401
|
Monaco A, Michelin O, Prior J, Rüegg C, Scapozza L, Seimbille Y. Synthesis of a non-peptidic PET tracer designed forα5β1integrin receptor. J Labelled Comp Radiopharm 2014; 57:365-70. [DOI: 10.1002/jlcr.3190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 01/16/2014] [Accepted: 01/23/2014] [Indexed: 01/21/2023]
Affiliation(s)
- Alessandra Monaco
- Cyclotron Unit; University Hospital of Geneva; Rue Gabrielle Perret-Gentil 4 1211 Geneva Switzerland
- School of Pharmaceutical Sciences; University of Geneva and University of Lausanne; Quai Ernest Ansermet 30 1211 Geneva Switzerland
| | - Olivier Michelin
- Swiss Institute of Bioinformatics; University of Lausanne; Quartier Sorge 1015 Lausanne Switzerland
| | - John Prior
- CHUV; Department of Nuclear Medicine; Rue du Bugnon 46 1011 Lausanne Switzerland
| | - Curzio Rüegg
- Faculty of Science, Department of Medicine; University of Fribourg; Ch. du Musée 8 1700 Fribourg Switzerland
| | - Leonardo Scapozza
- School of Pharmaceutical Sciences; University of Geneva and University of Lausanne; Quai Ernest Ansermet 30 1211 Geneva Switzerland
| | - Yann Seimbille
- Cyclotron Unit; University Hospital of Geneva; Rue Gabrielle Perret-Gentil 4 1211 Geneva Switzerland
- School of Pharmaceutical Sciences; University of Geneva and University of Lausanne; Quai Ernest Ansermet 30 1211 Geneva Switzerland
| |
Collapse
|
402
|
Sheldrake HM, Patterson LH. Strategies to inhibit tumor associated integrin receptors: rationale for dual and multi-antagonists. J Med Chem 2014; 57:6301-15. [PMID: 24568695 DOI: 10.1021/jm5000547] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The integrins are a family of 24 heterodimeric transmembrane cell surface receptors. Involvement in cell attachment to the extracellular matrix, motility, and proliferation identifies integrins as therapeutic targets in cancer and associated conditions: thrombosis, angiogenesis, and osteoporosis. The most reported strategy for drug development is synthesis of an agent that is highly selective for a single integrin receptor. However, the ability of cancer cells to change their integrin repertoire in response to drug treatment renders this approach vulnerable to the development of resistance and paradoxical promotion of tumor growth. Here, we review progress toward development of antagonists targeting two or more members of the Arg-Gly-Asp (RGD) binding integrins, notably αvβ3, αvβ5, αvβ6, αvβ8, α5β1, and αIIbβ3, as anticancer therapeutics.
Collapse
Affiliation(s)
- Helen M Sheldrake
- Institute of Cancer Therapeutics, University of Bradford , Bradford, BD7 1DP, U.K
| | | |
Collapse
|
403
|
Westhoff MA, Brühl O, Nonnenmacher L, Karpel-Massler G, Debatin KM. Killing me softly--future challenges in apoptosis research. Int J Mol Sci 2014; 15:3746-67. [PMID: 24595238 PMCID: PMC3975365 DOI: 10.3390/ijms15033746] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 02/10/2014] [Accepted: 02/19/2014] [Indexed: 12/28/2022] Open
Abstract
The induction of apoptosis, a highly regulated and clearly defined mode of cell dying, is a vital tenet of modern cancer therapy. In this review we focus on three aspects of apoptosis research which we believe are the most crucial and most exciting areas currently investigated and that will need to be better understood in order to enhance the efficacy of therapeutic measures. First, we discuss which target to select for cancer therapy and argue that not the cancer cell as such, but its interaction with the microenvironment is a more promising and genetically stable site of attack. Second, the complexity of combination therapy is elucidated using the PI3-K-mediated signaling network as a specific example. Here we show that the current clinical approach to sensitize malignancies to apoptosis by maximal, prolonged inhibition of so-called survival pathways can actually be counter productive. Third, we propose that under certain conditions which will need to be clearly defined in future, chronification of a tumor might be preferable to the attempt at a cure. Finally, we discuss further problems with utilizing apoptosis induction in cancer therapy and propose a novel potential therapeutic approach that combines the previously discussed features.
Collapse
Affiliation(s)
- Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm 89075, Germany.
| | - Oliver Brühl
- Laboratorio Analisi Sicilia Catania, Lentini (SR) 96016, Italy.
| | - Lisa Nonnenmacher
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm 89075, Germany.
| | | | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm 89075, Germany.
| |
Collapse
|
404
|
Vermorken JB, Peyrade F, Krauss J, Mesía R, Remenar E, Gauler TC, Keilholz U, Delord JP, Schafhausen P, Erfán J, Brümmendorf TH, Iglesias L, Bethe U, Hicking C, Clement PM. Cisplatin, 5-fluorouracil, and cetuximab (PFE) with or without cilengitide in recurrent/metastatic squamous cell carcinoma of the head and neck: results of the randomized phase I/II ADVANTAGE trial (phase II part). Ann Oncol 2014; 25:682-688. [PMID: 24567516 PMCID: PMC3933250 DOI: 10.1093/annonc/mdu003] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 12/23/2013] [Accepted: 12/31/2013] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Recurrent and/or metastatic squamous cell carcinoma of the head and neck (R/M-SCCHN) overexpresses αvβ5 integrin. Cilengitide selectively inhibits αvβ3 and αvβ5 integrins and is investigated as a treatment strategy. PATIENTS AND METHODS The phase I/II study ADVANTAGE evaluated cilengitide combined with cisplatin, 5-fluorouracil, and cetuximab (PFE) in R/M-SCCHN. The phase II part reported here was an open-label, randomized, controlled trial investigating progression-free survival (PFS). Patients received up to six cycles of PFE alone or combined with cilengitide 2000 mg once (CIL1W) or twice (CIL2W) weekly. Thereafter, patients received maintenance therapy (cilengitide arms: cilengitide plus cetuximab; PFE-alone arm: cetuximab only) until disease progression or unacceptable toxicity. RESULTS One hundred and eighty-two patients were treated. Median PFS per investigator read was similar for CIL1W + PFE, CIL2W + PFE, and PFE alone (6.4, 5.6, and 5.7 months, respectively). Accordingly, median overall survival and objective response rates were not improved with cilengitide (12.4 months/47%, 10.6 months/27%, and 11.6 months/36%, respectively). No clinically meaningful safety differences were observed between groups. None of the tested biomarkers (expression of integrins, CD31, Ki-67, vascular endothelial growth factor receptor 2, vascular endothelial-cadherin, type IV collagen, epidermal growth factor receptor, or p16 for human papillomavirus) were predictive of outcome. CONCLUSION Neither of the cilengitide-containing regimens demonstrated a PFS benefit over PFE alone in R/M-SCCHN patients.
Collapse
Affiliation(s)
- J B Vermorken
- Department of Medical Oncology, Antwerp University Hospital, Edegem, Belgium.
| | - F Peyrade
- Medical Oncology Service, Center Antoine Lacassagne, Nice, France
| | - J Krauss
- Medical Oncology, National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - R Mesía
- Medical Oncology Service, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain
| | - E Remenar
- Head and Neck Surgery, National Oncology Institute, Budapest, Hungary
| | - T C Gauler
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen
| | - U Keilholz
- Department of Hematology and Medical Oncology, Charité Campus Benjamin Franklin, Berlin, Germany
| | - J P Delord
- Clinical Research Unit, Institute Claudius Regaud, Toulouse, France
| | - P Schafhausen
- II Medical Clinic and Polyclinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - J Erfán
- Onco-radiology, Jósa András Teaching Hospital, Nyíregyháza, Hungary
| | - T H Brümmendorf
- Department of Hematology and Oncology, University Hospital of the RWTH Aachen, Aachen, Germany
| | - L Iglesias
- Lung and Head and Neck Cancer Unit, Hospital 12 de Octubre, Madrid, Spain
| | - U Bethe
- Merck KGaA, Darmstadt, Germany
| | | | - P M Clement
- Department of Oncology, KU Leuven, Leuven, Belgium
| |
Collapse
|
405
|
Bettum IJ, Vasiliauskaite K, Nygaard V, Clancy T, Pettersen SJ, Tenstad E, Mælandsmo GM, Prasmickaite L. Metastasis-associated protein S100A4 induces a network of inflammatory cytokines that activate stromal cells to acquire pro-tumorigenic properties. Cancer Lett 2014; 344:28-39. [DOI: 10.1016/j.canlet.2013.10.036] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 10/09/2013] [Accepted: 10/11/2013] [Indexed: 12/26/2022]
|
406
|
Wang JT, Liu Y, Kan X, Liu M, Lu JG. Cilengitide, a small molecule antagonist, targeted to integrin αν inhibits proliferation and induces apoptosis of laryngeal cancer cells in vitro. Eur Arch Otorhinolaryngol 2014; 271:2233-40. [PMID: 24515920 DOI: 10.1007/s00405-014-2918-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 01/24/2014] [Indexed: 10/25/2022]
Abstract
Cilengitide is a chemical synthesis cyclopeptide containing RGD sequence, which can be used as a small molecule antagonist targeted to integrin αν (ITGAV). The aim of present study was to investigate the effect on proliferation and cell apoptosis of the cilengitide in laryngeal cancer cells. In the study, we have treatmented the cultured cells of laryngeal cancer (Hep-2) with cilengitide. After the medication, the proliferation of the Hep-2 cells was detected by MTT assay, the expression of ITGAV was detected by RT-PCR and the activity of caspase-3 protein was detected by a specialized kit. RGD linear peptides (GRGDSP), non-RGD linear peptide (GRGESP), and 5-fluorouracil (5-Fu) were used as controls. Results showed that the proliferation of Hep-2 cells was signally inhibited by the cilengitide with a time and dose compliance. Its inhibition effect was significantly higher than that of 5-Fu and GRGDSP, but the GRGESP showed no obvious inhibitory effect. After intervene of cilengitide, the activity of caspase-3 protein of Hep-2 cells was significantly increased, and the expression of ITGAV was significantly decreased. 5-Fu significantly inhibited the proliferation of Hep-2 cells, but no significant changes of ITGAV expression were observed. In conclusion, cilengitide can significantly down-regulate ITGAV expression and inhibit cell proliferation in laryngeal cancer cells, it will also to induce cell apoptosis through caspase-3 pathway. Therefore, it could be as a kind of effective chemotherapy drugs that will be used in clinical treatment of the laryngeal cancer.
Collapse
Affiliation(s)
- Jing Ting Wang
- Department of Otolaryngology/Head and Neck Surgery, Second Affiliated Hospital of Harbin Medical University, No. 246, Xue Fu Road, Harbin City, 150081, People's Republic of China
| | | | | | | | | |
Collapse
|
407
|
Pallarola D, Bochen A, Boehm H, Rechenmacher F, Sobahi TR, Spatz JP, Kessler H. Interface Immobilization Chemistry of cRGD-based Peptides Regulates Integrin Mediated Cell Adhesion. ADVANCED FUNCTIONAL MATERIALS 2014; 24:943-956. [PMID: 25810710 PMCID: PMC4368046 DOI: 10.1002/adfm.201302411] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 08/28/2013] [Indexed: 05/29/2023]
Abstract
The interaction of specific surface receptors of the integrin family with different extracellular matrix-based ligands is of utmost importance for the cellular adhesion process. A ligand consists of an integrin-binding group, here cyclic RGDfX, a spacer molecule that lifts the integrin-binding group from the surface and a surface anchoring group. c(-RGDfX-) peptides are bound to gold nanoparticle structured surfaces via polyproline, polyethylene glycol or aminohexanoic acid containing spacers of different lengths. Although keeping the integrin-binding c(-RGDfX-) peptides constant for all compounds, changes of the ligand's spacer chemistry and length reveal significant differences in cell adhesion activation and focal adhesion formation. Polyproline-based peptides demonstrate improved cell adhesion kinetics and focal adhesion formation compared with common aminohexanoic acid or polyethylene glycol spacers. Binding activity can additionally be improved by applying ligands with two head groups, inducing a multimeric effect. This study gives insights into spacer-based differences in integrin-driven cell adhesion processes and remarkably highlights the polyproline-based spacers as suitable ligand-presenting templates for surface functionalization.
Collapse
Affiliation(s)
- Diego Pallarola
- Department of New Materials and Biosystems, Max Planck Institute for intelligent Systems Heisenbergstr. 3, 70569, Stuttgart, Germany ; Department of Biophysical Chemistry, University of Heidelberg 69120, Heidelberg, Germany
| | - Alexander Bochen
- Institute for Advanced Study and Center for Integrated Protein Science Department Chemie, Technische Universität München Lichtenbergstr. 4, 85747, Garching, Germany
| | - Heike Boehm
- Department of New Materials and Biosystems, Max Planck Institute for intelligent Systems Heisenbergstr. 3, 70569, Stuttgart, Germany ; Department of Biophysical Chemistry, University of Heidelberg 69120, Heidelberg, Germany ; CSF Biomaterials and Cellular Biophysics, Max Planck Institute for Intelligent Systems Heisenbergstr. 3, 70569, Stuttgart, Germany
| | - Florian Rechenmacher
- Institute for Advanced Study and Center for Integrated Protein Science Department Chemie, Technische Universität München Lichtenbergstr. 4, 85747, Garching, Germany
| | - Tariq R Sobahi
- Chemistry Department Faculty of Science, King Abdulaziz University P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Joachim P Spatz
- Department of New Materials and Biosystems, Max Planck Institute for intelligent Systems Heisenbergstr. 3, 70569, Stuttgart, Germany
| | - Horst Kessler
- Institute for Advanced Study and Center for Integrated Protein Science Department Chemie, Technische Universität München Lichtenbergstr. 4, 85747, Garching, Germany ; Chemistry Department Faculty of Science, King Abdulaziz University P.O. Box 80203, Jeddah 21589, Saudi Arabia
| |
Collapse
|
408
|
Suppression of tumour growth by orally administered osteopontin is accompanied by alterations in tumour blood vessels. Br J Cancer 2014; 110:1269-77. [PMID: 24473400 PMCID: PMC3950862 DOI: 10.1038/bjc.2014.10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 12/11/2013] [Accepted: 12/13/2013] [Indexed: 12/16/2022] Open
Abstract
Background: The integrin-binding protein osteopontin is strongly associated with tumour development, yet is an abundant dietary component as a constituent of human and bovine milk. Therefore, we tested the effect of orally administered osteopontin (o-OPN) on the development of subcutaneous tumours in mice. Methods: Bovine milk osteopontin was administered in drinking water to tumour-bearing immune-competent mice. Tumour growth, proliferation, necrosis, apoptosis and blood vessel size and number were measured. Expression of the α9 integrin was determined. Results: o-OPN suppressed tumour growth, increased the extent of necrosis, and induced formation of abnormally large blood vessels. Anti-OPN reactivity detected in the plasma of OPN-null mice fed OPN suggested that tumour-blocking peptides were absorbed during digestion, but the o-OPN effect was likely distinct from that of an RGD peptide. Expression of the α9 integrin was detected on both tumour cells and blood vessels. Potential active peptides from the α9 binding site of OPN were identified by mass spectrometry following in vitro digestion, and injection of these peptides suppressed tumour growth. Conclusions: These results suggest that peptides derived from o-OPN are absorbed and interfere with tumour growth and normal vessel development. o-OPN-derived peptides that target the α9 integrin are likely involved.
Collapse
|
409
|
Terry SYA, Abiraj K, Frielink C, van Dijk LK, Bussink J, Oyen WJ, Boerman OC. Imaging integrin αvβ3 on blood vessels with 111In-RGD2 in head and neck tumor xenografts. J Nucl Med 2014; 55:281-6. [PMID: 24408894 DOI: 10.2967/jnumed.113.129668] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
UNLABELLED Arginine-glycine-aspartic acid (RGD)-based imaging tracers allow specific imaging of integrin αvβ3, a protein overexpressed during angiogenesis, leading to the possibility that it might serve as a tool to stratify patients for antiangiogenic treatment. However, these tracers have generally been characterized in xenograft models in which integrin αvβ3 was constitutively expressed by the tumor cells themselves. In the studies presented here, the use of (111)In-RGD2 as a tracer to image only integrin αvβ3 expression on blood vessels in the tumor was determined using tumor xenografts in which tumor cells were integrin αvβ3-negative. METHODS DOTA-E-[c(RGDfK)]2 was radiolabeled with (111)In ((111)In-RGD2), and biodistribution studies were performed in squamous cell carcinoma of the head and neck (HNSCC) xenograft mouse models to determine the optimal peptide dose to image angiogenesis. Next, biodistribution and imaging studies were performed at the optimal peptide dose in 3 HNSCC mouse models, FaDu, SCCNij3, and SCCNij202. Immunohistochemical analysis of tumor vascular and cell surface expression of integrin αvβ3 and correlation analysis of vascular integrin αvβ3 and autoradiography were completed. RESULTS All 3 HNSCC xenografts expressed integrin αvβ3 on the vessels only. The optimal peptide dose of (111)In-RGD2 was 1 μg or less for specific integrin αvβ3-mediated uptake of the tracer. SPECT/CT imaging showed clear uptake of the tracer in the periphery of the tumors, corresponding with well-vascularized areas of the tumor. Within the tumor, (111)In-RGD2 autoradiography coincided with vascular integrin αvβ3 expression, as determined immunohistochemically. Integrin αvβ3-mediated uptake was also detected in nontumor tissues, which, through immunohistochemical analysis, proved positive for integrin αvβ3. CONCLUSION (111)In-RGD2 allows the visualization of integrin αvβ3 in xenograft models in which integrin αvβ3 is expressed only on the neovasculature, such as in the HNSCC tumors. Thus, (111)In-RGD2 allows specific visualization of angiogenesis in tumor models lacking constitutive tumoral integrin αvβ3 expression but may be less useful for this purpose in many tumors in which tumor cells express integrin αvβ3.
Collapse
|
410
|
Conibear AC, Bochen A, Rosengren KJ, Stupar P, Wang C, Kessler H, Craik DJ. The Cyclic Cystine Ladder of Theta-Defensins as a Stable, Bifunctional Scaffold: A Proof-of-Concept Study Using the Integrin-Binding RGD Motif. Chembiochem 2014; 15:451-9. [DOI: 10.1002/cbic.201300568] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Indexed: 11/06/2022]
|
411
|
Novel strategies for the treatment of chondrosarcomas: targeting integrins. BIOMED RESEARCH INTERNATIONAL 2013; 2013:396839. [PMID: 24490159 PMCID: PMC3893802 DOI: 10.1155/2013/396839] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/09/2013] [Indexed: 12/29/2022]
Abstract
Chondrosarcomas are a heterogeneous group of malignant bone tumors that are characterized by the production of cartilaginous extracellular matrix. They are the second most frequently occurring type of bone malignancy. Surgical resection remains the primary mode of treatment for chondrosarcomas, since conventional chemotherapy and radiotherapy are largely ineffective. Treatment of patients with high-grade chondrosarcomas is particularly challenging, owing to the lack of effective adjuvant therapies. Integrins are cell surface adhesion molecules that regulate a variety of cellular functions. They have been implicated in the initiation, progression, and metastasis of solid tumors. Deregulation of integrin expression and/or signaling has been identified in many chondrosarcomas. Therefore, the development of new drugs that can selectively target regulators of integrin gene expression and ligand-integrin signaling might hold great promise for the treatment of these cancers. In this review, we provide an overview of the current understanding of how growth factors, chemokines/cytokines, and other inflammation-related molecules can control the expression of specific integrins to promote cell migration. We also review the roles of specific subtypes of integrins and their signaling mechanisms, and discuss how these might be involved in tumor growth and metastasis. Finally, novel therapeutic strategies for targeting these molecules will be discussed.
Collapse
|
412
|
Fernández-Llamazares AI, Adan J, Mitjans F, Spengler J, Albericio F. Tackling Lipophilicity of Peptide Drugs: Replacement of the Backbone N-Methyl Group of Cilengitide by N-Oligoethylene Glycol (N-OEG) Chains. Bioconjug Chem 2013; 25:11-7. [DOI: 10.1021/bc4003844] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | | | - Fernando Albericio
- Department
of Organic Chemistry, University of Barcelona, Martí i Franqués 1-11, 08028 Barcelona, Spain
- School of Chemistry & Physics, University of KwaZulua-Natal, 4001 Durban, South Africa
| |
Collapse
|
413
|
Pu KMT, Sava P, Gonzalez AL. Microvascular targets for anti-fibrotic therapeutics. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2013; 86:537-54. [PMID: 24348218 PMCID: PMC3848109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Fibrosis is characterized by excessive extracellular matrix deposition and is the pathological outcome of repetitive tissue injury in many disorders. The accumulation of matrix disrupts the structure and function of the native tissue and can affect multiple organs including the lungs, heart, liver, and skin. Unfortunately, current therapies against the deadliest and most common fibrosis are ineffective. The pathogenesis of fibrosis is the result of aberrant wound healing, therefore, the microvasculature plays an important role, contributing through regulation of leukocyte recruitment, inflammation, and angiogenesis. Further exacerbating the condition, microvascular endothelial cells and pericytes can transdifferentiate into matrix depositing myofibroblasts. The contribution of the microvasculature to fibrotic progression makes its cellular components and acellular products attractive therapeutic targets. In this review, we examine many of the cytokine, matrix, and cellular microvascular components involved in fibrosis and discuss their potential as targets for fibrotic therapies with a particular focus on developing nanotechnologies.
Collapse
Affiliation(s)
- Kai-Ming T. Pu
- Department of Molecular, Cellular, and Developmental
Biology, Yale University, New Haven, Connecticut
| | - Parid Sava
- Department of Biomedical Engineering, Yale University,
New Haven, Connecticut
| | - Anjelica L. Gonzalez
- Department of Biomedical Engineering, Yale University,
New Haven, Connecticut,To whom all correspondence should be
addressed: Anjelica L. Gonzalez, Yale University, PO Box 208103, New Haven, CT
06520-8103; Tele: 203-436-2971; Fax: 203-432-0300;
| |
Collapse
|
414
|
Amin M, Badiee A, Jaafari MR. Improvement of pharmacokinetic and antitumor activity of PEGylated liposomal doxorubicin by targeting with N-methylated cyclic RGD peptide in mice bearing C-26 colon carcinomas. Int J Pharm 2013; 458:324-33. [DOI: 10.1016/j.ijpharm.2013.10.018] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 09/30/2013] [Accepted: 10/02/2013] [Indexed: 11/28/2022]
|
415
|
Baldo BA, Pham NH. Adverse reactions to targeted and non-targeted chemotherapeutic drugs with emphasis on hypersensitivity responses and the invasive metastatic switch. Cancer Metastasis Rev 2013; 32:723-61. [PMID: 24043487 PMCID: PMC7102343 DOI: 10.1007/s10555-013-9447-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
More than 100 drugs are used to treat the many different cancers. They can be divided into agents with relatively broad, non-targeted specificity and targeted drugs developed on the basis of a more refined understanding of individual cancers and directed at specific molecular targets on different cancer cells. Individual drugs in both groups have been classified on the basis of their mechanism of action in killing cancer cells. The targeted drugs include proteasome inhibitors, toxic chimeric proteins and signal transduction inhibitors such as tyrosine kinase (non-receptor and receptor), serine/threonine kinase, histone deacetylase and mammalian target of rapamycin inhibitors. Increasingly used targeted vascular (VEGF) and platelet-derived endothelial growth factor blockade can provoke a range of pathological consequences. Many of the non-targeted drugs are cytotoxic, suppressing haematopoiesis as well as provoking cutaneous eruptions and vascular, lung and liver injury. Cytotoxic side effects of the targeted drugs occur less often and usually with less severity, but they show their own unusual adverse effects including, for example, a lengthened QT interval, a characteristic papulopustular rash, nail disorders and a hand-foot skin reaction variant. The term hypersensitivity is widely used across a number of disciplines but not always with the same definition in mind, and the terminology needs to be standardised. This is particularly apparent in cancer chemotherapy where anti-neoplastic drug-induced thrombocytopenia, neutropenia, anaemia, vascular disorders, liver injury and lung disease as well as many dermatological manifestations sometimes have an immune basis. The most insidious of all adverse consequences of targeted therapies, however, are tumour adaptation, increased malignancy and the invasive metastatic switch seen with anti-angiogenic drugs that inhibit the VEGF-A pathway. Adverse reactions to 44 non-targeted and 33 targeted, frequently used, chemotherapeutic drugs are presented together with discussions of diagnosis, premedications, desensitizations and importance of understanding the mechanisms underlying the various drug-induced reactions. There is need for wide-ranging acceptance of what constitutes a hypersensitivity reaction and for allergists to be more involved in the diagnosis, treatment and prevention of chemotherapeutic drug-induced hypersensitivity reactions.
Collapse
Affiliation(s)
- Brian A Baldo
- Molecular Immunology Unit, Kolling Institute of Medical Research, Royal North Shore Hospital of Sydney, Sydney, New South Wales, Australia,
| | | |
Collapse
|
416
|
Corti A, Curnis F, Rossoni G, Marcucci F, Gregorc V. Peptide-mediated targeting of cytokines to tumor vasculature: the NGR-hTNF example. BioDrugs 2013; 27:591-603. [PMID: 23743670 PMCID: PMC3832761 DOI: 10.1007/s40259-013-0048-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A growing body of evidence suggests that the efficacy of cytokines in cancer therapy can be increased by targeting strategies based on conjugation with ligands that recognize receptors expressed by tumor cells or elements of the tumor microenvironment, including the tumor vasculature. The targeting approach is generally conceived to permit administration of low, yet pharmacologically active, doses of drugs, thereby avoiding toxic reactions. However, it is becoming clear that, in the case of cytokines, this strategy has another inherent advantage, i.e. the possibility of administering extremely low doses that do not activate systemic counter-regulatory mechanisms, which may limit their potential therapeutic effects. This review is focused on the use of tumor vasculature-homing peptides as vehicles for targeted delivery of cytokines to tumor blood vessel. In particular, we provide an overview of peptide-cytokine conjugates made with peptides containing the NGR, RGD, isoDGR or RGR sequences and describe, in more details, the biological and pharmacological properties of NGR-hTNF, a peptide-tumor necrosis factor-α conjugate that is currently being tested in phase II and III clinical studies. The results of preclinical and clinical studies performed with these products suggest that peptide-mediated vascular-targeting is indeed a viable strategy for delivering bioactive amounts of cytokines to tumor endothelial cells without causing the activation of counter-regulatory mechanisms and toxic reactions.
Collapse
Affiliation(s)
- Angelo Corti
- Tumor Biology and Vascular Targeting Unit, Division of Molecular Oncology, San Raffaele Scientific Institute, via Olgettina 58, 20132, Milan, Italy,
| | | | | | | | | |
Collapse
|
417
|
Lautenschlaeger T, Perry J, Peereboom D, Li B, Ibrahim A, Huebner A, Meng W, White J, Chakravarti A. In vitro study of combined cilengitide and radiation treatment in breast cancer cell lines. Radiat Oncol 2013; 8:246. [PMID: 24153102 PMCID: PMC3816586 DOI: 10.1186/1748-717x-8-246] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 10/18/2013] [Indexed: 12/20/2022] Open
Abstract
Background Brain metastasis from breast cancer poses a major clinical challenge. Integrins play a role in regulating adhesion, growth, motility, and survival, and have been shown to be critical for metastatic growth in the brain in preclinical models. Cilengitide, an αvβ3/αvβ5 integrin inhibitor, has previously been studied as an anti-cancer drug in various tumor types. Previous studies have shown additive effects of cilengitide and radiation in lung cancer and glioblastoma cell lines. The ability of cilengitide to enhance the effects of radiation was examined preclinically in the setting of breast cancer to assess its possible efficacy in the setting of brain metastasis from breast cancer. Methods Our panel of breast cells was composed of four cell lines: T-47D (ER/PR+, Her2-, luminal A), MCF-7 (ER/PR+, Her2-, luminal A), MDA-MB-231 (TNBC, basal B), MDA-MB-468 (TNBC, basal A). The presence of cilengitide targets, β3 and β5 integrin, was first determined. Cell detachment was determined by cell counting, cell proliferation was determined by MTS proliferation assay, and apoptosis was measured by Annexin V staining and flow cytometry. The efficacy of cilengitide treatment alone was analyzed, followed by assessment of combined cilengitide and radiation treatment. Integrin β3 knockdown was performed, followed by cilengitide and radiation treatment to test for incomplete target inhibition by cilengitide, in high β3 expressing cells. Results We observed that all cell lines examined expressed both β3 and β5 integrin and that cilengitide was able to induce cell detachment and reduced proliferation in our panel. Annexin V assays revealed that a portion of these effects was due to cilengitide-induced apoptosis. Combined treatment with cilengitide and radiation served to further reduce proliferation compared to either treatment alone. Following β3 integrin knockdown, radiosensitization in combination with cilengitide was observed in a previously non-responsive cell line (MDA-MB-231). Clonogenic assays suggested little radiosensitization effects of cilengitide. Conclusions Cilengitide appears to enhance radiation response in preclinical models of breast cancer. These data suggest that the combination of radiation therapy and cilengitide may prove to be effective where radiation is utilized for the treatment of gross disease in breast cancer, such as in the setting of brain metastasis.
Collapse
Affiliation(s)
- Tim Lautenschlaeger
- Department of Radiation Oncology, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
418
|
Sakurai Y, Hatakeyama H, Sato Y, Hyodo M, Akita H, Ohga N, Hida K, Harashima H. RNAi-mediated gene knockdown and anti-angiogenic therapy of RCCs using a cyclic RGD-modified liposomal-siRNA system. J Control Release 2013; 173:110-8. [PMID: 24120854 DOI: 10.1016/j.jconrel.2013.10.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 09/03/2013] [Accepted: 10/03/2013] [Indexed: 11/30/2022]
Abstract
Angiogenesis is one of crucial processes associated with tumor growth and development, and consequently a prime target for cancer therapy. Although tumor endothelial cells (TECs) play a key role in pathological angiogenesis, investigating phenotypical changes in neovessels when a gene expression in TEC is suppressed is a difficult task. Small interfering RNA (siRNA) represents a potential agent due to its ability to silence a gene of interest. We previously developed a system for in vivo siRNA delivery to cancer cells that involves a liposomal-delivery system, a MEND that contains a unique pH-sensitive cationic lipid, YSK05 (YSK-MEND). In the present study, we report on the development of a system that permits the delivery of siRNA to TECs by combining the YSK-MEND and a ligand that is specific to TECs. Cyclo(Arg-Gly-Asp-D-Phe-Lys) (cRGD) is a well-known ligand to αVβ3 integrin, which is selectively expressed at high levels in TECs. We incorporated cRGD into the YSK-MEND (RGD-MEND) to achieve an efficient gene silencing in TECs. Quantitative RT-PCR and the 5' rapid amplification of cDNA ends PCR indicated that the intravenous injection of RGD-MEND at a dose of 4.0mg/kg induced a significant RNAi-mediated gene reduction in TEC but not in endothelial cells of other organs. Finally, we evaluated the therapeutic potency of the RGD-MEND encapsulating siRNA against vascular endothelial growth factor receptor 2. A substantial delay in tumor growth was observed after three sequential RGD-MEND injections on alternate days. In conclusion, the RGD-MEND represents a new approach for the characterization of TECs and for us in anti-angiogenic therapy.
Collapse
Affiliation(s)
- Yu Sakurai
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo 060-0812, Japan
| | - Hiroto Hatakeyama
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo 060-0812, Japan
| | - Yusuke Sato
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo 060-0812, Japan
| | - Mamoru Hyodo
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo 060-0812, Japan
| | - Hidetaka Akita
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo 060-0812, Japan
| | - Noritaka Ohga
- Division of Vascular Biology, Graduate School of Dental Medicine, Hokkaido University, Kita 13 Nishi 7, Kita-ku, Sapporo 060-0812, Japan
| | - Kyoko Hida
- Division of Vascular Biology, Graduate School of Dental Medicine, Hokkaido University, Kita 13 Nishi 7, Kita-ku, Sapporo 060-0812, Japan
| | - Hideyoshi Harashima
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
419
|
Neubauer S, Rechenmacher F, Beer AJ, Curnis F, Pohle K, D'Alessandria C, Wester HJ, Reuning U, Corti A, Schwaiger M, Kessler H. Selective imaging of the angiogenic relevant integrins α5β1 and αvβ3. Angew Chem Int Ed Engl 2013; 52:11656-9. [PMID: 24115324 DOI: 10.1002/anie.201306376] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Indexed: 12/14/2022]
Abstract
Pattern seekers: For the two angiogenic relevant integrins α5β1 and αvβ3, functionalized derivatives of the selective antagonists 1 and 2 could target and discriminate between tumor cells in vivo based on their different integrin patterns and also delay tumor growth in vivo. In addition, the first α5β1-selective integrin antagonist that enables specific molecular imaging by positron emission tomography was developed.
Collapse
Affiliation(s)
- Stefanie Neubauer
- Institute for Advanced Study at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching (Germany) http://www.org.chemie.tu-muenchen.de
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
420
|
Neubauer S, Rechenmacher F, Beer AJ, Curnis F, Pohle K, D'Alessandria C, Wester HJ, Reuning U, Corti A, Schwaiger M, Kessler H. Selektive Bildgebung der angiogenetisch relevanten Integrine α5β1 und αvβ3. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201306376] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
421
|
Gebhard AW, Jain P, Nair RR, Emmons MF, Argilagos RF, Koomen JM, McLaughlin ML, Hazlehurst LA. MTI-101 (cyclized HYD1) binds a CD44 containing complex and induces necrotic cell death in multiple myeloma. Mol Cancer Ther 2013; 12:2446-58. [PMID: 24048737 DOI: 10.1158/1535-7163.mct-13-0310] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Our laboratory recently reported that treatment with the d-amino acid containing peptide HYD1 induces necrotic cell death in multiple myeloma cell lines. Because of the intriguing biological activity and promising in vivo activity of HYD1, we pursued strategies for increasing the therapeutic efficacy of the linear peptide. These efforts led to a cyclized peptidomimetic, MTI-101, with increased in vitro activity and robust in vivo activity as a single agent using two myeloma models that consider the bone marrow microenvironment. MTI-101 treatment similar to HYD1 induced reactive oxygen species, depleted ATP levels, and failed to activate caspase-3. Moreover, MTI-101 is cross-resistant in H929 cells selected for acquired resistance to HYD1. Here, we pursued an unbiased chemical biology approach using biotinylated peptide affinity purification and liquid chromatography/tandem mass spectrometry analysis to identify binding partners of MTI-101. Using this approach, CD44 was identified as a predominant binding partner. Reducing the expression of CD44 was sufficient to induce cell death in multiple myeloma cell lines, indicating that multiple myeloma cells require CD44 expression for survival. Ectopic expression of CD44s correlated with increased binding of the FAM-conjugated peptide. However, ectopic expression of CD44s was not sufficient to increase the sensitivity to MTI-101-induced cell death. Mechanistically, we show that MTI-101-induced cell death occurs via a Rip1-, Rip3-, or Drp1-dependent and -independent pathway. Finally, we show that MTI-101 has robust activity as a single agent in the SCID-Hu bone implant and 5TGM1 in vivo model of multiple myeloma.
Collapse
Affiliation(s)
- Anthony W Gebhard
- Corresponding Author: Lori A. Hazlehurst, Molecular Oncology Program, H. Lee Moffitt Cancer Center, Tampa, FL.
| | | | | | | | | | | | | | | |
Collapse
|
422
|
Moore SJ, Hayden Gephart MG, Bergen JM, Su YS, Rayburn H, Scott MP, Cochran JR. Engineered knottin peptide enables noninvasive optical imaging of intracranial medulloblastoma. Proc Natl Acad Sci U S A 2013; 110:14598-603. [PMID: 23950221 PMCID: PMC3767496 DOI: 10.1073/pnas.1311333110] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Central nervous system tumors carry grave clinical prognoses due to limited effectiveness of surgical resection, radiation, and chemotherapy. Thus, improved strategies for brain tumor visualization and targeted treatment are critically needed. We demonstrate that mouse cerebellar medulloblastoma (MB) can be targeted and illuminated with a fluorescent, engineered cystine knot (knottin) peptide that binds with high affinity to αvβ3, αvβ5, and α5β1 integrin receptors. This integrin-binding knottin peptide, denoted EETI 2.5F, was evaluated as a molecular imaging probe in both orthotopic and genetic models of MB. Following tail vein injection, fluorescence arising from dye-conjugated EETI 2.5F was localized to the tumor compared with the normal surrounding brain tissue, as measured by optical imaging. The imaging signal intensity correlated with tumor volume. Due to its unique ability to bind to α5β1 integrin, EETI 2.5F showed superior in vivo and ex vivo brain tumor imaging contrast compared with other engineered integrin-binding knottin peptides and with c(RGDfK), a well-studied integrin-binding peptidomimetic. Next, EETI 2.5F was fused to an antibody fragment crystallizable (Fc) domain (EETI 2.5F-Fc) to determine if a larger integrin-binding protein could also target intracranial brain tumors. EETI 2.5F-Fc, conjugated to a fluorescent dye, illuminated MB following i.v. injection and was able to distribute throughout the tumor parenchyma. In contrast, brain tumor imaging signals were not detected in mice injected with EETI 2.5F proteins containing a scrambled integrin-binding sequence, demonstrating the importance of target specificity. These results highlight the potential of using EETI 2.5F and EETI 2.5-Fc as targeted molecular probes for brain tumor imaging.
Collapse
Affiliation(s)
- Sarah J. Moore
- Departments of Bioengineering
- Center for Children’s Brain Tumors
- Stanford Cancer Institute, and
| | - Melanie G. Hayden Gephart
- Departments of Bioengineering
- Neurosurgery
- Developmental Biology
- Center for Children’s Brain Tumors
- Stanford Cancer Institute, and
| | - Jamie M. Bergen
- Departments of Bioengineering
- Center for Children’s Brain Tumors
- Stanford Cancer Institute, and
| | - YouRong S. Su
- Departments of Bioengineering
- Developmental Biology
- Genetics, and
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305
| | - Helen Rayburn
- Departments of Bioengineering
- Developmental Biology
- Genetics, and
- Center for Children’s Brain Tumors
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305
| | - Matthew P. Scott
- Departments of Bioengineering
- Developmental Biology
- Genetics, and
- Center for Children’s Brain Tumors
- Stanford Cancer Institute, and
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305
| | - Jennifer R. Cochran
- Departments of Bioengineering
- Chemical Engineering
- Center for Children’s Brain Tumors
- Stanford Cancer Institute, and
| |
Collapse
|
423
|
Marelli UK, Rechenmacher F, Sobahi TRA, Mas-Moruno C, Kessler H. Tumor Targeting via Integrin Ligands. Front Oncol 2013; 3:222. [PMID: 24010121 PMCID: PMC3757457 DOI: 10.3389/fonc.2013.00222] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 08/13/2013] [Indexed: 01/02/2023] Open
Abstract
Selective and targeted delivery of drugs to tumors is a major challenge for an effective cancer therapy and also to overcome the side-effects associated with current treatments. Overexpression of various receptors on tumor cells is a characteristic structural and biochemical aspect of tumors and distinguishes them from physiologically normal cells. This abnormal feature is therefore suitable for selectively directing anticancer molecules to tumors by using ligands that can preferentially recognize such receptors. Several subtypes of integrin receptors that are crucial for cell adhesion, cell signaling, cell viability, and motility have been shown to have an upregulated expression on cancer cells. Thus, ligands that recognize specific integrin subtypes represent excellent candidates to be conjugated to drugs or drug carrier systems and be targeted to tumors. In this regard, integrins recognizing the RGD cell adhesive sequence have been extensively targeted for tumor-specific drug delivery. Here we review key recent examples on the presentation of RGD-based integrin ligands by means of distinct drug-delivery systems, and discuss the prospects of such therapies to specifically target tumor cells.
Collapse
Affiliation(s)
- Udaya Kiran Marelli
- Institute for Advanced Study (IAS) and Center for Integrated Protein Science (CIPSM), Department Chemie, Technische Universität München , Garching , Germany
| | | | | | | | | |
Collapse
|
424
|
Sulfated Escherichia coli K5 polysaccharide derivatives inhibit dengue virus infection of human microvascular endothelial cells by interacting with the viral envelope protein E domain III. PLoS One 2013; 8:e74035. [PMID: 24015314 PMCID: PMC3755990 DOI: 10.1371/journal.pone.0074035] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 08/01/2013] [Indexed: 12/20/2022] Open
Abstract
Dengue virus (DENV) is an emerging mosquito-borne pathogen that causes cytokine-mediated alterations in the barrier function of the microvascular endothelium, leading to dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). We observed that DENV (serotype 2) productively infects primary (HMVEC-d) and immortalized (HMEC-1) human dermal microvascular endothelial cells, despite the absence of well-described DENV receptors, such as dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) or the mannose receptor on the cell surface. However, heparan sulfate proteoglycans (HSPGs) were highly expressed on these cells and pre-treatment of HMEC-1 cells with heparinase II or with glycosaminoglycans reduced DENV infectivity up to 90%, suggesting that DENV uses HSPGs as attachment receptor on microvascular endothelial cells. Sulfated Escherichia coli K5 derivatives, which are structurally similar to heparin/heparan sulfate but lack anticoagulant activity, were able to block DENV infection of HMEC-1 and HMVEC-d cells in the nanomolar range. The highly sulfated K5-OS(H) and K5-N,OS(H) inhibited virus attachment and subsequent entry into microvascular endothelial cells by interacting with the viral envelope (E) protein, as shown by surface plasmon resonance (SPR) analysis using the receptor-binding domain III of the E protein.
Collapse
|
425
|
Fernández-Llamazares AI, García J, Adan J, Meunier D, Mitjans F, Spengler J, Albericio F. The Backbone N-(4-Azidobutyl) Linker for the Preparation of Peptide Chimera. Org Lett 2013; 15:4572-5. [DOI: 10.1021/ol402150m] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Ana I. Fernández-Llamazares
- Institute for Research in Biomedicine (IRB), PCB, 08028-Barcelona, Spain, CIBER-BBN, PCB, 08028-Barcelona, Spain, Biomed Division, Leitat Technological Center Institution, PCB, 08028-Barcelona, Spain, Department of Organic Chemistry, University of Barcelona, 08028-Barcelona, Spain, and School of Chemistry, University of KwaZulu Natal, 4001-Durban, South Africa
| | - Jesús García
- Institute for Research in Biomedicine (IRB), PCB, 08028-Barcelona, Spain, CIBER-BBN, PCB, 08028-Barcelona, Spain, Biomed Division, Leitat Technological Center Institution, PCB, 08028-Barcelona, Spain, Department of Organic Chemistry, University of Barcelona, 08028-Barcelona, Spain, and School of Chemistry, University of KwaZulu Natal, 4001-Durban, South Africa
| | - Jaume Adan
- Institute for Research in Biomedicine (IRB), PCB, 08028-Barcelona, Spain, CIBER-BBN, PCB, 08028-Barcelona, Spain, Biomed Division, Leitat Technological Center Institution, PCB, 08028-Barcelona, Spain, Department of Organic Chemistry, University of Barcelona, 08028-Barcelona, Spain, and School of Chemistry, University of KwaZulu Natal, 4001-Durban, South Africa
| | - David Meunier
- Institute for Research in Biomedicine (IRB), PCB, 08028-Barcelona, Spain, CIBER-BBN, PCB, 08028-Barcelona, Spain, Biomed Division, Leitat Technological Center Institution, PCB, 08028-Barcelona, Spain, Department of Organic Chemistry, University of Barcelona, 08028-Barcelona, Spain, and School of Chemistry, University of KwaZulu Natal, 4001-Durban, South Africa
| | - Francesc Mitjans
- Institute for Research in Biomedicine (IRB), PCB, 08028-Barcelona, Spain, CIBER-BBN, PCB, 08028-Barcelona, Spain, Biomed Division, Leitat Technological Center Institution, PCB, 08028-Barcelona, Spain, Department of Organic Chemistry, University of Barcelona, 08028-Barcelona, Spain, and School of Chemistry, University of KwaZulu Natal, 4001-Durban, South Africa
| | - Jan Spengler
- Institute for Research in Biomedicine (IRB), PCB, 08028-Barcelona, Spain, CIBER-BBN, PCB, 08028-Barcelona, Spain, Biomed Division, Leitat Technological Center Institution, PCB, 08028-Barcelona, Spain, Department of Organic Chemistry, University of Barcelona, 08028-Barcelona, Spain, and School of Chemistry, University of KwaZulu Natal, 4001-Durban, South Africa
| | - Fernando Albericio
- Institute for Research in Biomedicine (IRB), PCB, 08028-Barcelona, Spain, CIBER-BBN, PCB, 08028-Barcelona, Spain, Biomed Division, Leitat Technological Center Institution, PCB, 08028-Barcelona, Spain, Department of Organic Chemistry, University of Barcelona, 08028-Barcelona, Spain, and School of Chemistry, University of KwaZulu Natal, 4001-Durban, South Africa
| |
Collapse
|
426
|
Setti A, Sankati HS, Devi TAP, Sekhar AC, Rao JV, Pawar SC. Structural insights into the extra cellular segment of integrinβ5 and molecular interaction studies. J Recept Signal Transduct Res 2013; 33:319-24. [DOI: 10.3109/10799893.2013.822892] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
427
|
Hanyu M, Takada Y, Hashimoto H, Kawamura K, Zhang MR, Fukumura T. Carbon-11 radiolabeling of an oligopeptide containing tryptophan hydrochloride via a Pictet-Spengler reaction using carbon-11 formaldehyde. J Pept Sci 2013; 19:663-8. [PMID: 23946162 DOI: 10.1002/psc.2546] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 07/15/2013] [Accepted: 07/17/2013] [Indexed: 02/03/2023]
Abstract
A procedure for the synthesis of a(11)C-labeled oligopeptide containing [1-(11)C]1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid ([1-(11)C]Tpi) from the corresponding Trp•HCl-containing peptides has been developed involving a Pictet-Spengler reaction with [(11) C]formaldehyde. The synthesis of [1-(11)C]Tpi from Trp and [(11)C]formaldehyde was examined as a model reaction with the aim of developing a facile and effective method for the labeling of peptides with carbon-11. The Pictet-Spengler reaction of Trp and [(11)C]formaldehyde in acidic media (TsOH or HCl) afforded the desired [1-(11)C]Tpi in a moderate radiochemical yield. Herein, the application of a Pictet-Spengler reaction to an aqueous solution of Trp•HCl gave the desired product with a radiochemical yield of 45.2%. The RGD peptide cyclo[Arg-Gly-Asp-D-Tyr-Lys] was then selected as a substrate for the labeling reaction with [(11)C]formaldehyde. The radiolabeling of a Trp•HCl-containing RGD peptide using the Pictet-Spengler reaction was successful. Furthermore, the remote-controlled synthesis of a [1-(11)C]Tpi-containing RGD peptide was attempted by using an automatic production system to generate [(11)C]CH3 I. The radiochemical yield of the [1-(11) C]Tpi-containing RGD at the end of synthesis (EOS) was 5.9 ± 1.9% (n = 4), for a total synthesis time of about 35 min. The specific activity was 85.7 ± 9.4 GBq/µmol at the EOS.
Collapse
Affiliation(s)
- Masayuki Hanyu
- Molecular Probe Program, Molecular Imaging Center, National Institute of Radiological Science, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | | | | | | | | | | |
Collapse
|
428
|
Wilisch-Neumann A, Kliese N, Pachow D, Schneider T, Warnke JP, Braunsdorf WE, Böhmer FD, Hass P, Pasemann D, Helbing C, Kirches E, Mawrin C. The integrin inhibitor cilengitide affects meningioma cell motility and invasion. Clin Cancer Res 2013; 19:5402-12. [PMID: 23948974 DOI: 10.1158/1078-0432.ccr-12-0299] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Meningiomas are frequent intracranial or spinal neoplasms, which recur frequently and can show aggressive clinical behaviour. We elucidated the impact of the integrin inhibitor cilengitide on migration, proliferation, and radiosensitization of meningioma cells. EXPERIMENTAL DESIGN We analyzed integrin expression in tissue microarrays of human meningiomas and the antimeningioma properties of cilengitide in cell cultures, subcutaneous and intracranial nude mouse models by measuring tumor volumes and survival times. RESULTS αvβ5 was the predominantly expressed integrin heterodimer in meningiomas, whereas αvβ3 was mainly detected in tumor blood vessels. Application of up to 100 μg/mL cilengitide resulted in only mildly reduced proliferation/survival of meningioma cell lines. Effects on cell survival could be enhanced by irradiation. One μg/mL cilengitide was sufficient to significantly inhibit meningioma cell migration and invasion in vitro. A daily dosage of 75 mg/kg did neither affect tumor volumes nor overall survival (P = 0.813, log-rank test), but suppressed brain invasion in a significant fraction of treated animals. A combination of 75 mg/kg cilengitide daily and irradiation (2 × 5 Gy) led to a 67% reduction of MRI-estimated tumor volumes in the intracranial model (P < 0.01), whereas the corresponding reduction reached by irradiation alone was only 55% (P < 0.05). CONCLUSIONS These data show that a monotherapy with cilengitide is not likely to achieve major responses in rapidly growing malignant meningiomas, although brain invasion may be reduced because of the strong antimigratory properties of the drug. The combination with radiotherapy warrants further attention.
Collapse
Affiliation(s)
- Annette Wilisch-Neumann
- Authors' Affiliations: Departments of Neuropathology, Neurosurgery and Radiotherapy, Otto vonGuericke University; Neurosurgery, City Hospital; Special Lab for Non-Invasive Brain Imaging, Leibniz Institute for Neurobiology, Magdeburg; Neurosurgery, Paracelsus Hospital, Zwickau; and Institute of Molecular Cell Biology, Center for Molecular Biomedicine, Jena University Hospital, Jena, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
429
|
Dual inhibition of αV integrins and Src kinase activity as a combination therapy strategy for colorectal cancer. Anticancer Drugs 2013; 24:237-50. [PMID: 23275294 DOI: 10.1097/cad.0b013e32835d29fd] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Both Src and αV integrins are important for tumor growth and angiogenesis. They are interconnected and responsible for important features of the tumor phenotype including invasiveness, metastasis, angiogenesis, and resistance to apoptosis. This study examines whether combinational inhibition of both integrin and Src pathways would exert greater antiangiogenesis and antitumor effects than either pathway alone. Using in-vitro cell culture systems, the activity of CNTO95 (Intetumumab), an αV integrin inhibitor, and dasatinib, an Src inhibitor, on proliferation, adhesion, and migration was evaluated in colon cancer cell lines, HCT-116 and RKO, as well as HUVEC cells. The antiangiogenic effect of this combinatory regimen was also tested using an in-vitro tubular network formation assay. The effects of CNTO95 and dasatinib on the activation of Src and integrin pathway signal transduction were also determined by western blotting. The combination of CNTO95 plus dasatinib inhibited adhesion, migration, and paxillin phosphorylation in both HCT-116 and RKO cells. CNTO95 and dasatinib also led to increased apoptosis of HCT-116 cells; however, similar effects were not observed in RKO cells. In addition, dual treatment of CNTO95 and dasatinib exerted enhanced effects on HUVEC cell proliferation, invasion, tubular network formation, and paxillin phosphorylation. In conclusion, our results suggest that concurrent inhibition of both the integrin and the Src pathways exert more pronounced antiangiogenic and antitumor effects than with either pathway being inhibited alone.
Collapse
|
430
|
Lin CC, Tantisantisom W, McAlpine SR. Total synthesis and biological activity of natural product Urukthapelstatin A. Org Lett 2013; 15:3574-7. [PMID: 23819711 DOI: 10.1021/ol401412v] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Herein we report the first total synthesis of the natural product Urkuthaplestatin A (Ustat A) utilizing a convergent synthetic strategy. The characterization and biological activity match those of the previously published natural product. Interestingly, several intermediates, including the linear and serine cyclized precursors, show a 100-fold decrease in cytotoxicity, with IC50's in the low micromolar range. These data indicate that the rigidity and the consecutive aromatic heterocyclic system are responsible for the biological activity.
Collapse
Affiliation(s)
- Chun-Chieh Lin
- Department of Chemistry and Biochemistry, 5500 Campanile Drive, San Diego State University, San Diego, California 92182-1030, USA
| | | | | |
Collapse
|
431
|
Vogetseder A, Thies S, Ingold B, Roth P, Weller M, Schraml P, Goodman SL, Moch H. αv-Integrin isoform expression in primary human tumors and brain metastases. Int J Cancer 2013; 133:2362-71. [PMID: 23661241 DOI: 10.1002/ijc.28267] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Accepted: 04/17/2013] [Indexed: 11/12/2022]
Abstract
UNLABELLED To determine whether metastasis to brain is associated with altered expression patterns of integrins, we investigated the expression of αvβ3, αvβ5, αvβ6 and αvβ8 integrins in primary malignancies and metastases to brain of breast, lung and renal carcinomas and in malignant melanoma. Inhibitors of αv integrins are currently in clinical trials for glioblastoma. The role of integrins in the process of brain metastasis from other human tumors is unknown. Immunohistochemistry with novel integrin subtype specific rabbit monoclonal antibodies was performed on tissue microarrays of archival material of surgical biopsies taken from primary tumors and brain metastases. Integrin αvβ3 expression was increased in brain metastases compared to primary tumors of breast adenocarcinoma, non-small cell lung cancer, renal clear cell cancer and malignant cutaneous melanoma (all p < 0.01). Similarly, integrin αvβ8 expression was increased in brain metastases compared to primary tumors of breast cancer (p < 0.0001), lung cancer (p < 0.01) and renal cancer (p < 0.0001), with a similar trend in metastatic melanoma. Integrin αvβ5 was expressed in most primary tumors (98% breast cancer; 67% lung cancer; 90% renal cancer; 89% melanoma) and showed a stronger expression in brain metastases compared to primary tumors from lung cancer and melanoma (p < 0.05). Also integrin αvβ6 expression was increased in brain metastases compared to primary breast cancer (p < 0.001). CONCLUSIONS The stronger αv-integrin expression in brain metastases, especially of αvβ3 and αvβ8 integrins, suggests that certain αv integrin are involved in the process of brain metastasis. αv Integrins may be therapeutic targets for patients with metastatic cancer in brain.
Collapse
Affiliation(s)
- Alexander Vogetseder
- Department of Pathology, Institute for Surgical Pathology, University Hospital Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
432
|
Rechenmacher F, Neubauer S, Mas-Moruno C, Dorfner PM, Polleux J, Guasch J, Conings B, Boyen HG, Bochen A, Sobahi TR, Burgkart R, Spatz JP, Fässler R, Kessler H. A Molecular Toolkit for the Functionalization of Titanium-Based Biomaterials That Selectively Control Integrin-Mediated Cell Adhesion. Chemistry 2013; 19:9218-23. [DOI: 10.1002/chem.201301478] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Indexed: 12/13/2022]
|
433
|
Müller MA, Opfer J, Brunie L, Volkhardt LA, Sinner EK, Boettiger D, Bochen A, Kessler H, Gottschalk KE, Reuning U. The glycophorin A transmembrane sequence within integrin αvβ3 creates a non-signaling integrin with low basal affinity that is strongly adhesive under force. J Mol Biol 2013; 425:2988-3006. [PMID: 23727145 DOI: 10.1016/j.jmb.2013.05.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 04/22/2013] [Accepted: 05/22/2013] [Indexed: 10/26/2022]
Abstract
Integrin heterodimeric cell adhesion and signaling receptors bind ligands of the extracellular matrix and relay signals bidirectionally across cell membranes. Thereby, integrins adopt multiple conformational and functional states that control ligand binding affinity and linkage to cytosolic/cytoskeletal proteins. Here, we designed an integrin chimera encompassing the strongly dimerizing transmembrane domain (TMD) of glycophorin A (GpA) in the context of the otherwise unaltered integrin αvβ3. We hypothesized that this chimera should have a low basal affinity to soluble ligand but should be force-activatable. By cellular expression of this chimera, we found a decreased integrin affinity to a soluble peptide ligand and inhibited intracellular signaling. However, under external forces applied by an atomic force microscope or by a spinning disc device causing shear forces, the mutant caused stronger cell adhesion than the wild-type integrin. Our results demonstrate that the signaling- and migration-incapable integrin αvβ3-TMD mutant TMD-GpA shows the characteristics of a primed integrin state, which is of low basal affinity in the absence of forces, but may form strong bonds in the presence of forces. Thus, TMD-GpA may mimic a force-activatable signaling intermediate.
Collapse
Affiliation(s)
- Martina A Müller
- Clinical Research Unit, Department for Obstetrics and Gynecology, Technische Universitaet Muenchen, 81675 Munich, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
434
|
Kurozumi K, Ichikawa T, Onishi M, Fujii K, Date I. Cilengitide treatment for malignant glioma: current status and future direction. Neurol Med Chir (Tokyo) 2013; 52:539-47. [PMID: 22976135 DOI: 10.2176/nmc.52.539] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Malignant glioma is the most common primary brain tumor and accounts for the majority of diagnoses. Treatment has involved a combination of surgery, radiation, and chemotherapy, yet these modalities rarely extend the life of the patient to more than one year from diagnosis. Integrins are expressed in tumor cells and tumor endothelial cells, and are important in angiogenesis and invasion in glioma. αvβ3 and αvβ5 integrins regulate cell adhesion, and inhibitors of these integrins suppress tumor growth in certain pre-clinical models. Several integrin-targeted drugs are in clinical trials as potential compounds for the treatment of cancer. Among them, cilengitide is a novel integrin antagonist for the treatment of glioblastoma. The multimodal anti-glioma effects are based on its cytotoxic, anti-angiogenic, anti-invasive, and synergetic effects. Preclinical studies showed a promising synergy between cilengitide and radiochemotherapy in order to normalize tumor vasculature and attenuate tumor invasion. Cilengitide is currently being assessed in phase III trials for patients with glioblastoma multiforme and in phase II trials for other types of cancers, demonstrating promising therapeutic outcomes to date. The results of these and other clinical studies are expected with great hope and interest. A more clear understanding of the benefits and pitfalls of each approach can then lead to the design of strategies to derive maximal benefit from these therapies.
Collapse
Affiliation(s)
- Kazuhiko Kurozumi
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan.
| | | | | | | | | |
Collapse
|
435
|
Laitinen I, Notni J, Pohle K, Rudelius M, Farrell E, Nekolla SG, Henriksen G, Neubauer S, Kessler H, Wester HJ, Schwaiger M. Comparison of cyclic RGD peptides for αvβ3 integrin detection in a rat model of myocardial infarction. EJNMMI Res 2013; 3:38. [PMID: 23663426 PMCID: PMC3658936 DOI: 10.1186/2191-219x-3-38] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 05/03/2013] [Indexed: 11/17/2022] Open
Abstract
Background Expression of αvβ3 integrin is increased after myocardial infarction as part of the repair process. Increased expression of αvβ3 has been shown by molecular imaging with 18F-galacto-RGD in a rat model. The 68Ga-labelled RGD compounds 68Ga-NODAGA-RGD and 68Ga-TRAP(RGD)3 have high specificity and affinity, and may therefore serve as alternatives of 18F-galacto-RGD for integrin imaging. Methods Left coronary artery ligation was performed in rats. After 1 week, rats were imaged with [13N]NH3, followed by 18F-galacto-RGD, 68Ga-NODAGA-RGD or 68Ga-TRAP(RGD)3 using a dedicated animal PET/CT device. Rats were killed, and the activity in tissues was measured by gamma counting. The heart was sectioned for autoradiography and histology. Immunohistochemistry was performed on consecutive sections using CD31 for the endothelial cells and CD61 for β3 expression (as part of the αvβ3 receptor). Results In vivo imaging showed focal RGD uptake in the hypoperfused area of infarcted myocardium as defined with [13N]NH3 scan. In autoradiography images, augmented uptake of all RGD tracers was observed within the infarct area as verified by the HE staining. The tracer uptake ratios (infarct vs. remote) were 4.7 ± 0.8 for 18F-galacto-RGD, 5.2 ± 0.8 for 68Ga-NODAGA-RGD, and 4.1 ± 0.7 for 68Ga-TRAP(RGD)3. The 68Ga-NODAGA-RGD ratio was higher compared to 68Ga-TRAP(RGD)3 (p = 0.04), but neither of the 68Ga tracers differed from 18F-galacto-RGD (p > 0.05). The area of augmented 68Ga-RGD uptake was associated with β3 integrin expression (CD61). Conclusion 68Ga-NODAGA-RGD and 68Ga-TRAP(RGD)3 uptake was equally increased in the infarct area at 1 week post infarction as 18F-galacto-RGD. These results show the potential of 68Ga-labelled RGD peptides to monitor integrin expression as a part of myocardial repair and angiogenesis after ischaemic injury in vivo.
Collapse
Affiliation(s)
- Iina Laitinen
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Ismaninger Strasse 22, Munich 81675, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
436
|
Hassert R, Hoffmeister PG, Pagel M, Hacker M, Schulz-Siegmund M, Beck-Sickinger AG. On-resin synthesis of an acylated and fluorescence-labeled cyclic integrin ligand for modification of poly(lactic-co-glycolic acid). Chem Biodivers 2013; 9:2648-58. [PMID: 23161641 DOI: 10.1002/cbdv.201200290] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Indexed: 11/09/2022]
Abstract
Cyclic Arg-Gly-Asp (RGD) peptides show remarkable affinity and specificity to integrin receptors and mediate important physiological effects in tumor angiogenesis. Additionally, they are one of the keyplayers in improving the biocompatibility of biomaterials. The fully biodegradable polymer poly(lactic-co-glycolic acid) (PLGA) is frequently used for biomedical implants and can be applied as nanoparticles for drug delivery. The aim of this work was the generation of a lipidated c[RGDfK] peptide including a second functionality for coating of hydrophobic PLGA. Therefore, we established a general and straightforward strategy for the introduction of two different modifications into the same c[RGDfK] peptide. This allowed the generation of a palmitoylated integrin-binding lipopeptide that shows high affinity to PLGA. Additionally, we coupled 5(6)-carboxyfluorescein to the second site for modification to enable sensitive quantification of the immobilized lipopeptide on PLGA. In conclusion, we present a synthesis protocol that enables the preparation of c[RGDfK] lipopeptides with a strong affinity to PLGA and an additional site for modifications. This will provide the opportunity to introduce a variety of effector molecules site-specifically to the c[RGDfK] lipopeptide, which will enable the introduction of multifunctionality into c[RGDfK]-coated PLGA devices or nanoparticles.
Collapse
Affiliation(s)
- Rayk Hassert
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Universität Leipzig, Brüderstrasse 34, D-04103 Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
437
|
Šimeček J, Hermann P, Havlíčková J, Herdtweck E, Kapp TG, Engelbogen N, Kessler H, Wester HJ, Notni J. A cyclen-based tetraphosphinate chelator for the preparation of radiolabeled tetrameric bioconjugates. Chemistry 2013; 19:7748-57. [PMID: 23613345 DOI: 10.1002/chem.201300338] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Indexed: 01/17/2023]
Abstract
The cyclen-based tetraphosphinate chelator 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakis[methylene(2-carboxyethyl)phosphinic acid] (DOTPI) comprises four additional carboxylic acid moieties for bioconjugation. The thermodynamic stability constants (logK(ML)) of metal complexes, as determined by potentiometry, were 23.11 for Cu(II), 20.0 for Lu(III), 19.6 for Y(III), and 21.0 for Gd(III). DOTPI was functionalized with four cyclo(Arg-Gly-Asp-D-Phe-Lys) (RGD) peptides through polyethylene glycol (PEG4) linkers. The resulting tetrameric conjugate DOTPI(RGD)4 was radiolabeled with (177)Lu and (64)Cu and showed improved labeling efficiency compared with 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA). The labeled compounds were fully stable in transchelation challenges against trisodium diethylenetriaminepentaacetate (DTPA) and disodium ethylenediaminetetraacetic acid (ETDA), in phosphate buffered saline (PBS), and human plasma. Integrin αvβ3 affinities of the non-radioactive Lu(III) and Cu(II) complexes of DOTPI(RGD)4 were 18 times higher (both IC50 about 70 picomolar) than that of the c(RGDfK) peptide (IC50 = 1.3 nanomolar). Facile access to tetrameric conjugates and the possibility of radiolabeling with therapeutic and diagnostic radionuclides render DOTPI suitable for application in peptide receptor radionuclide imaging (PRRI) and therapy (PRRT).
Collapse
Affiliation(s)
- Jakub Šimeček
- Lehrstuhl für Pharmazeutische Radiochemie, Technische Universität München, Walther-Meissner Strasse 3, 85748 Garching, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
438
|
Bretschi M, Cheng C, Witt H, Dimitrakopoulou-Strauss A, Strauss LG, Semmler W, Bäuerle T. Cilengitide affects tumor compartment, vascularization and microenvironment in experimental bone metastases as shown by longitudinal ¹⁸F-FDG PET and gene expression analysis. J Cancer Res Clin Oncol 2013; 139:573-83. [PMID: 23229276 DOI: 10.1007/s00432-012-1360-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Accepted: 11/26/2012] [Indexed: 01/02/2023]
Abstract
PURPOSE Aim of this study was to investigate the specific treatment effects of inhibiting αvβ3/αvβ5 integrins by cilengitide in an animal model of breast cancer bone metastases using dynamic (18)F-FDG PET and gene expression analysis. METHODS For this purpose, nude rats bearing bone metastases were treated with cilengitide, a small molecule inhibitor of αvβ3 and αvβ5 integrins, from day 30 to 55 after tumor cell inoculation of MDA-MB-231 breast cancer cells (25 mg/kg, 5 days per week; n = 8 rats) and compared to control rats (n = 8). Dynamic (18)F-FDG PET data were assessed at days 30, 35 and 55 after tumor cell inoculation determining the vascular fraction VB and the metabolic variables k1-k4. At day 55, genome-wide mRNA expression analysis was performed to assess the treatment-specific expression changes from cilengitide-treated and control rats. RESULTS In a longitudinal (18)F-FDG PET study, the vascular fraction VB was significantly decreased in bone metastases between days 30/35, 30/55 and 35/55, whereas the kinetic parameters k1 and k4 were significantly decreased between days 30/55 in skeletal lesions of treated animals. Gene expression analysis from bone metastases at day 55 revealed that tumor-produced integrins (αvβ5) as well as factors relevant for angiogenesis (αvβ3, VEGF, PDGF), bone resorption (PTHrP and RANKL), extracellular matrix remodeling (collagen, CD44) and bone marrow microenvironment (CXCR4) were significantly reduced upon therapy with cilengitide. CONCLUSIONS Here, we provide evidence that cilengitide inhibits pivotal factors of all compartments of bone metastases including tumor cells, vasculature and bone microenvironment in vivo and by whole-genome transcriptome analysis.
Collapse
Affiliation(s)
- Maren Bretschi
- Department of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
439
|
Gräber M, Hell M, Gröst C, Friberg A, Sperl B, Sattler M, Berg T. Orale Desinfektionsmittel inhibieren Protein-Protein-Wechselwirkungen des antiapoptotischen Proteins Bcl-xLund induzieren Apoptose in humanen oralen Tumorzellen. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201208889] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
440
|
Gräber M, Hell M, Gröst C, Friberg A, Sperl B, Sattler M, Berg T. Oral Disinfectants Inhibit Protein-Protein Interactions Mediated by the Anti-Apoptotic Protein Bcl-xLand Induce Apoptosis in Human Oral Tumor Cells. Angew Chem Int Ed Engl 2013; 52:4487-91. [DOI: 10.1002/anie.201208889] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 12/24/2012] [Indexed: 01/08/2023]
|
441
|
Bock JE, Gavenonis J, Kritzer JA. Getting in shape: controlling peptide bioactivity and bioavailability using conformational constraints. ACS Chem Biol 2013; 8:488-499. [PMID: 23170954 PMCID: PMC4847942 DOI: 10.1021/cb300515u] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chemical biologists commonly seek out correlations between the physicochemical properties of molecules and their behavior in biological systems. However, a new paradigm is emerging for peptides in which conformation is recognized as the primary determinant of bioactivity and bioavailability. This review highlights an emerging body of work that directly addresses how a peptide's conformation controls its biological effects, cell penetration, and intestinal absorption. Based on this work, the dream of mimicking the potency and bioavailability of natural product peptides is getting closer to reality.
Collapse
Affiliation(s)
- Jonathan E. Bock
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Jason Gavenonis
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Joshua A. Kritzer
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
442
|
Bochen A, Marelli UK, Otto E, Pallarola D, Mas-Moruno C, Di Leva FS, Boehm H, Spatz JP, Novellino E, Kessler H, Marinelli L. Biselectivity of isoDGR peptides for fibronectin binding integrin subtypes α5β1 and αvβ6: conformational control through flanking amino acids. J Med Chem 2013; 56:1509-19. [PMID: 23362923 DOI: 10.1021/jm301221x] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Integrins are the major class of cell adhesion proteins. Their interaction with different ligands of the extracellular matrix is diverse. To get more insight into these interactions, artificial ligands endowed with a well-defined activity/selectivity profile are necessary. Herein, we present a library of cyclic pentapeptides, based on our previously reported peptide motif c(-phg-isoDGR-X-), in which high activity toward fibronectin binding integrins α5β1 and αvβ6 and not on vitronectin binding integrins αvβ3 and αvβ5 has been achieved by changing the flanking amino acids. The structure of the most promising candidates has been determined using a combined approach of NMR, distance geometry, and molecular dynamics simulations, and docking studies have been further used to elucidate the peptide-integrin interactions at the molecular level. The peptides' binding affinity has been characterized by enzyme linked immunosorbent assay experiments, and the results have been verified by cell adhesion experiments on specifically functionalized surfaces.
Collapse
Affiliation(s)
- Alexander Bochen
- Institute for Advanced Study and Center of Integrated Protein Science, Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
443
|
Roth P, Silginer M, Goodman SL, Hasenbach K, Thies S, Maurer G, Schraml P, Tabatabai G, Moch H, Tritschler I, Weller M. Integrin control of the transforming growth factor-β pathway in glioblastoma. Brain 2013; 136:564-76. [DOI: 10.1093/brain/aws351] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
444
|
Schmitt SK, Murphy WL, Gopalan P. Crosslinked PEG mats for peptide immobilization and stem cell adhesion. J Mater Chem B 2013; 1:1349-1360. [PMID: 32260808 DOI: 10.1039/c2tb00253a] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have designed a lightly crosslinked PEG based copolymer coating with compositional flexibility as well as extended stability for studying human mesenchymal stem cells (hMSCs). Copolymers contain a majority of poly(ethylene glycol) methyl ether methacrylate (PEGMEMA) as a cytophobic background with poly(ethylene glycol) methacrylate (PEGMA) for peptide coupling, and less than 10% glycidyl methacrylate (GMA) for crosslinking. Copolymer thin films were crosslinked into 30 nm thick mats by either thermal treatment or ultraviolet light and were stable for 35 days in water at 37 °C. The amount of PEGMA in the copolymer was optimized to ∼11% to minimize non-specific cell-protein interactions while maximizing the amount of total bound peptides. Following the binding of RGDSP to the mat, hMSCs were seeded. The hMSC adhesion, spreading and focal adhesion complex formation were promoted in a concentration dependent manner. Mats coupled with a non-adhesive scramble (RDGSP) maintained their cytophobicity. Competitive detachment experiments further demonstrated that cell adhesion was mediated by receptor binding to the RGDSP peptide. Cell culture experiments performed at 1 and 2 weeks show that mats can still resist cell adhesion after incubation in a serum containing medium. X-ray photoelectron spectroscopy (XPS) was effectively used to quantify the average total peptide concentration as 12.6 ± 6.14 pmol cm-2. A square 2.2 mm N (1s) element map shows an average value of 17.9 pmol cm-2 of RGDSP, which correlates well with the multipoint high resolution data. The stability of the copolymer, compositional flexibility, ease of application and the ability to precisely quantify bound peptides on the mats make these materials ideal for the study of cellular processes, where stability, functionality and topography of the biointerface are relevant.
Collapse
Affiliation(s)
- Samantha K Schmitt
- Department of Material Science and Engineering, University of Wisconsin, Madison, WI 53706, USA.
| | | | | |
Collapse
|
445
|
Gersthagen T, Hofmann J, Klärner FG, Schmuck C, Schrader T. Ditopic Arginine-Aspartate Binders Recognize RGD Loops. European J Org Chem 2013. [DOI: 10.1002/ejoc.201201052] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
446
|
Roodbeen R, Jensen KJ. Synthesis of N-methylated peptides: on-resin methylation and microwave-assisted couplings. Methods Mol Biol 2013; 1047:141-149. [PMID: 23943484 DOI: 10.1007/978-1-62703-544-6_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
N-methylation may positively influence the pharmacokinetic properties of peptides by improving oral availability and in vivo half-life. Additionally, target affinity and specificity may be improved. Here, we describe the solid-phase N-methylation of peptides using direct alkylation. This method allows a rapid N-methyl scan of synthetic, bioactive peptides. Additionally, a microwave-enhanced method for the difficult coupling onto the methylated N terminus is provided.
Collapse
Affiliation(s)
- Renée Roodbeen
- Department of Chemistry, Faculty of Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | |
Collapse
|
447
|
Vollrath A, Schubert S, Schubert US. Fluorescence imaging of cancer tissue based on metal-free polymeric nanoparticles – a review. J Mater Chem B 2013; 1:1994-2007. [DOI: 10.1039/c3tb20089b] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
448
|
Guzzetti I, Civera M, Vasile F, Araldi EM, Belvisi L, Gennari C, Potenza D, Fanelli R, Piarulli U. Determination of the binding epitope of RGD-peptidomimetics to αvβ3 and αIIbβ3 integrin-rich intact cells by NMR and computational studies. Org Biomol Chem 2013; 11:3886-93. [DOI: 10.1039/c3ob40540k] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
449
|
Shen Y, Schottelius M, Zelenka K, De Simone M, Pohle K, Kessler H, Wester HJ, Schmutz P, Alberto R. Orthogonally protected artificial amino acid as tripod ligand for automated peptide synthesis and labeling with [(99m)Tc(OH(2))(3)(CO)(3)](+). Bioconjug Chem 2012; 24:26-35. [PMID: 23237229 DOI: 10.1021/bc3003327] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
1,2-Diamino-propionic acid (Dap) is a very strong chelator for the [(99m)Tc(CO)(3)](+) core, yielding small and hydrophilic complexes. We prepared the lysine based Dap derivative l-Lys(Dap) in which the ε-NH(2) group was replaced by the tripod through conjugation to its α-carbon. The synthetic strategy produced an orthogonally protected bifunctional chelator (BFC). The -NH(2) group of the α-amino acid portion is Fmoc- and the -NH(2) of Dap are Boc-protected. Fmoc-l-Lys(Dap(Boc)) was either conjugated to the N- and C-terminus of bombesin BBN(7-14) or integrated into the sequence using solid-phase peptide synthesis (SPPS). We also replaced the native lysine in a cyclic RGD peptide with l-Lys(Dap). For all peptides, quantitative labeling with the [(99m)Tc(CO)(3)](+) core at a 10 μM concentration in PBS buffer (pH = 7.4) was achieved. For comparison, the rhenium homologues were prepared from [Re(OH(2))(3)(CO)(3)](+) and Lys(Dap)-BBN(7-14) or cyclo-(RGDyK(Dap)), respectively. Determination of integrin receptor binding showed low to medium nanomolar affinities for various receptor subtypes. The IC(50) of cyclo-(RGDyK(Dap[Re(CO)(3)])) for α(v)β(3) is 7.1 nM as compared to 3.1 nM for nonligated RGD derivative. Biodistribution studies in M21 melanoma bearing nude mice showed reasonable α(v)β(3)-integrin specific tumor uptake. Altogether, orthogonally protected l-Lys(Dap) represents a highly versatile building block for integration in any peptide sequence. Lys(Dap)-precursors allow high-yield (99m)Tc-labeling with [(99m)Tc(OH(2))(3)(CO)(3)](+), forming small and hydrophilic complexes, which in turn leads to peptide radiopharmaceuticals with excellent in vivo characteristics.
Collapse
Affiliation(s)
- Yunjun Shen
- Institute of Inorganic Chemistry, University of Zürich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
450
|
Rechenmacher F, Neubauer S, Polleux J, Mas-Moruno C, De Simone M, Cavalcanti-Adam EA, Spatz JP, Fässler R, Kessler H. Functionalizing αvβ3- or α5β1-Selective Integrin Antagonists for Surface Coating: A Method To Discriminate Integrin Subtypes In Vitro. Angew Chem Int Ed Engl 2012; 52:1572-5. [DOI: 10.1002/anie.201206370] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 10/03/2012] [Indexed: 11/10/2022]
|