401
|
Sakpakdeejaroen I, Somani S, Laskar P, Mullin M, Dufès C. Transferrin-bearing liposomes entrapping plumbagin for targeted cancer therapy. JOURNAL OF INTERDISCIPLINARY NANOMEDICINE 2019; 4:54-71. [PMID: 31341642 PMCID: PMC6619241 DOI: 10.1002/jin2.56] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 05/08/2019] [Indexed: 12/30/2022]
Abstract
The therapeutic potential of plumbagin, a naphthoquinone extracted from the officinal leadwort with anticancer properties, is hampered by its failure to specifically reach tumours at a therapeutic concentration after intravenous administration, without secondary effects on normal tissues. Its use in clinic is further limited by its poor aqueous solubility, its spontaneous sublimation, and its rapid elimination in vivo. We hypothesize that the entrapment of plumbagin within liposomes grafted with transferrin, whose receptors are overexpressed on many cancer cells, could result in a selective delivery to tumours after intravenous administration. The objectives of this study were therefore to prepare and characterize transferrin-targeted liposomes entrapping plumbagin and to evaluate their therapeutic efficacy in vitro and in vivo. The entrapment of plumbagin in transferrin-bearing liposomes led to an increase in plumbagin uptake by cancer cells and improved antiproliferative efficacy and apoptosis activity in B16-F10, A431, and T98G cell lines compared with that observed with the drug solution. In vivo, the intravenous injection of transferrin-bearing liposomes entrapping plumbagin led to tumour suppression for 10% of B16-F10 tumours and tumour regression for a further 10% of the tumours. By contrast, all the tumours treated with plumbagin solution or left untreated were progressive. The animals did not show any signs of toxicity. Transferrin-bearing liposomes entrapping plumbagin are therefore highly promising therapeutic systems that should be further optimized as a therapeutic tool for cancer treatment.
Collapse
Affiliation(s)
- Intouch Sakpakdeejaroen
- Strathclyde Institute of Pharmacy and Biomedical SciencesUniversity of Strathclyde161 Cathedral StreetGlasgowG4 0REUK
| | - Sukrut Somani
- Strathclyde Institute of Pharmacy and Biomedical SciencesUniversity of Strathclyde161 Cathedral StreetGlasgowG4 0REUK
| | - Partha Laskar
- Strathclyde Institute of Pharmacy and Biomedical SciencesUniversity of Strathclyde161 Cathedral StreetGlasgowG4 0REUK
| | - Margaret Mullin
- College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowG12 8QQUK
| | - Christine Dufès
- Strathclyde Institute of Pharmacy and Biomedical SciencesUniversity of Strathclyde161 Cathedral StreetGlasgowG4 0REUK
| |
Collapse
|
402
|
Focus on Formononetin: Anticancer Potential and Molecular Targets. Cancers (Basel) 2019; 11:cancers11050611. [PMID: 31052435 PMCID: PMC6562434 DOI: 10.3390/cancers11050611] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/22/2019] [Accepted: 04/28/2019] [Indexed: 12/11/2022] Open
Abstract
Formononetin, an isoflavone, is extracted from various medicinal plants and herbs, including the red clover (Trifolium pratense) and Chinese medicinal plant Astragalus membranaceus. Formononetin's antioxidant and neuroprotective effects underscore its therapeutic use against Alzheimer's disease. Formononetin has been under intense investigation for the past decade as strong evidence on promoting apoptosis and against proliferation suggests for its use as an anticancer agent against diverse cancers. These anticancer properties are observed in multiple cancer cell models, including breast, colorectal, and prostate cancer. Formononetin also attenuates metastasis and tumor growth in various in vivo studies. The beneficial effects exuded by formononetin can be attributed to its antiproliferative and cell cycle arrest inducing properties. Formononetin regulates various transcription factors and growth-factor-mediated oncogenic pathways, consequently alleviating the possible causes of chronic inflammation that are linked to cancer survival of neoplastic cells and their resistance against chemotherapy. As such, this review summarizes and critically analyzes current evidence on the potential of formononetin for therapy of various malignancies with special emphasis on molecular targets.
Collapse
|
403
|
Diederich M. Natural compound inducers of immunogenic cell death. Arch Pharm Res 2019; 42:629-645. [PMID: 30955159 DOI: 10.1007/s12272-019-01150-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 03/29/2019] [Indexed: 12/21/2022]
Abstract
Accumulating evidence shows that the anti-cancer potential of the immune response that can be activated by modulation of the immunogenicity of dying cancer cells. This regulated cell death process is called immunogenic cell death (ICD) and constitutes a new innovating anti-cancer strategy with immune-modulatory potential thanks to the release of damage-associated molecular patterns (DAMPs). Some conventional clinically-used chemotherapeutic drugs, as well as preclinically-investigated compounds of natural origins such as anthracyclines, microtubule-destabilizing agents, cardiac glycosides or hypericin derivatives, possess such an immune-stimulatory function by triggering ICD. Here, we discuss the effects of ICD inducers on the release of DAMPs and the activation of corresponding signaling pathways triggering immune recognition. We will discuss potential strategies allowing to overcome resistance mechanisms associated with this treatment approach as well as co-treatment strategies to overcome the immunosuppressive microenvironment. We will highlight the potential role of metronomic immune modulation as well as targeted delivery of ICD-inducing compounds with nanoparticles or liposomal formulations to improving the immunogenicity of ICD inducers aiming at long-term clinical benefits.
Collapse
Affiliation(s)
- Marc Diederich
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Building 29 Room 223, 1 Gwanak-ro, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
| |
Collapse
|
404
|
Gao P, Huang X, Liao T, Li G, Yu X, You Y, Huang Y. Daucosterol induces autophagic-dependent apoptosis in prostate cancer via JNK activation. Biosci Trends 2019; 13:160-167. [PMID: 30944266 DOI: 10.5582/bst.2018.01293] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Plant sterols (phytosterols) have been widely accepted as a natural anti-cancer agent in multiple malignant tumors. This study was designed to investigate the functions of daucosterol in prostate cancer progression and its possible molecular mechanisms. Our results showed that daucosterol inhibited cell proliferation and induced cell cycle arrest. Moreover, daucosterol treatment obviously promoted apoptosis and autophagy. An autophagy inhibitor, 3-methyladenine (3-MA) was proved to counteract daucosterol-triggered autophagy, growth inhibition, and apoptosis, indicating that daucosterol-induced apoptotic response was dependent on autophagy. Additionally, treatment with daucosterol resulted in increased phosphorylation of c-Jun N-terminal kinase (JNK). Furthermore, pre-treatment with a JNK-specific inhibitor SP600125 abated daucosterol-elicited autophagy and apoptotic cell death. Taken together, our findings demonstrated that daucosterol blocked prostate cancer growth at least partly through inducing autophagic-dependent apoptosis via activating JNK signaling, providing a promising candidate for the development of antitumor drugs in prostate cancer treatment.
Collapse
Affiliation(s)
- Ping Gao
- Department of Urology, Hospital of Chengdu University of Traditional Chinese Medicine.,Department of Andrology, Hospital of Chengdu University of Traditional Chinese Medicine
| | - Xiaopeng Huang
- Department of Andrology, Hospital of Chengdu University of Traditional Chinese Medicine
| | - Tingting Liao
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine
| | - Guangsen Li
- Department of Andrology, Hospital of Chengdu University of Traditional Chinese Medicine
| | - Xujun Yu
- Medicine and Life Sciences College, Chengdu University of Traditional Chinese Medicine
| | - Yaodong You
- Department of Andrology, Hospital of Chengdu University of Traditional Chinese Medicine
| | - Yuxing Huang
- Department of Neurosurgery, Hospital of Chengdu University of Traditional Chinese Medicine
| |
Collapse
|
405
|
Gypenoside L Inhibits Proliferation of Liver and Esophageal Cancer Cells by Inducing Senescence. Molecules 2019; 24:molecules24061054. [PMID: 30889805 PMCID: PMC6471500 DOI: 10.3390/molecules24061054] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/08/2019] [Accepted: 03/14/2019] [Indexed: 12/15/2022] Open
Abstract
Senescence is an irreversible state of cell cycle arrest that can be triggered by multiple stimuli, such as oxygen reactive species and DNA damage. Growing evidence has proven that senescence is a tumor-suppressive approach in cancer treatment. Therefore, developing novel agents that modulate senescence may be an alternative strategy against cancer. In our study, we investigated the inhibitory effect of gypenoside L (Gyp-L), a saponin isolated from Gynostemma pentaphyllum, on cancer cell growth. We found that Gyp-L increased the SA-β-galactosidase activity, promoted the production of senescence-associated secretory cytokines, and inhibited cell proliferation of human liver and esophageal cancer cells. Moreover, Gyp-L caused cell cycle arrest at S phase, and activated senescence-related cell cycle inhibitor proteins (p21 and p27) and their upstream regulators. In addition, Gyp-L activated p38 and ERK MAPK pathways and NF-κB pathway to induce senescence. Consistently, adding chemical inhibitors efficiently counteracted the Gyp-L-mediated senescence, growth inhibition, and cell cycle arrest in cancer cells. Furthermore, treatment with Gyp-L, enhanced the cytotoxicity of clinic therapeutic drugs, including 5-fluorouracil and cisplatin, on cancer cells. Overall, these results indicate that Gyp-L inhibits proliferation of cancer cells by inducing senescence and renders cancer cells more sensitive to chemotherapy.
Collapse
|
406
|
Oliver DMA, Reddy PH. Small molecules as therapeutic drugs for Alzheimer's disease. Mol Cell Neurosci 2019; 96:47-62. [PMID: 30877034 DOI: 10.1016/j.mcn.2019.03.001] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/03/2019] [Indexed: 12/16/2022] Open
Abstract
Mitochondrial dysfunction is a central protagonist of Alzheimer's disease (AD) pathogenesis. Mitochondrial dysfunction stems from various factors including mitochondrial DNA damage and oxidative stress from reactive oxygen species, membrane and ionic gradient destabilization, and interaction with toxic proteins such as amyloid beta (Aβ). Therapeutic drugs such as cholinesterase and glutamate inhibitors have proven to improve synaptic neurotransmitters, but do not address mitochondrial dysfunction. Researchers have demonstrated that oxidative damage may be reduced by increasing endogenous antioxidants, and/or increasing exogenous antioxidants such as vitamin C & E, beta-carotene and glutathione. Nonetheless, as AD pathology intensifies, endogenous antioxidants are overwhelmed, and exogenous antioxidants are unable to reach neuronal mitochondria as they are blocked by the blood brain barrier. Current therapeutic methods however include novel usage of lipophilic phosphonium cation bound to antioxidants, to effect neuronal mitochondria targeted activity. Mitochondria targeted MitoQ, MitoVitE, MitoTempo, MitoPBN and MCAT concentrate within mitochondria where they scavenge free-radicals, and augment mitochondrial dysfunction. Additional molecules include Szeto-Schiller (SS) peptides which target stability of the inner mitochondrial membrane, and DDQ molecule capable of improving bioenergetics and reduce mitochondrial fragmentation. This article discusses advantages and disadvantages of small molecules, their ability to mitigate Aβ induced damage, and ability to ameliorate synaptic dysfunction and cognitive loss.
Collapse
Affiliation(s)
- Darryll M A Oliver
- Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, United State
| | - P Hemachandra Reddy
- Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, United State; Garrison Institute on Aging, South West Campus, Texas Tech University Health Sciences Center, 6630 S. Quaker Suite E, Lubbock, TX 79413, United States; Cell Biology & Biochemistry Department, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, United States; Pharmacology & Neuroscience Department, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, United States; Neurology Department, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, United States; Speech, Language and Hearing Sciences Department, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, United States; Department of Public Health, Graduate School of Biomedical Sciences, 3601 4th Street, Lubbock, TX 79430, United States.
| |
Collapse
|
407
|
de Sousa FS, Nunes EA, Gomes KS, Cerchiaro G, Lago JHG. Genotoxic and cytotoxic effects of neolignans isolated from Nectandra leucantha (Lauraceae). Toxicol In Vitro 2019; 55:116-123. [DOI: 10.1016/j.tiv.2018.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 12/10/2018] [Accepted: 12/17/2018] [Indexed: 12/18/2022]
|
408
|
Liu P, Du R, Yu X. Ursolic Acid Exhibits Potent Anticancer Effects in Human Metastatic Melanoma Cancer Cells (SK-MEL-24) via Apoptosis Induction, Inhibition of Cell Migration and Invasion, Cell Cycle Arrest, and Inhibition of Mitogen-Activated Protein Kinase (MAPK)/ERK Signaling Pathway. Med Sci Monit 2019; 25:1283-1290. [PMID: 30772887 PMCID: PMC6388547 DOI: 10.12659/msm.913069] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/01/2018] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Ursolic acid is an important bioactive triterpenoid that has been reported to be of tremendous pharmacological importance. However, the anticancer potential of ursolic acid has not been examined against metastatic melanoma cells. Therefore, in this study we examined the anticancer potential of ursolic acid and its mode of action. MATERIAL AND METHODS WST-1 and colony formation assays were used for cell viability assessment. Cell cycle analysis was performed by flow cytometry. Apoptosis was detected by AO/EB staining using fluorescence microscopy. Cell migration and invasion were assessed by Boyden chamber assay. Protein expression was checked by Western blotting. RESULTS The results revealed that ursolic acid exerts significant (p<0.01) growth-inhibitory effects on SK-MEL-24 cells. The IC₅₀ of ursolic acid against SK-MEL-24 cells was 25 µM. Our investigation of the underlying mechanism revealed that ursolic acid prompts apoptotic cell death of the SK-MEL-24 cells, which was linked with increased expression of Bax and Caspase 3 and 9, and decreased expression of Bcl-2. Ursolic acid also halted the SK-MEL-24 cells at G0/G1 phase of the cell cycle and also downregulated the expression of Cyclin B1 and Cdc25. Ursolic acid significantly (p<0.01) inhibited the migration and invasion of SK-MEL-2 cells, indicative of its anti-metastatic potential. Finally, ursolic acid inhibited the MAPK/ERK pathway by suppressing the expression of p-P38 and p-ERK. CONCLUSIONS Ursolic acid appears to be a potent molecule for the treatment of melanoma.
Collapse
Affiliation(s)
- Pengcheng Liu
- Department of Hand and Pediatric Surgery, The First Hospital of Jilin University, Changchun, Jilin, P.R. China
- Jilin Province Key Laboratory of Tissue Repair, Reconstruction and Regeneration, Changchun, Jilin, P.R. China
| | - Ruili Du
- Department of Clinical Laboratory Medicine, The Second Hospital of Changchun City, Changchun, Jilin, P.R. China
| | - Xin Yu
- Department of Hand and Pediatric Surgery, The First Hospital of Jilin University, Changchun, Jilin, P.R. China
- Jilin Province Key Laboratory of Tissue Repair, Reconstruction and Regeneration, Changchun, Jilin, P.R. China
| |
Collapse
|
409
|
Alsayari A, Muhsinah AB, Hassan MZ, Ahsan MJ, Alshehri JA, Begum N. Aurone: A biologically attractive scaffold as anticancer agent. Eur J Med Chem 2019; 166:417-431. [PMID: 30739824 DOI: 10.1016/j.ejmech.2019.01.078] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 12/11/2022]
Abstract
Aurones are very simple, promising anticancer lead molecules containing three rings (A, B and C). A very slight structural variation in the aurones elicits diverse affinity and specificity towards different molecular targets. The present review discusses the design, discovery and development of natural and synthetic aurones as small molecule anticancer agents. Detailed structure-activity relationship and intermolecular interactions at different targets are also discussed. Due to their rare occurrence in nature and minimal mention in literature, the anticancer potential of aurones is rather recent but in constant progress.
Collapse
Affiliation(s)
| | | | | | | | | | - Naseem Begum
- College of Applied Medical Sciences, King Khalid University, Abha, 62529, Saudi Arabia
| |
Collapse
|
410
|
Alper M, Güneş H. Determination of anticancer effects of Urospermum picroides against human cancer cell lines. INTERNATIONAL JOURNAL OF SECONDARY METABOLITE 2019. [DOI: 10.21448/ijsm.482404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
411
|
Xiao Q, Zhu W, Feng W, Lee SS, Leung AW, Shen J, Gao L, Xu C. A Review of Resveratrol as a Potent Chemoprotective and Synergistic Agent in Cancer Chemotherapy. Front Pharmacol 2019; 9:1534. [PMID: 30687096 PMCID: PMC6333683 DOI: 10.3389/fphar.2018.01534] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 12/17/2018] [Indexed: 12/23/2022] Open
Abstract
Background: Cancer has become a major disease endangering human health around the world. Conventional chemotherapy suffers from many side effects including pain, cardiotoxicity, hepatotoxicity, and renal toxicity. This review aims to describe a natural product of resveratrol as a chemoprotective and synergistic agent in the modulation of cancer chemotherapy. Methods: The publications were identified by comprehensive searching of SciFinder, PubMed, Web of Science, and our own reference library. Search terms included combinations of "resveratrol," "cancer," "natural products," "chemotherapy," and "side effects." Selection of material focused on resveratrol reducing the side effects on cancer chemotherapy. Results: Thirty one references were referred in this review to outline resveratrol as a potent chemoprotective and synergistic agent in cancer chemotherapy, including 22 papers for describing the chemoprotective effects, and 9 papers for illustrating the synergistic effects. Conclusion: This study provides a systematic summary of resveratrol serving as a potent chemoprotective and synergistic agent to reduce the associated-side effects and enhance the therapeutic outcomes in cancer chemotherapy. Further studies in terms of resveratrol on a large amount of preclinical tests and clinical trials are highly demanded.
Collapse
Affiliation(s)
- Qicai Xiao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Wangshu Zhu
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Feng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Su Seong Lee
- Institute of Bioengineering and Nanotechnology, Singapore, Singapore
| | - Albert Wingnang Leung
- Division of Chinese Medicine, School of Professional and Continuing Education, The University of Hong Kong, Pokfulam, Hong Kong
| | - Jun Shen
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Liqian Gao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Chuanshan Xu
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
412
|
Pezzuto JM. Resveratrol: Twenty Years of Growth, Development and Controversy. Biomol Ther (Seoul) 2019; 27:1-14. [PMID: 30332889 PMCID: PMC6319551 DOI: 10.4062/biomolther.2018.176] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 09/27/2018] [Indexed: 01/09/2023] Open
Abstract
Resveratrol was first isolated in 1939 by Takaoka from Veratrum grandiflorum O. Loes. Following this discovery, sporadic descriptive reports appeared in the literature. However, spurred by our seminal paper published nearly 60 years later, resveratrol became a household word and the subject of extensive investigation. Now, in addition to appearing in over 20,000 research papers, resveratrol has inspired monographs, conferences, symposia, patents, chemical derivatives, etc. In addition, dietary supplements are marketed under various tradenames. Once resveratrol was brought to the limelight, early research tended to focus on pharmacological activities related to the cardiovascular system, inflammation, and cancer but, over the years, the horizon greatly expanded. Around 130 human clinical trials have been (or are being) conducted with varying results. This may be due to factors such as disparate doses (ca. 5 to 5,000 mg/day) and variable experimental settings. Further, molecular targets are numerous and a dominant mechanism is elusive or nonexistent. In this context, the compound is overtly promiscuous. Nonetheless, since the safety profile is pristine, and use as a dietary supplement is prevalent, these features are not viewed as detrimental. Given the ongoing history of resveratrol, it is reasonable to advocate for additional development and further clinical investigation. Topical preparations seem especially promising, as do conditions that can respond to anti-inflammatory action and/or direct exposure, such as colon cancer prevention. Although the ultimate fate of resveratrol remains an open question, thus far, the compound has inspired innovative scientific concepts and enhanced public awareness of preventative health care.
Collapse
Affiliation(s)
- John M Pezzuto
- Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA
| |
Collapse
|
413
|
Induction of Apoptosis by Extract of Persian Gulf Marine Mollusk, Turbo Coronatus through the ROS-Mediated Mitochondrial Targeting on Human Epithelial Ovarian Cancer Cells. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2019; 18:263-274. [PMID: 31089361 PMCID: PMC6487418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Despite recent improvements in treatment, ovarian cancer is still the leading cause of death from gynaecological malignancies. Today, marine mollusks are considered as natural source of new biologically and pharmacologically active compounds by scientists and the pharmaceutical industries. The aim of this study is to investigate the selective apoptotic effects of Turbo coronatus crude extract fractions on human epithelial ovarian cancer (EOC) cells and mitochondria. The cells and mitochondria were isolated from cancerous and non-cancerous ovarian tissues and exposed to IC50 concentration of F1 fraction for evaluation of mitochondrial and cellular parameters. Our results showed that F1 fraction of T. coronatus crude extract significantly induced toxic effects only in the cancerous ovarian mitochondria, including increased reactive oxygen species (ROS) formation, mitochondrial membrane depolarization, mitochondrial swelling, and cytochrome c release.Flow-cytometry analysis demonstrated that F1 fraction of T. coronatus progressively induced apoptosis and necrosis only on EOC but not non-cancerous cells. We eventuallyconcluded that F1 fraction of T. coronatus crude extract selectively induces apoptosis in EOC through a ROS- mediated pathway.
Collapse
|
414
|
Jadaun A, Sharma S, Verma R, Dixit A. Pinostrobin inhibits proliferation and induces apoptosis in cancer stem-like cells through a reactive oxygen species-dependent mechanism. RSC Adv 2019; 9:12097-12109. [PMID: 35516989 PMCID: PMC9063484 DOI: 10.1039/c8ra08380k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 03/19/2019] [Indexed: 12/30/2022] Open
Abstract
Current treatments and targeted therapies for malignancies are limited due to their severe toxicity and the development of resistance against such treatments, which leads to relapse. Past evidence has indicated that a number of plant-derived dietary agents possess biological activity against highly tumorigenic and resistant cell populations associated with cancer relapse. These subpopulations, termed cancer stem-like cells (CSCs), have been targeted with plant-derived dietary flavonoids. The present study was undertaken to assess the anti-proliferative potential of pinostrobin, a dietary flavonoid, against CSCs. Sphere-forming cells were developed from HeLa cell lines using specific culture conditions. The existence of a CSC population was confirmed by the morphological examination and analysis of surface markers using confocal microscopy and flow cytometry. The effect of pinostrobin on the cell viability of the CSC population, evaluated through MTT reduction assays and the expression levels of surface markers (CD44+ and CD24+), was studied through various biological assays. HeLa-derived CSCs showed higher CD44+ and lower CD24+ expression. Pinostrobin inhibited the self-renewal capacity and sphere formation efficiency of CSCs in a dose-dependent manner. Increased ROS production, and decreased mitochondrial membrane potential and CD44+ expression indicated that pinostrobin promoted ROS-mediated apoptosis in CSCs. These results thus demonstrate the therapeutic potential and effectiveness of pinostrobin in the chemoprevention and relapse of cancer by targeting the CSC population. Thus, pinostrobin, in combination with currently available chemo and radiation therapies, could possibly be used as a safe strategy to alleviate adverse treatment effects, together with enhancing the efficacy. The anti-proliferative potential of pinostrobin, a dietary flavonoid, is evaluated against cancer stem-like cells.![]()
Collapse
Affiliation(s)
- Alka Jadaun
- Gene Regulation Laboratory
- School of Biotechnology
- Jawaharlal Nehru University
- New Delhi-110067
- India
| | - Sapna Sharma
- Gene Regulation Laboratory
- School of Biotechnology
- Jawaharlal Nehru University
- New Delhi-110067
- India
| | - Radha Verma
- Gene Regulation Laboratory
- School of Biotechnology
- Jawaharlal Nehru University
- New Delhi-110067
- India
| | - Aparna Dixit
- Gene Regulation Laboratory
- School of Biotechnology
- Jawaharlal Nehru University
- New Delhi-110067
- India
| |
Collapse
|
415
|
Zangeneh F, Vazirizadeh A, Mirshamsi MR, Fakhri A, Faizi M, Pourahmad J. Induction of Apoptosis by an Extract of Persian Gulf Marine Mollusc, Turbo Coronatus through the Production of Reactive Oxygen Species in Mouse Melanoma Cells. Asian Pac J Cancer Prev 2018; 19:3479-3488. [PMID: 30583673 PMCID: PMC6428523 DOI: 10.31557/apjcp.2018.19.12.3479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 11/04/2018] [Indexed: 11/25/2022] Open
Abstract
Objective: A variety of approaches such as surgery, chemotherapy, radiotherapy, hormonal therapy and immunotherapy are used to treat melanomas, but unfortunately in most case, the response is very weak and often side effects are serious. This study concerns selective toxicity of an extract of Turbo coronatus on cells and mitochondria from a syngeneic mouse model of melanoma. Methods: Cells and mitochondria isolated from extra tumoral and melanoma tissues were exposed toa T. coronatus crude extract and fractions obtained by gel-filtration chromatography and assayed for mitochondrial and cellular parameters. Result: Crude extract (375, 750 and 1,500 μg/ml) and fraction 1; F1; (275, 550 and 1100 μg/ml) of T. coronatus extract induced a significant (p<0.05) increase of the reactive oxygen species (ROS) level, swelling of mitochondria, collapse of mitochondrial membrane potential (MMP), release of cytochrome c and caspase-3 activation only in the mitochondria and cells obtained from melanoma but not extra tumoral tissues. In addition, the F1 fraction decreased the percentage of viable cells and induced apoptosis in melanoma cells. Conclusion: For the first time we could demonstrate that the F1 fraction of a T. coronatus extract, selectively induces ROS mediated cytotoxicity by directly targeting mitochondria in melanoma tissues and it may be a suitable candidate for novel drug treatment of malignant melanomas.
Collapse
Affiliation(s)
- Fatemeh Zangeneh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Pharmaceutical Sciences, Research Center Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Vazirizadeh
- Department of Marine Toxinology, Persian Gulf Marine Biotechnology Research Center, Persian Gulf Biomedical Research Center, Bushehr University Of Medical Sciences, Bushehr, Iran
| | - Mohammad Reza Mirshamsi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Pharmaceutical Sciences, Research Center Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Fakhri
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Pharmaceutical Sciences, Research Center Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad Faizi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Pharmaceutical Sciences, Research Center Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jalal Pourahmad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Pharmaceutical Sciences, Research Center Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
416
|
Abdullah ML, Hafez MM, Al-Hoshani A, Al-Shabanah O. Anti-metastatic and anti-proliferative activity of eugenol against triple negative and HER2 positive breast cancer cells. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:321. [PMID: 30518369 PMCID: PMC6282398 DOI: 10.1186/s12906-018-2392-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/27/2018] [Indexed: 11/13/2022]
Abstract
Background Eugenol is a natural phenolic compound and possesses anticancer and antibacterial activities. Breast cancer is a major global health problem, and most of the chemotherapeutic agents are highly toxic with long-term side effects. Therefore, this study aimed to explore the possibility of using eugenol as an anti-metastatic and anti-proliferative agent against MDA-MB-231 and SK-BR-3 breast cancer cells. Methods Breast cancer cell lines MDA-MB-231 and SK-BR-3 were treated with eugenol and cell proliferation was measured using a real-time cell electronic sensing system. Annexin V analysis with flow cytometry was used to detect the effect of eugenol on cell death. In MDA-MB-231 and SK-BR-3 cells, metastatic potential after eugenol treatment was examined using a wound-healing assay. Real-time PCR was used to study the effect of eugenol on the expression of anti-metastatic genes such as MMP2, MMP9, and TIMP-1, and genes involved in apoptosis including Caspase3, Caspase7, and Caspase9. Results Treatment with 4 μM and 8 μM eugenol for 48 h significantly inhibited cell proliferation of MDA-MB-231, with an inhibition rate of 76.4%, whereas 5 μM and 10 μM of eugenol for 48 h significantly inhibited the proliferation of SK-BR-3 cells with an inhibition rate of 68.1%. Eugenol-treated cells showed significantly decreased MMP2 and MMP9 expression and an insignificant increase in TIMP1 expression in HER2 positive and triple negative breast cancer cells. Eugenol significantly increased the proportion of MDA-MB-231 and SK-BR-3 cells in late apoptosis and increased the expression of Caspase3, Caspase7, and Caspase9. Conclusion To the best of our knowledge, this is the first study to describe the anti-metastatic effect of eugenol against MDA-MB-231 and SK-BR-3 breast cancer cell lines.
Collapse
|
417
|
Zhao HG, Zhou SL, Lin YY, Wang H, Dai HF, Huang FY. Autophagy plays a protective role against apoptosis induced by toxicarioside N via the Akt/mTOR pathway in human gastric cancer SGC-7901 cells. Arch Pharm Res 2018; 41:986-994. [PMID: 29992400 DOI: 10.1007/s12272-018-1049-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 06/21/2018] [Indexed: 12/12/2022]
Abstract
Toxicarioside N (Tox N), a natural product extract from Antiaris toxicaria, has been reported to induce apoptosis in human gastric cancer cells. However, the mechanism and actual role of autophagy in Tox N-induced apoptosis of human gastric cancer cells remains poorly understood. In the current study, we demonstrated that Tox N could induce autophagy by inhibiting the Akt/mTOR signaling pathway in SGC-7901 cells. Moreover, we found that the inhibition of autophagy by 3-methyladenine, an autophagy inhibitor, enhanced Tox N-induced apoptotic cell death. However, the stimulation of autophagy by rapamycin, an autophagy activator, remarkably suppressed Tox N-induced apoptosis, suggesting that autophagy plays a protective role in Tox N-induced apoptosis. Thus, the results from this study suggested that Tox N combination with an autophagy inhibitor might be a promising strategy to enhance the anticancer activity of Tox N for the treatment of human gastric cancer.
Collapse
Affiliation(s)
- Huan-Ge Zhao
- Key Laboratory of Tropical Diseases and Translational Medicine of the Ministry of Education, Hainan Medical College, Haikou, 571199, China
- Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou, 571199, China
| | - Song-Lin Zhou
- Key Laboratory of Tropical Diseases and Translational Medicine of the Ministry of Education, Hainan Medical College, Haikou, 571199, China
- Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou, 571199, China
| | - Ying-Ying Lin
- Key Laboratory of Tropical Diseases and Translational Medicine of the Ministry of Education, Hainan Medical College, Haikou, 571199, China
- Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou, 571199, China
| | - Hua Wang
- Key Laboratory of Tropical Diseases and Translational Medicine of the Ministry of Education, Hainan Medical College, Haikou, 571199, China
- Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou, 571199, China
| | - Hao-Fu Dai
- Institutes of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571199, China.
| | - Feng-Ying Huang
- Key Laboratory of Tropical Diseases and Translational Medicine of the Ministry of Education, Hainan Medical College, Haikou, 571199, China.
- Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou, 571199, China.
| |
Collapse
|
418
|
Noppawan S, Mongkolthanaruk W, Suwannasai N, Senawong T, Moontragoon P, Boonmak J, Youngme S, McCloskey S. Chemical constituents and cytotoxic activity from the wood-decaying fungus Xylaria sp. SWUF08-37. Nat Prod Res 2018; 34:464-473. [PMID: 30257108 DOI: 10.1080/14786419.2018.1488709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
A new cyclic pentapeptide, pentaminolarin (1), and a new cytochalasin, xylochalasin (2), along with thirteen known compounds (3-15) were isolated from the wood-decaying fungus Xylaria sp. SWUF08-37. The absolute configurations of 1 were determined by a combination of Marfey's method and TDDFT ECD calculation and the absolute configurations of 2 were established by TDDFT ECD calculation. Compound 12 showed moderate cytotoxicity against HeLa (IC50 = 19.60 µg/mL), HT29 (IC50 = 17.31 µg/mL), HCT116 (IC50 = 14.28 µg/mL), MCF-7 (IC50 = 15.38 µg/mL), and Vero (IC50 = 24.97 µg/mL) cell lines by MTT assay. Compounds 1 and 2 showed slight cytotoxicity against all tested cancer cell lines.
Collapse
Affiliation(s)
- Somchai Noppawan
- Natural Products Research Unit, Department of Chemistry and Centre of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Wiyada Mongkolthanaruk
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Nuttika Suwannasai
- Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, Thailand
| | - Thanaset Senawong
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Pairot Moontragoon
- Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Jaursup Boonmak
- Materials Chemistry Research Center, Department of Chemistry and Centre of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Sujittra Youngme
- Materials Chemistry Research Center, Department of Chemistry and Centre of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Sirirath McCloskey
- Natural Products Research Unit, Department of Chemistry and Centre of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
419
|
Bonam SR, Wu YS, Tunki L, Chellian R, Halmuthur MSK, Muller S, Pandy V. What Has Come out from Phytomedicines and Herbal Edibles for the Treatment of Cancer? ChemMedChem 2018; 13:1854-1872. [PMID: 29927521 DOI: 10.1002/cmdc.201800343] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/19/2018] [Indexed: 12/20/2022]
Abstract
Several modern treatment strategies have been adopted to combat cancer with the aim of minimizing toxicity. Medicinal plant-based compounds with the potential to treat cancer have been widely studied in preclinical research and have elicited many innovations in cutting-edge clinical research. In parallel, researchers have eagerly tried to decrease the toxicity of current chemotherapeutic agents either by combining them with herbals or in using herbals alone. The aim of this article is to present an update of medicinal plants and their bioactive compounds, or mere changes in the bioactive compounds, along with herbal edibles, which display efficacy against diverse cancer cells and in anticancer therapy. It describes the basic mechanism(s) of action of phytochemicals used either alone or in combination therapy with other phytochemicals or herbal edibles. This review also highlights the remarkable synergistic effects that arise between certain herbals and chemotherapeutic agents used in oncology. The anticancer phytochemicals used in clinical research are also described; furthermore, we discuss our own experience related to semisynthetic derivatives, which are developed based on phytochemicals. Overall, this compilation is intended to facilitate research and development projects on phytopharmaceuticals for successful anticancer drug discovery.
Collapse
Affiliation(s)
- Srinivasa Reddy Bonam
- UMR 7242 CNRS, Biotechnology and Cell Signaling, University of Strasbourg, Laboratory of Excellence Medalis, Illkirch, 67400, France.,Vaccine Immunology Laboratory, Natural Product Chemistry Division, CSIR - Indian Institute of Chemical Technology (IICT), Hyderabad, 500007, India.,Academy of Scientific and Innovative Research, CSIR - Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Yuan Seng Wu
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Lakshmi Tunki
- Vaccine Immunology Laboratory, Natural Product Chemistry Division, CSIR - Indian Institute of Chemical Technology (IICT), Hyderabad, 500007, India
| | - Ranjithkumar Chellian
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Mahabalarao Sampath Kumar Halmuthur
- Vaccine Immunology Laboratory, Natural Product Chemistry Division, CSIR - Indian Institute of Chemical Technology (IICT), Hyderabad, 500007, India.,Academy of Scientific and Innovative Research, CSIR - Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Sylviane Muller
- UMR 7242 CNRS, Biotechnology and Cell Signaling, University of Strasbourg, Laboratory of Excellence Medalis, Illkirch, 67400, France.,University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, 67000, France
| | - Vijayapandi Pandy
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.,Department of Pharmacology, Chalapathi Institute of Pharmaceutical Sciences, Lam, Guntur, Andhra Pradesh, 522034, India
| |
Collapse
|
420
|
Pinteus S, Lemos MF, Alves C, Neugebauer A, Silva J, Thomas OP, Botana LM, Gaspar H, Pedrosa R. Marine invasive macroalgae: Turning a real threat into a major opportunity - the biotechnological potential of Sargassum muticum and Asparagopsis armata. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.06.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
421
|
Eroğlu C, Avcı E, Vural H, Kurar E. Anticancer mechanism of Sinapic acid in PC-3 and LNCaP human prostate cancer cell lines. Gene 2018; 671:127-134. [DOI: 10.1016/j.gene.2018.05.049] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/08/2018] [Accepted: 05/15/2018] [Indexed: 11/26/2022]
|
422
|
Lu Z, Zhang G, Zhang Y, Hua P, Fang M, Wu M, Liu T. Isoalantolactone induces apoptosis through reactive oxygen species-dependent upregulation of death receptor 5 in human esophageal cancer cells. Toxicol Appl Pharmacol 2018; 352:46-58. [DOI: 10.1016/j.taap.2018.05.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 05/15/2018] [Accepted: 05/21/2018] [Indexed: 01/20/2023]
|
423
|
Ong YS, Saiful Yazan L, Ng WK, Abdullah R, Mustapha NM, Sapuan S, Foo JB, Tor YS, How CW, Abd Rahman N, Zakarial Ansar FH. Thymoquinone loaded in nanostructured lipid carrier showed enhanced anticancer activity in 4T1 tumor-bearing mice. Nanomedicine (Lond) 2018; 13:1567-1582. [DOI: 10.2217/nnm-2017-0322] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Aim: To investigate the enhancement of anticancer activity of thymoquinone (TQ) by the use of nanostructured lipid carrier (NLC) in 4T1 tumor-bearing female BALB/c mice. Material & methods: TQ was incorporated into NLC (TQNLC) by using high pressure homogenization. TQNLC and TQ were orally administered to the mice. Results & conclusion: TQNLC and TQ are potential chemotherapeutic drugs as they exhibited anticancer activity. The use of NLC as a carrier has enhanced the therapeutic property of TQ by increasing the survival rate of mice. The antimetastasis effect of TQNLC and TQ to the lungs was evidence by downregulation of MMP-2. TQNLC and TQ induced apoptosis via modulation of Bcl-2 and caspase-8 in the intrinsic apoptotic pathway.
Collapse
Affiliation(s)
- Yong Sze Ong
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Latifah Saiful Yazan
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Biomedical Science, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Wei Keat Ng
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Rasedee Abdullah
- Department of Pathology & Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Malaysia
| | - Noordin M Mustapha
- Department of Pathology & Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Malaysia
| | - Sarah Sapuan
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Jhi Biau Foo
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Yin Sim Tor
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Chee Wun How
- Department of Pathology & Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Malaysia
| | - Napsiah Abd Rahman
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Fatin Hannani Zakarial Ansar
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
424
|
Shi F, Li J, Ye Z, Yang L, Chen T, Chen X, Ye M. Antitumor effects of melanin from Lachnum YM226 and its derivative in H22 tumor-bearing mice. MEDCHEMCOMM 2018; 9:1059-1068. [PMID: 30108995 PMCID: PMC6072318 DOI: 10.1039/c8md00035b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 05/08/2018] [Indexed: 11/21/2022]
Abstract
In the present study, we investigated the anti-tumor activities of the intracellular homogeneous melanin (LM) of Lachnum YM226 and its derivative (ALM) on liver cancer using murine H22 hepatocarcinoma model. The results showed that LM and ALM (50 and 200 mg kg-1) could effectively inhibit tumor growth of H22 tumour-bearing mice. The body weight, liver, spleen and thymus indices also improved in the LM and ALM treated groups. Moreover, the levels of alanine aminotransferase (ALT), aspartate aminotransaminase (AST), alkaline phosphatase (ALP), creatinine (CRE), blood urea nitrogen (BUN) and uric acid (UA) were lowered. Serum cytokines of interleukin-2 (IL-2), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) were increased on LM and ALM administration, while LM and ALM significantly decreased the vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) levels. The H&E staining indicated that LM and ALM exhibited antitumor activity in vivo by promoting apoptosis and inhibiting angiogenesis. The anti-tumor effect of ALM was more significant than that of LM for the same dose. In summary, the findings demonstrated that LM and ALM might be promising candidates for the prevention and treatment of HCC.
Collapse
Affiliation(s)
- Fang Shi
- School of Food Science and Engineering , Hefei University of Technology , Hefei 230009 , China . ; ; ; ; Tel: +86 0551 62919368
| | - Jinglei Li
- School of Food Science and Engineering , Hefei University of Technology , Hefei 230009 , China . ; ; ; ; Tel: +86 0551 62919368
| | - Ziyang Ye
- School of Food Science and Engineering , Hefei University of Technology , Hefei 230009 , China . ; ; ; ; Tel: +86 0551 62919368
| | - Liuqing Yang
- School of Food Science and Engineering , Hefei University of Technology , Hefei 230009 , China . ; ; ; ; Tel: +86 0551 62919368
| | - Tingting Chen
- School of Food Science and Engineering , Hefei University of Technology , Hefei 230009 , China . ; ; ; ; Tel: +86 0551 62919368
| | - Xue Chen
- School of Food Science and Engineering , Hefei University of Technology , Hefei 230009 , China . ; ; ; ; Tel: +86 0551 62919368
| | - Ming Ye
- School of Food Science and Engineering , Hefei University of Technology , Hefei 230009 , China . ; ; ; ; Tel: +86 0551 62919368
| |
Collapse
|
425
|
Romeo L, Iori R, Rollin P, Bramanti P, Mazzon E. Isothiocyanates: An Overview of Their Antimicrobial Activity against Human Infections. Molecules 2018. [PMID: 29522501 PMCID: PMC6017699 DOI: 10.3390/molecules23030624] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The use of plant-derived products as antimicrobial agents has been investigated in depth. Isothiocyanates (ITCs) are bioactive products resulting from enzymatic hydrolysis of glucosinolates (GLs), the most abundant secondary metabolites in the botanical order Brassicales. Although the antimicrobial activity of ITCs against foodborne and plant pathogens has been well documented, little is known about their antimicrobial properties against human pathogens. This review collects studies that focus on this topic. Particular focus will be put on ITCs’ antimicrobial properties and their mechanism of action against human pathogens for which the current therapeutic solutions are deficient and therefore of prime importance for public health. Our purpose was the evaluation of the potential use of ITCs to replace or support the common antibiotics. Even though ITCs appear to be effective against the most important human pathogens, including bacteria with resistant phenotypes, the majority of the studies did not show comparable results and thus it is very difficult to compare the antimicrobial activity of the different ITCs. For this reason, a standard method should be used and further studies are needed.
Collapse
Affiliation(s)
- Letizia Romeo
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| | - Renato Iori
- Consiglio per la Ricerca in Agricoltura e L'analisi Dell'economia Agraria, Centro di Ricerca Agricoltura e Ambiente (CREA-AA), Via di Corticella 133, 40128 Bologna, Italy.
| | - Patrick Rollin
- Institute of Organic and Analytical Chemistry (ICOA), Université d'Orléans et the French National Center for Scientific Research (CNRS), UMR 7311, BP 6759, F-45067 Orléans, France.
| | - Placido Bramanti
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| |
Collapse
|
426
|
Caunii A, Oprean C, Cristea M, Ivan A, Danciu C, Tatu C, Paunescu V, Marti D, Tzanakakis G, Spandidos DA, Tsatsakis A, Susan R, Soica C, Avram S, Dehelean C. Effects of ursolic and oleanolic on SK‑MEL‑2 melanoma cells: In vitro and in vivo assays. Int J Oncol 2017; 51:1651-1660. [PMID: 29039461 PMCID: PMC5673023 DOI: 10.3892/ijo.2017.4160] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/02/2017] [Indexed: 12/21/2022] Open
Abstract
Among the triterpenoids, oleanolic acid (OA) and its isomer, ursolic acid (UA) are promising therapeutic candidates, with potential benefits in the management of melanoma. In this study, we aimed to examine the in vitro and in vivo anti‑invasive and anti‑metastatic activity of OA and UA to determine their possible usefulness as chemopreventive or chemotherapeutic agents in melanoma. For the in vitro experiments, the anti‑proliferative activity of the triterpenic compounds on SK‑MEL‑2 melanoma cells was examined. The anti‑invasive potential was assessed by testing the effects of the active compound on vascular cell adhesion molecule (VCAM) and intercellular adhesion molecule (ICAM) adhesion to melanoma cells. Normal and tumor angiogenesis were evaluated in vivo by chicken embryo chorioallantoic membrane (CAM) assay. The two test triterpenoid acids, UA and OA, exerted differential effects in vitro and in vivo on the SK‑MEL‑2 melanoma cells. UA exerted a significant and dose‑dependent anti‑proliferative effect in vitro, compared to OA. The cytotoxic effects in vitro on the melanoma cells were determined by the examining alterations in the cell cycle phases induced by UA that lead to cell arrest in the S phase. Moreover, UA was found to affect SK‑MEL‑2 melanoma cell invasiveness by limiting the cell adhesion capacity to ICAM molecules, but not influencing their adhesion to VCAM molecules. On the whole, in this study, by assessing the effects of the two triterpenoids in vivo, our results revealed that OA had a greater potential to impair the invasive capacity and tumor angiogenesis compared with UA.
Collapse
Affiliation(s)
- Angela Caunii
- Faculty of Pharmacy, 'Victor Babeş' University of Medicine and Pharmacy, 300041 Timişoara
| | - Camelia Oprean
- Faculty of Pharmacy, 'Victor Babeş' University of Medicine and Pharmacy, 300041 Timişoara
- 'Pius Brinzeu' Timişoara County Emergency Clinical Hospital, Oncogen Institute, 300723 Timişoara
| | - Mirabela Cristea
- 'Pius Brinzeu' Timişoara County Emergency Clinical Hospital, Oncogen Institute, 300723 Timişoara
| | - Alexandra Ivan
- 'Pius Brinzeu' Timişoara County Emergency Clinical Hospital, Oncogen Institute, 300723 Timişoara
- Faculty of Medicine, 'Victor Babeş' University of Medicine and Pharmacy, 300041 Timişoara
| | - Corina Danciu
- Faculty of Pharmacy, 'Victor Babeş' University of Medicine and Pharmacy, 300041 Timişoara
| | - Calin Tatu
- 'Pius Brinzeu' Timişoara County Emergency Clinical Hospital, Oncogen Institute, 300723 Timişoara
- Faculty of Medicine, 'Victor Babeş' University of Medicine and Pharmacy, 300041 Timişoara
| | - Virgil Paunescu
- 'Pius Brinzeu' Timişoara County Emergency Clinical Hospital, Oncogen Institute, 300723 Timişoara
- Faculty of Medicine, 'Victor Babeş' University of Medicine and Pharmacy, 300041 Timişoara
| | - Daniela Marti
- Faculty of Medicine, Western University Vasile Goldis, Arad 310025, Romania
| | - George Tzanakakis
- Faculty of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
| | | | - Aristides Tsatsakis
- Faculty of Medicine, 'Victor Babeş' University of Medicine and Pharmacy, 300041 Timişoara
- Faculty of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
| | - Razvan Susan
- Faculty of Medicine, 'Victor Babeş' University of Medicine and Pharmacy, 300041 Timişoara
| | - Codruta Soica
- Faculty of Pharmacy, 'Victor Babeş' University of Medicine and Pharmacy, 300041 Timişoara
| | - Stefana Avram
- Faculty of Pharmacy, 'Victor Babeş' University of Medicine and Pharmacy, 300041 Timişoara
| | - Cristina Dehelean
- Faculty of Pharmacy, 'Victor Babeş' University of Medicine and Pharmacy, 300041 Timişoara
| |
Collapse
|
427
|
Therapeutic effects of the euglenoid ichthyotoxin, euglenophycin, in colon cancer. Oncotarget 2017; 8:104347-104358. [PMID: 29262645 PMCID: PMC5732811 DOI: 10.18632/oncotarget.22238] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 10/13/2017] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) remains one of the most commonly diagnosed cancers and the 3rd leading cause of cancer-related mortality. The emergence of drug resistance poses a major challenge in CRC care or treatment. This can be addressed by determining cancer mechanisms, discovery of druggable targets, and development of new drugs. In search for novel agents, aquatic microorganisms offer a vastly untapped pharmacological source that can be developed for cancer therapeutics. In this study, we characterized the anti-colorectal cancer potential of euglenophycin, a microalgal toxin from Euglena sanguinea. The toxin (49.1-114.6 μM) demonstrated cytotoxic, anti-proliferative, anti-clonogenic, and anti-migration effects against HCT116, HT29, and SW620 CRC cells. We identified G1 cell cycle arrest and cell type - dependent modulation of autophagy as mechanisms of growth inhibition. We validated euglenophycin’s anti-tumorigenic activity in vivo using CRL:Nu(NCr)Foxn1nu athymic nude mouse CRC xenograft models. Intraperitoneal toxin administration (100 mg/kg; 5 days) decreased HCT116 and HT29 xenograft tumor volumes (n=10 each). Tumor inhibition was associated with reduced expression of autophagy negative regulator mechanistic target of rapamycin (mTOR) and decreased trend of serum pro-inflammatory cytokines. Together, these results provide compelling evidence that euglenophycin can be a promising anti-colorectal cancer agent targeting multiple cancer-promoting processes. Furthermore, this study supports expanding natural products drug discovery to freshwater niches as prospective sources of anti-cancer compounds.
Collapse
|
428
|
Giacoppo S, Iori R, Rollin P, Bramanti P, Mazzon E. Moringa isothiocyanate complexed with α-cyclodextrin: a new perspective in neuroblastoma treatment. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:362. [PMID: 28705212 PMCID: PMC5513314 DOI: 10.1186/s12906-017-1876-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/09/2017] [Indexed: 12/30/2022]
Abstract
BACKGROUND Several lines of evidence suggest the consume of natural products for cancer prevention or treatment. In particular, isothiocyanates (ITCs) exerting anti-cancer properties, have received great interest as potential chemotherapeutic agents. This study was designed to assess the anti-proliferative activities of a new preparation of Moringa oleifera-derived 4-(α-L-rhamnopyranosyloxy)benzyl ITC (moringin) complexed with alpha-cyclodextrin (moringin + α-CD; MAC) on SH-SY5Y human neuroblastoma cells. This new formulation arises in the attempt to overcome the poor solubility and stability of moringin alone in aqueous media. METHODS SH-SY5Y cells were cultured and exposed to increasing concentrations of MAC (1.0, 2.5 and 5.0 μg). Cell proliferation was examined by MTT and cell count assays. The cytotoxic activity of the MAC complex was assessed by lactate dehydrogenase (LDH) assay and trypan blue exclusion test. In addition, western blotting analyses for the main apoptosis-related proteins were performed. RESULTS Treatment of SH-SY5Y cells with the MAC complex reduced cell growth in concentration dependent manner. Specifically, MAC exhibited a potent action in inhibiting the PI3K/Akt/mTOR pathway, whose aberrant activation was found in many types of cancer. MAC was also found to induce the nuclear factor-κB (NF-κB) p65 activation by phosphorylation and its translocation into the nucleus. Moreover, treatment with MAC was able to down-regulate MAPK pathway (results focused on JNK and p38 expression). Finally, MAC was found to trigger apoptotic death pathway (based on expression levels of cleaved-caspase 3, Bax/Bcl-2 balance, p53 and p21). CONCLUSION These findings suggest that use of MAC complex may open novel perspectives to improve the poor prognosis of patients with neuroblastoma.
Collapse
Affiliation(s)
- Sabrina Giacoppo
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124, Messina, Italy
| | - Renato Iori
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di ricerca Agricoltura e Ambiente (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy
| | - Patrick Rollin
- Université d'Orléans et CNRS, ICOA, UMR 7311, BP 6759, F-45067, Orléans, France
| | - Placido Bramanti
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124, Messina, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124, Messina, Italy.
| |
Collapse
|
429
|
Weng JR, Bai LY, Lin WY, Chiu CF, Chen YC, Chao SW, Feng CH. A Flavone Constituent from Myoporum bontioides Induces M-Phase Cell Cycle Arrest of MCF-7 Breast Cancer Cells. Molecules 2017; 22:molecules22030472. [PMID: 28294989 PMCID: PMC6155216 DOI: 10.3390/molecules22030472] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/04/2017] [Accepted: 03/13/2017] [Indexed: 12/27/2022] Open
Abstract
Myoporum bontioides is a traditional medicinal plant in Asia with various biological activities, including anti-inflammatory and anti-bacterial characteristics. To identify the bioactive constituents from M. bontioides, a newly-identified flavone, 3,4'-dimethoxy-3',5,7-trihydroxyflavone (compound 1), along with eight known compounds, were investigated in human MCF-7 breast cancer, SCC4 oral cancer, and THP-1 monocytic leukemia cells. Among these compounds, compound 1 exhibited the strongest antiproliferative activity with half-maximal inhibitory concentration (IC50) values ranging from 3.3 μM (MCF-7) to 8.6 μM (SCC4). Flow cytometric analysis indicated that compound 1 induced G2/M cell cycle arrest in MCF-7 cells. Mechanistic evidence suggests that the G2/M arrest could be attributable to compound 1's modulatory effects on the phosphorylation and expression of numerous key signaling effectors, including cell division cycle 2 (CDC2), CDC25C, and p53. Notably, compound 1 downregulated the expression of histone deacetylase 2 (HDAC2) and HDAC4, leading to increased histone H3 acetylation and p21 upregulation. Together, these findings suggest the translational potential of compound 1 as a breast cancer treatment.
Collapse
Affiliation(s)
- Jing-Ru Weng
- Department of Marine Technology and Resources, National Sun-Yat-sen University, Kaohisung 804, Taiwan.
| | - Li-Yuan Bai
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan.
- College of Medicine, China Medical University, Taichung 404, Taiwan.
| | - Wei-Yu Lin
- Department of Pharmacy, Kinmen Hospital, Kinmen 891, Taiwan.
| | - Chang-Fang Chiu
- College of Medicine, China Medical University, Taichung 404, Taiwan.
- Cancer Center, China Medical University Hospital, Taichung 404, Taiwan.
| | - Yu-Chang Chen
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Shi-Wei Chao
- School of Pharmacy, Taipei Medical University, Taipei 110, Taiwan.
| | - Chia-Hsien Feng
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
430
|
Wang YJ, Li YY, Liu XY, Lu XL, Cao X, Jiao BH. Marine Antibody-Drug Conjugates: Design Strategies and Research Progress. Mar Drugs 2017; 15:E18. [PMID: 28098746 PMCID: PMC5295238 DOI: 10.3390/md15010018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/30/2016] [Accepted: 01/04/2017] [Indexed: 01/22/2023] Open
Abstract
Antibody-drug conjugates (ADCs), constructed with monoclonal antibodies (mAbs), linkers, and natural cytotoxins, are innovative drugs developed for oncotherapy. Owing to the distinctive advantages of both chemotherapy drugs and antibody drugs, ADCs have obtained enormous success during the past several years. The development of highly specific antibodies, novel marine toxins' applications, and innovative linker technologies all accelerate the rapid R&D of ADCs. Meanwhile, some challenges remain to be solved for future ADCs. For instance, varieties of site-specific conjugation have been proposed for solving the inhomogeneity of DARs (Drug Antibody Ratios). In this review, the usages of various natural toxins, especially marine cytotoxins, and the development strategies for ADCs in the past decade are summarized. Representative ADCs with marine cytotoxins in the pipeline are introduced and characterized with their new features, while perspective comments for future ADCs are proposed.
Collapse
Affiliation(s)
- Yu-Jie Wang
- Department of Biochemistry and Molecular Biology, Second Military Medical University, Shanghai 200433, China.
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China.
| | - Yu-Yan Li
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China.
| | - Xiao-Yu Liu
- Department of Biochemistry and Molecular Biology, Second Military Medical University, Shanghai 200433, China.
| | - Xiao-Ling Lu
- Department of Biochemistry and Molecular Biology, Second Military Medical University, Shanghai 200433, China.
| | - Xin Cao
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Bing-Hua Jiao
- Department of Biochemistry and Molecular Biology, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
431
|
Xie S, Zhou J. Harnessing Plant Biodiversity for the Discovery of Novel Anticancer Drugs Targeting Microtubules. FRONTIERS IN PLANT SCIENCE 2017; 8:720. [PMID: 28523014 PMCID: PMC5415602 DOI: 10.3389/fpls.2017.00720] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 04/19/2017] [Indexed: 05/10/2023]
Abstract
The microtubule cytoskeleton plays a critical role in a wide range of cellular activities and has been shown to be a highly effective target for the treatment of human malignancies. Despite the recent focus on proteomics and high-throughput profiling, it is clear that analysis of plant extracts has yielded several highly efficacious microtubule-targeting agents (MTAs) currently in clinical use, as well as agents in the current pipeline with promising efficacy. To date, a large proportion of the world's plant biodiversity remains untapped by the pharmaceutical industry, presenting a major opportunity for the discovery of novel pharmacologically active lead compounds. Because plants contain an astonishing array of structurally diverse molecules, they represent an ideal source for the discovery of novel MTA leads. To demonstrate the importance of searching for novel bioactive compounds across the plant kingdom, herein, we summarize the discovery and development of plant-derived MTAs and discuss the challenges associated with searching for novel bioactive compounds from plants. We propose potential solutions to these problems with the aim of facilitating further exploration and identification of novel MTAs from plant biodiversity.
Collapse
|
432
|
Fatima N, Kondratyuk TP, Park EJ, Marler LE, Jadoon M, Qazi MA, Mehboob Mirza H, Khan I, Atiq N, Chang LC, Ahmed S, Pezzuto JM. Endophytic fungi associated with Taxus fuana (West Himalayan Yew) of Pakistan: potential bio-resources for cancer chemopreventive agents. PHARMACEUTICAL BIOLOGY 2016; 54:2547-2554. [PMID: 27159021 DOI: 10.3109/13880209.2016.1170154] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
CONTEXT Endophytic fungi, being a prolific source of bioactive secondary metabolites, are of great interest for natural product discovery. OBJECTIVE Isolation and partial characterization of endophytic fungi inhabiting the leaves and woody parts of Taxus fuana Nan Li & R.R. Mill. (Taxaceae) and evaluation of biological activity. MATERIALS AND METHODS Endophytic fungal isolates were identified by molecular analysis of internal transcribed spacer (ITS) regions of 18S rDNA. Extracts of the endophytic fungi cultured on potato dextrose agar and modified medium were evaluated using cancer chemoprevention bioassays [inhibition of TNF-α-induced NFκB, aromatase and inducible nitric oxide synthase (iNOS); induction of quinone reductase 1 (QR1)] and growth inhibition with MCF-7 cells. RESULTS Nine of 15 fungal isolates were identified as belonging to Epicoccum, Mucor, Penicillium, Chaetomium, Paraconiothriym, Plectania or Trichoderma. Five of the 15 extracts inhibited NFκB activity (IC50 values ranging between 0.18 and 17 μg/mL) and five inhibited iNOS (IC50 values ranging between 0.32 and 12.9 μg/mL). In the aromatase assay, only two isolates mediated inhibition (IC50 values 12.2 and 10.5 μg/mL). With QR1 induction, three extracts exhibited significant activity (concentrations to double activity values ranging between 0.20 and 5.5 μg/mL), and five extracts inhibited the growth of MCF-7 cells (IC50 values ranging from 0.56 to 17.5 μg/mL). Six active cultures were derived from woody parts of the plant material. CONCLUSION The endophytic fungi studied are capable of producing pharmacologically active natural compounds. In particular, isolates derived from the wood of Taxus fuana should be prioritized for the isolation and characterization of bioactive constituents.
Collapse
Affiliation(s)
- Nighat Fatima
- a Department of Biotechnology , Quaid-i-Azam University , Islamabad , Pakistan
- b Department of Microbiology , Quaid-i-Azam University , Islamabad , Pakistan
- c Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy , University of Hawaii at Hilo , Hilo , HI , USA
| | - Tamara P Kondratyuk
- c Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy , University of Hawaii at Hilo , Hilo , HI , USA
| | - Eun-Jung Park
- c Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy , University of Hawaii at Hilo , Hilo , HI , USA
| | - Laura E Marler
- c Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy , University of Hawaii at Hilo , Hilo , HI , USA
| | - Muniba Jadoon
- b Department of Microbiology , Quaid-i-Azam University , Islamabad , Pakistan
| | - Muneer Ahmed Qazi
- b Department of Microbiology , Quaid-i-Azam University , Islamabad , Pakistan
| | - Hira Mehboob Mirza
- b Department of Microbiology , Quaid-i-Azam University , Islamabad , Pakistan
| | - Ibrar Khan
- b Department of Microbiology , Quaid-i-Azam University , Islamabad , Pakistan
| | - Naima Atiq
- b Department of Microbiology , Quaid-i-Azam University , Islamabad , Pakistan
| | - Leng Chee Chang
- c Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy , University of Hawaii at Hilo , Hilo , HI , USA
| | - Safia Ahmed
- b Department of Microbiology , Quaid-i-Azam University , Islamabad , Pakistan
| | - John M Pezzuto
- c Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy , University of Hawaii at Hilo , Hilo , HI , USA
| |
Collapse
|
433
|
Lall RK, Adhami VM, Mukhtar H. Dietary flavonoid fisetin for cancer prevention and treatment. Mol Nutr Food Res 2016; 60:1396-405. [PMID: 27059089 DOI: 10.1002/mnfr.201600025] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/09/2016] [Accepted: 02/10/2016] [Indexed: 12/14/2022]
Abstract
Cancer remains a major public health concern and a significant cause of death worldwide. Identification of bioactive molecules that have the potential to inhibit carcinogenesis continues to garner interest among the scientific community. In particular, flavonoids from dietary sources are the most sought after because of their safety, cost-effectiveness, and feasibility of oral administration. Emerging data have provided newer insights into understanding the molecular mechanisms that are essential to identify novel mechanism-based strategies for cancer prevention and treatment. Dietary flavonoid fisetin (3,3',4',7-tetrahydroxyflavone) found in many fruits and vegetables has been shown in preclinical studies to inhibit cancer growth through alteration of cell cycle, inducing apoptosis, angiogenesis, invasion, and metastasis without causing any toxicity to normal cells. Although data from in-vitro and in-vivo studies look convincing, well-designed clinical trials in humans are needed to conclusively determine the efficacy across various cancers. This review highlights the chemopreventive and therapeutic effects, molecular targets, and mechanisms that contribute to the observed anticancer activity of fisetin against various cancers.
Collapse
Affiliation(s)
- Rahul K Lall
- Department of Food Science, University of Wisconsin-Madison, Madison, WI, USA.,Department of Dermatology, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Hasan Mukhtar
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
434
|
He D, Zhang W, Deng H, Huo S, Wang YF, Gong N, Deng L, Liang XJ, Dong A. Self-assembling nanowires of an amphiphilic camptothecin prodrug derived from homologous derivative conjugation. Chem Commun (Camb) 2016; 52:14145-14148. [DOI: 10.1039/c6cc07595a] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel amphiphilic camptothecin prodrug, CPT-ss-Ir, was synthesized and used to construct self-assembled nanowires, which could release active CPT and Ir species upon intracellular triggering.
Collapse
Affiliation(s)
- Dongxuan He
- Department of Polymer Science and Technology
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- P. R. China
| | - Wei Zhang
- Laboratory of Controllable Nanopharmaceuticals
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience; and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology of China
- Beijing
- P. R. China
| | - Hongzhang Deng
- Department of Polymer Science and Technology
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- P. R. China
| | - Shuaidong Huo
- Laboratory of Controllable Nanopharmaceuticals
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience; and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology of China
- Beijing
- P. R. China
| | - Yi-Feng Wang
- Laboratory of Controllable Nanopharmaceuticals
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience; and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology of China
- Beijing
- P. R. China
| | - Ningqiang Gong
- Laboratory of Controllable Nanopharmaceuticals
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience; and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology of China
- Beijing
- P. R. China
| | - Liandong Deng
- Department of Polymer Science and Technology
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- P. R. China
| | - Xing-Jie Liang
- Laboratory of Controllable Nanopharmaceuticals
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience; and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology of China
- Beijing
- P. R. China
| | - Anjie Dong
- Department of Polymer Science and Technology
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- P. R. China
| |
Collapse
|