401
|
Vasiliadou I, Holen I. The role of macrophages in bone metastasis. J Bone Oncol 2013; 2:158-66. [PMID: 26909287 PMCID: PMC4723381 DOI: 10.1016/j.jbo.2013.07.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/01/2013] [Accepted: 07/13/2013] [Indexed: 01/29/2023] Open
Abstract
The skeleton is one of the most common sites of metastatic disease, affecting a large number of patients with advanced cancer. Although an increasing number of therapies are available for treatment of bone metastasis, this remains incurable, highlighting the need for better understanding of the underlying biology. Metastatic tumour spread to distant organs is a multistage process, involving not only cancer cells but also those of the surrounding host microenvironment. Tumour associated macrophages are multifunctional cells that contribute both to tumour development and response to treatment by regulating adaptive immunity, remodelling of stroma, mediating basement membrane breakdown and angiogenesis. Although direct evidence for a specific role of macrophages in bone metastasis is limited, their involvement in metastasis in general is well documented. In this review we provide an overview of role of macrophages in tumour progression, with particular emphasis on their potential role in bone metastasis.
Collapse
Affiliation(s)
- Ifigenia Vasiliadou
- Department of Oncology, CR-UK/YCR Cancer Research Centre, University of Sheffield, Sheffield, UK
| | - Ingunn Holen
- Department of Oncology, CR-UK/YCR Cancer Research Centre, University of Sheffield, Sheffield, UK
| |
Collapse
|
402
|
Fang LY, Izumi K, Lai KP, Liang L, Li L, Miyamoto H, Lin WJ, Chang C. Infiltrating macrophages promote prostate tumorigenesis via modulating androgen receptor-mediated CCL4-STAT3 signaling. Cancer Res 2013; 73:5633-46. [PMID: 23878190 DOI: 10.1158/0008-5472.can-12-3228] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Infiltrating macrophages are a key component of inflammation during tumorigenesis, but the direct evidence of such linkage remains unclear. We report here that persistent coculturing of immortalized prostate epithelial cells with macrophages, without adding any carcinogens, induces prostate tumorigenesis and that induction involves the alteration of signaling of macrophage androgen receptor (AR)-inflammatory chemokine CCL4-STAT3 activation as well as epithelial-to-mesenchymal transition and downregulation of p53/PTEN tumor suppressors. In vivo studies further showed that PTEN(+/-) mice lacking macrophage AR developed far fewer prostatic intraepithelial neoplasia (PIN) lesions, supporting an in vivo role for macrophage AR during prostate tumorigenesis. CCL4-neutralizing antibody effectively blocked macrophage-induced prostate tumorigenic signaling and targeting AR via an AR-degradation enhancer, ASC-J9, reduced CCL4 expression, and xenografted tumor growth in vivo. Importantly, CCL4 upregulation was associated with increased Snail expression and downregulation of p53/PTEN in high-grade PIN and prostate cancer. Together, our results identify the AR-CCL4-STAT3 axis as key regulators during prostate tumor initiation and highlight the important roles of infiltrating macrophages and inflammatory cytokines for the prostate tumorigenesis.
Collapse
Affiliation(s)
- Lei-Ya Fang
- Authors' Affiliations: George Whipple Lab for Cancer Research, Departments of Pathology, Urology, and Radiation Oncology, The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York; Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli County, and Sex Hormone Research Center, China Medical University and Hospital, Taichung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
403
|
Mohamedali KA, Cao Y, Cheung LH, Hittelman WN, Rosenblum MG. The functionalized human serine protease granzyme B/VEGF₁₂₁ targets tumor vasculature and ablates tumor growth. Mol Cancer Ther 2013; 12:2055-66. [PMID: 23858102 DOI: 10.1158/1535-7163.mct-13-0165] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The serine protease granzyme B (GrB) induces apoptosis through both caspase-dependent and -independent multiple-cascade mechanisms. VEGF₁₂₁ binds to both VEGF receptor (VEGFR)-1 and VEGFR-2 receptors. We engineered a unique GrB/VEGF₁₂₁ fusion protein and characterized its properties in vitro and in vivo. Endothelial and tumor cell lines showed varying levels of sensitivity to GrB/VEGF₁₂₁ that correlated closely to total VEGFR-2 expression. GrB/VEGF₁₂₁ localized efficiently into VEGFR-2-expressing cells, whereas the internalization into VEGFR-1-expressing cells was significantly reduced. Treatment of VEGFR-2(+) cells caused mitochondrial depolarization in 48% of cells by 48 hours. Exposure to GrB/VEGF₁₂₁ induced apoptosis in VEGFR-2(+), but not in VEGFR-1(+), cells and rapid caspase activation was observed that could not be inhibited by treatment with a pan-caspase inhibitor. In vivo, GrB/VEGF₁₂₁ localized in perivascular tumor areas adjacent to microvessels and in other areas in the tumor less well vascularized, whereas free GrB did not specifically localize to tumor tissue. Administration (intravenous) of GrB/VEGF₁₂₁ to mice at doses up to 40 mg/kg showed no toxicity. Treatment of mice bearing established PC-3 tumor xenografts with GrB/VEGF₁₂₁ showed significant antitumor effect versus treatment with GrB or saline. Treatment with GrB/VEGF₁₂₁ at 27 mg/kg resulted in the regression of four of five tumors in this group. Tumors showed a two-fold lower Ki-67-labeling index compared with controls. Our results show that targeted delivery of GrB to tumor vascular endothelial cells or to tumor cells activates apoptotic cascades and this completely human construct may have significant therapeutic potential.
Collapse
Affiliation(s)
- Khalid A Mohamedali
- Corresponding Author: Michael G. Rosenblum, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Unit 1950, 1515 Holcombe Blvd., Houston, TX 77030.
| | | | | | | | | |
Collapse
|
404
|
Haegel H, Thioudellet C, Hallet R, Geist M, Menguy T, Le Pogam F, Marchand JB, Toh ML, Duong V, Calcei A, Settelen N, Preville X, Hennequi M, Grellier B, Ancian P, Rissanen J, Clayette P, Guillen C, Rooke R, Bonnefoy JY. A unique anti-CD115 monoclonal antibody which inhibits osteolysis and skews human monocyte differentiation from M2-polarized macrophages toward dendritic cells. MAbs 2013; 5:736-47. [PMID: 23924795 PMCID: PMC3851226 DOI: 10.4161/mabs.25743] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cancer progression has been associated with the presence of tumor-associated M2-macrophages (M2-TAMs) able to inhibit anti-tumor immune responses. It is also often associated with metastasis-induced bone destruction mediated by osteoclasts. Both cell types are controlled by the CD115 (CSF-1R)/colony-stimulating factor-1 (CSF-1, M-CSF) pathway, making CD115 a promising target for cancer therapy. Anti-human CD115 monoclonal antibodies (mAbs) that inhibit the receptor function have been generated in a number of laboratories. These mAbs compete with CSF-1 binding to CD115, dramatically affecting monocyte survival and preventing osteoclast and macrophage differentiation, but they also block CD115/CSF-1 internalization and degradation, which could lead to potent rebound CSF-1 effects in patients after mAb treatment has ended. We thus generated and selected a non-ligand competitive anti-CD115 mAb that exerts only partial inhibitory effects on CD115 signaling without blocking the internalization or the degradation of the CD115/CSF-1 complex. This mAb, H27K15, affects monocyte survival only minimally, but downregulates osteoclast differentiation and activity. Importantly, it inhibits monocyte differentiation to CD163+CD64+ M2-polarized suppressor macrophages, skewing their differentiation toward CD14-CD1a+ dendritic cells (DCs). In line with this observation, H27K15 also drastically inhibits monocyte chemotactic protein-1 secretion and reduces interleukin-6 production; these two molecules are known to be involved in M2-macrophage recruitment. Thus, the non-depleting mAb H27K15 is a promising anti-tumor candidate, able to inhibit osteoclast differentiation, likely decreasing metastasis-induced osteolysis, and able to prevent M2 polarization of TAMs while inducing DCs, hence contributing to the creation of more efficient anti-tumor immune responses.
Collapse
|
405
|
Sakakura K, Chikamatsu K. Immune suppression and evasion in patients with head and neck cancer. ACTA ACUST UNITED AC 2013. [DOI: 10.3402/acmo.v1i0.21809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
406
|
Cook RS, Jacobsen KM, Wofford AM, DeRyckere D, Stanford J, Prieto AL, Redente E, Sandahl M, Hunter DM, Strunk KE, Graham DK, Earp HS. MerTK inhibition in tumor leukocytes decreases tumor growth and metastasis. J Clin Invest 2013; 123:3231-42. [PMID: 23867499 DOI: 10.1172/jci67655] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 05/10/2013] [Indexed: 01/14/2023] Open
Abstract
MerTK, a receptor tyrosine kinase (RTK) of the TYRO3/AXL/MerTK family, is expressed in myeloid lineage cells in which it acts to suppress proinflammatory cytokines following ingestion of apoptotic material. Using syngeneic mouse models of breast cancer, melanoma, and colon cancer, we found that tumors grew slowly and were poorly metastatic in MerTK-/- mice. Transplantation of MerTK-/- bone marrow, but not wild-type bone marrow, into lethally irradiated MMTV-PyVmT mice (a model of metastatic breast cancer) decreased tumor growth and altered cytokine production by tumor CD11b+ cells. Although MerTK expression was not required for tumor infiltration by leukocytes, MerTK-/- leukocytes exhibited lower tumor cell-induced expression of wound healing cytokines, e.g., IL-10 and growth arrest-specific 6 (GAS6), and enhanced expression of acute inflammatory cytokines, e.g., IL-12 and IL-6. Intratumoral CD8+ T lymphocyte numbers were higher and lymphocyte proliferation was increased in tumor-bearing MerTK-/- mice compared with tumor-bearing wild-type mice. Antibody-mediated CD8+ T lymphocyte depletion restored tumor growth in MerTK-/- mice. These data demonstrate that MerTK signaling in tumor-associated CD11b+ leukocytes promotes tumor growth by dampening acute inflammatory cytokines while inducing wound healing cytokines. These results suggest that inhibition of MerTK in the tumor microenvironment may have clinical benefit, stimulating antitumor immune responses or enhancing immunotherapeutic strategies.
Collapse
Affiliation(s)
- Rebecca S Cook
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
407
|
Muramatsu S, Tanaka S, Mogushi K, Adikrisna R, Aihara A, Ban D, Ochiai T, Irie T, Kudo A, Nakamura N, Nakayama K, Tanaka H, Yamaoka S, Arii S. Visualization of stem cell features in human hepatocellular carcinoma reveals in vivo significance of tumor-host interaction and clinical course. Hepatology 2013; 58:218-28. [PMID: 23447025 DOI: 10.1002/hep.26345] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Accepted: 02/13/2013] [Indexed: 12/20/2022]
Abstract
UNLABELLED Hepatocellular carcinoma (HCC) is one of the most aggressive malignancies because of recurrence and/or metastasis even after curative resection. Emerging evidence suggests that tumor metastasis and recurrence might be driven by a small subpopulation of stemness cells, so-called cancer stem cells (CSCs). Previous investigations have revealed that glioma and breast CSCs exhibit intrinsically low proteasome activity and that breast CSCs also reportedly contain a lower reactive oxygen species (ROS) level than corresponding nontumorigenic cells. Here we visualized two stem cell features, low proteasome activity and low intracellular ROS, in HCC cells using two-color fluorescence activated cell sorting to isolate cells with stem cell features. These cells were then analyzed for their division behavior in normoxia and hypoxia, expression of stem cell markers, tumorigenicity, metastatic potential, specific gene expression signatures, and their clinical implications. A visualized small subpopulation of HCC cells demonstrated asymmetric divisions. Their remarkable tumorigenicity in nonobese diabetic/severe combined immunodeficient mice suggested the cancer initiation potential of these HCC CSCs. Comprehensive gene expression analysis revealed that chemokine-related genes were up-regulated in the CSCs subpopulation. Our identified HCC CSCs facilitated the migration of macrophages in vitro and demonstrated metastatic potential by way of recruitment of macrophages in vivo. In patients who undergo curative operation for HCC, the CSC-specific gene signature in the liver microenvironment significantly correlates with recurrence. CONCLUSION Based on these findings, the stem cell feature monitoring system proposed here is a promising tool to analyze the in vivo significance of CSC microenvironments in human HCCs.
Collapse
Affiliation(s)
- Shunsuke Muramatsu
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
408
|
Sielska M, Przanowski P, Wylot B, Gabrusiewicz K, Maleszewska M, Kijewska M, Zawadzka M, Kucharska J, Vinnakota K, Kettenmann H, Kotulska K, Grajkowska W, Kaminska B. Distinct roles of CSF family cytokines in macrophage infiltration and activation in glioma progression and injury response. J Pathol 2013; 230:310-21. [DOI: 10.1002/path.4192] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 03/03/2013] [Accepted: 03/13/2013] [Indexed: 01/10/2023]
Affiliation(s)
- Malgorzata Sielska
- Laboratory of Molecular Neurobiology, Neurobiology Center; Nencki Institute of Experimental Biology; Warsaw Poland
| | - Piotr Przanowski
- Laboratory of Molecular Neurobiology, Neurobiology Center; Nencki Institute of Experimental Biology; Warsaw Poland
| | - Bartosz Wylot
- Laboratory of Molecular Neurobiology, Neurobiology Center; Nencki Institute of Experimental Biology; Warsaw Poland
| | - Konrad Gabrusiewicz
- Laboratory of Molecular Neurobiology, Neurobiology Center; Nencki Institute of Experimental Biology; Warsaw Poland
| | - Marta Maleszewska
- Laboratory of Molecular Neurobiology, Neurobiology Center; Nencki Institute of Experimental Biology; Warsaw Poland
| | - Magdalena Kijewska
- Laboratory of Molecular Neurobiology, Neurobiology Center; Nencki Institute of Experimental Biology; Warsaw Poland
| | - Malgorzata Zawadzka
- Laboratory of Molecular Neurobiology, Neurobiology Center; Nencki Institute of Experimental Biology; Warsaw Poland
| | - Joanna Kucharska
- Laboratory of Molecular Neurobiology, Neurobiology Center; Nencki Institute of Experimental Biology; Warsaw Poland
| | - Katyayni Vinnakota
- Max Delbrück Center for Molecular Medicine; Cellular Neuroscience; Berlin Germany
| | - Helmut Kettenmann
- Max Delbrück Center for Molecular Medicine; Cellular Neuroscience; Berlin Germany
| | | | | | - Bozena Kaminska
- Laboratory of Molecular Neurobiology, Neurobiology Center; Nencki Institute of Experimental Biology; Warsaw Poland
| |
Collapse
|
409
|
Gil-Bernabé AM, Lucotti S, Muschel RJ. Coagulation and metastasis: what does the experimental literature tell us? Br J Haematol 2013; 162:433-41. [PMID: 23691951 DOI: 10.1111/bjh.12381] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Inhibition of coagulation greatly limits cancer metastasis in many experimental models. Cancer cells trigger coagulation, through expression of tissue factor or P-selectin ligands that have correlated with worse prognosis in human clinical studies. Cancer cells also affect coagulation through expression of thrombin and release of microparticles that augment coagulation. In the cancer-bearing host, coagulation facilitates tumour progression through release of platelet granule contents, inhibition of Natural Killer cells and recruitment of macrophages. We are revisiting this literature in the light of recent studies in which treatment of clinical cohorts with anticoagulant drugs led to diminished metastasis.
Collapse
Affiliation(s)
- Ana M Gil-Bernabé
- Department of Oncology, Gray Institute for Radiation Oncology and Biology, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
410
|
Wen SW, Ager EI, Christophi C. Bimodal role of Kupffer cells during colorectal cancer liver metastasis. Cancer Biol Ther 2013; 14:606-13. [PMID: 23792646 DOI: 10.4161/cbt.24593] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Kupffer cells (KCs) are resident liver macrophages that play a crucial role in liver homeostasis and in the pathogenesis of liver disease. Evidence suggests KCs have both stimulatory and inhibitory functions during tumor development but the extent of these functions remains to be defined. Using KC depletion studies in an orthotopic murine model of colorectal cancer (CRC) liver metastases we demonstrated the bimodal role of KCs in determining tumor growth. KC depletion with gadolinium chloride before tumor induction was associated with an increased tumor burden during the exponential growth phase. In contrast, KC depletion at the late stage of tumor growth (day 18) decreased liver tumor load compared with non-depleted animals. This suggests KCs exhibit an early inhibitory and a later stimulatory effect. These two opposing functions were associated with changes in iNOS and VEGF expression as well as T-cell infiltration. KC depletion at day 18 increased numbers of CD3 (+) T cells and iNOS-expressing infiltrating cells in the tumor, but decreased the number of VEGF-expressing infiltrating cells. These alterations may be responsible for the observed reduction in tumor burden following depletion of pro-tumor KCs at the late stage of metastatic growth. Taken together, our results indicate that the bimodal role of KC activity in liver tumors may provide the key to timing immunomodulatory intervention for the treatment of CRC liver metastases.
Collapse
Affiliation(s)
- Shu Wen Wen
- Department of Surgery, The University of Melbourne, Austin Health, Heidelberg, Australia.
| | | | | |
Collapse
|
411
|
Yu F, Jia X, Du F, Wang J, Wang Y, Ai W, Fan D. miR-155-deficient bone marrow promotes tumor metastasis. Mol Cancer Res 2013; 11:923-36. [PMID: 23666369 DOI: 10.1158/1541-7786.mcr-12-0686] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Infiltration of immune cells in primary tumors and metastatic sites is known to influence tumor progression and metastasis. Macrophages represent the most abundant immune cells in the tumor microenvironment, and evidence has shown that macrophages promote seeding, extravasation, and persistent growth of tumor cells at metastatic sites. miR-155 plays an essential role in immune cell development/function, and its aberrant expression is associated with lymphomas and several solid tumor types. However, it is unknown how miR-155 expression in immune cells affects solid tumor growth and metastasis. To this end, bone marrow transplantation was performed using miR-155-deficient mice as bone marrow donors and wild-type (WT) mice as recipients, and the chimeric mice were inoculated with tumor cells. We demonstrate that bone marrow lacking miR-155 significantly enhanced lung metastasis without a substantial effect on primary tumor growth. Relative to mice with WT bone marrow, miR-155-deficient bone marrow accumulated more macrophages in the spleen and lungs. Further analysis revealed that miR-155-deficient macrophages in metastatic sites exhibited a tumor-promoting M2 phenotype. In vitro study suggested that miR-155-null macrophages were prone to M2 polarization upon incubation with tumor cell-conditioned medium, due to elevated expression of C/EBPβ, an identified miR-155 target. These data, for the first time, demonstrate that miR-155 in host immune cells plays a vital role in modulating solid tumor metastasis by affecting the recruitment and polarization of bone marrow-derived macrophages. IMPLICATIONS Targeted inhibition of miR-155 delays tumor development but inhibition in host immune cells may encourage metastasis.
Collapse
Affiliation(s)
- Fang Yu
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, 6439 Garners Ferry Road, Columbia, SC 29208, USA.
| | | | | | | | | | | | | |
Collapse
|
412
|
Na YR, Yoon YN, Son DI, Seok SH. Cyclooxygenase-2 inhibition blocks M2 macrophage differentiation and suppresses metastasis in murine breast cancer model. PLoS One 2013; 8:e63451. [PMID: 23667623 PMCID: PMC3646746 DOI: 10.1371/journal.pone.0063451] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 04/02/2013] [Indexed: 01/08/2023] Open
Abstract
Tumor cells are often associated with abundant macrophages that resemble the alternatively activated M2 subset. Tumor-associated macrophages (TAMs) inhibit anti-tumor immune responses and promote metastasis. Cyclooxygenase-2 (COX-2) inhibition is known to prevent breast cancer metastasis. This study hypothesized that COX-2 inhibition affects TAM characteristics potentially relevant to tumor cell metastasis. We found that the specific COX-2 inhibitor, etodolac, inhibited human M2 macrophage differentiation, as determined by decreased CD14 and CD163 expressions and increased TNFα production. Several key metastasis-related mediators, such as vascular endothelial growth factor-A, vascular endothelial growth factor-C, and matrix metalloproteinase-9, were inhibited in the presence of etodolac as compared to untreated M2 macrophages. Murine bone marrow derived M2 macrophages also showed enhanced surface MHCII IA/IE and CD80, CD86 expressions together with enhanced TNFα expressions with etodolac treatment during differentiation. Using a BALB/c breast cancer model, we found that etodolac significantly reduced lung metastasis, possibly due to macrophages expressing increased IA/IE and TNFα, but decreased M2 macrophage-related genes expressions (Ym1, TGFβ). In conclusion, COX-2 inhibition caused loss of the M2 macrophage characteristics of TAMs and may assist prevention of breast cancer metastasis.
Collapse
Affiliation(s)
- Yi-Rang Na
- Department of Microbiology and Immunology, and Institute of Endemic Disease, Seoul National University College of Medicine, Seoul, South Korea
| | - Yi-Na Yoon
- Department of Microbiology and Immunology, and Institute of Endemic Disease, Seoul National University College of Medicine, Seoul, South Korea
| | - Da-In Son
- Department of Microbiology and Immunology, and Institute of Endemic Disease, Seoul National University College of Medicine, Seoul, South Korea
| | - Seung-Hyeok Seok
- Department of Microbiology and Immunology, and Institute of Endemic Disease, Seoul National University College of Medicine, Seoul, South Korea
- * E-mail:
| |
Collapse
|
413
|
Evani SJ, Prabhu RG, Gnanaruban V, Finol EA, Ramasubramanian AK. Monocytes mediate metastatic breast tumor cell adhesion to endothelium under flow. FASEB J 2013; 27:3017-29. [PMID: 23616566 DOI: 10.1096/fj.12-224824] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Endothelial adhesion is necessary for the hematogenous dissemination of tumor cells. However, the metastatic breast tumor cell MDA-MB-231 does not bind to the endothelium under physiological flow conditions, suggesting alternate mechanisms of adhesion. Since monocytes are highly represented in the tumor microenvironment, and also bind to endothelium during inflammation, we hypothesized that the monocytes assist in the arrest of MDA-MB-231 on the endothelium. Using in vitro models of the dynamic shear environment of the vasculature, we show that TNF-α-activated THP1/primary human monocytes and MDA-MB-231 cells form stable aggregates, and that the monocytes in these aggregates mediate the adhesion of otherwise nonadherent MDA-MB-231 cells to inflamed endothelium under flow (55±2.4 vs. 1.7±0.82 at a shear stress of 0.5 dyn/cm(2), P<0.01). We also show that the hydrodynamic forces determine the size and orientation of aggregates adhered to the endothelium, and strongly favor the attachment of small aggregates with tumor cells downstream of flow (74-86% doublets at 0.5-2 dyn/cm(2), P<0.01). The 5-fold up-regulation of ICAM-1 on TNF-α-activated MDA-MB-231 cells through the Nf-κB pathway was found to be critical in MDA-MB-231-monocyte aggregation and endothelial adhesion. Our results demonstrate that, under inflammatory conditions, monocytes may serve to disseminate tumor cells through circulation, and the tumor-monocyte-endothelial axis may represent a new therapeutic target to reduce cancer metastasis.
Collapse
Affiliation(s)
- Shankar J Evani
- Department of Biomedical Engineering, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | | | | | | | | |
Collapse
|
414
|
Eyob H, Ekiz HA, Derose YS, Waltz SE, Williams MA, Welm AL. Inhibition of ron kinase blocks conversion of micrometastases to overt metastases by boosting antitumor immunity. Cancer Discov 2013; 3:751-60. [PMID: 23612011 DOI: 10.1158/2159-8290.cd-12-0480] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Many "nonmetastatic" cancers have spawned undetectable metastases before diagnosis. Eventual outgrowth of these microscopic lesions causes metastatic relapse and death, yet the events that dictate when and how micrometastases convert to overt metastases are largely unknown. We report that macrophage-stimulating protein and its receptor, Ron, are key mediators in conversion of micrometastases to bona fide metastatic lesions through immune suppression. Genetic deletion of Ron tyrosine kinase activity specifically in the host profoundly blocked metastasis. Our data show that loss of Ron function promotes an effective antitumor CD8(+) T-cell response, which specifically inhibits outgrowth of seeded metastatic colonies. Treatment of mice with a Ron-selective kinase inhibitor prevented outgrowth of lung metastasis, even when administered after micrometastatic colonies had already been established. Our findings indicate that Ron inhibitors may hold potential to specifically prevent outgrowth of micrometastases in patients with cancer in the adjuvant setting.
Collapse
Affiliation(s)
- Henok Eyob
- Department of Oncological Sciences, Huntsman Cancer Institute, Salt Lake City, UT 84112, USA
| | | | | | | | | | | |
Collapse
|
415
|
Ferjančič Š, Gil-Bernabé AM, Hill SA, Allen PD, Richardson P, Sparey T, Savory E, McGuffog J, Muschel RJ. VCAM-1 and VAP-1 recruit myeloid cells that promote pulmonary metastasis in mice. Blood 2013; 121:3289-97. [PMID: 23407548 DOI: 10.1182/blood-2012-08-449819] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pulmonary metastasis is a frequent cause of poor outcome in cancer patients. The formation of pulmonary metastasis is greatly facilitated by recruitment of myeloid cells, which are crucial for tumor cell survival and extravasation. During inflammation, homing of myeloid cells is mediated by endothelial activation, raising the question of a potential role for endothelial activation in myeloid cell recruitment during pulmonary metastasis. Here, we show that metastatic tumor cell attachment causes the induction of the endothelial activation markers vascular cell adhesion molecule-1 (VCAM-1) and vascular adhesion protein-1 (VAP-1). Induction of VCAM-1 is dependent on tumor cell-clot formation, decreasing upon induction of tissue factor pathway inhibitor or treatment with hirudin. Furthermore, inhibition of endothelial activation with a VCAM-1 blocking antibody or a VAP-1 small molecule inhibitor leads to reduced myeloid cell recruitment and diminished tumor cell survival and metastasis without affecting tumor cell adhesion. Simultaneous inhibition of VCAM-1 and VAP-1 does not result in further reduction in myeloid cell recruitment and tumor cell survival, suggesting that both act through closely related mechanisms. These results establish VCAM-1 and VAP-1 as mediators of myeloid cell recruitment in metastasis and identify VAP-1 as a potential target for therapeutic intervention to combat early metastasis.
Collapse
Affiliation(s)
- Špela Ferjančič
- Department of Oncology, Gray Institute for Radiation Oncology and Biology, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
416
|
No JH, Moon JM, Kim K, Kim YB. Prognostic significance of serum soluble CD163 level in patients with epithelial ovarian cancer. Gynecol Obstet Invest 2013; 75:263-7. [PMID: 23595052 DOI: 10.1159/000349892] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 02/14/2013] [Indexed: 11/19/2022]
Abstract
BACKGROUND The purpose of this study was to investigate the prognostic significance of serum sCD163 in patients with epithelial ovarian cancer. METHODS Preoperative serum samples from 55 patients with epithelial ovarian cancers were analyzed for sCD163 using a commercially available enzyme-linked immunosorbent assay kit. A Cox proportional hazard model was used to calculate hazard ratio (HR) and 95% confidence interval (CI) for disease-free survival (DFS) and overall survival (OS). RESULTS Median serum sCD163 levels were higher in patients with a high-grade tumor. High serum sCD163 levels (3.43 mg/l) were associated with poor prognostic factors such as advanced stage (p = 0.024) and positive peritoneal cytology (p = 0.015). Univariate survival analysis showed that elevated sCD163 levels were associated with short DFS (8.0 vs. 32.4 months, p = 0.04) and OS (19.7 vs. 40.0 months, p = 0.027). Multivariate survival analysis revealed that high serum sCD163 levels were negatively associated with DFS (HR 3.1, 95% CI 1.2-8.1, p = 0.039). CONCLUSIONS Our study shows that elevated serum sCD163 levels were associated with poor prognosis in patients with ovarian cancer. IMPACT The prognostic significance of serum sCD163 in patients with epithelial ovarian cancer is described.
Collapse
Affiliation(s)
- Jae Hong No
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | | | | | | |
Collapse
|
417
|
Liao KL, Bai XF, Friedman A. The role of CD200-CD200R in tumor immune evasion. J Theor Biol 2013; 328:65-76. [PMID: 23541619 DOI: 10.1016/j.jtbi.2013.03.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 01/30/2013] [Accepted: 03/18/2013] [Indexed: 12/15/2022]
Abstract
CD200 is a cell membrane protein that interacts with CD200 receptor (CD200R) of myeloid lineage cells. During tumor initiation and progression, CD200-positive tumor cells can interact with M1 and M2 macrophages through CD200-CD200R-compex, and downregulate IL-10 and IL-12 productions secreted primarily by M2 and M1 macrophages, respectively. In the tumor microenvironment, IL-10 inhibits the activation of cytotoxic T lymphocytes (CTL), while IL-12 enhances CTL activation. In this paper, we used a system approach to determine the combined effect of CD200-CD200R interaction on tumor proliferation by developing a mathematical model. We demonstrate that blocking CD200 on tumor cells may have opposite effects on tumor proliferation depending on the "affinity" of the macrophages to form the CD200-CD200R-complex with tumor cells. Our results help understanding the complexities of tumor microenvironment.
Collapse
Affiliation(s)
- Kang-Ling Liao
- Mathematical Biosciences Institute, The Ohio State University, Columbus, OH 43210, USA.
| | | | | |
Collapse
|
418
|
Low-Marchelli JM, Ardi VC, Vizcarra EA, van Rooijen N, Quigley JP, Yang J. Twist1 induces CCL2 and recruits macrophages to promote angiogenesis. Cancer Res 2013; 73:662-71. [PMID: 23329645 DOI: 10.1158/0008-5472.can-12-0653] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The transcription factor Twist1 induces epithelial-mesenchymal transition and extracellular matrix degradation to promote tumor metastasis. Although Twist1 also plays a role in embryonic vascular development and tumor angiogenesis, the molecular mechanisms that underlie these processes are not as well understood. Here, we report a novel function for Twist1 in modifying the tumor microenvironment to promote progression. We found that expression of Twist1 in human mammary epithelial cells potently promoted angiogenesis. Surprisingly, Twist1 expression did not increase the secretion of the common proangiogenic factors VEGF and basic fibroblast growth factor but rather induced expression of the macrophage chemoattractant CCL2. Attenuation of endogenous Twist1 in vivo blocked macrophage recruitment and angiogenesis, whereas exogenous CCL2 rescued the ability of tumor cells lacking Twist1 to attract macrophages and promote angiogenesis. Macrophage recruitment also was essential for the ability of Twist1-expressing cells to elicit a strong angiogenic response. Together, our findings show that how Twist1 recruits stromal macrophages through CCL2 induction to promote angiogenesis and tumor progression. As Twist1 expression has been associated with poor survival in many human cancers, this finding suggests that anti-CCL2 therapy may offer a rational strategy to treat Twist1-positive metastatic cancers.
Collapse
Affiliation(s)
- Janine M Low-Marchelli
- Biomedical Sciences Program, Department of Pharmacology, University of California, San Diego, CA 92093, USA
| | | | | | | | | | | |
Collapse
|
419
|
Heaney A, Buggy DJ. Can anaesthetic and analgesic techniques affect cancer recurrence or metastasis? Br J Anaesth 2013; 109 Suppl 1:i17-i28. [PMID: 23242747 DOI: 10.1093/bja/aes421] [Citation(s) in RCA: 264] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cancer is a leading cause of morbidity and mortality worldwide and the ratio of incidence is increasing. Mortality usually results from recurrence or metastases. Surgical removal of the primary tumour is the mainstay of treatment, but this is associated with inadvertent dispersal of neoplastic cells into the blood and lymphatic systems. The fate of the dispersed cells depends on the balance of perioperative factors promoting tumour survival and growth (including surgery per se, many anaesthetics per se, acute postoperative pain, and opioid analgesics) together with the perioperative immune status of the patient. Available evidence from experimental cell culture and live animal data on these factors are summarized, together with clinical evidence from retrospective studies. Taken together, current data are sufficient only to generate a hypothesis that an anaesthetic technique during primary cancer surgery could affect recurrence or metastases, but a causal link can only be proved by prospective, randomized, clinical trials. Many are ongoing, but definitive results might not emerge for a further 5 yr or longer. Meanwhile, there is no hard evidence to support altering anaesthetic technique in cancer patients, pending the outcome of the ongoing clinical trials.
Collapse
Affiliation(s)
- A Heaney
- Department of Anaesthesia, Mater Misericordiae University Hospital, University College Dublin, Dublin, Ireland
| | | |
Collapse
|
420
|
Yoshimura T, Howard OMZ, Ito T, Kuwabara M, Matsukawa A, Chen K, Liu Y, Liu M, Oppenheim JJ, Wang JM. Monocyte chemoattractant protein-1/CCL2 produced by stromal cells promotes lung metastasis of 4T1 murine breast cancer cells. PLoS One 2013; 8:e58791. [PMID: 23527025 PMCID: PMC3601078 DOI: 10.1371/journal.pone.0058791] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 02/06/2013] [Indexed: 02/06/2023] Open
Abstract
MCP-1/CCL2 plays an important role in the initiation and progression of cancer. Since tumor cells produce MCP-1, they are considered to be the main source of this chemokine. Here, we examined whether MCP-1 produced by non-tumor cells affects the growth and lung metastasis of 4T1 breast cancer cells by transplanting them into the mammary pad of WT or MCP-1−/− mice. Primary tumors at the injected site grew similarly in both mice; however, lung metastases were markedly reduced in MCP-1−/− mice, with significantly longer mouse survival. High levels of MCP-1 mRNA were detected in tumors growing in WT, but not MCP-1−/− mice. Serum MCP-1 levels were increased in tumor-bearing WT, but not MCP-1−/− mice. Transplantation of MCP-1−/− bone marrow cells into WT mice did not alter the incidence of lung metastasis, whereas transplantation of WT bone marrow cells into MCP-1−/− mice increased lung metastasis. The primary tumors of MCP-1−/− mice consistently developed necrosis earlier than those of WT mice and showed decreased infiltration by macrophages and reduced angiogenesis. Interestingly, 4T1 cells that metastasized to the lung constitutively expressed elevated levels of MCP-1, and intravenous injection of 4T1 cells producing a high level of MCP-1 resulted in increased tumor foci in the lung of WT and MCP-1−/− mice. Thus, stromal cell-derived MCP-1 in the primary tumors promotes lung metastasis of 4T1 cells, but tumor cell-derived MCP-1 can also contribute once tumor cells enter the circulation. A greater understanding of the source and role of this chemokine may lead to novel strategies for cancer treatment.
Collapse
Affiliation(s)
- Teizo Yoshimura
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
421
|
Jeon JS, Zervantonakis IK, Chung S, Kamm RD, Charest JL. In vitro model of tumor cell extravasation. PLoS One 2013; 8:e56910. [PMID: 23437268 PMCID: PMC3577697 DOI: 10.1371/journal.pone.0056910] [Citation(s) in RCA: 182] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 01/15/2013] [Indexed: 12/22/2022] Open
Abstract
Tumor cells that disseminate from the primary tumor and survive the vascular system can eventually extravasate across the endothelium to metastasize at a secondary site. In this study, we developed a microfluidic system to mimic tumor cell extravasation where cancer cells can transmigrate across an endothelial monolayer into a hydrogel that models the extracellular space. The experimental protocol is optimized to ensure the formation of an intact endothelium prior to the introduction of tumor cells and also to observe tumor cell extravasation by having a suitable tumor seeding density. Extravasation is observed for 38.8% of the tumor cells in contact with the endothelium within 1 day after their introduction. Permeability of the EC monolayer as measured by the diffusion of fluorescently-labeled dextran across the monolayer increased 3.8 fold 24 hours after introducing tumor cells, suggesting that the presence of tumor cells increases endothelial permeability. The percent of tumor cells extravasated remained nearly constant from1 to 3 days after tumor seeding, indicating extravasation in our system generally occurs within the first 24 hours of tumor cell contact with the endothelium.
Collapse
Affiliation(s)
- Jessie S. Jeon
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Ioannis K. Zervantonakis
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Seok Chung
- School of Mechanical Engineering, Korea University, Seoul, Korea
| | - Roger D. Kamm
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail: (RDK); (JLC)
| | - Joseph L. Charest
- Charles Stark Draper Laboratory, Cambridge, Massachusetts, United States of America
- * E-mail: (RDK); (JLC)
| |
Collapse
|
422
|
Zhao L, Lim SY, Gordon-Weeks AN, Tapmeier TT, Im JH, Cao Y, Beech J, Allen D, Smart S, Muschel RJ. Recruitment of a myeloid cell subset (CD11b/Gr1 mid) via CCL2/CCR2 promotes the development of colorectal cancer liver metastasis. Hepatology 2013; 57:829-39. [PMID: 23081697 DOI: 10.1002/hep.26094] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 09/26/2012] [Indexed: 12/16/2022]
Abstract
UNLABELLED Liver metastasis from colorectal cancer is a leading cause of cancer mortality. Myeloid cells play pivotal roles in the metastatic process, but their prometastatic functions in liver metastasis remain incompletely understood. To investigate their role, we simulated liver metastasis in C57BL/6 mice through intrasplenic inoculation of MC38 colon carcinoma cells. Among the heterogeneous myeloid infiltrate, we identified a distinct population of CD11b/Gr1(mid) cells different from other myeloid populations previously associated with liver metastasis. These cells increased in number dramatically during establishment of liver metastases and were recruited from bone marrow by tumor-derived CCL2. Liver metastasis of Lewis lung carcinoma cells followed this pattern but this mechanism is not universal as liver colonization by B16F1 melanoma cells did not recruit similar subsets. Inhibition of CCL2 signaling and absence of its cognate receptor CCR2 reduced CD11b/Gr1(mid) recruitment and decreased tumor burden. Depletion of the CD11b/Gr1(mid) subset in a transgenic CD11b-diphtheria toxin receptor mouse model markedly reduced tumor cell proliferation. There was no evidence for involvement of an adaptive immune response in the prometastatic effects of CD11b/Gr1(mid) cells. Additionally, an analogous myeloid subset was found in liver metastases of some colorectal cancer patients. CONCLUSION Collectively, our findings highlight the importance of myeloid cells--in this case a selective CD11b/Gr1(mid) subset--in sustaining development of colorectal cancer liver metastasis and identify a potential target for antimetastatic therapy.
Collapse
Affiliation(s)
- Lei Zhao
- Gray Institute for Radiation Oncology and Biology, University of Oxford, Oxford, OX3 7LJ, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
423
|
Tumor-Associated Macrophages Are Related to Volumetric Growth of Vestibular Schwannomas. Otol Neurotol 2013; 34:347-52. [DOI: 10.1097/mao.0b013e31827c9fbf] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
424
|
Soliman H, Rawal B, Fulp J, Lee JH, Lopez A, Bui MM, Khalil F, Antonia S, Yfantis HG, Lee DH, Dorsey TH, Ambs S. Analysis of indoleamine 2-3 dioxygenase (IDO1) expression in breast cancer tissue by immunohistochemistry. Cancer Immunol Immunother 2013; 62:829-37. [PMID: 23344392 DOI: 10.1007/s00262-013-1393-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 01/10/2013] [Indexed: 12/22/2022]
Abstract
INTRODUCTION The immunosuppressive enzyme, indoleamine 2,3 dioxygenase (IDO), is overexpressed in many different tumor types including breast cancer. IDO inhibitors synergize with chemotherapy in breast cancer murine models. Characterizing IDO expression in breast cancer could define which patients receive IDO inhibitors. This study analyzed IDO protein expression in 203 breast cancer cases. The relationship between IDO, overall survival (OS), disease-specific survival (DSS), clinicopathologic, molecular, and immune tumor infiltrate factors was evaluated. METHODS Expression of IDO, estrogen receptor (ER), progesterone receptor (PR), human epithelial receptor 2, cytokeratin 5/6, epithelial growth factor receptor, phosphorylated AKT, neoangiogenesis, nitrogen oxide synthetase 2 (NOS2), cyclooxygenase 2 (COX2), FoxP3, CD8, and CD11b on archival breast cancer tissue sections was evaluated by immunohistochemistry. Associations between IDO and these markers were explored by a univariate and multivariate analysis. Survival was analyzed using Kaplan-Meier (OS) and Wilcoxon two-sample (DSS) tests. RESULTS IDO expression was higher in ER+ tumors compared to ER- tumors. IDO was lower in those with higher neoangiogenesis. OS was better in ER+ patients with high IDO expression. DSS was better in node-positive patients with high IDO expression. IDO activity positively correlates with NOS2. COX2 as positively correlated with IDO on univariate but not multivariate analysis. There was a trend toward greater numbers of CD11b+ cells in IDO-low tumors. CONCLUSIONS IDO protein expression is lower in ER- breast tumors with greater neoangiogenesis. Future clinical trials evaluating the synergy between IDO inhibitors and chemotherapy should take this finding into account and stratify for ER status in the trial design.
Collapse
Affiliation(s)
- Hatem Soliman
- Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
425
|
Mo XL, Wei HK, Peng J, Tao YX. Free Fatty Acid Receptor GPR120 and Pathogenesis of Obesity and Type 2 Diabetes Mellitus. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 114:251-76. [DOI: 10.1016/b978-0-12-386933-3.00007-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
426
|
Dovas A, Patsialou A, Harney AS, Condeelis J, Cox D. Imaging interactions between macrophages and tumour cells that are involved in metastasis in vivo and in vitro. J Microsc 2012. [PMID: 23198984 DOI: 10.1111/j.1365-2818.2012.03667.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tumour-associated macrophages participate in several protumour functions including tumour growth and angiogenesis, and facilitate almost every step of the metastatic cascade. Interfering with macrophage functions may therefore provide an important strategy in the clinical management of cancer and metastatic disease. Our understanding of macrophage functions has been greatly expanded by direct observations of macrophage-carcinoma cell interactions using light microscopy. Imaging approaches include intravital microscopy of tumours in mouse models of cancer and visualization of macrophage-carcinoma cell interactions in in vitro assays; whether atop 2D substrates, embedded in 3D matrices or in more complex assemblies of multiple cell types that mimic specific topologies of the tumour microenvironment. Such imaging and reconstitution approaches have provided us with a wealth of information on the motile behaviour and physical associations between macrophages and carcinoma cells and the role of the tumour microenvironment in influencing the movement of these cells. Finally, high-resolution imaging techniques have permitted researchers to correlate motility patterns with specific gene signatures and biochemical pathways in cells, pointing to potential targets for intervention. Here, we review experimental approaches employed in the study of macrophage interactions with carcinoma cells with an emphasis on imaging invasive and metastatic cell motility in breast carcinomas.
Collapse
Affiliation(s)
- A Dovas
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | | | | | | | |
Collapse
|
427
|
Richards DM, Hettinger J, Feuerer M. Monocytes and macrophages in cancer: development and functions. CANCER MICROENVIRONMENT 2012. [PMID: 23179263 DOI: 10.1007/s12307-012-0123-x] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Monocytes and tumor-associated macrophages are part of the myeloid family, a group of hematopoietic derived cells. Monocytes are direct precursors of hematopoietic stem cell-derived macrophages. After their recruitment into the tumor tissue, they can differentiate into tumor-associated macrophages, a very heterogeneous cell population in terms of phenotype and pro-tumor function, supporting tumor initiation, local progression and distant metastasis. Therefore, targeting monocytes and macrophages is a promising immunotherapeutic approach. This review will focus on the development of monocytes as macrophage precursors, the functions of tumor-associated macrophages and the possibility of interfering with tumor development and progression by targeting these myeloid cells.
Collapse
Affiliation(s)
- David M Richards
- Immune Tolerance, Tumor Immunology Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | | | | |
Collapse
|
428
|
Labelle M, Hynes RO. The initial hours of metastasis: the importance of cooperative host-tumor cell interactions during hematogenous dissemination. Cancer Discov 2012; 2:1091-9. [PMID: 23166151 DOI: 10.1158/2159-8290.cd-12-0329] [Citation(s) in RCA: 347] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
UNLABELLED Tumor cells transit from the primary tumor via the blood circulation to form metastases in distant organs. During this process, tumor cells encounter a number of environmental challenges and stimuli that profoundly impact their metastatic potential. Here, we review the cooperative and dynamic host-tumor cell interactions that support and promote the hematogenous dissemination of cancer cells to sites of distant metastasis. In particular, we discuss what is known about the cross-talk occurring among tumor cells, platelets, leukocytes, and endothelial cells and how these cell-cell interactions are organized both temporally and spatially at sites of extravasation and in the early metastatic niche. SIGNIFICANCE Metastasis is a function not only of tumor cells but also involves cooperative interactions of those cells with normal cells of the body, in particular platelets and leukocytes. These other cell types alter the behavior of the tumor cells themselves and of endothelial cells lining the vasculature and assist in tumor cell arrest and extravasation at sites of metastasis and subsequently in the establishment of tumor cells in the early metastatic niche. A better understanding of the important role that these contact and paracrine interactions play during metastasis will offer new opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Myriam Labelle
- Howard Hughes Medical Institute, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
429
|
Ren G, Zhao X, Wang Y, Zhang X, Chen X, Xu C, Yuan ZR, Roberts AI, Zhang L, Zheng B, Wen T, Han Y, Rabson AB, Tischfield JA, Shao C, Shi Y. CCR2-dependent recruitment of macrophages by tumor-educated mesenchymal stromal cells promotes tumor development and is mimicked by TNFα. Cell Stem Cell 2012; 11:812-24. [PMID: 23168163 DOI: 10.1016/j.stem.2012.08.013] [Citation(s) in RCA: 272] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 03/12/2012] [Accepted: 08/30/2012] [Indexed: 12/13/2022]
Abstract
Mesenchymal stromal cells (MSCs) tend to infiltrate into tumors and form a major component of the tumor microenvironment. These tumor-resident MSCs are known to affect tumor growth, but the mechanisms are largely unknown. We found that MSCs isolated from spontaneous lymphomas in mouse (L-MSCs) strikingly enhanced tumor growth in comparison to bone marrow MSCs (BM-MSCs). L-MSCs contributed to greater recruitment of CD11b(+)Ly6C(+) monocytes, F4/80(+) macrophages, and CD11b(+)Ly6G(+) neutrophils to the tumor. Depletion of monocytes/macrophages, but not neutrophils, completely abolished tumor promotion of L-MSCs. Furthermore, L-MSCs expressed high levels of CCR2 ligands, and monocyte/macrophage accumulation and L-MSC-mediated tumor promotion were largely abolished in CCR2(-/-) mice. Intriguingly, TNFα-pretreated BM-MSCs mimicked L-MSCs in their chemokine production profile and ability to promote tumorigenesis of lymphoma, melanoma, and breast carcinoma. Therefore, our findings demonstrate that, in an inflammatory environment, tumor-resident MSCs promote tumor growth by recruiting monocytes/macrophages.
Collapse
Affiliation(s)
- Guangwen Ren
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
430
|
Levesque JP, Winkler IG, Rasko JEJ. Nichotherapy for stem cells: there goes the neighborhood. Bioessays 2012; 35:183-90. [PMID: 23129341 DOI: 10.1002/bies.201200111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Stem cells and their malignant counterparts require the support of a specific microenvironment or "niche". While various anti-cancer therapies have been broadly successful, there are growing opportunities to target the environment in which these cells reside to further improve therapeutic efficacy and outcome. This is particularly true when the aim is to target normal or malignant stem cells. The field aiming to target or use the niches that harbor, protect, and support stem cells could be designated as "nichotherapy". In this essay, we provide a few examples of nichotherapies. Some have been employed for decades, such as hematopoietic stem cell mobilization, whereas others are emerging, such as chemosensitization of leukemia stem cells by targeting their niche.
Collapse
Affiliation(s)
- Jean-Pierre Levesque
- Stem Cell Biology Group, Biological Therapies Program, Mater Medical Research Institute, South Brisbane, Australia.
| | | | | |
Collapse
|
431
|
Mamlouk S, Wielockx B. Hypoxia-inducible factors as key regulators of tumor inflammation. Int J Cancer 2012; 132:2721-9. [PMID: 23055435 DOI: 10.1002/ijc.27901] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 09/25/2012] [Indexed: 12/23/2022]
Abstract
Low levels of oxygen or hypoxia is often an obstacle in health, particularly in pathological disorders like cancer. The main family of transcription factors responsible for cell survival and adaptation under strenuous conditions of hypoxia are the "hypoxia-inducible factors" (HIFs). Together with prolyl hydroxylase domain enzymes (PHDs), HIFs regulates tumor angiogenesis, proliferation, invasion, metastasis, in addition to resistance to radiation and chemotherapy. Additionally, the entire HIF transcription cascade is involved in the "seventh" hallmark of cancer; inflammation. Studies have shown that hypoxia can influence tumor associated immune cells toward assisting in tumor proliferation, differentiation, vessel growth, distant metastasis and suppression of the immune response via cytokine expression alterations. These changes are not necessarily analogous to HIF's role in non-cancer immune responses, where hypoxia often encourages a strong inflammatory response.
Collapse
Affiliation(s)
- Soulafa Mamlouk
- Emmy Noether Research Group and Institute of Pathology, University of Technology, Dresden, Germany
| | | |
Collapse
|
432
|
Chen D, Roda JM, Marsh CB, Eubank TD, Friedman A. Hypoxia inducible factors-mediated inhibition of cancer by GM-CSF: a mathematical model. Bull Math Biol 2012; 74:2752-77. [PMID: 23073704 DOI: 10.1007/s11538-012-9776-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 09/20/2012] [Indexed: 01/21/2023]
Abstract
Under hypoxia, tumor cells, and tumor-associated macrophages produce VEGF (vascular endothelial growth factor), a signaling molecule that induces angiogenesis. The same macrophages, when treated with GM-CSF (granulocyte/macrophage colony-stimulating factor), produce sVEGFR-1 (soluble VEGF receptor-1), a soluble protein that binds with VEGF and inactivates its function. The production of VEGF by macrophages is regulated by HIF-1α (hypoxia inducible factor-1α), and the production of sVEGFR-1 is mediated by HIF-2α. Recent experiments measured the effect of inhibiting tumor growth by GM-CSF treatment in mice with HIF-1α-deficient or HIF-2α-deficient macrophages. In the present paper, we represent these experiments by a mathematical model based on a system of partial differential equations. We show that the model simulations agree with the above experiments. The model can then be used to suggest strategies for inhibiting tumor growth. For example, the model qualitatively predicts the extent to which GM-CSF treatment in combination with a small molecule inhibitor that stabilizes HIF-2α will reduce tumor volume and angiogenesis.
Collapse
Affiliation(s)
- Duan Chen
- Mathematical Biosciences Institute, The Ohio State University, Columbus, OH, USA.
| | | | | | | | | |
Collapse
|
433
|
Kachgal S, Mace KA, Boudreau NJ. The dual roles of homeobox genes in vascularization and wound healing. Cell Adh Migr 2012; 6:457-70. [PMID: 23076135 PMCID: PMC3547888 DOI: 10.4161/cam.22164] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Homeobox genes represent a family of highly conserved transcription factors originally discovered to regulate organ patterning during development. More recently, several homeobox genes were shown to affect processes in adult tissue, including angiogenesis and wound healing. Whereas a subset of members of the Hox-family of homeobox genes activate growth and migration to promote angiogenesis or wound healing, other Hox genes function to restore or maintain quiescent, differentiated tissue function. Pathological tissue remodeling is linked to differential expression of activating or stabilizing Hox genes and dysregulation of Hox expression can contribute to disease progression. Studies aimed at understanding the role and regulation of Hox genes have provided insight into how these potent morphoregulatory genes can be applied to enhance tissue engineering or limit cancer progression.
Collapse
Affiliation(s)
- Suraj Kachgal
- Surgical Research Laboratory, Department of Surgery, University of California, San Francisco, San Francisco, CA USA
| | | | | |
Collapse
|
434
|
Said N, Theodorescu D. Permissive role of endothelin receptors in tumor metastasis. Life Sci 2012; 91:522-7. [PMID: 22846215 PMCID: PMC11207194 DOI: 10.1016/j.lfs.2012.03.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 02/24/2012] [Accepted: 03/21/2012] [Indexed: 01/01/2023]
Abstract
Metastasis remains the major driver of mortality in patients with cancer. The multistep metastatic process requires the concerted actions of several genes and involves tumor cell invasion, epithelial mesenchymal transition (EMT), shedding from primary tumor, intravasation, arrest, extravasation and colonization at a preferential site. Understanding this complex process would provide the basis for the development of molecularly targeted therapeutics aimed at the tumor cell or its interaction with the host microenvironment. The neuropeptide hormones endothelins (specially, ET-1) have been correlated with invasiveness and metastasis of several cancers and high ET-1 levels are associated with decreased disease-specific survival. The mechanism(s) by which ET-1 promotes metastasis are being gradually unraveled. Through preferential binding to cognate receptors (ET(A)R or ET(B)R), ET-1 triggers autocrine and paracrine signaling cascades in tumor, immune and stromal cells, at both primary and distant sites, supporting cancer progression and metastasis. In this review, we will summarize the role of the ET axis in metastasis of different cancers and potential targeting of ET receptors in the therapeutic setting.
Collapse
Affiliation(s)
- Neveen Said
- Department of Urology, University of Virginia, USA
| | - Dan Theodorescu
- Departments of Surgery and Pharmacology, University of Colorado, USA
- University of Colorado Comprehensive Cancer Center, USA
| |
Collapse
|
435
|
Quatromoni JG, Eruslanov E. Tumor-associated macrophages: function, phenotype, and link to prognosis in human lung cancer. Am J Transl Res 2012; 4:376-389. [PMID: 23145206 PMCID: PMC3493031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 10/06/2012] [Indexed: 06/01/2023]
Abstract
Macrophages are the dominant leukocyte population found in the tumor microenvironment. Accumulating evidence suggests that these tumor-associated macrophages (TAMs) actively promote all aspects of tumor initiation, growth, and development. However, TAMs are not a single uniform population; instead, they are composed of multiple distinct pro- and anti-tumoral subpopulations with overlapping features depending on a variety of external factors. Defining and differentiating these subsets remains a challenging work-in-progress. These difficulties are apparent in prognostic studies in lung cancer that initially demonstrated conflicting evidence regarding the significance of TAMs but which have more recently clarified and confirmed the clinical importance of these subsets through improved phenotypic capabilities. Thus, these cells represent potential targets for cancer therapeutic initiatives through translational approaches. In this review, we summarize the current understanding of how the tumor microenvironment takes advantage of macrophage plasticity to mold an immunosuppressive population, the phenotypic heterogeneity of TAMs, and their link to prognosis in human lung cancer.
Collapse
Affiliation(s)
- Jon G Quatromoni
- Department of Surgery, Division of Thoracic Surgery, Hospital of the University of Pennsylvania School of Medicine Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
436
|
Almholt K, Juncker-Jensen A, Lærum OD, Johnsen M, Rømer J, Lund LR. Spontaneous metastasis in congenic mice with transgenic breast cancer is unaffected by plasminogen gene ablation. Clin Exp Metastasis 2012; 30:277-88. [PMID: 22996753 DOI: 10.1007/s10585-012-9534-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 09/12/2012] [Indexed: 11/25/2022]
Abstract
Plasminogen (Plg) plays a central role in tissue remodeling during ontogeny, development, and in pathological tissue remodeling following physical injury, inflammation and cancer. Plg/plasmin is, however, not critical for these processes, as they all occur to a varying extent in its absence, suggesting that there is a functional redundancy with other proteases. To explore this functional overlap in the transgenic MMTV-PyMT breast cancer metastasis model, we have combined Plg deficiency and a pharmacological metalloprotease inhibitor, which is known to reduce metastasis in this model, and has been shown to synergistically inhibit other tissue remodeling events in Plg-deficient mice. While metalloprotease inhibition dramatically reduced metastasis, we found no effect of Plg deficiency on metastasis, either independently or in combination with metalloprotease inhibition. We further show that Plg gene deficiency is of no significant consequence in this metastasis model, when analyzed in two different congenic strains: the FVB strain, and a F1 hybrid of the FVB and C57BL/6J strains. We suggest that the extensive backcrossing performed prior to our studies has eliminated the confounding effect of a known polymorphic metastasis modifier gene region located adjacent to the Plg gene.
Collapse
Affiliation(s)
- Kasper Almholt
- Finsen Laboratory, Rigshospitalet, Copenhagen Biocenter, Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
437
|
Schmid MC, Varner JA. Myeloid cells in tumor inflammation. Vasc Cell 2012; 4:14. [PMID: 22938502 PMCID: PMC3479419 DOI: 10.1186/2045-824x-4-14] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 06/25/2012] [Indexed: 02/08/2023] Open
Abstract
Bone marrow derived myeloid cells progressively accumulate in tumors, where they establish an inflammatory microenvironment that is favorable for tumor growth and spread. These cells are comprised primarily of monocytic and granulocytic myeloid derived suppressor cells (MDSCs) or tumor-associated macrophages (TAMs), which are generally associated with a poor clinical outcome. MDSCs and TAMs promote tumor progression by stimulating immunosuppression, neovascularization, metastasis and resistance to anti-cancer therapy. Strategies to target the tumor-promoting functions of myeloid cells could provide substantial therapeutic benefit to cancer patients.
Collapse
Affiliation(s)
- Michael C Schmid
- Moores UCSD Cancer Center, University of California, San Diego, 3855 Health Sciences Drive, La Jolla, CA, 92093-0912, USA.
| | | |
Collapse
|
438
|
Anti- and Protumorigenic Effects of PPARγ in Lung Cancer Progression: A Double-Edged Sword. PPAR Res 2012; 2012:362085. [PMID: 22934105 PMCID: PMC3425863 DOI: 10.1155/2012/362085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 07/09/2012] [Indexed: 12/29/2022] Open
Abstract
Peroxisome proliferator-activated receptor-γ (PPARγ) is a member of the nuclear receptor superfamily of ligand-activated transcription factors that plays an important role in the control of gene expression linked to a variety of physiological processes, including cancer. Ligands for PPARγ include naturally occurring fatty acids and the thiazolidinedione class of antidiabetic drugs. Activation of PPARγ in a variety of cancer cells leads to inhibition of growth, decreased invasiveness, reduced production of proinflammatory cytokines, and promotion of a more differentiated phenotype. However, systemic activation of PPARγ has been reported to be protumorigenic in some in vitro systems and in vivo models. Here, we review the available data that implicate PPARγ in lung carcinogenesis and highlight the challenges of targeting PPARγ in lung cancer treatments.
Collapse
|
439
|
Chen Q, Massagué J. Molecular pathways: VCAM-1 as a potential therapeutic target in metastasis. Clin Cancer Res 2012; 18:5520-5. [PMID: 22879387 DOI: 10.1158/1078-0432.ccr-11-2904] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Interactions between disseminated tumor cells (DTC) and stromal cells in the microenvironment are critical for tumor colonization of distal organs. Recent studies have shown that vascular cell adhesion molecule-1 (VCAM-1) is aberrantly expressed in breast cancer cells and mediates prometastatic tumor-stromal interactions. Moreover, the usefulness of VCAM-1 to DTCs in 2 different organs--lung and bone--is based on distinct mechanisms. In the lungs, VCAM-1 on the surface of cancer cells binds to its counterreceptor, the α4β1 integrin (also known as very-late antigen, VLA-4), on metastasis-associated macrophages, triggering VCAM-1-mediated activation of the phosphoinositide 3-kinase growth and survival pathway in the cancer cells. In the bone marrow, cancer cell VCAM-1 attracts and tethers α4 integrin-expressing osteoclast progenitors to facilitate their maturation into multinucleated osteoclasts that mediate osteolytic metastasis. These findings highlight the importance of direct interactions between DTCs and stromal cells during tumor dissemination and draw attention to the possibility of targeting the α4 integrin-VCAM-1 interactions in metastatic breast cancer. Anti-α4 integrin inhibitors have been developed to treat various diseases driven by massive leukocyte infiltrates and have gained U.S. Food and Drug Administration approval or are undergoing clinical trials. Testing these drugs against tumor-stromal leukocyte interactions may provide a new strategy to suppress lung and bone relapse of breast cancer.
Collapse
Affiliation(s)
- Qing Chen
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | | |
Collapse
|
440
|
The role of osteoclasts and tumour-associated macrophages in osteosarcoma metastasis. Biochim Biophys Acta Rev Cancer 2012; 1826:434-42. [PMID: 22846337 DOI: 10.1016/j.bbcan.2012.07.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 07/17/2012] [Accepted: 07/19/2012] [Indexed: 02/04/2023]
Abstract
Osteosarcoma (OS) is the most common primary bone tumour in the paediatric age group. Treatment-refractory pulmonary metastasis continues to be the major complication of OS, reducing the 5-year survival rate for these patients to 10-20%. The mechanisms underlying the metastatic process in OS are still unclear, but undoubtedly, a greater understanding of the factors and interactions involved in its regulation will open new and much needed opportunities for therapeutic intervention. Recent published data have identified a new role for bone-specific macrophages (osteoclasts) and tumour-associated macrophages (TAMs), in OS metastasis. In this review we discuss the contribution of TAMs and osteoclasts in the establishment and maintenance of secondary metastatic lesions, and their novel role in the prevention of metastatic disease in a primary bone cancer such as osteosarcoma.
Collapse
|
441
|
Castells M, Thibault B, Mery E, Golzio M, Pasquet M, Hennebelle I, Bourin P, Mirshahi M, Delord JP, Querleu D, Couderc B. Ovarian ascites-derived Hospicells promote angiogenesis via activation of macrophages. Cancer Lett 2012; 326:59-68. [PMID: 22824244 DOI: 10.1016/j.canlet.2012.07.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 06/15/2012] [Accepted: 07/16/2012] [Indexed: 12/31/2022]
Abstract
Within the microenvironment, Carcinoma-associated mesenchymal stem cells (Hospicells) are able to influence ovarian tumor development via, among others, the facilitation of angiogenesis in the tumor site allowing an accelerated tumor growth. We demonstrate the presence of a chemotactism between endothelial cells and Hospicells, and a cell line specific increased secretion of pro-angiogenic cytokines such as IL-6, IL-8 and VEGF from ovarian adenocarcinoma cells. Hospicells are also able to attract and activate macrophages to a M2 phenotype and allow them to secrete a huge quantity of pro-angiogenic cytokines, favorable to tumor progression of all the associated ovarian adenocarcinoma cells tested.
Collapse
|
442
|
Abstract
Recent studies on breast cancer lung metastasis have identified a new mechanism of tumor cell survival via signaling provided by metastasis-associated macrophages. Targeting these specialized host immune cells and their specific signals provides an attractive and potential therapeutic approach for treating the disease.
Collapse
|
443
|
Crittenden MR, Cottam B, Savage T, Nguyen C, Newell P, Gough MJ. Expression of NF-κB p50 in tumor stroma limits the control of tumors by radiation therapy. PLoS One 2012; 7:e39295. [PMID: 22761754 PMCID: PMC3386283 DOI: 10.1371/journal.pone.0039295] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 05/22/2012] [Indexed: 01/01/2023] Open
Abstract
Radiation therapy aims to kill cancer cells with a minimum of normal tissue toxicity. Dying cancer cells have been proposed to be a source of tumor antigens and may release endogenous immune adjuvants into the tumor environment. For these reasons, radiation therapy may be an effective modality to initiate new anti-tumor adaptive immune responses that can target residual disease and distant metastases. However, tumors engender an environment dominated by M2 differentiated tumor macrophages that support tumor invasion, metastases and escape from immune control. In this study, we demonstrate that following radiation therapy of tumors in mice, there is an influx of tumor macrophages that ultimately polarize towards immune suppression. We demonstrate using in vitro models that this polarization is mediated by transcriptional regulation by NFκB p50, and that in mice lacking NFκB p50, radiation therapy is more effective. We propose that despite the opportunity for increased antigen-specific adaptive immune responses, the intrinsic processes of repair following radiation therapy may limit the ability to control residual disease.
Collapse
Affiliation(s)
- Marka R. Crittenden
- Earle A. Chiles Research Institute, Providence Portland Medical Center, Portland, Oregon, United States of America
- The Oregon Clinic, Portland, Oregon, United States of America
| | - Benjamin Cottam
- Earle A. Chiles Research Institute, Providence Portland Medical Center, Portland, Oregon, United States of America
| | - Talicia Savage
- Earle A. Chiles Research Institute, Providence Portland Medical Center, Portland, Oregon, United States of America
| | - Cynthia Nguyen
- Earle A. Chiles Research Institute, Providence Portland Medical Center, Portland, Oregon, United States of America
| | - Pippa Newell
- Providence Hepatobiliary and Pancreatic Cancer Program, Providence Portland Medical Center, Portland, Oregon, United States of America
| | - Michael J. Gough
- Earle A. Chiles Research Institute, Providence Portland Medical Center, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
444
|
Letonqueze O, Lee J, Vasudevan S. MicroRNA-mediated posttranscriptional mechanisms of gene expression in proliferating and quiescent cancer cells. RNA Biol 2012; 9:871-80. [PMID: 22699554 DOI: 10.4161/rna.20806] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs are small non-coding RNA regulators of gene expression that play important roles in critical biological processes, including cell division, self-renewal and cell state maintenance. Their deregulation leads to extensive clinical consequences in tumorigenesis. Cancers demonstrate heterogeneity in their cell states implicated in their resistance and resurgence. Apart from proliferating cells, cancers harbor a small proportion of assorted quiescent cells that resist conventional therapeutics and contribute to cancer recurrence. MicroRNA expression, targets, microRNPs (microRNA-protein complexes) and their functions have been demonstrated to be regulated in distinct tumor cell states and as an adaptive response to stress signals in tumor-unfavorable environments. In turn, altered microRNPs and their modified post-transcriptional mechanisms of gene expression may contribute to tumor resistance and influence tumor progression. An understanding of distinct microRNA mechanisms in cancer cells would provide extensive insights into the versatile roles of microRNAs in the perpetuation of tumors and indicate potential therapeutic avenues.
Collapse
Affiliation(s)
- Olivier Letonqueze
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
445
|
de Vries M, Hogendoorn PCW, Briaire-de Bruyn I, Malessy MJA, van der Mey AGL. Intratumoral hemorrhage, vessel density, and the inflammatory reaction contribute to volume increase of sporadic vestibular schwannomas. Virchows Arch 2012; 460:629-36. [PMID: 22555941 PMCID: PMC3371334 DOI: 10.1007/s00428-012-1236-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 03/06/2012] [Accepted: 04/02/2012] [Indexed: 12/16/2022]
Abstract
Vestibular schwannomas show a large variation in growth rate, making prediction and anticipation of tumor growth difficult. More accurate prediction of clinical behavior requires better understanding of tumor biological factors influencing tumor progression. Biological processes like intratumoral hemorrhage, cell proliferation, microvessel density, and inflammation were analyzed in order to determine their role in vestibular schwannoma development. Tumor specimens of 67 patients surgically treated for a histologically proven unilateral vestibular schwannoma were studied. Preoperative magnetic resonance imaging (MRI) scans were used to determine tumor size and to classify tumors as homogeneous, inhomogeneous, and cystic. Immunohistochemical studies evaluated cell proliferation (histone H3 and Ki-67), microvessel density (CD31), and inflammation (CD45 and CD68). Intratumoral hemorrhage was assessed by hemosiderin deposition. The expression patterns of these markers were compared with tumor size, tumor growth index, MRI appearance, patients’ age, and duration of symptoms. No relation between cell proliferation and clinical signs of tumor volume increase or MRI appearance was found. Intratumoral hemosiderin, microvessel density, and inflammation were significantly positively correlated with tumor size and the tumor growth index. Cystic and inhomogeneous tumors showed significantly more hemosiderin deposition than homogeneous tumors. The microvessel density was significantly higher in tumors with a high number of CD68-positive cells. The volume increase of vestibular schwannomas is not based on cell proliferation alone. Factors like intratumoral bleeding, (neo)vascularization, and intensity of the inflammatory reaction also influence tumor volume.
Collapse
Affiliation(s)
- Maurits de Vries
- Department of Otolaryngology, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
446
|
Morgenstern DA, Anderson J. Inflammation: what role in pediatric cancer? Pediatr Blood Cancer 2012; 58:659-64. [PMID: 22162439 DOI: 10.1002/pbc.24008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 10/24/2011] [Indexed: 01/22/2023]
Abstract
There is growing evidence for the importance of chronic inflammation in the pathogenesis of adult cancers and for an ongoing role of the inflammatory response in tumor growth and metastasis. Here, we examine how these processes relate to pediatric malignancies. While it is unlikely that chronic inflammation plays a significant role in driving malignant progression in childhood tumors that typically have developmental origins, the inflammatory response does appear to play an important role in the development and progression of many types of childhood cancer. An enhanced understanding of these processes will be of critical importance in developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Daniel A Morgenstern
- Molecular Haematology and Cancer Biology Unit, Institute of Child Health, London, UK.
| | | |
Collapse
|
447
|
Gibby K, You WK, Kadoya K, Helgadottir H, Young LJ, Ellies LG, Chang Y, Cardiff RD, Stallcup WB. Early vascular deficits are correlated with delayed mammary tumorigenesis in the MMTV-PyMT transgenic mouse following genetic ablation of the NG2 proteoglycan. Breast Cancer Res 2012; 14:R67. [PMID: 22531600 PMCID: PMC3446402 DOI: 10.1186/bcr3174] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 03/16/2012] [Accepted: 03/24/2012] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION The neuron-glial antigen 2 (NG2) proteoglycan promotes pericyte recruitment and mediates pericyte interaction with endothelial cells. In the absence of NG2, blood vessel development is negatively impacted in several pathological models. Our goal in this study was to determine the effect of NG2 ablation on the early development and function of blood vessels in mammary tumors in the mammary tumor virus-driven polyoma middle T (MMTV-PyMT) transgenic mouse, and to correlate these vascular changes with alterations in mammary tumor growth. METHODS Three different tumor paradigms (spontaneous tumors, transplanted tumors, and orthotopic allografts of tumor cell lines) were used to investigate the effects of NG2 ablation on breast cancer progression in the MMTV-PyMT transgenic mouse. In addition to examining effects of NG2 ablation on mammary tumor growth, we also investigated effects on the structure and function of tumor vasculature. RESULTS Ablation of NG2 led to reduced early progression of spontaneous, transplanted, and orthotopic allograft mammary tumors. NG2 was not expressed by the mammary tumor cells themselves, but instead was found on three components of the tumor stroma. Microvascular pericytes, myeloid cells, and adipocytes were NG2-positive in both mouse and human mammary tumor stroma. The effect of NG2 on tumor progression therefore must be stromal in nature. Ablation of NG2 had several negative effects on early development of the mammary tumor vasculature. In the absence of NG2, pericyte ensheathment of endothelial cells was reduced, along with reduced pericyte maturation, reduced sprouting of endothelial cells, reduced assembly of the vascular basal lamina, and reduced tumor vessel diameter. These early deficits in vessel structure are accompanied by increased vessel leakiness, increased tumor hypoxia, and decreased tumor growth. NG2 ablation also diminishes the number of tumor-associated and TEK tyrosine kinase endothelial (Tie2) expressing macrophages in mammary tumors, providing another possible mechanism for reducing tumor vascularization and growth. CONCLUSIONS These results emphasize the importance of NG2 in mediating pericyte/endothelial cell communication that is required for proper vessel maturation and function. In the absence of normal pericyte/endothelial cell interaction, poor vascular function results in diminished early progression of mammary tumors.
Collapse
Affiliation(s)
- Krissa Gibby
- Cancer Center, Tumor Microenvironment Program, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037 USA
| | | | | | | | | | | | | | | | | |
Collapse
|
448
|
Bao B, Thakur A, Li Y, Ahmad A, Azmi AS, Banerjee S, Kong D, Ali S, Lum LG, Sarkar FH. The immunological contribution of NF-κB within the tumor microenvironment: a potential protective role of zinc as an anti-tumor agent. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1825:160-72. [PMID: 22155217 PMCID: PMC3811120 DOI: 10.1016/j.bbcan.2011.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 11/14/2011] [Accepted: 11/19/2011] [Indexed: 12/16/2022]
Abstract
Over decades, cancer treatment has been mainly focused on targeting cancer cells and not much attention to host tumor microenvironment. Recent advances suggest that the tumor microenvironment requires in-depth investigation for understanding the interactions between tumor cell biology and immunobiology in order to optimize therapeutic approaches. Tumor microenvironment consists of cancer cells and tumor associated reactive fibroblasts, infiltrating non-cancer cells, secreted soluble factors or molecules, and non-cellular support materials. Tumor associated host immune cells such as Th(1), Th(2), Th17, regulatory cells, dendritic cells, macrophages, and myeloid-derived suppressor cells are major components of the tumor microenvironment. Accumulating evidence suggests that these tumor associated immune cells may play important roles in cancer development and progression. However, the exact functions of these cells in the tumor microenvironment are poorly understood. In the tumor microenvironment, NF-κB plays an important role in cancer development and progression because this is a major transcription factor which regulates immune functions within the tumor microenvironment. In this review, we will focus our discussion on the immunological contribution of NF-κB in tumor associated host immune cells within the tumor microenvironment. We will also discuss the potential protective role of zinc, a well-known immune response mediator, in the regulation of these immune cells and cancer cells in the tumor microenvironment especially because zinc could be useful for conditioning the tumor microenvironment toward innovative cancer therapy.
Collapse
Affiliation(s)
- Bin Bao
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Archana Thakur
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Yiwei Li
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Aamir Ahmad
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Asfar S. Azmi
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Sanjeev Banerjee
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Dejuan Kong
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Shadan Ali
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Lawrence G. Lum
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
- Department of Immunology and Microbiology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Fazlul H. Sarkar
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| |
Collapse
|
449
|
Gil-Bernabé AM, Ferjancic S, Tlalka M, Zhao L, Allen PD, Im JH, Watson K, Hill SA, Amirkhosravi A, Francis JL, Pollard JW, Ruf W, Muschel RJ. Recruitment of monocytes/macrophages by tissue factor-mediated coagulation is essential for metastatic cell survival and premetastatic niche establishment in mice. Blood 2012; 119:3164-3175. [PMID: 22327225 DOI: 10.1182/blood-2011-08-376426] [Citation(s) in RCA: 259] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tissue factor (TF) expression by tumor cells correlates with metastasis clinically and supports metastasis in experimental settings. However, the precise pathways coupling TF to malignancy remain incompletely defined. Here, we show that clot formation by TF indirectly enhances tumor cell survival after arrest in the lung, during experimental lung metastasis, by recruiting macrophages characterized by CD11b, CD68, F4/80, and CX(3)CR1 (but not CD11c) expression. Genetic or pharmacologic inhibition of coagulation, by either induction of TF pathway inhibitor ex-pression or by treatment with hirudin, respectively, abrogated macrophage recruitment and tumor cell survival. Furthermore, impairment of macrophage function, in either Mac1-deficient mice or in CD11b-diphtheria toxin receptor mice in which CD11b-positive cells were ablated, decreased tumor cell survival without altering clot formation, demonstrating that the recruitment of functional macrophages was essential for tumor cell survival. This effect was independent of NK cells. Moreover, a similar population of macrophages was also recruited to the lung during the formation of a premetastatic niche. Anticoagulation inhibited their accumulation and prevented the enhanced metastasis associated with the formation of the niche. Our study, for the first time, links TF induced coagulation to macrophage recruitment in the metastatic process.
Collapse
Affiliation(s)
- Ana M Gil-Bernabé
- Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
450
|
Szomolay B, Eubank TD, Roberts RD, Marsh CB, Friedman A. Modeling the inhibition of breast cancer growth by GM-CSF. J Theor Biol 2012; 303:141-51. [PMID: 22763136 DOI: 10.1016/j.jtbi.2012.03.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 12/30/2011] [Accepted: 03/18/2012] [Indexed: 12/23/2022]
Abstract
M-CSF is overexpressed in breast cancer and is known to stimulate macrophages to produce VEGF resulting in angiogenesis. It has recently been shown that the growth factor GM-CSF injected into murine breast tumors slowed tumor growth by secreting soluble VEGF receptor-1 (sVEGFR-1) that binds and inactivates VEGF. This study presents a mathematical model that includes all the components above, as well as MCP-1, tumor cells, and oxygen. The model simulations are representative of the in vivo data through predictions of tumor growth using different protocol strategies for GM-CSF for the purpose of predicting higher degrees of treatment success. For example, our model predicts that once a week dosing of GM-CSF would be less effective than daily, twice a week, or three times a week treatment because of the presence of essential factors required for the anti-tumor effect of GM-CSF.
Collapse
Affiliation(s)
- Barbara Szomolay
- Mathematical Biosciences Institute, The Ohio State University, USA.
| | | | | | | | | |
Collapse
|