401
|
Nakashima YM, Pereverzev A, Schneider T, Covey DF, Lingle CJ. Blockade of Ba2+ current through human alpha1E channels by two steroid analogs, (+)-ACN and (+)-ECN. Neuropharmacology 1999; 38:843-55. [PMID: 10465688 DOI: 10.1016/s0028-3908(99)00013-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Previous work suggests that different neuroactive steroids may exhibit some selectivity in their blocking effects on different high-voltage activated (HVA) Ca2+ currents. At least some of these effects appear to involve direct blocking actions on Ca2+ channels. Thus, direct investigation of the effects of various steroids on cloned Ca2+ channel variants may lead to the development of potent and selective small-molecular weight Ca2+ channel blockers. Here we examine the effects of two steroids on a cloned human alpha1E Ca2+ channel both with and without a beta3 subunit, when expressed in HEK293 cells. One compound, (+)-ACN, has been previously shown to block N-, Q-, and R-subtypes of HVA current without affecting L- and P-type current. The second compound, (+)-ECN, weakly blocks total HVA current in hippocampal neurons. (+)-ECN differs from (+)-ACN in lacking effects on GABA receptors, but shares with (+)-ACN an ability to partially inhibit T current in DRG neurons (Todorovic, S.M., Prakriya, M., Nakashima, Y.M. et al., 1998. Enantioselective blockade of T-type Ca2+ current in adult rat sensory neurons by a steroid lacking GABA-mimetic activity. Mol. Pharmacol. 54, 918-927). (+)-ACN can block 100% of Ba2+ current in HEK cells arising either from the alpha1E subunit (IC50 approximate to 10 microM) or the alpha1Ebeta3 combination (IC50 approximate to 5 microM), while (+)-ECN maximally blocks only about 80% of the alpha1E (10 microM) or alpha1Ebeta3 (16 microM) current. Blockade by (+)-ACN exhibits several differences from blockade by (+)-ECN. (+)-ACN increases the apparent rate of onset of inactivation, particularly for the alpha1E variant, slows recovery from inactivation, and more profoundly shifts the voltage-dependence of current availability for both alpha1E and alpha1Ebeta3 variants than does (+)-ECN. Although the complexity of the normal inactivation kinetics of alpha1E variants makes interpretation of the (+)-ACN-induced kinetic alterations difficult, the results suggest that the two steroids are to some extent acting by distinct mechanisms, and perhaps at different sites.
Collapse
Affiliation(s)
- Y M Nakashima
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | | | | | |
Collapse
|
402
|
Strobeck MW, Okuda M, Yamaguchi H, Schwartz A, Fukasawa K. Morphological transformation induced by activation of the mitogen-activated protein kinase pathway requires suppression of the T-type Ca2+ channel. J Biol Chem 1999; 274:15694-700. [PMID: 10336467 DOI: 10.1074/jbc.274.22.15694] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transformation of fibroblasts by various oncogenes, including ras, mos, and src accompanies with characteristic morphological changes from flat to round (or spindle) shapes. Such morphological change is believed to play an important role in establishing malignant characteristics of cancer cells. Activation of the mitogen-activated protein kinase (MAPK) pathway is a converging downstream event of transforming activities of many oncogene products commonly found in human cancers. Intracellular calcium is known to regulate cellular morphology. In fibroblasts, Ca2+ influx is primarily controlled by two types of Ca2+ channels (T- and L-types). Here, we report that the T-type current was specifically inhibited in cells expressing oncogenically activated Ras as well as gain-of-function mutant MEK (MAPK/extracellular signal-regulated kinase (ERK) kinase, a direct activator of MAPK), whereas treatment of ras-transformed cells with a MEK-specific inhibitor restored T-type Ca2+ channel activity. Using a T-type Ca2+ channel antagonist, we further found that suppression of the T-type Ca2+ channel by the activated MAPK pathway is a prerequisite event for the induction and/or maintenance of transformation-associated morphological changes.
Collapse
Affiliation(s)
- M W Strobeck
- Department of Cell Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0521, USA
| | | | | | | | | |
Collapse
|
403
|
Lacinová L, Klugbauer N, Hofmann F. Absence of modulation of the expressed calcium channel alpha1G subunit by alpha2delta subunits. J Physiol 1999; 516 ( Pt 3):639-45. [PMID: 10200414 PMCID: PMC2269284 DOI: 10.1111/j.1469-7793.1999.0639u.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
1. The modulatory action of the alpha2delta subunit on various high-voltage-activated calcium channels has been demonstrated previously. However, very little is known about auxiliary subunit modulation of low-voltage-activated (LVA) calcium channels. We have examined the modulation of the alpha1G subunit corresponding to the neuronal T-type calcium channel by the ubiquitously expressed alpha2delta-1 and brain-specific alpha2delta-3 subunits. 2. The alpha1G subunit was expressed alone or in combination with either the alpha2delta-1 or alpha2delta-3 subunit in human embryonic kidney (HEK 293) cells and whole-cell barium currents were measured. The current density-voltage relationships for peak and sustained current, kinetics of current activation and inactivation, voltage dependence of current inactivation and time course of the recovery from inactivation were analysed for each type of expressed channel. No significant difference was found for any of the examined parameters. 3. These results suggest that the LVA alpha1G channel is not regulated by known auxiliary alpha2delta subunits.
Collapse
Affiliation(s)
- L Lacinová
- Institut fur Pharmakologie und Toxikologie der Technischen Universitat Munchen, Biedersteiner Strasse 29, 80802 Munchen, Germany.
| | | | | |
Collapse
|
404
|
Stea A, Dubel SJ, Snutch TP. alpha 1B N-type calcium channel isoforms with distinct biophysical properties. Ann N Y Acad Sci 1999; 868:118-30. [PMID: 10414290 DOI: 10.1111/j.1749-6632.1999.tb11282.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
N-type calcium channels both generate the initial calcium signal to trigger neurotransmitter release and also interact with synaptic release proteins at many mammalian central nervous system synapses. Two isoforms of the alpha 1B N-type channel from rat brain (alpha 1B-I and alpha 1B-II) were found to differ in four regions: (1) a glutamate (Glu) to glycine (Gly) substitution in domain I S3; (2) a Gly to Glu substitution in the domain I-II linker; (3) the insertion or deletion of an alanine (Ala) in the domain I-II linker; and (4) the presence or absence of serine/phenylalanine/methionine/glycine (SFMG) in the linker between domain III S3-S4. Comparison of the electrophysiological properties of the alpha 1B-I and alpha 1B-II N-type channels shows that they exhibit distinct kinetics as well as altered current-voltage relations. Utilizing chimeric alpha 1B-I and alpha 1B-II cDNAs, we show that: (1) the Glu 177 to Gly substitution in domain I S3 increases the rate of activation by approximately 15-fold; (2) the presence or absence of Ala 415 in the domain I-II linker alters current-voltage relations by approximately 10 mV but does not affect channel kinetics; (3) the substitution of Gly 387 to Glu in the domain I-II linker also has no effect on kinetics; and (4) the presence or absence of SFMG (1236-1239) in domain III S3-S4 did not significantly affect channel current-voltage relations, kinetics, or steady state inactivation. We conclude that molecularly distinct alpha 1B isoforms are expressed in rat brain and may account for some of the functional diversity of N-type currents in native cells.
Collapse
Affiliation(s)
- A Stea
- University-College of the Fraser Valley, Abbostford, B.C., Canada
| | | | | |
Collapse
|
405
|
Perez-Reyes E, Lee JH, Cribbs LL. Molecular characterization of two members of the T-type calcium channel family. Ann N Y Acad Sci 1999; 868:131-43. [PMID: 10414291 DOI: 10.1111/j.1749-6632.1999.tb11283.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this chapter we review our recent studies on the cloning of two novel cDNAs (alpha 1G and alpha 1H), and present electrophysiological evidence that they encode low voltage-activated, T-type calcium channels (CavT.1 and CavT.2, respectively). The nucleotide sequences of these T channels are very different from high voltage-activated Ca2+ channels, which explains why they were not cloned earlier using homology-based strategies. We used a bioinformatic approach, cloning the first fragment in silico. We then used this fragment to screen human heart and rat brain lambda gt10 libraries, leading to the cloning of two full-length cDNAs derived from distinct genes (CACNA1G and CACNA1H). The deduced amino acid sequences of the T channels (alpha 1G and alpha 1H) are also very different from previously cloned Ca2+ and Na+ channels; however, there are regions of structural similarity. For example, the T channels also contain four repeats, and within each repeat there are six putative membrane-spanning regions and a pore loop. Expression of these cloned channels in either Xenopus oocytes or HEK-293 cells leads to the formation of typical T-type currents. As observed for native T currents, these channels activate at potentials near the resting membrane potential, inactivate rapidly, deactivate slowly, and have a tiny single-channel conductance. The currents generated by alpha 1G and alpha 1H are nearly identical in terms of their voltage dependence and kinetics. We present preliminary evidence that nickel may serve as a valuable tool in discriminating between these subtypes.
Collapse
Affiliation(s)
- E Perez-Reyes
- Department of Physiology, Loyola University Medical Center, Maywood, Ilinois 60153, USA.
| | | | | |
Collapse
|
406
|
Abstract
The contributing roles of voltage-gated calcium channels (VGCC) to the generation of electrical signaling are well documented. VGCCs open in response to depolarization of the plasma membrane and mediate the flux of calcium into excitable cells, which further depolarizes the membrane. But a more relevant role of VGCCs is to serve as highly regulated mechanisms to deliver calcium ions into specific intracellular locales for a variety of calcium-dependent processes including neurotransmitter release, hormone secretion, neuronal survival, and muscle contraction. Recent biochemical and molecular biological studies have demonstrated that the calcium channel pore-forming subunit (alpha 1) is not an isolated entity, but in fact interacts physically with a variety of strategically localized proteins. The functional consequences of such interactions as well as other molecular aspects of VGCC will be discussed. Finally, although far from a final conclusion, what is currently known about the molecular composition of native calcium channels will be summarized.
Collapse
Affiliation(s)
- H Moreno Davila
- Department of Physiology and Neuroscience, New York University Medical Center, New York 10016, USA.
| |
Collapse
|
407
|
Abstract
Low voltage-activated Ca2+ channels play important roles in pacing neuronal firing and producing network oscillations, such as those that occur during sleep and epilepsy. Here we describe the cloning and expression of the third member of the T-type family, alpha1I or CavT.3, from rat brain. Northern analysis indicated that it is predominantly expressed in brain. Expression of the cloned channel in either Xenopus oocytes or stably transfected human embryonic kidney-293 cells revealed novel gating properties. We compared these electrophysiological properties to those of the cloned T-type channels alpha1G and alpha1H and to the high voltage-activated channels formed by alpha1Ebeta3. The alpha1I channels opened after small depolarizations of the membrane similar to alpha1G and alpha1H but at more depolarized potentials. The kinetics of activation and inactivation were dramatically slower, which allows the channel to act as a Ca2+ injector. In oocytes, the kinetics were even slower, suggesting that components of the expression system modulate its gating properties. Steady-state inactivation occurred at higher potentials than any of the other T channels, endowing the channel with a substantial window current. The alpha1I channel could still be classified as T-type by virtue of its criss-crossing kinetics, its slow deactivation (tail current), and its small (11 pS) conductance in 110 mM Ba2+ solutions. Based on its brain distribution and novel gating properties, we suggest that alpha1I plays important roles in determining the electroresponsiveness of neurons, and hence, may be a novel drug target.
Collapse
|
408
|
Differential distribution of three members of a gene family encoding low voltage-activated (T-type) calcium channels. J Neurosci 1999. [PMID: 10066243 DOI: 10.1523/jneurosci.19-06-01895.1999] [Citation(s) in RCA: 561] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Low voltage-activated (T-type) calcium currents are observed in many central and peripheral neurons and display distinct physiological and functional properties. Using in situ hybridization, we have localized central and peripheral nervous system expression of three transcripts (alpha1G, alpha1H, and alpha1I) of the T-type calcium channel family (CaVT). Each mRNA demonstrated a unique distribution, and expression of the three genes was largely complementary. We found high levels of expression of these transcripts in regions associated with prominent T-type currents, including inferior olivary and thalamic relay neurons (which expressed alpha1G), sensory ganglia, pituitary, and dentate gyrus granule neurons (alpha1H), and thalamic reticular neurons (alpha1I and alpha1H). Other regions of high expression included the Purkinje cell layer of the cerebellum, the bed nucleus of the stria terminalis, the claustrum (alpha1G), the olfactory tubercles (alpha1H and alpha1I), and the subthalamic nucleus (alpha1I and alpha1G). Some neurons expressed high levels of all three genes, including hippocampal pyramidal neurons and olfactory granule cells. Many brain regions showed a predominance of labeling for alpha1G, including the amygdala, cerebral cortex, rostral hypothalamus, brainstem, and spinal cord. Exceptions included the basal ganglia, which showed more prominent labeling for alpha1H and alpha1I, and the olfactory bulb, the hippocampus, and the caudal hypothalamus, which showed more even levels of all three transcripts. Our results are consistent with the hypothesis that differential gene expression underlies pharmacological and physiological heterogeneity observed in neuronal T-type calcium currents, and they provide a molecular basis for the study of T-type channels in particular neurons.
Collapse
|
409
|
Abstract
Fertilization is a matter of life or death. In animals of sexual reproduction, the appropriate communication between mature and competent male and female gametes determines the generation of a new individual. Ion channels are key elements in the dialogue between sperm, its environment, and the egg. Components from the outer layer of the egg induce ion permeability changes in sperm that regulate sperm motility, chemotaxis, and the acrosome reaction. Sperm are tiny differentiated terminal cells unable to synthesize protein and difficult to study electrophysiologically. Thus understanding how sperm ion channels participate in fertilization requires combining planar bilayer techniques, in vivo measurements of membrane potential, intracellular Ca2+ and intracellular pH using fluorescent probes, patch-clamp recordings, and molecular cloning and heterologous expression. Spermatogenic cells are larger than sperm and synthesize the ion channels that will end up in mature sperm. Correlating the presence and cellular distribution of various ion channels with their functional status at different stages of spermatogenesis is contributing to understand their participation in differentiation and in sperm physiology. The multi-faceted approach being used to unravel sperm ion channel function and regulation is yielding valuable information about the finely orchestrated events that lead to sperm activation, induction of the acrosome reaction, and in the end to the miracle of life.
Collapse
Affiliation(s)
- A Darszon
- Departamento de Genética y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Morelos, Mexico
| | | | | | | |
Collapse
|
410
|
Abstract
KATP channels are a newly defined class of potassium channels based on the physical association of an ABC protein, the sulfonylurea receptor, and a K+ inward rectifier subunit. The beta-cell KATP channel is composed of SUR1, the high-affinity sulfonylurea receptor with multiple TMDs and two NBFs, and KIR6.2, a weak inward rectifier, in a 1:1 stoichiometry. The pore of the channel is formed by KIR6.2 in a tetrameric arrangement; the overall stoichiometry of active channels is (SUR1/KIR6.2)4. The two subunits form a tightly integrated whole. KIR6.2 can be expressed in the plasma membrane either by deletion of an ER retention signal at its C-terminal end or by high-level expression to overwhelm the retention mechanism. The single-channel conductance of the homomeric KIR6.2 channels is equivalent to SUR/KIR6.2 channels, but they differ in all other respects, including bursting behavior, pharmacological properties, sensitivity to ATP and ADP, and trafficking to the plasma membrane. Coexpression with SUR restores the normal channel properties. The key role KATP channel play in the regulation of insulin secretion in response to changes in glucose metabolism is underscored by the finding that a recessive form of persistent hyperinsulinemic hypoglycemia of infancy (PHHI) is caused by mutations in KATP channel subunits that result in the loss of channel activity. KATP channels set the resting membrane potential of beta-cells, and their loss results in a constitutive depolarization that allows voltage-gated Ca2+ channels to open spontaneously, increasing the cytosolic Ca2+ levels enough to trigger continuous release of insulin. The loss of KATP channels, in effect, uncouples the electrical activity of beta-cells from their metabolic activity. PHHI mutations have been informative on the function of SUR1 and regulation of KATP channels by adenine nucleotides. The results indicate that SUR1 is important in sensing nucleotide changes, as implied by its sequence similarity to other ABC proteins, in addition to being the drug sensor. An unexpected finding is that the inhibitory action of ATP appears to be through a site located on KIR6.2, whose affinity for ATP is modified by SUR1. A PHHI mutation, G1479R, in the second NBF of SUR1 forms active KATP channels that respond normally to ATP, but fail to activate with MgADP. The result implies that ATP tonically inhibits KATP channels, but that the ADP level in a fasting beta-cell antagonizes this inhibition. Decreases in the ADP level as glucose is metabolized result in KATP channel closure. Although KATP channels are the target for sulfonylureas used in the treatment of NIDDM, the available data suggest that the identified KATP channel mutations do not play a major role in diabetes. Understanding how KATP channels fit into the overall scheme of glucose homeostasis, on the other hand, promises insight into diabetes and other disorders of glucose metabolism, while understanding the structure and regulation of these channels offers potential for development of novel compounds to regulate cellular electrical activity.
Collapse
Affiliation(s)
- L Aguilar-Bryan
- Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
411
|
Cens T, Restituito S, Galas S, Charnet P. Voltage and calcium use the same molecular determinants to inactivate calcium channels. J Biol Chem 1999; 274:5483-90. [PMID: 10026161 DOI: 10.1074/jbc.274.9.5483] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During sustained depolarization, voltage-gated Ca2+ channels progressively undergo a transition to a nonconducting, inactivated state, preventing Ca2+ overload of the cell. This transition can be triggered either by the membrane potential (voltage-dependent inactivation) or by the consecutive entry of Ca2+ (Ca2+-dependent inactivation), depending on the type of Ca2+ channel. These two types of inactivation are suspected to arise from distinct underlying mechanisms, relying on specific molecular sequences of the different pore-forming Ca2+ channel subunits. Here we report that the voltage-dependent inactivation (of the alpha1A Ca2+ channel) and the Ca2+-dependent inactivation (of the alpha1C Ca2+ channel) are similarly influenced by Ca2+ channel beta subunits. The same molecular determinants of the beta subunit, and therefore the same subunit interactions, influence both types of inactivation. These results strongly suggest that the voltage and the Ca2+-dependent transitions leading to channel inactivation use homologous structures of the different alpha1 subunits and occur through the same molecular process. A model of inactivation taking into account these new data is presented.
Collapse
Affiliation(s)
- T Cens
- Centre de Recherches de Biochimie Macromoléculaire, CNRS UPR 1086, 1919 Route de Mende, F34293 Montpellier, France
| | | | | | | |
Collapse
|
412
|
Lee JH, Cribbs LL, Perez-Reyes E. Cloning of a novel four repeat protein related to voltage-gated sodium and calcium channels. FEBS Lett 1999; 445:231-6. [PMID: 10094463 DOI: 10.1016/s0014-5793(99)00082-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cloning has led to the discovery of more ion channels than predicted by functional studies, yet there remain channels that have not been cloned. We report the cloning of a novel protein that contains the four domain structure found in voltage-gated Ca2+ and Na+ channels. Phylogenetic relationships suggested that the protein might have diverged from an ancestral four repeat channel before the divergence of Ca2+ and Na+ channels. Northern blot analysis showed that mRNA transcripts encoding the protein are expressed predominantly in the brain, moderately in the heart, and weakly in the pancreas. Despite extensive expression attempts, currents from the putative channel were not detected. Based on its sequence, we propose that the novel protein might be a voltage-activated cation channel with unique gating properties.
Collapse
Affiliation(s)
- J H Lee
- Department of Physiology, Loyola University Medical Center, Maywood, IL 60153, USA
| | | | | |
Collapse
|
413
|
Yamaguchi H, Muth JN, Varadi M, Schwartz A, Varadi G. Critical role of conserved proline residues in the transmembrane segment 4 voltage sensor function and in the gating of L-type calcium channels. Proc Natl Acad Sci U S A 1999; 96:1357-62. [PMID: 9990028 PMCID: PMC15467 DOI: 10.1073/pnas.96.4.1357] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/1998] [Indexed: 11/18/2022] Open
Abstract
The fourth transmembrane segment (S4) has been shown to function as a voltage sensor in voltage-gated channels. On membrane depolarization, a stretch of S4 moves outward and initiates a number of conformational changes that ultimately lead to channel opening. Conserved proline residues are in the middle of the S4 of motifs I and III in voltage-dependent Ca2+ channels. Because proline often introduces a "kink" into a helical structure of proteins, these residues might have an intrinsic function in the voltage sensor. Here, we report that the removal of S4 prolines results in a dramatic shortening of channel open time whereas the introduction of extra prolines to the corresponding positions in motif IIS4 and IVS4 lengthens channel open time. The number of S4s with a proline residue showed a clear positive correlation with the mean open time of the channel. The mean open time was >11-fold longer for a channel mutagenized to have prolines in all four S4s compared with a channel that had no prolines in the S4 region. Additionally, prolines in the S4s slowed activation kinetics and shifted the voltage dependence of activation and inactivation in a hyperpolarized direction. Our results strongly suggest that proline residues in the S4s are critical for stabilizing the open state of the channel. Moreover, it is suggested that motif IS4 and IIIS4 contribute to the channel opening more efficiently than motif IIS4 and IVS4.
Collapse
Affiliation(s)
- H Yamaguchi
- Institute of Molecular Pharmacology and Biophysics, University of Cincinnati College of Medicine, 231 Bethesda Avenue, Cincinnati, OH 45267-0828, USA
| | | | | | | | | |
Collapse
|
414
|
Abstract
Sequence database searches with the alpha2delta subunit as probe led to the identification of two new genes encoding proteins with the essential properties of this calcium channel subunit. Primary structure comparisons revealed that the novel alpha2delta-2 and alpha2delta-3 subunits share 55.6 and 30.3% identity with the alpha2delta-1 subunit, respectively. The number of putative glycosylation sites and cysteine residues, hydropathicity profiles, and electrophysiological character of the alpha2delta-3 subunit indicates that these proteins are functional calcium channel subunits. Coexpression of alpha2delta-3 with alpha1C and cardiac beta2a or alpha1E and beta3 subunits shifted the voltage dependence of channel activation and inactivation in a hyperpolarizing direction and accelerated the kinetics of current inactivation. The kinetics of current activation were altered only when alpha2delta-1 or alpha2delta-3 was expressed with alpha1C. The effects of alpha2delta-3 on alpha1C but not alpha1E are indistinguishable from the effects of alpha2delta-1. Using Northern blot analysis, it was shown that alpha2delta-3 is expressed exclusively in brain, whereas alpha2delta-2 is found in several tissues. In situ hybridization of mouse brain sections showed mRNA expression of alpha2delta-1 and alpha2delta-3 in the hippocampus, cerebellum, and cortex, with alpha2delta-1 strongly detected in the olfactory bulb and alpha2delta-3 in the caudate putamen.
Collapse
|
415
|
Receptor-Mediated Modulation of Voltage-Dependent Ca2+ Channels via Heterotrimeric G-proteins in Neurons. ACTA ACUST UNITED AC 1999. [DOI: 10.1016/s0021-5198(19)30742-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
416
|
Liu JH, Bijlenga P, Occhiodoro T, Fischer-Lougheed J, Bader CR, Bernheim L. Mibefradil (Ro 40-5967) inhibits several Ca2+ and K+ currents in human fusion-competent myoblasts. Br J Pharmacol 1999; 126:245-50. [PMID: 10051142 PMCID: PMC1565812 DOI: 10.1038/sj.bjp.0702321] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. The effect of mibefradil (Ro 40-5967), an inhibitor of T-type Ca2+ current (I(Ca)(T)), on myoblast fusion and on several voltage-gated currents expressed by fusion-competent myoblasts was examined. 2. At a concentration of 5 microM, mibefradil decreases myoblast fusion by 57%. At this concentration, the peak amplitudes of I(Ca)(T) and L-type Ca2+ current (I(Ca)(L)) measured in fusion-competent myoblasts are reduced by 95 and 80%, respectively. The IC50 of mibefradil for I(Ca)(T) and I(Ca)(L) are 0.7 and 2 microM, respectively. 3. At low concentrations, mibefradil increased the amplitude of I(Ca)(L) with respect to control. 4. Mibefradil blocked three voltage-gated K+ currents expressed by human fusion-competent myoblasts: a delayed rectifier K+ current, an ether-à-go-go K+ current, and an inward rectifier K+ current, with a respective IC50 of 0.3, 0.7 and 5.6 microM. 5. It is concluded that mibefradil can interfere with myoblast fusion, a mechanism fundamental to muscle growth and repair, and that the interpretation of the effect of mibefradil in a given system should take into account the action of this drug on ionic currents other than Ca2+ currents.
Collapse
Affiliation(s)
- Jian-Hui Liu
- Département de Physiologie, Centre Médical Universitaire, Division de Recherche Clinique Neuro-Musculaire, Hôpital Cantonal Universitaire, CH-1211 Geneva 4, Switzerland
| | - Philippe Bijlenga
- Département de Physiologie, Centre Médical Universitaire, Division de Recherche Clinique Neuro-Musculaire, Hôpital Cantonal Universitaire, CH-1211 Geneva 4, Switzerland
| | - Teresa Occhiodoro
- Département de Physiologie, Centre Médical Universitaire, Division de Recherche Clinique Neuro-Musculaire, Hôpital Cantonal Universitaire, CH-1211 Geneva 4, Switzerland
| | - Jacqueline Fischer-Lougheed
- Département de Physiologie, Centre Médical Universitaire, Division de Recherche Clinique Neuro-Musculaire, Hôpital Cantonal Universitaire, CH-1211 Geneva 4, Switzerland
| | - Charles R Bader
- Département de Physiologie, Centre Médical Universitaire, Division de Recherche Clinique Neuro-Musculaire, Hôpital Cantonal Universitaire, CH-1211 Geneva 4, Switzerland
| | - Laurent Bernheim
- Département de Physiologie, Centre Médical Universitaire, Division de Recherche Clinique Neuro-Musculaire, Hôpital Cantonal Universitaire, CH-1211 Geneva 4, Switzerland
- Author for correspondence:
| |
Collapse
|
417
|
Abstract
Stroke is the third leading cause of death and the main disabling neurologic disease. The finding in experimental studies that neuronal death does not occur immediately after ischemic injury has encouraged the development of neuroprotective agents. Various Ca2+ channel antagonists, that is, L-type-selective or non-selective derivatives from classical Ca2+ channel antagonists, have been examined for their ability of neuroprotection through improvement of cerebral blood circulation or inhibition of Ca2+ overload induced by excessive glutamate release. Although some of the antagonists showed efficient neuroprotection in animal models, systemic hypotension limited the utility of these drugs, and none of the compounds showed beneficial effects in treatments for acute ischemic stroke in clinical trials. Drugs other than Ca2+ channel antagonists developed on the basis of the glutamate-Ca2+ overload hypothesis were shown also to lack clinical benefit. Recently, some mechanisms have been proposed to interpret neuronal death in relation to hyperexcitability or apoptosis after ischemic insult. In these hypotheses, activation of the Ca2+ channel types selectively expressed in neuronal tissues is proposed as a critical step of the pathways toward neurodegeneration. Thus, it is increasingly recognized that developing highly selective compounds for neuronal Ca2+ channels is not only important for treatment of stroke but also for elucidation of mechanisms that underlie neurodegeneration.
Collapse
Affiliation(s)
- T Kobayashi
- Pharmacological Research Laboratory, Tanabe Seiyaku, Toda, Saitama, Japan.
| | | |
Collapse
|
418
|
Chuang RS, Jaffe H, Cribbs L, Perez-Reyes E, Swartz KJ. Inhibition of T-type voltage-gated calcium channels by a new scorpion toxin. Nat Neurosci 1998; 1:668-74. [PMID: 10196582 DOI: 10.1038/3669] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The biophysical properties of T-type voltage-gated calcium channels are well suited to pacemaking and to supporting calcium flux near the resting membrane potential in both excitable and non-excitable cells. We have identified a new scorpion toxin (kurtoxin) that binds to the alpha 1G T-type calcium channel with high affinity and inhibits the channel by modifying voltage-dependent gating. This toxin distinguishes between alpha 1G T-type calcium channels and other types of voltage-gated calcium channels, including alpha 1A, alpha 1B, alpha 1C and alpha 1E. Like the other alpha-scorpion toxins to which it is related, kurtoxin also interacts with voltage-gated sodium channels and slows their inactivation. Kurtoxin will facilitate characterization of the subunit composition of T-type calcium channels and help determine their involvement in electrical and biochemical signaling.
Collapse
Affiliation(s)
- R S Chuang
- Molecular Physiology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
419
|
Low-voltage-activated Ca2+ currents are generated by members of the CavT subunit family (alpha1G/H) in rat primary sensory neurons. J Neurosci 1998. [PMID: 9786968 DOI: 10.1523/jneurosci.18-21-08605.1998] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recently, two members of a new family of Ca2+ channel alpha1 subunits, alpha1G (or CavT.1) and alpha1H (or CavT.2), have been cloned and expressed. These alpha1 subunits generate Ba2+ currents similar to the T-type Ca2+ currents present in sensory neurons. Here, we use three methods to investigate whether the T currents of nodosus ganglion neurons are encoded by members of the CavT family. PCR detected the presence of mRNA encoding both alpha1G and alpha1H, as well as a third highly related sequence, alpha1I. In situ hybridizations performed on nodosus ganglia demonstrate a high expression of alpha1H subunit RNAs. Transfection of nodosus ganglion neurons with a generic antisense oligonucleotide against this new alpha1 subunit family selectively suppresses the low-voltage-activated Ca2+ current. The antisense oligonucleotide effect increased with time after transfection and reached a maximum 3 d after treatment, indicating a 2-3 d turnover for the alpha1 proteins. Taken together, these results suggest that the T-type current present in the sensory neurons is mainly attributable to alpha1H channels. In addition, taking advantage of the high specificity of the antisense ON to the cloned channels, we showed that T-type currents greatly slowed the repolarization occurring during an action potential and were responsible for up to 51% of the Ca2+ entry during spikes. Therefore, the antisense strategy clearly demonstrates the role of low-voltage-activated Ca2+ current in affecting the afterpotential properties and influencing the cell excitability. Such tools should be beneficial to further studies investigating physiological roles of T-type Ca2+ currents.
Collapse
|
420
|
Hering S, Berjukow S, Aczél S, Timin EN. Ca2+ channel block and inactivation: common molecular determinants. Trends Pharmacol Sci 1998; 19:439-43. [PMID: 9850606 DOI: 10.1016/s0165-6147(98)01258-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- S Hering
- Institut für Biochemische Pharmakologie, Universität Innsbruck, Austria
| | | | | | | |
Collapse
|
421
|
Perez-Reyes E. Molecular characterization of a novel family of low voltage-activated, T-type, calcium channels. J Bioenerg Biomembr 1998; 30:313-8. [PMID: 9758328 DOI: 10.1023/a:1021981420839] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Low voltage-activated, T-type, calcium channels are thought to be involved in pacemaker activity, low threshold Ca2+ spikes, neuronal oscillations and resonance, and rebound burst firing. Mutations in T-type channel genes may be a contributing factor to neurological and cardiovascular disorders, such as epilepsy, arrhythmia, and hypertension. Due to the lack of selective blockers, little is known about their structure or molecular biology. This review discusses our recent findings on the cloning, chromosomal localization, and functional expression, of two novel channels, alpha1G and alpha1H. The biophysical properties of these cloned channels (distinctive voltage dependence, kinetics, and single channel conductance) demonstrates that these channels are members of the T-type Ca2+ channel family.
Collapse
Affiliation(s)
- E Perez-Reyes
- Department of Physiology, and Cardiovascular Institute, Loyola University Medical Center, Maywood, Illinois 60153, USA
| |
Collapse
|