53 protein. J Biol Chem 2011; 286:34951-8. [PMID: 21852235 DOI: 10.1074/jbc.m111.252643] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Cockayne syndrome complementation group B (CSB) protein is an ATP-dependent chromatin remodeler with an essential function in transcription-coupled DNA repair, and mutations in the CSB gene are associated with Cockayne syndrome. The p53 tumor suppressor has been known to interact with CSB, and both proteins have been implicated in overlapping biological processes, such as DNA repair and aging. The significance of the interaction between CSB and p53 has remained unclear, however. Here, we show that the chromatin association of CSB and p53 is inversely related. Using in vitro binding and chromatin immunoprecipitation approaches, we demonstrate that CSB facilitates the sequence-independent association of p53 with chromatin when p53 concentrations are low and that this is achieved by the interaction of CSB with the C-terminal region of p53. Remarkably, p53 prevents CSB from binding to nucleosomes when p53 concentrations are elevated. Examining the enzymatic properties of CSB revealed that p53 excludes CSB from nucleosomes by occluding a nucleosome interaction surface on CSB. Together, our results suggest that the reciprocal regulation of chromatin access by CSB and p53 could be part of a mechanism by which these two proteins coordinate their activities to regulate DNA repair, cell survival, and aging.
Collapse
Affiliation(s)
- Robert J Lake
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6145, USA
| | | | | |
Collapse
|
429
|
Tabernero J, Dirix L, Schöffski P, Cervantes A, Lopez-Martin JA, Capdevila J, van Beijsterveldt L, Platero S, Hall B, Yuan Z, Knoblauch R, Zhuang SH. A Phase I First-in-Human Pharmacokinetic and Pharmacodynamic Study of Serdemetan in Patients with Advanced Solid Tumors. Clin Cancer Res 2011; 17:6313-21. [DOI: 10.1158/1078-0432.ccr-11-1101] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
430
|
Rinn JL, Huarte M. To repress or not to repress: this is the guardian's question. Trends Cell Biol 2011; 21:344-53. [PMID: 21601459 DOI: 10.1016/j.tcb.2011.04.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/11/2011] [Accepted: 04/13/2011] [Indexed: 10/18/2022]
Abstract
p53 is possibly the most central tumor suppressor gene of our cells, integrating stress signals to activate a transcriptional program responsible for maintaining cellular homeostasis. Many of the downstream effects of p53 are a consequence of its activity as a transcription factor, resulting in the induction of multiple target genes. In addition to gene activation, however, gene repression is an essential part of the p53 cellular response. Despite extensive research efforts towards the elucidation of p53 functions, the molecular mechanisms and biological consequences of gene repression by p53 have not been studied extensively. We review our current knowledge of the mechanisms and biological consequences of p53 repression, with special attention to recently discovered mechanisms of repression that involve non-coding RNA molecules, an emerging aspect of regulation in the p53 cellular network.
Collapse
Affiliation(s)
- John L Rinn
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | | |
Collapse
|
431
|
Mao P, Hever MP, Niemaszyk LM, Haghkerdar JM, Yanco EG, Desai D, Beyrouthy MJ, Kerley-Hamilton JS, Freemantle SJ, Spinella MJ. Serine/threonine kinase 17A is a novel p53 target gene and modulator of cisplatin toxicity and reactive oxygen species in testicular cancer cells. J Biol Chem 2011; 286:19381-91. [PMID: 21489989 DOI: 10.1074/jbc.m111.218040] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Testicular cancer is highly curable with cisplatin-based therapy, and testicular cancer-derived human embryonal carcinoma (EC) cells undergo a p53-dominant transcriptional response to cisplatin. In this study, we have discovered that a poorly characterized member of the death-associated protein family of serine/threonine kinases, STK17A (also called DRAK1), is a novel p53 target gene. Cisplatin-mediated induction of STK17A in the EC cell line NT2/D1 was prevented with p53 siRNA. Furthermore, STK17A was induced with cisplatin in HCT116 and MCF10A cells but to a much lesser extent in isogenic p53-suppressed cells. A functional p53 response element that binds endogenous p53 in a cisplatin-dependent manner was identified 5 kb upstream of the first coding exon of STK17A. STK17A is not present in the mouse genome, but the closely related gene STK17B is induced with cisplatin in mouse NIH3T3 cells, although this induction is p53-independent. Interestingly, in human cells containing both STK17A and STK17B, only STK17A is induced with cisplatin. Knockdown of STK17A conferred resistance to cisplatin-induced growth suppression and apoptotic cell death in EC cells. This was associated with the up-regulation of detoxifying and antioxidant genes, including metallothioneins MT1H, MT1M, and MT1X that have previously been implicated in cisplatin resistance. In addition, knockdown of STK17A resulted in decreased cellular reactive oxygen species, whereas STK17A overexpression increased reactive oxygen species. In summary, we have identified STK17A as a novel direct target of p53 and a modulator of cisplatin toxicity and reactive oxygen species in testicular cancer cells.
Collapse
Affiliation(s)
- Pingping Mao
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
432
|
Differential regulation of the p73 cistrome by mammalian target of rapamycin reveals transcriptional programs of mesenchymal differentiation and tumorigenesis. Proc Natl Acad Sci U S A 2011; 108:2076-81. [PMID: 21245298 DOI: 10.1073/pnas.1011936108] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The transcription factor p73 plays critical roles during development and tumorigenesis. It exhibits sequence identity and structural homology with p53, and can engage p53-like tumor-suppressive programs. However, different pathways regulate p53 and p73, and p73 is not mutated in human tumors. Therefore, p73 represents a therapeutic target, and there is a critical need to understand genes and noncoding RNAs regulated by p73 and how they change during treatment regimens. Here, we define the p73 genomic binding profile and demonstrate its modulation by rapamycin, an inhibitor of mammalian target of rapamycin (mTOR) and inducer of p73. Rapamycin selectively increased p73 occupancy at a subset of its binding sites. In addition, multiple determinants of p73 binding, activity, and function were evident, and were modulated by mTOR. We generated an mTOR-p73 signature that is enriched for p73 target genes and miRNAs that are involved in mesenchymal differentiation and tumorigenesis, can classify rhabdomyosarcomas by clinical subtype, and can predict patient outcome.
Collapse
|
433
|
Stegh AH, DePinho RA. Beyond effector caspase inhibition: Bcl2L12 neutralizes p53 signaling in glioblastoma. Cell Cycle 2011; 10:33-8. [PMID: 21200141 DOI: 10.4161/cc.10.1.14365] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Malignant gliomas are the most common and lethal primary central nervous system cancer. Glioblastoma mutliforme (GBM), the most aggressive of these neoplasms, are generally lethal within 2 years of diagnosis due in part to the intense apoptosis resistance of its cancer cells, hence poor therapeutic response to conventional and targeted therapies. Twenty years of research has uncovered key genetic events involved in disease initiation and progression, foremost the Tp53 tumor suppressor that is mutated or deleted in 35% of GBM. The prime importance of p53 signaling for gliomapathogenesis is further evidenced by epistatic genetic events targeting additional pathway components including deletion of p14 (Arf) (CDKN2A) and amplification of the p53-degrading ubiquitin ligases MDM2 and MDM4. Recent studies have identified and validated Bcl2-Like 12 (Bcl2L12) as a potent glioma oncoprotein with multiple strategic points in apoptosis regulatory networks, i.e. effector caspases and the p53 tumor suppressor. Bcl2L12 resides in both the cytoplasm and nucleus. In the cytoplasm, Bcl2L12 functions to inhibit caspases 3 and 7, in the nucleus, Bcl2L12 forms a complex with p53, modestly reduces p53 protein stability and prevents its binding to selected target gene promoter (e.g. p21, DR5, Noxa and PUMA), thereby inhibiting p53-directed transcriptomic changes upon DNA damage. Proteomic and multidimensional oncogenomic analyses confirmed a Bcl2L12-p53 signaling axis in GBM, as Bcl2L12 exhibited predominant genomic amplification, elevated mRNA and protein levels in GBM tumors with uncompromised p53 function. On the cell biological level, Bcl2L12 exerts robust inhibition of p53-dependent senescence and apoptosis processes in glioma cells. These multi-leveled studies establish Bcl2L12 as an important oncoprotein acting at the intersection of nuclear p53 and cytoplasmic caspase signaling and point to pharmacological disruption of the Bcl2L12:p53 complex as a promising novel therapeutic strategy for the enhanced treatment of GBM.
Collapse
Affiliation(s)
- Alexander H Stegh
- Ken and Ruth Davee Department of Neurology, and The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
| | | |
Collapse
|
434
|
Schneider G, Krämer OH. NFκB/p53 crosstalk-a promising new therapeutic target. Biochim Biophys Acta Rev Cancer 2010; 1815:90-103. [PMID: 20951769 DOI: 10.1016/j.bbcan.2010.10.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 10/02/2010] [Accepted: 10/07/2010] [Indexed: 12/12/2022]
Abstract
The transcription factors p53 and NFκB determine cellular fate and are involved in the pathogenesis of most-if not all-cancers. The crosstalk between these transcription factors becomes increasingly appreciated as an important mechanism operative during all stages of tumorigenesis, metastasis, and immunological surveillance. In this review, we summarize molecular mechanisms regulating cross-signaling between p53 and NFκB proteins and how dysregulated interactions between p53 and NFκB family members contribute to oncogenesis. We furthermore analyze how such signaling modules represent targets for the design of novel intervention strategies using established compounds and powerful combination therapies.
Collapse
Affiliation(s)
- Günter Schneider
- Technische Universität München, Klinikum rechts der Isar, II. Medizinische Klinik, Ismaninger Str. 22, D-81675 München, Germany
| | | |
Collapse
|
435
|
Schlereth K, Charles JP, Bretz AC, Stiewe T. Life or death: p53-induced apoptosis requires DNA binding cooperativity. Cell Cycle 2010; 9:4068-76. [PMID: 20948308 DOI: 10.4161/cc.9.20.13595] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The tumor suppressor p53 provides exquisite protection from cancer by balancing cell survival and death in response to stress. Sustained stress or irreparable damage trigger p53's killer functions to permanently eliminate genetically-altered cells as a potential source of cancer. To prevent the unnecessary loss of cells that could cause premature aging as a result of stem cell attrition, the killer functions of p53 are tightly regulated and balanced against protector functions that promote damage repair and support survival in response to low stress or mild damage. In molecular terms these p53-based cell fate decisions involve protein interactions with cofactors and modifying enzymes, which modulate the activation of distinct sets of p53 target genes. In addition, we demonstrate that part of this regulation occurs at the level of DNA binding. We show that the killer function of p53 requires the four DNA binding domains within the p53 tetramer to interact with one another. These intermolecular interactions enable cooperative binding of p53 to less perfect response elements in the genome, which are present in many target genes essential for apoptosis. Modulating p53 interactions within the tetramer could therefore present a novel promising strategy to fine-tune p53-based cell fate decisions.
Collapse
|
436
|
Abstract
In its wild-type form, p53 is a major tumor suppressor whose function is critical for protection against cancer. Many human tumors carry missense mutations in the TP53 gene, encoding p53. Typically, the affected tumor cells accumulate excessive amounts of the mutant p53 protein. Various lines of evidence indicate that, in addition to abrogating the tumor suppressor functions of wild-type p53, the common types of cancer-associated p53 mutations also endow the mutant protein with new activities that can contribute actively to various stages of tumor progression and to increased resistance to anticancer treatments. Collectively, these activities are referred to as mutant p53 gain-of-function. This article addresses the biological manifestations of mutant p53 gain-of-function, the underlying molecular mechanisms, and their possible clinical implications.
Collapse
Affiliation(s)
- Moshe Oren
- Department of Molecular Cell Biology, The Weizmann Institute, Rehovot 76100, Israel.
| | | |
Collapse
|
437
|
Lane D, Levine A. p53 Research: the past thirty years and the next thirty years. Cold Spring Harb Perspect Biol 2010; 2:a000893. [PMID: 20463001 DOI: 10.1101/cshperspect.a000893] [Citation(s) in RCA: 305] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Thirty years of research on the p53 family of genes has generated almost fifty thousand publications. The first of these papers detected the p53 protein associated with a viral oncogene product in transformed cells and tumors and focused the field on cancer biology. Subsequent manuscripts have shown a wide variety of functions for the p53 family of genes and their proteins. These proteins are involved in reproduction, genomic repair, fidelity and recombination, the regulation of metabolic processes, longevity, surveillance of the stability of development, the production of stem cells and changes in epigenetic marks, the development of the nervous system (p73), the immune system (p73) and skin (p63), as well as the better known roles for the family in tumor suppression. The p53 family of genes has been found in the modern day ancestors of organisms with over one billion years of evolutionary history where they play a role in germ-line fidelity over that time span. As the body plan of the vertebrates emerged with the regeneration of tissues by stem cells over a lifetime, the p53 gene and its protein were adapted to be a tumor suppressor of somatic stem and progenitor cells complementing its' past functions in the germ line. Because the p53 family of genes has played a role in germ-line fidelity and preservation of the species, even in times of stress, these genes have been under constant selection pressure to change and adapt to new situations. This has given rise to this diversity of functions all working to preserve homeostatic processes that permit growth and reproduction in a world that is constantly challenging the fidelity of information transfer at each generation. The p53 family of gene products has influenced the rates of evolutionary change, just as evolutionary changes have altered the p53 family and its functions.
Collapse
Affiliation(s)
- David Lane
- p53 Laboratory (A-Star) 8A Biomedical Grove Immunos Singapore 138648
| | | |
Collapse
|