401
|
Bloyer S, Cavalli G, Brock HW, Dura JM. Identification and characterization of polyhomeotic PREs and TREs. Dev Biol 2003; 261:426-42. [PMID: 14499651 DOI: 10.1016/s0012-1606(03)00314-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The polyhomeotic (ph) gene is a member of the Polycomb group of genes (Pc-G), which are required for the maintenance of the spatial expression pattern of homeotic genes. In contrast to homeotic genes, ph is ubiquitously expressed and it is quantitatively regulated. ph is negatively regulated by the Pc-G genes, except Psc, and positively regulated by the antagonist trithorax group of genes (trx-G), suggesting that Pc-G and trx-G response elements (PREs and TREs) exist at the ph locus. In this study, we have functionally characterized PREs and TREs at the ph locus that function in transgenic constructs. We have identified a strong PRE and TRE in the ph proximal unit as well as a weak one in the ph distal unit. The PRE/TRE of both ph units appear atypical compared with the well-defined homeotic maintenance elements because the minimal ph proximal response element activity requires at least 2 kb of sequence and does not work at long range. We have used chromatin immunoprecipitation experiments on cultured cells and embryos to show that Pc-G proteins are located in restricted regions, close to the ph promoters that overlap functionally defined PRE/TREs. Our data suggest that ph PRE/TREs are cis-acting DNA elements that modulate rather than silence Pc-G- and trx-G-mediated regulation, enlarging the role of these two groups of genes in transcriptional regulation.
Collapse
Affiliation(s)
- Sébastien Bloyer
- Institut de Génétique Humaine, C.N.R.S.-U.P.R. 1142, 141 rue de la Cardonille, 34396 5, Montpellier Cedex, France
| | | | | | | |
Collapse
|
402
|
van Driel R, Fransz PF, Verschure PJ. The eukaryotic genome: a system regulated at different hierarchical levels. J Cell Sci 2003; 116:4067-75. [PMID: 12972500 DOI: 10.1242/jcs.00779] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Eukaryotic gene expression can be viewed within a conceptual framework in which regulatory mechanisms are integrated at three hierarchical levels. The first is the sequence level, i.e. the linear organization of transcription units and regulatory sequences. Here, developmentally co-regulated genes seem to be organized in clusters in the genome, which constitute individual functional units. The second is the chromatin level, which allows switching between different functional states. Switching between a state that suppresses transcription and one that is permissive for gene activity probably occurs at the level of the gene cluster, involving changes in chromatin structure that are controlled by the interplay between histone modification, DNA methylation, and a variety of repressive and activating mechanisms. This regulatory level is combined with control mechanisms that switch individual genes in the cluster on and off, depending on the properties of the promoter. The third level is the nuclear level, which includes the dynamic 3D spatial organization of the genome inside the cell nucleus. The nucleus is structurally and functionally compartmentalized and epigenetic regulation of gene expression may involve repositioning of loci in the nucleus through changes in large-scale chromatin structure.
Collapse
Affiliation(s)
- Roel van Driel
- Swammerdam Institute for Life Sciences, BioCentrum Amsterdam, University of Amsterdam, Kruislaan 318,1098SM Amsterdam, The Netherlands.
| | | | | |
Collapse
|
403
|
Abstract
Long recognized as a target of regulation in prokaryotes, transcript elongation has recently become the focus of many investigators interested in eukaryotic gene expression. The growth of this area has been fueled by the availability of new methods and molecular structures, expanding sequence databases and an appreciation for the exquisite coordination required among different processes in the nucleus. Our article collates new information on regulatory accessory factors, as well as their ultimate target, RNA polymerase, in the nucleus of eukaryotic cells. How this regulation influences the biology of the organism is quite profound, and from single cell to multicellular eukaryotes significant similarities exist in the molecular responses to extracellular signals during transcript elongation. The most advanced genetic knowledge in this area comes from Saccharomyces cerevisiae, but the biochemistry and cell biology results from other organisms are also highlighted.
Collapse
Affiliation(s)
- Karen M Arndt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
404
|
Guglielmi L, Truffinet V, Cogné M, Denizot Y. The β-globin HS4 insulator confers copy-number dependent expression of IgH regulatory elements in stable B cell transfectants. Immunol Lett 2003; 89:119-23. [PMID: 14556968 DOI: 10.1016/s0165-2478(03)00126-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Locus control regions (LCR) were first defined by their theoretical ability to enhance the expression of linked genes in a tissue-specific, position-independent and copy-number dependent manner. In fact, few of the so-called LCR identified completely fulfil this definition. For example, the regulatory elements located in 5' (Emu) and 3' (HS3a; HS1,2; HS3b; HS4) of the IgH locus display some properties of a LCR but lack a copy-number dependence and sometimes display position effects in transgenes. In order to study whether addition of insulators would allow to overcome such problems in transgenes, we studied constructs harboring a V(H) promoter-green fluorescent protein reporter gene linked to the 3' and/or 5' IgH elements, surrounded or not with the chicken beta-globin 5'HS4 insulator. When flanked with insulators it appeared that either 3' IgH and 5' IgH regulatory elements now behave as true LCR elements and noticeably display copy-number dependence in transfected pre-B or B cell lines.
Collapse
Affiliation(s)
- Laurence Guglielmi
- UMR CNRS 6101, Faculté de Médecine, 2 rue Dr Marcland, 87025, Limoges, France
| | | | | | | |
Collapse
|
405
|
Soares MAM, Monesi N, Basso LR, Stocker AJ, Paçó-Larson ML, Lara FJS. Analysis of the amplification and transcription of the C3-22 gene of Rhynchosciara americana (Diptera: Sciaridae) in transgenic lines of Drosophila melanogaster. Chromosoma 2003; 112:144-51. [PMID: 14579130 DOI: 10.1007/s00412-003-0254-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2003] [Revised: 08/04/2003] [Accepted: 08/14/2003] [Indexed: 10/26/2022]
Abstract
Drosophila melanogaster was transformed with an 18 kb fragment of the C3 DNA puff of Rhynchosciara americana, including the C3-22 gene and the origins of replication that direct amplification. Different tissues and developmental stages of five independent transgenic lines were analyzed by quantitative Southern blot hybridization. No indication was found that the transformed fragment was amplified, strongly suggesting that factors involved in DNA puff amplification have not been conserved in Drosophila. Transcription of the C3-22 gene in the transgenic lines was found to be at a low and constitutive level throughout development. These results indicate that, unlike other DNA puff genes, the factors that regulate the C3-22 gene are not conserved in Drosophila.
Collapse
Affiliation(s)
- M A M Soares
- Departamento de Biologia e Genética, Instituto de Biociências, Universidade de São Paulo, São Paulo, S.P., Brazil.
| | | | | | | | | | | |
Collapse
|
406
|
Yao S, Osborne CS, Bharadwaj RR, Pasceri P, Sukonnik T, Pannell D, Recillas-Targa F, West AG, Ellis J. Retrovirus silencer blocking by the cHS4 insulator is CTCF independent. Nucleic Acids Res 2003; 31:5317-23. [PMID: 12954767 PMCID: PMC203325 DOI: 10.1093/nar/gkg742] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Silencing of retrovirus vectors poses a significant obstacle to genetic manipulation of stem cells and their use in gene therapy. We describe a mammalian silencer blocking assay using insulator elements positioned between retrovirus silencer elements and an LCRbeta-globin reporter transgene. In transgenic mice, we show that retrovirus silencers are blocked by the cHS4 insulator. Silencer blocking is independent of the CTCF binding site and is most effective when flanking the internal reporter transgene. These data distinguish silencer blocking activity by cHS4 from its enhancer blocking activity. Retrovirus vectors can be created at high titer with one but not two internal dimer cHS4 cores. cHS4 in the LTRs has no effect on expression in transduced F9 cells, suggesting that position effect blocking is not sufficient to escape silencing. The Drosophila insulators gypsy and Scs fail to block silencing in transgenic mice, but gypsy stimulates vector expression 2-fold when located in the LTRs of an infectious retrovirus. The silencer blocking assay complements existing insulator assays in mammalian cells, provides new insight into mechanisms of insulation and is a valuable tool to identify additional silencer blocking insulators that cooperate with cHS4 to improve stem cell retrovirus vector design.
Collapse
Affiliation(s)
- Shuyuan Yao
- Developmental Biology Program, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
407
|
Bondarenko VA, Jiang YI, Studitsky VM. Rationally designed insulator-like elements can block enhancer action in vitro. EMBO J 2003; 22:4728-37. [PMID: 12970185 PMCID: PMC212734 DOI: 10.1093/emboj/cdg468] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Insulators are DNA sequences that are likely to be involved in formation of chromatin domains, functional units of gene expression in eukaryotes. Insulators can form domain boundaries and block inappropriate action of regulatory elements (such as transcriptional enhancers) in eukaryotic nuclei. Using an in vitro system supporting enhancer action over a large distance, the enhancer-blocking insulator activity has been recapitulated in a highly purified system. The insulator-like element was constructed using a sequence-specific DNA-binding protein making stable DNA loops (lac repressor). The insulation was entirely dependent on formation of a DNA loop that topologically isolates the enhancer from the promoter. This rationally designed, inducible insulator-like element recapitulates many key properties of eukaryotic insulators observed in vivo. The data suggest novel mechanisms of enhancer and insulator action.
Collapse
Affiliation(s)
- Vladimir A Bondarenko
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, 540 East Canfield Avenue, Room 5123, Detroit, MI 48201, USA
| | | | | |
Collapse
|
408
|
Calderwood MS, Gannoun-Zaki L, Wellems TE, Deitsch KW. Plasmodium falciparum var genes are regulated by two regions with separate promoters, one upstream of the coding region and a second within the intron. J Biol Chem 2003; 278:34125-32. [PMID: 12832422 DOI: 10.1074/jbc.m213065200] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Antigenic variation in Plasmodium falciparum malaria parasites results from switches in expression among members of the multicopy var gene family. This family is subject to allelic exclusion by which particular genes are expressed while the rest of the family remains transcriptionally silent. Evidence from reporter constructs indicates that var gene silencing involves a cooperative interaction between the var intron and an upstream element and requires transition of the parasites through S-phase of the cell cycle. These findings implicate chromatin assembly in the process of regulating var gene expression and antigenic variation. Here we characterize the var intron and the elements within it that are necessary for var transcriptional silencing. Alignments of var introns show a highly conserved structure that consists of three discreet regions with distinct base pair compositions. The middle region is highly AT-rich and is sufficient to silence an associated var promoter. Constructs that include a typical var intron upstream of a reporter gene or drug-selectable marker reveal that the intron also possesses promoter activity, presumably providing an explanation for the origin of the previously described var "sterile" transcripts. Deletions that disable the promoter activity of the intron also eliminate its ability to function as a silencer. These findings suggest that interactions between the regions of these two promoters and the generation of the sterile transcripts play a significant role in regulating var gene expression.
Collapse
Affiliation(s)
- Michael S Calderwood
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
409
|
Antoniou M, Harland L, Mustoe T, Williams S, Holdstock J, Yague E, Mulcahy T, Griffiths M, Edwards S, Ioannou PA, Mountain A, Crombie R. Transgenes encompassing dual-promoter CpG islands from the human TBP and HNRPA2B1 loci are resistant to heterochromatin-mediated silencing. Genomics 2003; 82:269-79. [PMID: 12906852 DOI: 10.1016/s0888-7543(03)00107-1] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The genetic elements that are responsible for establishing a transcriptionally competent, open chromatin structure at a region of the genome that consists only of ubiquitously expressed, housekeeping genes are currently unknown. We demonstrate for the first time through functional analysis in stably transfected tissue culture cells that transgenes containing methylation-free CpG islands spanning the dual divergently transcribed promoters from the human TATA binding protein (TBP)-proteasome component-B1 (PSMB1) and heterogeneous nuclear ribonucleoprotein A2/B1 (HNRPA2B1)-heterochromatin protein 1Hs-gamma (chromobox homolog 3, CBX3) gene loci are sufficient to prevent transcriptional silencing and a variegated expression pattern when integrated within centromeric heterochromatin. In addition, only transgene constructs extending over both the HNRPA2B1 and the CBX3 promoters, and not the HNRPA2B1 promoter alone, were able to confer high and stable long-term EGFP reporter gene expression. These observations suggest that methylation-free CpG islands associated with dual, divergently transcribed promoters possess an independent dominant chromatin opening function and may therefore be major determinants in establishing and maintaining a region of open chromatin at housekeeping gene loci.
Collapse
Affiliation(s)
- Michael Antoniou
- Nuclear Biology Group, Division of Medical and Molecular Genetics, GKT School of Medicine, King's College London, Guy's Campus, 8th Floor Guy's Tower, Guy's Hospital, London Bridge, SE1 9RT, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
410
|
Chiu YH, Yu Q, Sandmeier JJ, Bi X. A Targeted Histone Acetyltransferase Can Create a Sizable Region of Hyperacetylated Chromatin and Counteract the Propagation of Transcriptionally Silent Chromatin. Genetics 2003; 165:115-25. [PMID: 14504221 PMCID: PMC1462738 DOI: 10.1093/genetics/165.1.115] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Transcriptionally silent chromatin is associated with reduced histone acetylation and its propagation depends on histone hypoacetylation promoted by histone deacetylases. We show that tethered histone acetyltransferase (HAT) Esa1p or Gcn5p creates a segment of hyperacetylated chromatin that is at least 2.6 kb in size and counteracts transcriptional silencing that emanates from a silencer in yeast. Esa1p and Gcn5p counteract URA3 silencing even when they are targeted 1.7 kb downstream of the promoter and >2.0 kb from the silencer. The anti-silencing effect of a targeted HAT is strengthened by increasing the number of targeting sites, but impaired by events that enhance silencing. A tethered HAT can also counteract telomeric silencing. The anti-silencing effect of Gcn5p is abolished by a mutation that eliminated its HAT activity or by deleting the ADA2 gene encoding a structural component of Gcn5p-containing HAT complexes. These results demonstrate that a tethered HAT complex can create a sizable region of histone hyperacetylation and serve as a barrier to encroaching repressive chromatin.
Collapse
Affiliation(s)
- Ya-Hui Chiu
- Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588, USA
| | | | | | | |
Collapse
|
411
|
Geiser DL, Chavez CA, Flores-Munguia R, Winzerling JJ, Pham DQD. Aedes aegypti ferritin. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:3667-74. [PMID: 12950250 DOI: 10.1046/j.1432-1033.2003.03709.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Diseases transmitted by hematophagous (blood-feeding) insects are responsible for millions of human deaths worldwide. In hematophagous insects, the blood meal is important for regulating egg maturation. Although a high concentration of iron is toxic for most organisms, hematophagous insects seem unaffected by the iron load in a blood meal. One means by which hematophagous insects handle this iron load is, perhaps, by the expression of iron-binding proteins, specifically the iron storage protein ferritin. In vertebrates, ferritin is an oligomer composed of two types of subunits called heavy and light chains, and is part of the constitutive antioxidant response. Previously, we found that the insect midgut, a main site of iron load, is also a primary site of ferritin expression and that, in the yellow fever mosquito, Aedes aegypti, the expression of the ferritin heavy-chain homologue (HCH) is induced following blood feeding. We now show that the expression of the Aedes ferritin light-chain homologue (LCH) is also induced with blood-feeding, and that the genes of the LCH and HCH are tightly clustered. mRNA levels for both LCH- and HCH-genes increase with iron, H2O2 and hemin treatment, and the temporal expression of the genes is very similar. These results confirm that ferritin could serve as the cytotoxic protector in mosquitoes against the oxidative challenge of the bloodmeal. Finally, although the Aedes LCH has no iron responsive element (IRE) at its 5'-untranslated region (UTR), the 5'-UTR contains several introns that are alternatively spliced, and this alternative splicing event is different from any ferritin message seen to date.
Collapse
Affiliation(s)
- Dawn L Geiser
- College of Agriculture and Life Sciences, The University of Arizona, Tucson, AZ, USA
| | | | | | | | | |
Collapse
|
412
|
Kokubu C, Wilm B, Kokubu T, Wahl M, Rodrigo I, Sakai N, Santagati F, Hayashizaki Y, Suzuki M, Yamamura KI, Abe K, Imai K. Undulated short-tail Deletion Mutation in the Mouse Ablates Pax1 and Leads to Ectopic Activation of Neighboring Nkx2-2 in Domains That Normally Express Pax1. Genetics 2003; 165:299-307. [PMID: 14504237 PMCID: PMC1462742 DOI: 10.1093/genetics/165.1.299] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Previous studies have indicated that the Undulated short-tail deletion mutation in mouse Pax1 (Pax1Un-s) not only ablates Pax1, but also disturbs a gene or genes nearby Pax1. However, which gene(s) is involved and how the Pax1Un-s phenotype is confined to the Pax1-positive tissues remain unknown. In the present study, we determined the Pax1Un-s deletion interval to be 125 kb and characterized genes around Pax1. We show that the Pax1Un-s mutation affects four physically linked genes within or near the deletion, including Pax1, Nkx2-2, and their potential antisense genes. Remarkably, Nkx2-2 is ectopically activated in the sclerotome and limb buds of Pax1Un-s embryos, both of which normally express Pax1. This result suggests that the Pax1Un-s deletion leads to an illegitimate interaction between remotely located Pax1 enhancers and the Nkx2-2 promoter by disrupting an insulation mechanism between Pax1 and Nkx2-2. Furthermore, we show that expression of Bapx1, a downstream target of Pax1, is more strongly affected in Pax1Un-s mutants than in Pax1-null mutants, suggesting that the ectopic expression of Nkx2-2 interferes with the Pax1-Bapx1 pathway. Taken together, we propose that a combination of a loss-of-function mutation of Pax1 and a gain-of-function mutation of Nkx2-2 is the molecular basis of the Pax1Un-s mutation.
Collapse
Affiliation(s)
- Chikara Kokubu
- GSF-National Research Center for Environment and Health, Institute of Developmental Genetics, 85764 Neuherberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
413
|
Walters MC, Nienhuis AW, Vichinsky E. Novel therapeutic approaches in sickle cell disease. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2003:10-34. [PMID: 12446417 DOI: 10.1182/asheducation-2002.1.10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this update, selected clinical features of sickle cell disease and their management are reviewed. In addition, the current status of interventions that have curative potential for sickle cell disease is discussed, with particular attention focused on indications, methodology, recent results, and challenges to wider clinical application. In Section I, Dr. Nienhuis describes recent improvements in vector technology, safety, and replacement gene expression that are creating the potential for clinical application of this technology. In Section II, Dr. Vichinsky reviews our current understanding of the pathophysiology and treatment of pulmonary injury in sickle cell disease. The acute and chronic pulmonary complications of sickle cell disease, modulators and predictors of severity, and conventional and novel treatment of these complications are discussed. In Section III, Dr. Walters reviews the current status of hematopoietic cell transplantation for sickle cell disease. Newer efforts to expand its availability by identifying alternate sources of stem cells and by reducing the toxicity of transplantation are discussed.
Collapse
Affiliation(s)
- Mark C Walters
- Children's Hospital & Research Center, Oakland, University of California, San Francisco, 94609, USA
| | | | | |
Collapse
|
414
|
Abstract
Eukaryotic DNA is organized into structurally distinct domains that regulate gene expression and chromosome behavior. Epigenetically heritable domains of heterochromatin control the structure and expression of large chromosome domains and are required for proper chromosome segregation. Recent studies have identified many of the enzymes and structural proteins that work together to assemble heterochromatin. The assembly process appears to occur in a stepwise manner involving sequential rounds of histone modification by silencing complexes that spread along the chromatin fiber by self-oligomerization, as well as by association with specifically modified histone amino-terminal tails. Finally, an unexpected role for noncoding RNAs and RNA interference in the formation of epigenetic chromatin domains has been uncovered.
Collapse
Affiliation(s)
- Shiv I S Grewal
- Laboratory of Molecular Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
415
|
Guglielmi L, Le Bert M, Truffinet V, Cogné M, Denizot Y. Insulators to improve expression of a 3(')IgH LCR-driven reporter gene in transgenic mouse models. Biochem Biophys Res Commun 2003; 307:466-71. [PMID: 12893244 DOI: 10.1016/s0006-291x(03)01185-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A locus control region (LCR) containing four transcriptional enhancers lies downstream of the IgH chain locus. We studied transgenes carrying a 3(')IgH LCR-driven GFP reporter gene for expression and B cell differentiation stage specificity. We also compared transgenes that were or were not flanked by two copies of the beta-globin HS4 insulator, an element defined by its ability to protect transgenes from the influences of surrounding genes at the insertion site. Results indicate that insulators are instrumental in sustaining GFP expression in GFP-3(')LCR transgenic mice when they were included. Flow cytometry experiments reported a strictly B cell specific GFP expression from pre-B cells in bone marrow to mature B cells in spleen. Despite addition of 5(')HS4 insulators to the GFP-3(')LCR construct, complete transgene silencing occurred in some transgenic lines and was systematically observed in ageing animals from all lines.
Collapse
Affiliation(s)
- Laurence Guglielmi
- UMR CNRS 6101, Faculté de Médecine, 2 rue Dr Marcland, 87025, Limoges, France
| | | | | | | | | |
Collapse
|
416
|
Du M, Beatty LG, Zhou W, Lew J, Schoenherr C, Weksberg R, Sadowski PD. Insulator and silencer sequences in the imprinted region of human chromosome 11p15.5. Hum Mol Genet 2003; 12:1927-39. [PMID: 12874112 DOI: 10.1093/hmg/ddg194] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The imprinting of the genes on human chromosome 11p15.5 is thought to be controlled by two imprinting control regions located in two differentially methylated CpG islands upstream of the H19 gene (H19 DMR) and in intron 10 of the KCNQ1 gene (KvDMR). We have examined sequences in the human 11p15.5 genomic imprinted region for the presence of insulators and silencers using a position- and enhancer-dependent stable transfection assay. We have confirmed the existence of insulators in H19 DMR and discovered two novel insulators in the IGF2 gene. We have also found two novel silencer sequences; one is located in KvDMR, a region that is thought to contain the promoter for the KCNQ1OT1 transcript, and another is in the CDKN1C gene. We have demonstrated binding of CTCF protein in vitro to all the insulator and silencer sequences that we have detected. We discuss the differences in the regulation of imprinting controlled by the two imprinting control regions in chromosome 11p.
Collapse
Affiliation(s)
- Minjie Du
- Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | | | | | | | | | | | | |
Collapse
|
417
|
Puvion-Dutilleul F, Souquere-Besse S, Albagli-Curiel O. The relationship between BCL6 bodies and nuclear sites of normal and halogenated DNA and RNA synthesis. Microsc Res Tech 2003; 61:389-407. [PMID: 12811744 DOI: 10.1002/jemt.10363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BCL6 is a POZ/BTB and zinc finger transcription factor that self-interacts and accumulates into discrete nuclear "bodies" of unknown function. We recently reported that BCL6 bodies associate with bromodeoxyuridine (BrdU)-substituted DNA, suggesting their implication in replication. To examine this possibility, we examine here by electron and confocal microscopy the relation between BCL6 bodies and replication foci (RF) using incorporation of various halogenated nucleotides (BrdU, chlorodeoxyuridine, CldU, and iododeoxyuridine, IdU) or PCNA (proliferating cell nuclear antigen) staining. We show that BCL6 bodies are found associated with RF, as revealed by PCNA staining. However, such association is markedly prolonged upon BrdU or CldU incorporation, but less, or not at all, upon IdU incorporation. Pulse-chase and double-labeling experiments indicate that IdU-substituted DNA leaves BCL6 bodies after a few tenths of minutes while BrdU- or CldU-substituted DNA stalls in their vicinity for several hours, thereby giving the characteristic "crowns" of DNA entirely surrounding BCL6 bodies. In all cases, however, the halogenated DNA ends up undergoing a movement from BCL6 bodies toward nucleoplasm and nuclear periphery to reach euchromatin and heterochromatin, respectively. We propose that replicating DNA is prone to be bound by BCL6, while BrdU/CldU incorporation increases this propensity possibly because these two events have synergistic effects on the structure and chromatinisation of the newly synthesized DNA. Finally, despite the known proximity between nuclear sites of transcription and replication, we show via several approaches that BCL6 bodies do not appear to be involved either in RNA synthesis or storage.
Collapse
|
418
|
Abstract
Recombinant viral vectors have allowed gene transfer to be developed as a promising approach to the treatment of genetic diseases. Recently, gene therapy of children with X-linked severe combined immune deficiency resulted in impressive levels of immune reconstitution--a triumph that was later overshadowed by the development of leukaemia in two patients. What were the causes of this cancer, and how can the therapeutic benefits of gene therapy be achieved while minimizing risk to the patient?
Collapse
Affiliation(s)
- Donald B Kohn
- Division of Research Immunology/BMT, Childrens Hospital Los Angeles, USC Keck School of Medicine, 4650 Sunset Boulevard, Los Angeles, California 90027, USA.
| | | | | |
Collapse
|
419
|
Golovnin A, Biryukova I, Birukova I, Romanova O, Silicheva M, Parshikov A, Savitskaya E, Pirrotta V, Georgiev P. An endogenous Su(Hw) insulator separates the yellow gene from the Achaete-scute gene complex in Drosophila. Development 2003; 130:3249-58. [PMID: 12783795 DOI: 10.1242/dev.00543] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The best characterized chromatin insulator in Drosophila is the Suppressor of Hairy wing binding region contained within the gypsy retrotransposon. Although cellular functions have been suggested, no role has been found yet for the multitude of endogenous Suppressor of Hairy wing binding sites. Here we show that two Suppressor of Hairy wing binding sites in the intergenic region between the yellow gene and the Achaete-scute gene complex form a functional insulator. Genetic analysis shows that at least two proteins, Suppressor of Hairy wing and Modifier of MDG4, required for the activity of this insulator, are involved in the transcriptional regulation of Achaete-scute.
Collapse
Affiliation(s)
- Anton Golovnin
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow 117334, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
420
|
Frazar TF, Weisbein JL, Anderson SM, Cline AP, Garrett LJ, Felsenfeld G, Gallagher PG, Bodine DM. Variegated expression from the murine band 3 (AE1) promoter in transgenic mice is associated with mRNA transcript initiation at upstream start sites and can be suppressed by the addition of the chicken beta-globin 5' HS4 insulator element. Mol Cell Biol 2003; 23:4753-63. [PMID: 12832463 PMCID: PMC162203 DOI: 10.1128/mcb.23.14.4753-4763.2003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The anion exchanger protein 1 (AE1; band 3) is an abundant erythrocyte transmembrane protein that regulates chloride-bicarbonate exchange and provides an attachment site for the erythrocyte membrane skeleton on the cytoplasmic domain. We analyzed the function of the erythroid AE1 gene promoter by using run-on transcription, RNase protection, transient transfection, and transgenic mouse assays. AE1 mRNA was transcribed at a higher level and maintained at a higher steady-state level than either ankyrin or beta-spectrin in mouse fetal liver cells. When linked to a human gamma-globin gene, two different AE1 promoters directed erythroid-specific expression of gamma-globin mRNA in 18 of 18 lines of transgenic mice. However, variegated expression of gamma-globin was observed in 14 of 18 lines. While there was a significant correlation between transgene copy number and the amount of gamma-globin mRNA in all 18 lines, the transgene mRNAs initiated upstream of the start site of the endogenous AE1 mRNA. Addition of the insulator element from 5'HS4 of the chicken beta-globin cluster to the AE1/gamma-globin transgene allowed position-independent, copy-number-dependent expression at levels similar to the AE1 transcription rate in six of six lines of transgenic mice. The mRNA from the insulated AE1/gamma-globin transgene mapped to the start site of the endogenous AE1 mRNA, and gamma-globin protein was expressed in 100% of erythrocytes in all lines. We conclude that the chicken beta-globin 5'HS4 element is necessary for full function of the AE1 promoter and that position effect variegation is associated with RNA transcription from the upstream start sites.
Collapse
Affiliation(s)
- Tiffany F Frazar
- Hematopoiesis Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
421
|
Abstract
Two related protein complexes, cohesin and condensin, are essential for separating identical copies of the genome into daughter cells during cell division. Cohesin glues replicated sister chromatids together until they split at anaphase, whereas condensin reorganizes chromosomes into their highly compact mitotic structure. Unexpectedly, mutations in the subunits of these complexes have been uncovered in genetic screens that target completely different processes. Exciting new evidence is emerging that cohesin and condensin influence crucial processes during interphase, and unforeseen aspects of mitosis. Each complex can perform several roles, and individual subunits can associate with different sets of proteins to achieve diverse functions, including the regulation of gene expression, DNA repair, cell-cycle checkpoints and centromere organization.
Collapse
Affiliation(s)
- Kirsten A Hagstrom
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720-3204, USA.
| | | |
Collapse
|
422
|
Abstract
V(D)J recombination assembles genes encoding antigen receptors according to defined developmental programs in immature B and T lymphocytes. The 'accessibility hypothesis' was initially invoked to explain how a single recombinase complex could control the locus and allele specificity of V(D)J recombination. It has been since shown that recombination signal sequences themselves influence recombination efficiency and specificity in ways that had not been previously appreciated. Recent developments have increased our understanding of how the chromatin barrier to V(D)J recombination is regulated, and how chromatin control and the properties of the underlying recombination signal sequences may cooperate to create diverse, lineage-restricted and allelically excluded repertoires of antigen receptors.
Collapse
Affiliation(s)
- Michael S Krangel
- Department of Immunology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| |
Collapse
|
423
|
Belozerov VE, Majumder P, Shen P, Cai HN. A novel boundary element may facilitate independent gene regulation in the Antennapedia complex of Drosophila. EMBO J 2003; 22:3113-21. [PMID: 12805225 PMCID: PMC162149 DOI: 10.1093/emboj/cdg297] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The intrinsic enhancer-promoter specificity and chromatin boundary/insulator function are two general mechanisms that govern enhancer trafficking in complex genetic loci. They have been shown to contribute to gene regulation in the homeotic gene complexes from fly to mouse. The regulatory region of the Scr gene in the Drosophila Antennapedia complex is interrupted by the neighboring ftz transcription unit, yet both genes are specifically activated by their respective enhancers from such juxtaposed positions. We identified a novel insulator, SF1, in the Scr-ftz intergenic region that restricts promoter selection by the ftz-distal enhancer in transgenic embryos. The enhancer-blocking activity of the full-length SF1, observed in both embryo and adult, is orientation- and enhancer-independent. The core region of the insulator, which contains a cluster of GAGA sites essential for its activity, is highly conserved among other Drosophila species. SF1 may be a member of a conserved family of chromatin boundaries/insulators in the HOM/Hox complexes and may facilitate the independent regulation of the neighboring Scr and ftz genes, by insulating the evolutionarily mobile ftz transcription unit.
Collapse
Affiliation(s)
- Vladimir E Belozerov
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA
| | | | | | | |
Collapse
|
424
|
Wang S, Petravicz J, Breakefield XO. Single HSV-amplicon vector mediates drug-induced gene expression via dimerizer system. Mol Ther 2003; 7:790-800. [PMID: 12788653 DOI: 10.1016/s1525-0016(03)00094-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A variety of viral vectors have been used to deliver genes into various tissues. Most have typically relied on either viral or cell-specific mammalian promoters to express transgenes. More recently, regulated promoter systems have been developed to fine-tune gene expression. Due to limited transgene capacity in most viral vectors, regulatory elements are typically subcloned into two separate vectors, which must be delivered simultaneously to a target cell. Here, we have cloned all the components of the rapamycin-based "dimerizer" system into the pantropic HSV-amplicon vector and used it to deliver and regulate red fluorescent protein (RFP) expression in cultured cells in a drug-dose-dependent manner. 293T/17 cells infected at an m.o.i. of 1 transducing unit/cell and induced with 20 nM rapamycin resulted in a 25-fold increase in RFP mRNA levels after 24 h as assessed by quantitative RT-PCR. However, due to a reduced ability to detect RFP optically, only a 5-fold induction in the number of RFP-expressing cells was noted by FACS analysis 48 h after infection. Further, there was at least 100-fold variation in the levels of RFP in individual, infected cells in the induced state. Gene induction in several neuronal models, including primary cell culture and organotypic cultures, as well as in rodent brain, was observed.
Collapse
Affiliation(s)
- Samuel Wang
- Department of Neurology, and Center for Molecular Imaging Research, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, USA.
| | | | | |
Collapse
|
425
|
Osano K, Ono M. State of histone modification in the rat Ig-beta/growth hormone locus. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:2532-9. [PMID: 12755709 DOI: 10.1046/j.1432-1033.2003.03628.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The state of acetylation in H3 and H4 histones and dimethylation in the H3 histone Lys4 residue were examined by chromatin immunoprecipitation (ChIP) at 11 targets in the rat Ig-beta/growth hormone locus. Marked enhancement of the acetylation of histones H3 and H4 and the dimethylation of H3 Lys4 was observed in the chromatin situated close to the promoter of an actively transcribed gene. Chromatin positioned near a cell-type-specific DNase I-hypersensitive site with enhancer activity had the same histone modifications as the active promoter. In one transcribed intron, chromatin with fewer histone modifications was found, and in another transcribed intron, chromatin with markedly enhanced modifications was found. In most cases, no appreciable difference in the acetylation of histones H3 and H4 was found at prominently enhanced targets. However, different acetylation levels of H3 and H4 were found at one target. The targets with enhanced dimethylation of the H3 Lys4 residue coincided with those with prominently enhanced acetylation of histones H3 and H4.
Collapse
Affiliation(s)
- Kyoichi Osano
- Department of Life Science, and Frontier Project Life's Adaptation Strategies to Environmental Changes, College of Science, Rikkyo University, Tokyo, Japan
| | | |
Collapse
|
426
|
Bondarenko VA, Liu YV, Jiang YI, Studitsky VM. Communication over a large distance: enhancers and insulators. Biochem Cell Biol 2003; 81:241-51. [PMID: 12897858 DOI: 10.1139/o03-051] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Enhancers are regulatory DNA sequences that can work over a large distance. Efficient enhancer action over a distance clearly requires special mechanisms for facilitating communication between the enhancer and its target. While the chromatin looping model can explain the majority of the observations, some recent experimental findings suggest that a chromatin scanning mechanism is used to establish the loop. These new findings help to understand the mechanism of action of the elements that can prevent enhancer-promoter communication (insulators).
Collapse
Affiliation(s)
- Vladimir A Bondarenko
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | |
Collapse
|
427
|
Abstract
The nuclear factor CTCF was first identified as one of the factors binding to the regulatory regions of the c-myc gene. Further study of this protein revealed roles in transcriptional repression, insulator function, and imprinting genetic information. Recent studies have provided new insight into the mechanism through which this factor acts at various levels of gene regulation.
Collapse
Affiliation(s)
- Katherine L Dunn
- Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, Canada
| | | |
Collapse
|
428
|
Abstract
Insulators are a class of elements that define independent domains of gene function. The Drosophila gypsy insulator is proposed to establish regulatory isolation by forming loop domains that constrain interactions between transcriptional control elements. This supposition is based upon the observation that insertion of a single gypsy insulator between an enhancer and promoter blocks enhancer function, while insertion of two gypsy insulators promotes enhancer bypass and activation of transcription. To investigate this model, we determined whether non-gypsy insulators interacted with each other and with the gypsy insulator. Pairs of scs or scs' insulators blocked enhancer function. Further, an intervening scs insulator did not block gypsy insulator interactions. Taken together, these data suggest that not all Drosophila insulators interact, with this property restricted to some insulators, such as gypsy. Three gypsy insulators inserted between an enhancer and promoter blocked enhancer function, indicating that gypsy insulator interactions may be restricted to pairs. Our studies imply that formation of loop domains may represent one of many mechanisms used by insulators to impart regulatory isolation.
Collapse
Affiliation(s)
- Emily J Kuhn
- Molecular Biology Program and Department of Biochemistry, University of Iowa, College of Medicine, Iowa City 52242, USA
| | | | | | | |
Collapse
|
429
|
Rival-Gervier S, Thépot D, Jolivet G, Houdebine LM. Pig whey acidic protein gene is surrounded by two ubiquitously expressed genes. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1627:7-14. [PMID: 12759187 DOI: 10.1016/s0167-4781(03)00051-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A 140-kb pig DNA fragment containing the whey acidic protein (WAP) gene cloned in a bacterial artificial chromosome (BAC344H5) has been shown to contain all of the cis-elements necessary for position-independent, copy-dependent and tissue-specific expression in transgenic mice. The insert from this BAC was sequenced. This revealed the presence of two other genes with quite different expression patterns in pig tissues and in transfected HC11 mouse mammary cells. The RAMP3 gene is located 15 kb upstream of the WAP gene in reverse orientation. The CPR2 gene is located 5 kb downstream of the WAP gene in the same orientation. The same locus organization was found in the human genome. The region between RAMP3 and CPR2 in the human genome contains a WAP gene-like sequence with several points of mutation which may account for the absence of WAP from human milk.
Collapse
Affiliation(s)
- Sylvie Rival-Gervier
- Laboratoire de biologie du développement et reproduction, Institut National de la Recherche Agronomique, INRA, 78350 Jouy-en-Josas, France.
| | | | | | | |
Collapse
|
430
|
Prioleau MN, Gendron MC, Hyrien O. Replication of the chicken beta-globin locus: early-firing origins at the 5' HS4 insulator and the rho- and betaA-globin genes show opposite epigenetic modifications. Mol Cell Biol 2003; 23:3536-49. [PMID: 12724412 PMCID: PMC164771 DOI: 10.1128/mcb.23.10.3536-3549.2003] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chromatin structure is believed to exert a strong effect on replication origin function. We have studied the replication of the chicken beta-globin locus, whose chromatin structure has been extensively characterized. This locus is delimited by hypersensitive sites (HSs) that mark the position of insulator elements. A stretch of condensed chromatin and another HS separate the beta-globin domain from an adjacent folate receptor (FR) gene. We demonstrate here that in erythroid cells that express the FR but not the globin genes, replication initiates at four sites within the beta-globin domain, one at the 5' HS4 insulator and the other three near the rho- and beta(A)-globin genes. Three origins consist of G+C-rich sequences enriched in CpG dinucleotides. The fourth origin is A+T rich. Together with previous work, these data reveal that the insulator origin has unmethylated CpGs, hyperacetylated histones H3 and H4, and lysine 4-methylated histone H3. In contrast, opposite modifications are observed at the other G+C-rich origins. We also show that the whole region, including the stretch of condensed chromatin, replicates early in S phase in these cells. Therefore, different early-firing origins within the same locus may have opposite patterns of epigenetic modifications. The role of insulator elements in DNA replication is discussed.
Collapse
Affiliation(s)
- Marie-Noëlle Prioleau
- Laboratoire de Génétique Moléculaire, Ecole Normale Supérieure, 46 rue d'Ulm, 75230 Paris Cedex 05, France.
| | | | | |
Collapse
|
431
|
Abstract
The eukaryotic genome is organized into different domains by cis-acting elements, such as boundaries/insulators and matrix attachment regions, and is packaged with different degrees of condensation. In the M phase, the chromatin becomes further highly condensed into chromosomes. The first step for transcriptional activation of a given gene, at a particular time during development, in any locus, is the opening of its chromatin domain. This locus needs to be kept in this state in each early G(1) phase during every cell cycle. Certain distal enhance elements, including locus control regions (LCRs) and enhancers, are believed to perform this target chromatin domain opening process and several models have been proposed to explain distal enhance action. But they did not explain precisely how a given chromatin domain is opened. Based on various studies, we propose a hypothesis for the mechanism of opening chromatin on a large scale. One important mechanism may involved breaking one or two DNA strands and reducing the linking numbers within chromatin domain. The topological changes can overpass some complexes formed on DNA strands and can be transmitted from specific localized points over a broad region, until boundary elements or insulators are reached. These may initiate downstream events such as propagation of histone acetylation and the binding of transcription factors to proximal promoters and may further augment the action mediated by distal enhancer elements.
Collapse
Affiliation(s)
- Li Xin
- National Laboratory of Medical Molecular Biology, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, P.R. China
| | | | | |
Collapse
|
432
|
Nienhuis AW, Hanawa H, Sawai N, Sorrentino BP, Persons DA. Development of gene therapy for hemoglobin disorders. Ann N Y Acad Sci 2003; 996:101-11. [PMID: 12799288 DOI: 10.1111/j.1749-6632.2003.tb03238.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The hemoglobin disorders, severe beta-thalassemia and sickle cell anemia, are prevalent monogenetic disorders which cause severe morbidity and mortality worldwide. Gene therapy approaches to these disorders envision stem cell targeted gene transfer, autologous transplantation of gene-corrected stem cells, and functional, phenotypically corrective globin gene expression in developing erythroid cells. Lentiviral vector systems potentially appear to afford adequately efficient gene transfer into stem cells and are capable, with appropriate genetic engineering, of transferring a globin gene with the regulatory elements required to achieve high-level, erythroid-specific expression. Herein are results obtained in use of lentiviral vectors to insert a gamma-globin gene into murine stem cells with phenotypic correction of the thalassemia phenotype. Further, we have developed a drug-selection system for genetically modified stem cells based on a mutant form of methylguanine, methyltransferase, which allows selective amplification of genetically modified stem cells with phenotypic correction even in the absence of myeloablation prior to stem cell transplantation. These advances provide essential preclinical data which build toward the development of effective gene therapy for the severe hemoglobin disorders.
Collapse
Affiliation(s)
- Arthur W Nienhuis
- Division of Experimental Hematology, Department of Hematology/Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA.
| | | | | | | | | |
Collapse
|
433
|
Majumder P, Cai HN. The functional analysis of insulator interactions in the Drosophila embryo. Proc Natl Acad Sci U S A 2003; 100:5223-8. [PMID: 12700350 PMCID: PMC154326 DOI: 10.1073/pnas.0830190100] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2003] [Indexed: 01/22/2023] Open
Abstract
Chromatin boundaries or insulators modulate enhancer-promoter interactions in complex genetic loci. However, the mechanism underlying insulator activity is not known. Previous studies showed that the activity of the Drosophila suHw insulator is abolished by the tandem arrangement (pairing) of the insulator elements, suggesting that interactions between insulators or like elements may be involved in their enhancer-blocking mechanism. To test whether such phenomenon reflects a general property of chromatin insulators, we tested the effect of pairing on enhancer-blocking activity of 11 homologous and heterologous insulator combinations using suHw, scs, or SF1 insulators. We found that, unlike the homologous pairing of suHw, the heterologous combinations of suHw with other insulators do not reduce their enhancer-blocking activity. Rather, paired insulators exhibit a higher level of enhancer-blocking activity than either single insulator alone, suggesting that they can function independently or additively. Furthermore, the analyses of two additional chromatin boundaries, scs and SF1, in homologous or heterologous pairing with other boundary elements, also showed no reduction but rather enhancement of insulator activity. We propose that diverse mechanisms may underlie insulator activity, and selective interactions among insulators could influence their function as well as the formations of independent chromatin domains.
Collapse
Affiliation(s)
- Parimal Majumder
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
434
|
Tang Y, Liu DP, Liang CC. Further understanding of the beta-globin locus regulation at the molecular level: looping or linking models? Genes Cells 2003; 7:889-900. [PMID: 12296820 DOI: 10.1046/j.1365-2443.2002.00568.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The human beta-globin locus is a classic model of the eukaryotic multigene family with tissue- and temporally specific expression. Over the past few years, great advances have been achieved in studies of beta-globin locus regulation. The dominant role of the beta-globin locus control region (LCR) in chromatin opening and developmental switching has been challenged, and elements beyond the LCR have been studied in depth. More recently, the fields of research have been expanded to intergenic transcription, nuclear localization and histone modification. Several models have been proposed to elucidate the regulation mechanism; among them, the looping and linking models are the most prevalent. Different models are the summarization of the observations made at different times and a persuasive model must be based on a systematic understanding of the numerous observations. The objective of this review is to provide an overview of progress in the area of beta-globin regulation and then to discuss models for it.
Collapse
Affiliation(s)
- Yi Tang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100005, PR China
| | | | | |
Collapse
|
435
|
Savitsky M, Kahn T, Pomerantseva E, Georgiev P. Transvection at the end of the truncated chromosome in Drosophila melanogaster. Genetics 2003; 163:1375-87. [PMID: 12702682 PMCID: PMC1462527 DOI: 10.1093/genetics/163.4.1375] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The phenomenon of transvection is well known for the Drosophila yellow locus. Thus enhancers of a promoterless yellow locus in one homologous chromosome can activate the yellow promoter in the other chromosome where the enhancers are inactive or deleted. In this report, we examined the requirements for trans-activation of the yellow promoter at the end of the deficient chromosome. A number of truncated chromosomes ending in different areas of the yellow regulatory region were examined in combination with the promoterless y alleles. We found that trans-activation of the yellow promoter at the end of a deficient chromosome required approximately 6 kb of an additional upstream sequence. The nature of upstream sequences affected the strength of transvection: addition of gypsy sequences induced stronger trans-activation than addition of HeT-A or yellow sequences. Only the promoter proximal region (within -158 bp of the yellow transcription start) was essential for trans-activation; i.e., transvection did not require extensive homology in the yellow upstream region. Finally, the yellow enhancers located on the two pairing chromosomes could cooperatively activate one yellow promoter.
Collapse
Affiliation(s)
- Mikhail Savitsky
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow 117334, Russia
| | | | | | | |
Collapse
|
436
|
Lutz M, Burke LJ, LeFevre P, Myers FA, Thorne AW, Crane-Robinson C, Bonifer C, Filippova GN, Lobanenkov V, Renkawitz R. Thyroid hormone-regulated enhancer blocking: cooperation of CTCF and thyroid hormone receptor. EMBO J 2003; 22:1579-87. [PMID: 12660164 PMCID: PMC152892 DOI: 10.1093/emboj/cdg147] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The highly conserved, ubiquitously expressed, zinc finger protein CTCF is involved in enhancer blocking, a mechanism crucial for shielding genes from illegitimate enhancer effects. Interestingly, CTCF-binding sites are often flanked by thyroid hormone response elements (TREs), as at the chicken lysozyme upstream silencer. Here we identify a similar composite site positioned upstream of the human c-myc gene. For both elements, we demonstrate that thyroid hormone abrogates enhancer blocking. Relief of enhancer blocking occurs even though CTCF remains bound to the lysozyme chromatin. Furthermore, chromatin immunoprecipitation analysis of the lysozyme upstream region revealed that histone H4 is acetylated at the CTCF-binding site. Loss of enhancer blocking by the addition of T3 led to increased histone acetylation, not only at the CTCF site, but also at the enhancer and the promoter. Thus, when TREs are adjacent to CTCF-binding sites, thyroid hormone can regulate enhancer blocking, thereby providing a new property for what was previously thought to be constitutive enhancer shielding by CTCF.
Collapse
Affiliation(s)
- Marcus Lutz
- Institute for Genetics, Justus-Liebig-Universitaet Giessen, Heinrich-Buff-Ring 58-62, D-35392 Giessen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
437
|
Abstract
Chromatin is the physiologically relevant substrate for all genetic processes inside the nuclei of eukaryotic cells. Dynamic changes in the local and global organization of chromatin are emerging as key regulators of genomic function. Indeed, a multitude of signals from outside and inside the cell converges on this gigantic signaling platform. Numerous post-translational modifications of histones, the main protein components of chromatin, have been documented and analyzed in detail. These 'marks' appear to crucially mediate the functional activity of the genome in response to upstream signaling pathways. Different layers of cross-talk between several components of this complex regulatory system are emerging, and these epigenetic circuits are the focus of this review.
Collapse
Affiliation(s)
- Wolfgang Fischle
- Department of Biochemistry and Molecular Genetics, University of Virginia, Health Sciences Center, 1300 Jefferson Park Avenue, Charlottesville, VA 22908-0733, USA
| | | | | |
Collapse
|
438
|
Abstract
During the past year, many interesting advances have been made regarding molecular mechanisms controlling beta-like globin gene switching. Throughout the beta locus, -acting elements exist that are dynamically bound by trans-acting proteins, including transcription factors, coactivators, repressors, and chromatin modifiers. Characterization of transcription factors, their interaction with one another, and an ever-increasing role for chromatin structure in gene expression have enhanced understanding of the mechanism of globin gene switching. The studies reviewed here contribute new insights on the interplay between -acting elements, transcription factors, and chromatin modifiers that underlie globin gene switching during development.
Collapse
Affiliation(s)
- Kenneth R Peterson
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA.
| |
Collapse
|
439
|
Blanton J, Gaszner M, Schedl P. Protein:protein interactions and the pairing of boundary elements in vivo. Genes Dev 2003; 17:664-75. [PMID: 12629048 PMCID: PMC196003 DOI: 10.1101/gad.1052003] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Although it is now well-established that boundary elements/insulators function to subdivide eukaryotic chromosomes into autonomous regulatory domains, the underlying mechanisms remain elusive. One idea is that boundaries act as barriers, preventing the processive spreading of "active" or "silenced" chromatin between domains. Another is that the partitioning into autonomous functional units is a consequence of an underlying structural subdivision of the chromosome into higher order "looped" domains. In this view, boundaries are thought to delimit structural domains by interacting with each other or with some other nuclear structure. The studies reported here provide support for the looped domain model. We show that the Drosophila scs and scs' boundary proteins, Zw5 and BEAF, respectively, interact with each other in vitro and in vivo. Moreover, consistent with idea that this protein:protein interaction might facilitate pairing of boundary elements, we find that that scs and scs' are in close proximity to each other in Drosophila nuclei.
Collapse
Affiliation(s)
- Jason Blanton
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08540, USA
| | | | | |
Collapse
|
440
|
Yu Q, Qiu R, Foland TB, Griesen D, Galloway CS, Chiu YH, Sandmeier J, Broach JR, Bi X. Rap1p and other transcriptional regulators can function in defining distinct domains of gene expression. Nucleic Acids Res 2003; 31:1224-33. [PMID: 12582242 PMCID: PMC150219 DOI: 10.1093/nar/gkg200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Barrier elements that are able to block the propagation of transcriptional silencing in yeast are functionally similar to chromatin boundary/insulator elements in metazoans that delimit functional chromosomal domains. We show that the upstream activating sequences of many highly expressed ribosome protein genes and glycolytic genes exhibit barrier activity. Analyses of these barriers indicate that binding sites for transcriptional regulators Rap1p, Abf1p, Reb1p, Adr1p and Gcn4p may participate in barrier function. We also present evidence suggesting that Rap1p is directly involved in barrier activity, and its barrier function correlates with local changes in chromatin structure. We further demonstrate that tethering the transcriptional activation domain of Rap1p to DNA is sufficient to recapitulate barrier activity. Moreover, targeting the activation domain of Adr1p or Gcn4p also establishes a barrier to silencing. These results support the notion that transcriptional regulators could also participate in delimiting functional domains in the genome.
Collapse
Affiliation(s)
- Qun Yu
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
441
|
Sutter NB, Scalzo D, Fiering S, Groudine M, Martin DIK. Chromatin insulation by a transcriptional activator. Proc Natl Acad Sci U S A 2003; 100:1105-10. [PMID: 12547916 PMCID: PMC298734 DOI: 10.1073/pnas.242732999] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2002] [Indexed: 11/18/2022] Open
Abstract
In eukaryotic genomes, transcriptionally active regions are interspersed with silent chromatin that may repress genes in its vicinity. Chromatin insulators are elements that can shield a locus from repressive effects of flanking chromatin. Few such elements have been characterized in higher eukaryotes, but transcriptional activating elements are an invariant feature of active loci and have been shown to suppress transgene silencing. Hence, we have assessed the ability of a transcriptional activator to cause chromatin insulation, i.e., to relieve position effects at transgene integration sites in cultured cells. The transgene contained a series of binding sites for the metal-inducible transcriptional activator MTF, linked to a GFP reporter. Clones carrying single integrated transgenes were derived without selection for expression, and in most clones the transgene was silent. Induction of MTF resulted in transition of the transgene from the silent to the active state, prolongation of the active state, and a marked narrowing of the range of expression levels at different genomic sites. At one genomic site, prolonged induction of MTF resulted in suppression of transgene silencing that persisted after withdrawal of the induction stimulus. These results are consistent with MTF acting as a chromatin insulator and imply that transcriptional activating elements can insulate active loci against chromatin repression.
Collapse
Affiliation(s)
- Nathan B Sutter
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | | | |
Collapse
|
442
|
Abstract
In female mammals, the majority of the genes on one of the two X-chromosomes are silenced by a process referred to as X-chromosome inactivation. The X-inactivation center (Xic), a complex genomic region on the X-chromosome which controls this process, contains the Xist gene encoding an untranslated RNA which plays a central role in the establishment of the transcriptional repression. The Xic encrypts a sophisticated program which coordinates X inactivation with sex and embryonic development. The present article reviews our current knowledge of the regulatory elements lying within the mouse Xic and of the mechanisms underlying random X inactivation.
Collapse
Affiliation(s)
- Philippe Clerc
- Génétique Moléculaire Murine, Institut Pasteur, 25 rue du Docteur Roux, Paris 75015, France.
| | | |
Collapse
|
443
|
Davey C, Fraser R, Smolle M, Simmen MW, Allan J. Nucleosome positioning signals in the DNA sequence of the human and mouse H19 imprinting control regions. J Mol Biol 2003; 325:873-87. [PMID: 12527297 DOI: 10.1016/s0022-2836(02)01340-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have investigated the sequences of the mouse and human H19 imprinting control regions (ICRs) to see whether they contain nucleosome positioning information pertinent to their function as a methylation-regulated chromatin boundary. Positioning signals were identified by an in vitro approach that employs reconstituted chromatin to comprehensively describe the contribution of the DNA to the most basic, underlying level of chromatin structure. Signals in the DNA sequence of both ICRs directed nucleosomes to flank and encompass the short conserved sequences that constitute the binding sites for the zinc finger protein CTCF, an essential mediator of insulator activity. The repeat structure of the human ICR presented a conserved array of strong positioning signals that would preferentially flank these CTCF binding sites with positioned nucleosomes, a chromatin structure that would tend to maintain their accessibility. Conversely, all four CTCF binding sites in the mouse sequence were located close to the centre of positioning signals that were stronger than those in their flanks; these binding sites might therefore be expected to be more readily incorporated into positioned nucleosomes. We found that CpG methylation did not effect widespread repositioning of nucleosomes on either ICR, indicating that allelic methylation patterns were unlikely to establish allele-specific chromatin structures for H19 by operating directly upon the underlying DNA-histone interactions; instead, epigenetic modulation of ICR chromatin structure is likely to be mediated principally at higher levels of control. DNA methylation did, however, both promote and inhibit nucleosome positioning at several sites in both ICRs and substantially negated one of the strongest nucleosome positioning signals in the human sequence, observations that underline the fact that this epigenetic modification can, nevertheless, directly and decisively modulate core histone-DNA interactions within the nucleosome.
Collapse
Affiliation(s)
- C Davey
- Institute of Cell and Molecular Biology, University of Edinburgh, Darwin Building, King's Buildings, West Mains Road, Scotland EH9 3JR, Edinburgh, UK
| | | | | | | | | |
Collapse
|
444
|
Abstract
Chromatin is the complex of DNA and proteins in which the genetic material is packaged inside the cells of organisms with nuclei. Chromatin structure is dynamic and exerts profound control over gene expression and other fundamental cellular processes. Changes in its structure can be inherited by the next generation, independent of the DNA sequence itself.
Collapse
Affiliation(s)
- Gary Felsenfeld
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 5, Room 212, Bethesda, Maryland 20892-0540, USA.
| | | |
Collapse
|
445
|
Engel N, Bartolomei MS. Mechanisms of Insulator Function in Gene Regulation and Genomic Imprinting. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 232:89-127. [PMID: 14711117 DOI: 10.1016/s0074-7696(03)32003-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Correct temporal and spatial patterns of gene expression are required to establish unique cell types. Several levels of genome organization are involved in achieving this intricate regulatory feat. Insulators are elements that modulate interactions between other cis-acting sequences and separate chromatin domains with distinct condensation states. Thus, they are proposed to play an important role in the partitioning of the genome into discrete realms of expression. This review focuses on the roles that insulators have in vivo and reviews models of insulator mechanisms in the light of current understanding of gene regulation.
Collapse
Affiliation(s)
- Nora Engel
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
446
|
Abstract
DNA regulatory sequences control gene expression by forming DNA-protein complex with specific DNA binding protein. A major task of studies of gene regulation is to identify DNA regulatory sequences in genome-wide. Especially with the rapid pace of genome project, the function of DNA regulatory sequences becomes one of the focuses in functional genome era. Several approaches for screening and characterizing DNA regulatory sequences emerged one by one, from initial low-throughput methods to high-throughput strategies. Even though at present bioinformatics tools facilitate the process of screening regulatory fragments, the most reliable results will come from experimental test. This article highlights some experimental methods for the identification of regulatory sequences. A brief review of the history and procedures for selection methods are provided. Tendency as well as limitation and extension of these methods are also presented.
Collapse
Affiliation(s)
- Ling-Hui Zhang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Science and Peking Union Medical College, 100005, Beijing, PR China
| | | | | |
Collapse
|
447
|
Abstract
Drosophila and mammalian proteins protect genes from heterochromatic repression in Saccharomyces cerevisiae by two different mechanisms. Factors termed genuine boundary activities (BAs) establish a structural, unidirectional bulwark against heterochromatin. In contrast, factors termed desilencing activities (DAs) act by the formation of a bidirectional, euchromatic island that blocks spreading of heterochromatin. The Drosophila boundary protein BEAF and, unexpectedly, the mammalian factor Sp1 exhibited a robust BA in yeast. In contrast, mammalian CTCF, Drosophila GAGA factor, yeast Gcn5p, and many mammalian transcription factors, although inactive as upregulators of nonsilenced genes, work as DAs. DAs but not BAs protect telomere-linked genes from silencing, presumably due to looping of telomeres and ensuing multidirectional silencing. The data demonstrate that "genetic autonomy" of chromatin domains is established by both passive and active mechanisms.
Collapse
Affiliation(s)
- Kojiro Ishii
- Department of Biochemistry, NCCR Frontiers of Genetics, University of Geneva, 30, Quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland.
| | | |
Collapse
|
448
|
Chromatin insulators and position effects. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s0167-7306(03)38023-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
449
|
Swamynathan SK, Piatigorsky J. Orientation-dependent influence of an intergenic enhancer on the promoter activity of the divergently transcribed mouse Shsp/alpha B-crystallin and Mkbp/HspB2 genes. J Biol Chem 2002; 277:49700-6. [PMID: 12403771 DOI: 10.1074/jbc.m209700200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mouse Shsp/alphaB-crystallin and Mkbp/HspB2 genes are closely linked and divergently transcribed. In this study, we have analyzed the contribution of the intergenic enhancer to Shsp/alphaB-crystallin and Mkbp/HspB2 promoter activity using dual-reporter vectors in transient transfection and transgenic mouse experiments. Deletion of the enhancer reduced Shsp/alphaB-crystallin promoter activity by 30- and 93-fold and Mkbp/HspB2 promoter activity by 6- and 10-fold in transiently transfected mouse lens alpha-TN4 and myoblast C2C12 cells, respectively. Surprisingly, inversion of the enhancer reduced Shsp/alphaB-crystallin promoter activity by 17-fold, but did not affect Mkbp/HspB2 promoter activity in the transfected cells. In contrast, enhancer activity was orientation-independent in combination with a heterologous promoter in transfected cells. Transgenic mouse experiments established the orientation dependence and Shsp/alphaB-crystallin promoter preference of the intergenic enhancer in its native context. The orientation dependence and preferential effect of the Shsp/alphaB-crystallin enhancer on the Shsp/alphaB-crystallin promoter provide an example of adaptive changes in gene regulation accompanying the functional diversification of duplicated genes during evolution.
Collapse
Affiliation(s)
- Shivalingappa K Swamynathan
- Laboratory of Molecular and Developmental Biology, NEI/National Institutes of Health, Bldg. 6 Rm. 201, 6 Center Drive, Bethesda, MD 20892, USA
| | | |
Collapse
|
450
|
Burgess-Beusse B, Farrell C, Gaszner M, Litt M, Mutskov V, Recillas-Targa F, Simpson M, West A, Felsenfeld G. The insulation of genes from external enhancers and silencing chromatin. Proc Natl Acad Sci U S A 2002; 99 Suppl 4:16433-7. [PMID: 12154228 PMCID: PMC139905 DOI: 10.1073/pnas.162342499] [Citation(s) in RCA: 214] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Insulators are DNA sequence elements that can serve in some cases as barriers to protect a gene against the encroachment of adjacent inactive condensed chromatin. Some insulators also can act as blocking elements to protect against the activating influence of distal enhancers associated with other genes. Although most of the insulators identified so far derive from Drosophila, they also are found in vertebrates. An insulator at the 5' end of the chicken beta-globin locus marks a boundary between an open chromatin domain and a region of constitutively condensed chromatin. Detailed analysis of this element shows that it possesses both enhancer blocking activity and the ability to screen reporter genes against position effects. Enhancer blocking is associated with binding of the protein CTCF; sites that bind CTCF are found at other critical points in the genome. Protection against position effects involves other properties that appear to be associated with control of histone acetylation and methylation. Insulators thus are complex elements that can help to preserve the independent function of genes embedded in a genome in which they are surrounded by regulatory signals they must ignore.
Collapse
Affiliation(s)
- Bonnie Burgess-Beusse
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0540, USA
| | | | | | | | | | | | | | | | | |
Collapse
|