401
|
Xie F, Xiong Y, Yan J, Wang L, Yan W. Circular RNA circ_0048764 promotes the development of breast cancer by regulating microRNA-1296-5p/tripartite motif containing 14 axis. Bioengineered 2021; 13:1963-1974. [PMID: 34787066 PMCID: PMC8973759 DOI: 10.1080/21655979.2021.1995990] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Breast cancer (BC) is one of the leading causes of cancer-related deaths in female. Circular RNA (circRNA), as reported, is involved in the progression of BC. This work focuses on clarifying the biological function of circ_0048764 in BC and its hidden mechanism. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to detect the expressions of circ_0048764, microRNA-1296-5p (miR-1296-5p), and tripartite motif containing 14 (TRIM14) in BC tissues and cell lines. Besides, the status of proliferation, migration, invasion and apoptosis of BC cells was probed by cell counting kit-8 (CCK-8), EdU, transwell and flow cytometry assays. Western blot was adopted to examine the level of TRIM14 protein in BC cells. In addition, dual-luciferase reporter gene assay and RNA immunoprecipitation (RIP) assay were conducted to corroborate the targeting relationships between miR-1296-5p and circ_0048764 or TRIM14. It was revealed that circ_0048764 expression was remarkably up-regulated in BC tissues and cells, and circ_0048764 expression was associated with TNM stage and tumor size. Functionally, overexpression of circ_0048764 significantly promoted BC cell proliferative, migrative and invasive abilities and inhibited apoptosis, while circ_0048764 knockdown exerted the opposite effects. Mechanistically, circ_0048764 directly targeted miR-1296-5p and could negatively modulate its expression in BC cells. Besides, miR-1296-5p could reverse the influence of circ_0048764 on BC viability, migration, invasion and apoptosis. Moreover, TRIM14 was confirmed to be a downstream target of miR-1296-5p. Circ_0048764 positively regulated TRIM14 expression in BC cells via targeting miR-1296-5p. Collectively, it is concluded that circ_0048764 promotes the development of BC via modulating the miR-1296-5p/TRIM14 axis.
Collapse
Affiliation(s)
- Fei Xie
- Department of General Surgery, Xiangyang Central Hospital, Xiangyang 441021, Hubei Province, People's Republic of China
| | - Yuyuan Xiong
- Department of General Surgery, Xiangyang Central Hospital, Xiangyang 441021, Hubei Province, People's Republic of China
| | - Jiayin Yan
- Department of General Surgery, Xiangyang Central Hospital, Xiangyang 441021, Hubei Province, People's Republic of China
| | - Ling Wang
- Department of General Surgery, Xiangyang Central Hospital, Xiangyang 441021, Hubei Province, People's Republic of China
| | - Wei Yan
- Department of General Surgery, Xiangyang Central Hospital, Xiangyang 441021, Hubei Province, People's Republic of China
| |
Collapse
|
402
|
Identification of Potential Osteoporosis miRNA Biomarkers Using Bioinformatics Approaches. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:3562942. [PMID: 34777562 PMCID: PMC8579105 DOI: 10.1155/2021/3562942] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022]
Abstract
Osteoporosis is a degenerative osteoarthropathy commonly found in old people and postmenopausal women. Many studies showed that microRNAs (miRNAs) can regulate the expression of osteoporosis-related genes and are abnormally expressed in patients with osteoporosis. miRNAs therefore have the potential to serve as biomarkers of osteoporosis. In this study, the limma package was used for the differential expression analysis of mRNA expression profiles and 357 significantly differentially expressed genes (DEGs) were obtained. Metascape was used for functional enrichment analysis of DEGs. The result revealed that DEGs were mainly enriched in signaling pathways like MAPK6/MAPK4. Based on the STRING database, the protein-protein interaction (PPI) network of DEGs was constructed. MCODE was used to analyze the functional subsets, and a key functional subset composed of 9 genes was screened out. In addition, the miRNA-mRNA regulatory interaction network (RegIN) was analyzed by the CyTargetLinker plugin, which generated 55 miRNA-mRNA regulatory interactions. Through literature searching, the osteoporosis-related gene FOXO1 in the key functional subset was determined to be the main object of the study. In qRT-PCR assay, the expression of the predicted miRNAs was tested in peripheral blood mononuclear cells of mice with osteoporosis, in which 13 miRNAs were remarkably highly expressed. All in all, this study, based on bioinformatics analysis and testing assay of miRNA expression, determined the potential biomarkers of osteoporosis.
Collapse
|
403
|
Linking Diabetes Mellitus with Alzheimer's Disease: Bioinformatics Analysis for the Potential Pathways and Characteristic Genes. Biochem Genet 2021; 60:1049-1075. [PMID: 34779951 DOI: 10.1007/s10528-021-10154-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/03/2021] [Indexed: 01/22/2023]
Abstract
As the surging epidemics with significant disability, Alzheimer's disease (AD) and type II diabetes mellitus (T2DM) with microvascular complications are widely prevalent, sharing considerable similarities in putative pathomechanism. Despite a spurt of researches on the biology, knowledge about their interactive mechanisms is still rudimentary. Applying bioinformatics ways to explore the differentially co-expressed genes contributes to achieve our objectives to find new therapeutic targets. In this study, we firstly integrated gene expression omnibus datasets (GSE28146 and GSE43950) to identify differentially expressed genes. The enrichment analysis of pivotal genes, like gene ontology and pathway signaling proceeded subsequently. Besides, the related protein-protein interaction (PPI) network was then constructed. To further explain the inner connections, we ended up unearthing the biological significance of valuable targets. As a result, a set of 712, 630, 487, and 997 genes were differentially identified in T2DM with microvascular complications and AD at incipient, moderate, and severe, respectively. The enrichment analysis involving both diseases implicated the dominance of immune system, especially the noteworthy chemokine signaling. Multiple comparisons confirmed that CACNA2D3, NUMB, and IER3 were simultaneously participate in these two conditions, whose respective associations with neurological and endocrine diseases, and regulators including interacting chemicals, transcription factors, and miRNAs were analyzed. Bioinformatics analysis eventually concluded that immune-related biological functions and pathways closely link AD and T2DM with microvascular complications. Further exploration of the regulatory factors about CACNA2D3, NUMB, and IER3 in neuroendocrine field may provide us a promising direction to discover potential strategies for the comorbidity status.
Collapse
|
404
|
Xue Y, Guo Y, Liu N, Deng Z, Jian Y, Cai H, Meng X. MicroRNA-22-3p targeted regulating transcription factor 7-like 2 (TCF7L2) constrains the Wnt/β-catenin pathway and malignant behavior in osteosarcoma. Bioengineered 2021; 13:9135-9147. [PMID: 34753394 PMCID: PMC9208512 DOI: 10.1080/21655979.2021.2003942] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Various studies have manifested that microRNAs (miRNAs) are involved in the modulation of the occurrence and development of osteosarcoma (OS). However, whether miR-22-3p is associated with OS growth remains unclear. In the study, the potential molecular mechanisms of miR-22-3p in OS was explored. It was affirmed that miR-22-3p was associated with distant metastasis and tumor size in OS patients, and reduced in OS tissues and cells while transcription factor 7-like 2 (TCF7L2) was elevated. Elevated miR-22-3p repressed OS cell progression, and the Wnt/β-catenin pathway, while elevated TCF7L2 was opposite. MiR-22-3p targeted TCF7L2 in OS. In functional rescue experiments, knockdown of miR-22-3p on OS progression and promotion of Wnt/β-catenin were reversed by simultaneous knockdown of TCF7L2. Transplantation experiments in nude mice showed that elevated miR-22-3p repressed OS tumor growth and decreased TCF7L2, Wnt and β-catenin. Shortly, this study suggest that miR-22-3p refrains the Wnt/β-catenin pathway by targeting TCF7L2 and thereby preventing OS deterioration. MiR-22-3p/TCF7L2 axis is supposed to be a candidate molecular target for future OS treatment.
Collapse
Affiliation(s)
- YuanLiang Xue
- Department of Orthopedics, Clinical Medical College of Shandong Uiniversity of Traditional Chinese Medicine, JiNan City, ShanDong Province, 250014, China
| | - Ya Guo
- Department of Orthopedics, Heze Hospital of traditional Chinese Medicine, HeZe City, ShanDong Province, 274000, China
| | - Ning Liu
- Department of Spinal Orthopedics, Zhang Qiu District Hospital of traditional Chinese Medicine, JiNan City, ShanDong Province, 250200, China
| | - Zexiang Deng
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha City, Hunan Province, 410008, China
| | - Yanping Jian
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha City, Hunan Province, 410008, China
| | - Hongwei Cai
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha City, Hunan Province, 410008, China
| | - XiangQi Meng
- Department of Orthopedics, Suzhou TCM Hospital Affiliated to Nanjing University of TCM, SuZhou City, JiangSu Province, China
| |
Collapse
|
405
|
MiR-702-3p inhibits the inflammatory injury in septic H9c2 cells by regulating NOD1. Transpl Immunol 2021; 70:101493. [PMID: 34774740 DOI: 10.1016/j.trim.2021.101493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/27/2021] [Accepted: 11/06/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Cardiac insufficiency is a common complication of sepsis and septic shock and is the most common cause of death in critically ill patients. Recent studies have found that microRNAs (miRNAs) play a potential role in sepsis as markers, but little is known about their functional effects on sepsis-induced cardiomyopathy (SIC). OBJECTIVE This study is designed to explore the possible role and underlying mechanisms of miR-702-3p in septic cardiomyopathy. METHODS As expected, H9c2 cells were induced with lipopolysaccharide (LPS) to construct the model of septic cardiomyopathy. The expression of miR-702-3p was detected by qRT-PCR assay and those of IL-1β, IL-6 and TNF-α by ELISA assay. The viability, proliferation and apoptosis of LPS-treated H9c2 cells were determined by CCK-8, EdU, flow cytometry and western blot assays. Moreover, Nucleotide-binding oligomerization domain-containing protein 1 (NOD1) was predicted and confirmed as a direct target of miR-702-3p by TargetScan, miRwalk and miRDB prediction and dual-luciferase reporter gene assays. RESULTS While LPS can weaken the viability of H9c2 cells, miR-702-3p enhances that of LPS-treated H9c2 cells by inhibit the expressions of TNF-α, IL-6, IL-1β. We found NOD1 is a target gene of miR-702-3p, and over-expression of NOD1 restores the inhibitory effects of miR-702-3p on the LPS-treated H9c2 cells. CONCLUSION MiR-702-3p played an important role in the pathogenesis of sepsis cardiomyopathy via targeting NOD1, suggesting that miR-702-3p may be a potential new target for the treatment of SIC.
Collapse
|
406
|
Liu QP, Ge P, Wang QN, Zhang SY, Yang YQ, Lv MQ, Lu Y, Li MX, Zhou DX. Circular RNA-CDR1as is involved in lung injury induced by long-term formaldehyde inhalation. Inhal Toxicol 2021; 33:325-333. [PMID: 34752207 DOI: 10.1080/08958378.2021.1999350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Formaldehyde (FA) is known to induce lung injury, but the underlying molecular mechanism remains largely unclear. CDR1as is an important member of the circular RNAs (circRNAs) family and functions as miRNA sponges with gene-regulatory potential. Our earlier circRNA microarray data showed CDR1as was highly expressed in lung tissue exposed to FA. However, the mechanism of circRNA-CDR1as mediates the FA-exposed lung injury is still unclear. This study aimed to explore the role of CDR1as in lung injury. MATERIALS AND METHODS In this study, FA was inhaled at doses of 0.5, 2.46, and 5 mg/m3, respectively. After exposure 8 weeks, lung histopathological examination, lung injury score, and IL-1β in bronchoalveolar lavage fluid (BALF) were determined. The expressions of CDR1as, rno-miR-7b and Atg7 were detected and the potential interaction of circRNA/miRNA/mRNA was predicted by bioinformatics analysis, including drawing circRNA/miRNA/mRNA interaction network, GO and KEGG analysis. RESULTS Our results indicated FA inhalation upregulated the expression of CDR1as in lung tissues in a dose-dependent manner while the expression of rno-miR-7b decreased and Atg7 increased. Moreover, the alteration of CDR1as was positively correlated with lung injury. DISCUSSION AND CONCLUSIONS CircRNA/miRNA/mRNA prediction further explained the possible effect mechanisms of CDR1as. These data implicated that CDR1as might be a critical regulator involved in lung injury induced by FA.
Collapse
Affiliation(s)
- Qiu-Ping Liu
- Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, China.,Respiratory Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, China
| | - Pan Ge
- Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China
| | - Qian-Nan Wang
- Qide College, Xi'an Jiaotong University, Xi'an, China
| | - Shu-Yu Zhang
- Zonglian College, Xi'an Jiaotong University, Xi'an, China
| | - Yan-Qi Yang
- Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China
| | - Mo-Qi Lv
- Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China
| | - Ye Lu
- Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, China
| | - Man-Xiang Li
- Respiratory Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Dang-Xia Zhou
- Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
407
|
Xiang B, Li Y, Li J, Li J, Jiang H, Zhang Q. MiR-19 3b regulated the formation of coat colors by targeting WNT10A and GNAI2 in Cashmere goats. Anim Biotechnol 2021:1-9. [PMID: 34747678 DOI: 10.1080/10495398.2021.1998089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
MiRNAs as a series of small noncoding RNAs that play a crucial part in regulating coat color and hair follicle development. In the previous Solexa sequencing experiments, there were many miRNAs expressed differentially in alpacas with different coat color, including miR-193b.But the mechanism of miR-193b in mammalian pigmentation is still unknown. In this study, bioinformatics analysis showed that WNT10A and GNAI2 might be the target genes of miR-193b. qRT-PCR showed the expression of miR-193b in white Cashmere goats' skins was obviously lower than that in browns, and the expression of WNT10A and GNAI2 were similar with miR-193b. The protein levels of WNT10A and GNAI2 indicated the same findings. Furthermore, the expression of WNT10A and GNAI2 in keratinocytes were analyzed from mRNA and protein levels, the results manifested that the group of overexpression of miR-193b in HaCaT cells increased the expressions of target genes, and miR-193b inhibition group reduced expressions. Luciferase report assays confirmed that the targeting relationship between miR-193b and target genes (WNT10A and GNAI2), the results showed that miR-193b was positively correlated with target genes. These experimental data showed that miR-193b might participate in adjustment of coat color in skin tissue of Cashmere goat by targeting WNT10A and GNAI2.
Collapse
Affiliation(s)
- Ba Xiang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yumei Li
- College of Animal Science, Jilin University, Changchun, China
| | - Jianping Li
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, China
| | - Jianyu Li
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - HuaiZhi Jiang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - QiaoLing Zhang
- College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
408
|
Long X, Huang Y, He J, Zhang X, Zhou Y, Wei Y, Tang Y, Liu L. Upregulation of miR‑335 exerts protective effects against sepsis‑induced myocardial injury. Mol Med Rep 2021; 24:806. [PMID: 34542164 PMCID: PMC8477184 DOI: 10.3892/mmr.2021.12446] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 07/28/2021] [Indexed: 12/12/2022] Open
Abstract
Septicemia is associated with excessive inflammation, oxidative stress and apoptosis, causing myocardial injury that results in high mortality and disability rates worldwide. The abnormal expression of multiple microRNAs (miRNAs/miRs) is associated with more severe sepsis‑induced myocardial injury (SIMI) and miR‑335 has been shown to protect cardiomyocytes from oxidative stress. The present study aimed to investigate the role of miR‑335 in SIMI. An SIMI model was established by cecal ligation and puncture (CLP) in mice. An miRNA‑335 precursor (pre‑miR‑335) was transfected to accelerate miR‑335 expression and an miR‑335 inhibitor (anti‑miR‑335) was used to inhibit miR‑335 expression. CLP or sham surgery was performed on pre‑miR‑335, anti‑miR‑335 and wild‑type mice and miR‑335 expression was determined by reverse transcription‑quantitative PCR. Inflammatory factors (TNF‑α, IL‑6 and IL‑10) and troponin (cTNI), brain natriuretic peptide (BNP), creatine kinase (CK), lactate dehydrogenase (LDH) and aspartate aminotransferase (AST) were assessed using commercial kits. Apoptosis was detected by flow cytometry and cardiac function was assessed using a Langendorff isolated cardiac perfusion system. miR‑335 expression was upregulated and an elevation in inflammatory factors and cTNI, BNP, CK, LDH and AST was observed. Compared with the wild‑type control group, pre‑miR‑335 mice treated with CLP exhibited significantly reduced left ventricular development pressure, maximum pressure increased reduction rates, as well as decreased levels of TNF‑α, IL‑6 and IL‑10, myocardial injury and apoptosis; by contrast, these features were amplified in CLP‑treated anti‑miR‑335 mice. In conclusion, the upregulation of miR‑335 exerted ameliorative effects on myocardial injury following sepsis and may indicate a novel therapeutic intervention for SIMI.
Collapse
Affiliation(s)
- Xian Long
- Department of Clinic, Medicine School, Changsha Social Work College, Changsha, Hunan 410004, P.R. China
- Department of Pharmacology, Hunan Academy of Chinese Medicine, Changsha, Hunan 410008, P.R. China
- Department of Pharmacology, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| | - Yongpan Huang
- Department of Clinic, Medicine School, Changsha Social Work College, Changsha, Hunan 410004, P.R. China
| | - Jianbin He
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Huaihua, Affiliated to University of South China, Huaihua, Hunan 418000, P.R. China
| | - Xiang Zhang
- Department of Clinic, Medicine School, Changsha Social Work College, Changsha, Hunan 410004, P.R. China
| | - Yan Zhou
- Department of Clinic, Medicine School, Changsha Social Work College, Changsha, Hunan 410004, P.R. China
| | - Yingmin Wei
- Department of Clinic, Medicine School, Changsha Social Work College, Changsha, Hunan 410004, P.R. China
| | - Ying Tang
- Department of Clinic, Medicine School, Changsha Social Work College, Changsha, Hunan 410004, P.R. China
| | - Lijing Liu
- Department of Clinic, Medicine School, Changsha Social Work College, Changsha, Hunan 410004, P.R. China
| |
Collapse
|
409
|
RNA Modifications and RNA Metabolism in Neurological Disease Pathogenesis. Int J Mol Sci 2021; 22:ijms222111870. [PMID: 34769301 PMCID: PMC8584444 DOI: 10.3390/ijms222111870] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/16/2021] [Accepted: 10/26/2021] [Indexed: 02/06/2023] Open
Abstract
The intrinsic cellular heterogeneity and molecular complexity of the mammalian nervous system relies substantially on the dynamic nature and spatiotemporal patterning of gene expression. These features of gene expression are achieved in part through mechanisms involving various epigenetic processes such as DNA methylation, post-translational histone modifications, and non-coding RNA activity, amongst others. In concert, another regulatory layer by which RNA bases and sugar residues are chemically modified enhances neuronal transcriptome complexity. Similar RNA modifications in other systems collectively constitute the cellular epitranscriptome that integrates and impacts various physiological processes. The epitranscriptome is dynamic and is reshaped constantly to regulate vital processes such as development, differentiation and stress responses. Perturbations of the epitranscriptome can lead to various pathogenic conditions, including cancer, cardiovascular abnormalities and neurological diseases. Recent advances in next-generation sequencing technologies have enabled us to identify and locate modified bases/sugars on different RNA species. These RNA modifications modulate the stability, transport and, most importantly, translation of RNA. In this review, we discuss the formation and functions of some frequently observed RNA modifications—including methylations of adenine and cytosine bases, and isomerization of uridine to pseudouridine—at various layers of RNA metabolism, together with their contributions to abnormal physiological conditions that can lead to various neurodevelopmental and neurological disorders.
Collapse
|
410
|
Yu Y, Li H, Wu C, Li J. Circ_0021087 acts as a miR-184 sponge and represses gastric cancer progression by adsorbing miR-184 and elevating FOSB expression. Eur J Clin Invest 2021; 51:e13605. [PMID: 34076278 DOI: 10.1111/eci.13605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/14/2021] [Accepted: 05/14/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Gastric cancer (GC) ranks third among the causes of cancer-related deaths in the world. Circular RNA hsa_circ_0021087 (circ_0021087) plays a repressive role in GC. Nevertheless, the mechanism by which circ_0021087 constrains GC advancement is unclear. MATERIALS AND METHODS Expression patterns of circ_0021087, microRNA (miR)-184 and FBJ murine osteosarcoma viral oncogene homolog B (FOSB) mRNA were assessed by quantitative real-time polymerase chain reaction (RT-qPCR). Gain-of-function experiments were conducted to verify the biological function of circ_0021087 in vitro and in vivo, including cell counting kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, transwell and xenograft assays. Protein levels were analysed by Western blotting and immunohistochemistry (IHC). The regulatory mechanism of circ_0021087 was analysed by bioinformatics analysis, dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. RESULTS AND CONCLUSION Circ_0021087 and FOSB were lowly expressed in GC, whereas miR-184 had an opposite result. Circ_0021087 overexpression repressed GC cell proliferation and epithelial-mesenchymal transition (EMT) in xenograft models in vivo and induced GC cell apoptosis, repressed GC cell proliferation, EMT, migration and invasion in vitro. Circ_0021087 could elevate FOSB expression by adsorbing miR-184. MiR-184 mimic reversed the inhibitory influence of circ_0021087 overexpression on GC cell malignancy. Also, FOSB knockdown offset the suppressive impact of miR-184 silencing on GC cell malignancy. In conclusion, circ_0021087 played a repressive influence on GC progression by elevating FOSB expression by adsorbing miR-184, offering a new mechanism for circ_0021087 to inhibit the progression of GC.
Collapse
Affiliation(s)
- Yin Yu
- School of Basic Medicine, Zhengzhou University, Zhengzhou City, China
| | - Hong Li
- Department of Radiology, Zhumadian Central Hospital Affiliated to Huanghuai University, Zhumadian City, China
| | - Chunhua Wu
- Department of Oncology, Zhumadian Central Hospital Affiliated to Huanghuai University, Zhumadian City, China
| | - Jinfeng Li
- Department of Obstetrics and Gynecology, Zhumadian Central Hospital Affiliated to Huanghuai University, Zhumadian City, China
| |
Collapse
|
411
|
Daidone M, Cataldi M, Pinto A, Tuttolomondo A. Non-coding RNAs and other determinants of neuroinflammation and endothelial dysfunction: regulation of gene expression in the acute phase of ischemic stroke and possible therapeutic applications. Neural Regen Res 2021; 16:2154-2158. [PMID: 33818487 PMCID: PMC8354116 DOI: 10.4103/1673-5374.310607] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/15/2020] [Accepted: 12/22/2020] [Indexed: 12/15/2022] Open
Abstract
Ischemic stroke occurs under a variety of clinical conditions and has different pathogeneses, resulting in necrosis of brain parenchyma. Stroke pathogenesis is characterized by neuroinflammation and endothelial dysfunction. Some of the main processes triggered in the early stages of ischemic damage are the rapid activation of resident inflammatory cells (microglia, astrocytes and endothelial cells), inflammatory cytokines, and translocation of intercellular nuclear factors. Inflammation in stroke includes all the processes mentioned above, and it consists of either protective or detrimental effects concerning the "polarization" of these processes. This polarization comes out from the interaction of all the molecular pathways that regulate genome expression: the epigenetic factors. In recent years, new regulation mechanisms have been cleared, and these include non-coding RNAs, adenosine receptors, and the activity of mesenchymal stem/stromal cells and microglia. We reviewed how long non-coding RNA and microRNA have emerged as an essential mediator of some neurological diseases. We also clarified that their roles in cerebral ischemic injury may provide novel targets for the treatment of ischemic stroke. To date, we do not have adequate tools to control pathophysiological processes associated with stroke. Our goal is to review the role of non-coding RNAs and innate immune cells (such as microglia and mesenchymal stem/stromal cells) and the possible therapeutic effects of their modulation in patients with acute ischemic stroke. A better understanding of the mechanisms that influence the "polarization" of the inflammatory response after the acute event seems to be the way to change the natural history of the disease.
Collapse
Affiliation(s)
- Mario Daidone
- Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialties, “G. D’Alessandro”, University of Palermo, Piazza delle Cliniche n.2, Palermo, Italy
| | - Marco Cataldi
- Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialties, “G. D’Alessandro”, University of Palermo, Piazza delle Cliniche n.2, Palermo, Italy
| | - Antonio Pinto
- Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialties, “G. D’Alessandro”, University of Palermo, Piazza delle Cliniche n.2, Palermo, Italy
| | - Antonino Tuttolomondo
- Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialties, “G. D’Alessandro”, University of Palermo, Piazza delle Cliniche n.2, Palermo, Italy
| |
Collapse
|
412
|
Wang Z, Wang D, Guo S, Zhuo Q, Jiang D, Yu Z. Long noncoding RNA distal-less homeobox 2 antisense 1 restrains inflammatory response and apoptosis of periodontal ligament cells by binding with microRNA-330-3p to regulate Ro60, Y RNA binding protein. Arch Oral Biol 2021; 133:105298. [PMID: 34752991 DOI: 10.1016/j.archoralbio.2021.105298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 01/08/2023]
Abstract
OBJECTIVE This study aims to investigate the role of long noncoding RNA distal-less homeobox 2 antisense 1 (DLX2-AS1) in lipopolysaccharide-induced inflammatory response and apoptosis of periodontal ligament cells (PDLCs). DESIGN Lipopolysaccharide was used to induce inflammation response of PDLCs. The expression of DLX2-AS1, microRNA-330-3p and Ro60, Y RNA binding protein (RO60) in lipopolysaccharide-treated PDLCs was detected by reverse transcription quantitative polymerase chain reaction (RT-qPCR). Enzyme linked immunosorbent assay (ELISA) was performed to evaluate the concentration of inflammatory cytokines in PDLCs after DLX2-AS1 overexpression or RO60 downregulation. The apoptosis of PDLCs after lipopolysaccharide treatment or indicated transfection was analyzed by flow cytometry analysis. The level of apoptosis-related proteins, Bax and Bcl-2, were examined by western blotting. The binding capacity between microRNA-330-3p and DLX2-AS1 (or RO60) was verified by luciferase reporter assays. RESULTS DLX2-AS1 was downregulated in PDLCs after lipopolysaccharide treatment. DLX2-AS1 overexpression decreased the production of inflammatory cytokines and inhibited cell apoptosis. microRNA-330-3p bound with DLX2-AS1 and displayed high expression in lipopolysaccharide-induced PDLCs. In addition, the downregulation of RO60, a target gene of microRNA-330-3p, reversed the suppressive influence of DLX2-AS1 overexpression on the inflammatory response and apoptosis of PDLCs. CONCLUSIONS DLX2-AS1 restrains inflammatory response and apoptosis of PDLCs via the microRNA-330-3p/RO60 axis.
Collapse
Affiliation(s)
- Zhihua Wang
- Department of Stomatology, Huaian Maternal and Child Health Hospital, Huaian 223300, Jiangsu, China
| | - Dazhao Wang
- Department of Stomatology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian 223300, Jiangsu, China
| | - Song Guo
- Department of Stomatology, Huaian Maternal and Child Health Hospital, Huaian 223300, Jiangsu, China
| | - Qibao Zhuo
- Department of Stomatology, Huaian Maternal and Child Health Hospital, Huaian 223300, Jiangsu, China
| | - Dongting Jiang
- Department of Stomatology, Huaian Maternal and Child Health Hospital, Huaian 223300, Jiangsu, China
| | - Zhifen Yu
- Department of Stomatology, Huaian Maternal and Child Health Hospital, Huaian 223300, Jiangsu, China.
| |
Collapse
|
413
|
Zhao H, Zhang M, Yang X, Song D. Overexpression of Long Non-Coding RNA MIR22HG Represses Proliferation and Enhances Apoptosis via miR-629-5p/TET3 Axis in Osteosarcoma Cells. J Microbiol Biotechnol 2021; 31:1331-1342. [PMID: 34373436 PMCID: PMC9705835 DOI: 10.4014/jmb.2106.06028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/02/2021] [Accepted: 08/07/2021] [Indexed: 12/15/2022]
Abstract
In this study, we evaluated the mechanism of long non-coding RNA MIR22 host gene (LncRNA MIR22HG) in osteosarcoma cells. Forty-eight paired osteosarcoma and adjacent tissues samples were collected and the bioinformatic analyses were performed. Target genes and potential binding sites of MIR22HG, microRNA (miR)-629-5p and tet methylcytosine dioxygenase 3 (TET3) were predicted by Starbase and TargetScan V7.2 and confirmed by dual-luciferase reporter assay. Cell Counting Kit-8, colony formation and flow cytometry assays were utilized to determine the viability, proliferation and apoptosis of transfected osteosarcoma cells. Pearson's analysis was introduced for the correlation analysis between MIR22HG and miR-629-5p in osteosarcoma tissue. Relative expressions of MIR22HG, miR-629-5p and TET3 were measured by quantitative real-time polymerase chain reaction or Western blot. MiR-629-5p could competitively bind with and was negatively correlated with MIR22HG, the latter of which was evidenced by the high expression of miR-629-5p and low expression of MIR22HG in osteosarcoma tissues. Overexpressed MIR22HG repressed the viability and proliferation but enhanced apoptosis of osteosarcoma cells, which was reversed by miR-629-5p upregulation. TET3 was the target gene of miR-629-5p, and the promotive effects of upregulated miR-629-5p on the viability and proliferation as well as its repressive effect on apoptosis were abrogated via overexpressed TET3. To sum up, overexpressed MIR22HG inhibits the viability and proliferation of osteosarcoma cells, which was achieved via regulation of the miR-629-5p/TET3 axis.
Collapse
Affiliation(s)
- Haoliang Zhao
- Orthopedics Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan City, Shanxi Province 030032, P.R. China
| | - Ming Zhang
- Orthopedics Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan City, Shanxi Province 030032, P.R. China
| | - Xuejing Yang
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, No. 99 Longcheng Street, Xiaodian District, Taiyuan City, Shanxi Province 030032, P.R. China
| | - Dong Song
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, No. 99 Longcheng Street, Xiaodian District, Taiyuan City, Shanxi Province 030032, P.R. China,Corresponding author Phone: +86-0351-8368114 E-mail:
| |
Collapse
|
414
|
Screening of MicroRNAs with Potential Systemic Effects Released from Goose Fatty Liver. J Poult Sci 2021; 58:263-269. [PMID: 34899022 PMCID: PMC8630403 DOI: 10.2141/jpsa.0200097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 12/07/2020] [Indexed: 12/28/2022] Open
Abstract
Communication between tissues and organs plays an important role in the maintenance of normal physiological functions as well as the occurrence and development of diseases. Communication molecules act as a bridge for interactions between tissues and organs, playing not only a local role in the tissues and organs where they are secreted but also in exerting systemic effects on the whole body via circulation. In this study, blood microRNA-omics analysis of overfed vs. normally fed (control) Landes geese revealed that the content of each of the 21 microRNAs (miRNAs) in the blood of overfed geese was significantly higher than that in the blood of control geese. These miRNAs may have systematic effects in the development of goose fatty liver as well as being candidate markers for the diagnosis of goose fatty liver. We determined the expression of miR-143, miR-455-5p, miR-222a-5p, miR-184, miR-1662, and miR-129-5p using quantitative PCR in goose fatty liver vs. that in normal liver. The expression of these miRNAs, except miR-129-5p, in goose fatty liver was also significantly higher than that in normal liver (P<0.05), suggesting that these blood miRNAs are released from goose fatty liver. In addition, we found that expression of IGFBP5, the predicted target gene of miR-143, was significantly decreased in goose fatty liver vs. the normal liver (P<0.05), indicating that miR-143 may exert both local and systematic effects by inhibiting the expression of IGFBP5, thus promoting the development of goose fatty liver. In conclusion, we identified several miRNAs, including those we validated (i.e., miR-143, miR-455-5p, miR-222a-5p, miR-184, miR-1662, and miR-129-5p) that may serve as candidate markers in the diagnosis of goose fatty liver as well as local and global regulators contributing to the development of goose fatty liver.
Collapse
|
415
|
Xie H, Xiao R, He Y, He L, Xie C, Chen J, Hong Y. MicroRNA-100 inhibits breast cancer cell proliferation, invasion and migration by targeting FOXA1. Oncol Lett 2021; 22:816. [PMID: 34671430 PMCID: PMC8503813 DOI: 10.3892/ol.2021.13077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/28/2021] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs/miRs) are highly conserved single-stranded small non-coding RNAs, which are involved in the physiological and pathological processes of breast cancer, and affect the prognosis of patients with breast cancer. The present study used the Gene Expression Omnibus (GEO)2R tool to detect miR-100 expression in breast cancer tissues obtained from GEO breast cancer-related datasets. Bioinformatics analysis revealed that miR-100 expression was downregulated in different stages, grades and lymph node metastasis stages of breast cancer, and patients with high miR-100 expression had a more favorable prognosis. Based on these analyses, Cell Counting Kit-8, wound healing and Transwell assays were performed, and the results demonstrated that overexpression of miR-100 inhibited the proliferation, migration and invasion of breast cancer cells. To verify the tumor-suppressive effect of miR-100 in breast cancer, the LinkedOmics and PITA databases were used to assess the association between miR-100 and forkhead box A1 (FOXA1). The results demonstrated that miR-100 had binding sites within the FOXA1 gene, and FOXA1 expression was negatively associated with miR-100 expression in breast cancer tissues. Similarly, a negative association was observed between miR-100 and FOXA1 expression, using the StarBase V3.0 database. The association between miR-100 and FOXA1 was further verified via reverse transcription-quantitative PCR and western blot analyses, and the dual-luciferase reporter assay. The results demonstrated that miR-100 targeted the 3′-untranslated region of FOXA1 in breast cancer cells. Furthermore, rescue experiments were performed to confirm whether miR-100 exerts its antitumor effects by regulating FOXA1. The results demonstrated that overexpression of FOXA1 promoted the proliferation, migration and invasion of breast cancer cells; thus, the antitumor effects of miR-100 in breast cancer were reversed following overexpression of FOXA1. Taken together, the results of the present study suggest that miR-100 inhibits the proliferation, migration and invasion of breast cancer cells by targeting FOXA1 expression. These results may provide a novel insight and an experimental basis for identifying effective therapeutic targets of high specificity for breast cancer.
Collapse
Affiliation(s)
- Haihui Xie
- Department of Radiation Oncology, The Second Affiliated Hospital University of South China, Hengyang, Hunan 421001, P.R. China.,Clinical Research Center for Prevention and Treatment of Breast & Thyroid Disease in Hunan Province, Hengyang, Hunan 421001, P.R. China
| | - Ruobing Xiao
- Department of Radiation Oncology, The Second Affiliated Hospital University of South China, Hengyang, Hunan 421001, P.R. China.,Clinical Research Center for Prevention and Treatment of Breast & Thyroid Disease in Hunan Province, Hengyang, Hunan 421001, P.R. China
| | - Yaolin He
- Department of Radiation Oncology, The Second Affiliated Hospital University of South China, Hengyang, Hunan 421001, P.R. China
| | - Lingzhi He
- Department of Preventive Medicine, Hunan Polytechnic of Environment and Biology, Hengyang, Hunan 421001, P.R. China
| | - Changjun Xie
- Department of Radiation Oncology, The Second Affiliated Hospital University of South China, Hengyang, Hunan 421001, P.R. China
| | - Juan Chen
- Department of Radiation Oncology, The Second Affiliated Hospital University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yan Hong
- Department of Preventive Medicine, Hunan Polytechnic of Environment and Biology, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
416
|
Rincón-Riveros A, Morales D, Rodríguez JA, Villegas VE, López-Kleine L. Bioinformatic Tools for the Analysis and Prediction of ncRNA Interactions. Int J Mol Sci 2021; 22:11397. [PMID: 34768830 PMCID: PMC8583695 DOI: 10.3390/ijms222111397] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 12/16/2022] Open
Abstract
Noncoding RNAs (ncRNAs) play prominent roles in the regulation of gene expression via their interactions with other biological molecules such as proteins and nucleic acids. Although much of our knowledge about how these ncRNAs operate in different biological processes has been obtained from experimental findings, computational biology can also clearly substantially boost this knowledge by suggesting possible novel interactions of these ncRNAs with other molecules. Computational predictions are thus used as an alternative source of new insights through a process of mutual enrichment because the information obtained through experiments continuously feeds through into computational methods. The results of these predictions in turn shed light on possible interactions that are subsequently validated experimentally. This review describes the latest advances in databases, bioinformatic tools, and new in silico strategies that allow the establishment or prediction of biological interactions of ncRNAs, particularly miRNAs and lncRNAs. The ncRNA species described in this work have a special emphasis on those found in humans, but information on ncRNA of other species is also included.
Collapse
Affiliation(s)
- Andrés Rincón-Riveros
- Bioinformatics and Systems Biology Group, Universidad Nacional de Colombia, Bogotá 111221, Colombia;
| | - Duvan Morales
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá 111221, Colombia;
| | - Josefa Antonia Rodríguez
- Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerología, Bogotá 111221, Colombia;
| | - Victoria E. Villegas
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá 111221, Colombia;
| | - Liliana López-Kleine
- Department of Statistics, Faculty of Science, Universidad Nacional de Colombia, Bogotá 111221, Colombia
| |
Collapse
|
417
|
Li J, Ouyang T, Li M, Hong T, Alriashy M, Meng W, Zhang N. CBX7 is Dualistic in Cancer Progression Based on its Function and Molecular Interactions. Front Genet 2021; 12:740794. [PMID: 34659360 PMCID: PMC8517511 DOI: 10.3389/fgene.2021.740794] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022] Open
Abstract
Chromobox protein homolog 7 (CBX7) is a member of the Chromobox protein family and participates in the formation of the polycomb repressive complex 1(PRC1). In cells, CBX7 often acts as an epigenetic regulator to regulate gene expression. However, pathologically, abnormal expression of CBX7 can lead to an imbalance of gene expression, which is closely related to the occurrence and progression of cancers. In cancers, CBX7 plays a dual role; On the one hand, it contributes to cancer progression in some cancers by inhibiting oncosuppressor genes. On the other hand, it suppresses cancer progression by interacting with different molecules to regulate the synthesis of cell cycle-related proteins. In addition, CBX7 protein may interact with different RNAs (microRNAs, long noncoding RNAs, circular RNAs) in different cancer environments to participate in a variety of pathways, affecting the development of cancers. Furthermore, CBX7 is involved in cancer-related immune response and DNA repair. In conclusion, CBX7 expression is a key factor in the occurrence and progression of cancers.
Collapse
Affiliation(s)
- Jun Li
- Department of the Second Clinical Medical College of Nanchang University, Jiangxi Province, China
| | - Taohui Ouyang
- Department of Neurosurgery, the First Affiliated Hospital of Nanchang University, Jiangxi Province, China
| | - Meihua Li
- Department of Neurosurgery, the First Affiliated Hospital of Nanchang University, Jiangxi Province, China
| | - Tao Hong
- Department of Neurosurgery, the First Affiliated Hospital of Nanchang University, Jiangxi Province, China
| | - Mhs Alriashy
- Department of Neurosurgery, Huashan Hospital of Fudan University, Shanghai, China
| | - Wei Meng
- Department of Neurosurgery, the First Affiliated Hospital of Nanchang University, Jiangxi Province, China
| | - Na Zhang
- Department of Neurology, the First Affiliated Hospital of Nanchang University, Jiangxi Province, China
| |
Collapse
|
418
|
Su C, Liu W, Jiang T, Liu J. miR-488-5p promotes esophageal squamous cell carcinoma progression by suppressing the P53 pathway. J Thorac Dis 2021; 13:5534-5545. [PMID: 34659819 PMCID: PMC8482336 DOI: 10.21037/jtd-21-1448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/17/2021] [Indexed: 12/24/2022]
Abstract
Background miR-488-3p has been reported to play an important role in cancer progression and metastasis. The protein 53 (P53) gene serves as a mediator and biomarker of esophageal squamous cell carcinoma (ESCC). However, the molecular mechanism underlying miR-488-5p in the pathology of ESCC through the P53 pathway has not been examined. Methods The expression levels of miR-488-5p were determined by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Cytological experiments were performed to evaluate the biological functions of miR-488-5p. A bioinformatics analysis was performed to determine the pathways and key miR-488-5p targets associated with ESCC. Correlations between miR-488-5p and P53 signaling pathways were validated by western blotting and the dual luciferase reporter gene system. Finally, the expression level of miR-488-5p was regulated and tumor formation experiments were performed in nude mice. Results The qRT-PCR analysis showed that MiR-488-5p expression was more upregulated in the KYSE-150 group than the HEEC group. In the KYSE-150 cells, the colony formation assay and flow cytometry analysis indicated that the miR-488-5p inhibitor inhibited cell viability and increased cell apoptosis; however, these effects were recovered by P53 knockdown (KD). In addition, cell invasion and cell migration were inhibited by the miR-488-5p inhibitor, but were also improved by P53 KD. Similarly, the miR-488-5p inhibitor induced the expression of P53 and P21 than normal control (NC) group in which miR-488-5p expression was normal, while P53 KD prevented the effects of the miR-488-5p inhibitor in KYSE-150 cells. Additionally, we found that tumor size was obviously smaller in miR-488-5p overexpression (OE)+ P53 OE mice than miR-488-5p OE mice. Hematoxylin and eosin and immunohistochemistry staining also revealed similar results. Conclusions Our results suggest that miR-488-5p promotes ESCC progression by suppressing the P53 pathway. These findings should provide novel ideas for ESCC therapies.
Collapse
Affiliation(s)
- Chang Su
- Department of Thoracic Surgery, Fourth Hospital, Hebei Medical University, Shijiazhuang, China.,Department of Cardiothoracic Surgery, Bethune International Peace Hospital, Shijiazhuang, China
| | - Wenxiu Liu
- Department of Cardiology, Bethune International Peace Hospital, Shijiazhuang, China
| | - Tao Jiang
- Department of Thoracic Surgery, Fourth Hospital, Hebei Medical University, Shijiazhuang, China
| | - Junfeng Liu
- Department of Thoracic Surgery, Fourth Hospital, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
419
|
Upregulation of miR-345-5p suppresses cell growth of lung adenocarcinoma by regulating ras homolog family member A (RhoA) and Rho/Rho associated protein kinase (Rho/ROCK) pathway. Chin Med J (Engl) 2021; 134:2619-2628. [PMID: 34748526 PMCID: PMC8577671 DOI: 10.1097/cm9.0000000000001804] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Microribose nucleic acids (miRNAs) are implicated in the progression of lung adenocarcinoma. MicroRNA-345-5p (miR-345-5p) is a recently identified anti-oncogene in some human cancers, but its functional role and possible molecular mechanism in lung adenocarcinoma remain unknown. This study aimed to identify the biological function and underlying mechanism of miR-345-5p in lung adenocarcinoma cells. METHODS In this study, lung adenocarcinoma tissues and adjacent tissues were collected in the First Affiliated Hospital of Anhui Medical University between April 2016 and February 2017. The expression of miR-345-5p and ras homolog family member A (RhoA) in lung adenocarcinoma tissues and human lung adenocarcinoma cell lines (A549, H1650, PC-9, and H441) was detected by reverse transcription quantitative polymerase chain reaction analysis. Functional assays including colony formation, flow cytometry analysis, wound healing, and transwell assays were performed to assess the proliferation, apoptosis, migration, and invasion of lung adenocarcinoma cells. In addition, RNA pulldown and luciferase reporter assays were conducted to evaluate the relationship between miR-345-5p and RhoA. Difference between the two groups was analyzed with Student's t test, while that among multiple groups was analyzed with one-way analysis of variance. RESULTS MiR-345-5p expression displayed lower level in lung adenocarcinoma tissues (0.241 ± 0.095 vs.1.000 ± 0.233, t = 19.247, P < 0.001) and cell lines (F = 56.992, P < 0.001) than control tissues and cells. Functional experiments demonstrated that upregulation of miR-345-5p inhibited the malignant phenotypes of lung adenocarcinoma cells via suppressing cell proliferation, migration, invasion, and facilitating cell apoptosis. Additionally, RhoA was verified to be the downstream target of miR-345-5p. Expression of RhoA was downregulated by overexpression of miR-345-5p in PC-9 (0.321 ± 0.047 vs. 1.000 ± 0.127, t = 8.536, P < 0.001) and H1650 (0.398 ± 0.054 vs. 1.000 ± 0.156, t = 4.429, P = 0.011) cells. Rescue assays revealed that overexpression of RhoA rescued the suppressive effects of miR-345-5p upregulation on proliferation, migration, and invasion of lung adenocarcinoma cells. Further, miR-345-5p was found to regulate the Rho/Rho-associated protein kinase (ROCK) signaling pathway by downregulation of RhoA in lung adenocarcinoma cells. CONCLUSIONS MiR-345-5p plays a tumor suppressor role in lung adenocarcinoma cells by downregulating RhoA to inactivate the Rho/ROCK pathway.
Collapse
|
420
|
Shen Q, Zhou T. Knockdown of lncRNA TUG1 protects lens epithelial cells from oxidative stress-induced injury by regulating miR-196a-5p expression in age-related cataracts. Exp Ther Med 2021; 22:1286. [PMID: 34630641 PMCID: PMC8461521 DOI: 10.3892/etm.2021.10721] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/18/2021] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress plays an important role in the pathogenesis of cataracts. Under oxidative stress, apoptosis of lens epithelial cells (LECs) is activated, which may cause lens opacity and accelerate the development of cataracts. Long non-coding RNA (lncRNA) and microRNA (miRNA/miR) are involved in cataracts. Previous studies have demonstrated that lncRNA taurine upregulated 1 (TUG1) promotes cell apoptosis induced by ultraviolet radiation by downregulating the expression of miR-421. However, the mechanism underlying TUG1 in age-related cataract remains to be elucidated. The present study aimed to investigate the effect of TUG1 in age-related cataracts and to determine the related underlying molecular mechanism. In the present study, the association between TUG1 and microRNA (miR)-196a-5p was predicted using StarBase and verified using a dual luciferase reporter assay in 293 cells. The LEC line SRA01/04 was exposed to 200 µM hydrogen peroxide (H2O2) for 24 h to establish an in vitro oxidative stress model. The mRNA expression levels of TUG1 and miR-196a-5p were analyzed using reverse transcription-quantitative PCR, whilst cell viability and apoptosis were determined using MTT and flow cytometry assays, respectively. The protein expression levels of cleaved caspase-3 and caspase-3 in SRA01/04 cells were determined using western blotting. The results of the present study revealed that TUG1 directly targeted miR-196a-5p expression. In addition, the expression levels of miR-196a-5p were downregulated in SRA01/04 cells following oxidative stress, whilst TUG1 expression was upregulated. Cell transfection with TUG1-small interfering RNA (siRNA) upregulated miR-196a-5p expression levels in SRA01/04 cells, which was reversed following co-transfection with the miR-196a-5p inhibitor. Transfection with TUG1-siRNA also reduced the levels of H2O2-induced oxidative damage in SRA01/04 cells, which was demonstrated by increased cell viability, reduced levels of apoptosis and downregulated cleaved caspase-3 levels. Conversely, transfection with the miR-196a-5p inhibitor reversed these effects aforementioned. Overexpression of miR-196a-5p reduced H2O2-induced oxidative damage in SRA01/04 cells. In conclusion, findings from the present study suggested that knocking down TUG1 expression may protect LECs from oxidative stress-induced apoptosis by upregulating the expression of miR-196a-5p.
Collapse
Affiliation(s)
- Qimin Shen
- Department of Ophthalmology, People's Hospital of Yuyao, Ningbo, Zhejiang 315400, P.R. China
| | - Tian Zhou
- Department of Ophthalmology, People's Hospital of Yuyao, Ningbo, Zhejiang 315400, P.R. China
| |
Collapse
|
421
|
Li Y, Tan J, Miao Y, Zhang Q. MicroRNA in extracellular vesicles regulates inflammation through macrophages under hypoxia. Cell Death Dis 2021; 7:285. [PMID: 34635652 PMCID: PMC8505641 DOI: 10.1038/s41420-021-00670-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/25/2021] [Accepted: 09/14/2021] [Indexed: 12/24/2022]
Abstract
Extracellular vesicle (EV), critical mediators of cell-cell communication, allow cells to exchange proteins, lipids, and genetic material and therefore profoundly affect the general homeostasis. A hypoxic environment can affect the biogenesis and secrete of EVs, and the cargoes carried can participate in a variety of physiological and pathological processes. In hypoxia-induced inflammation, microRNA(miRNA) in EV participates in transcriptional regulation through various pathways to promote or reduce the inflammatory response. Meanwhile, as an important factor of immune response, the polarization of macrophages is closely linked to miRNAs, which will eventually affect the inflammatory state. In this review, we outline the possible molecular mechanism of EV changes under hypoxia, focusing on the signaling pathways of several microRNAs involved in inflammation regulation and describing the process and mechanism of EV-miRNAs regulating macrophage polarization in hypoxic diseases.
Collapse
Affiliation(s)
- Ye Li
- grid.412645.00000 0004 1757 9434Department of Geriatrics, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Jin Tan
- grid.412645.00000 0004 1757 9434Department of Geriatrics, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Yuyang Miao
- grid.265021.20000 0000 9792 1228Tianjin Medical University, 300052 Tianjin, China
| | - Qiang Zhang
- grid.412645.00000 0004 1757 9434Department of Geriatrics, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, 300052 Tianjin, China
| |
Collapse
|
422
|
miR-30a-5p inhibits osteogenesis and promotes periodontitis by targeting Runx2. BMC Oral Health 2021; 21:513. [PMID: 34635105 PMCID: PMC8504121 DOI: 10.1186/s12903-021-01882-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/29/2021] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Periodontitis is the most extensive chronic inflammatory bone resorption disease. MiRNAs offer a potential way for potential therapy. Indeed, miR-30a-5p had an increasing expression in periodontitis gingivae, but whether it promotes osteogenesis and inhibits inflammation remains unknown. METHODS Periodontitis model was exhibited by wire ligation and verified by micro-CT and HE staining; qPCR was used to detect the expression of miR-30a-5p; miR-30a-5p inhibitors and mimics were transfected into MC3T3-E1 cell line by lipofectamine 3000; The dual luciferase reporter gene experiment and RIP experiment were used to detect the relationship between miR-30a-5p and Runx2; Rescue experiment was used to verify the relationship between miR-30a-5p and Runx2. RESULTS Periodontitis model was exhibited successfully and miR-30a-5p was overexpressed at the bone and gingival tissues of this model. miR-30a-5p inhibitors not only promoted the osteogenesis but also relieved inflammation. Runx2 is a target of miR-30a-5p by dual luciferase reporter gene experiment and RIP experiment. Rescue experiments revealed that miR-30a-5p inhibitors would promote osteogenesis and relieve inflammation by targeting Runx2 in inflammation of MC3T3-E1 cell line. CONCLUSIONS That all suggested that miR-30a-5p-mediated-Runx2 provided a novel understanding of mechanism of periodontitis.
Collapse
|
423
|
Zhang M, Jiang Y. Downregulation of circular RNA circ-HN1 suppressed the progression of gastric cancer through the miR-485-5p/GSK3A pathway. Bioengineered 2021; 13:5675-5684. [PMID: 34607506 PMCID: PMC8974141 DOI: 10.1080/21655979.2021.1987124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer (GC) is a malignancy with high incidence and mortality globally. Circular RNAs (circRNAs) are reported to regulate cellular processes in human diseases, including GC. Herein, the functions of circ-HN1 and its molecular mechanisms were investigated. circ-HN1, miR-485-5p, and GSK3A levels in GC were measured using Real time-quantitative polymerase chain reaction (RT-qPCR). Cell proliferation was analyzed using cell counting kit-8 (CCK-8) and colony formation assays. Meanwhile, the migration and invasion abilities were analyzed using the transwell assay. The targeted relationship was confirmed using a luciferase reporter assay and an RNA pull-down assay. In both GC tissues and cells, circ-HN1 expression was upregulated, and its silencing suppressed cellular processes. Moreover, circ-HN1 served as a sponge of miR-485-5p, which was reduced in patients with GC and negatively regulated by circ-HN1 in GC cells. Inhibition of miR-485-4p abolished the biological functions induced by the silencing of circ-HN1. Additionally, miR-485-5p targeted GSK3A in GC, whose expression was elevated in tumor tissues and was negatively correlated with miR-485-5p in tumor cells. GSK3A rescued the inhibition of miR-485-5p in the cellular processes. In conclusion, silencing of the circ-HN1–miR-485-5p–GSK3A regulatory network inhibited GC cell proliferation, migration, and invasion, suggesting that circ-HN1 is a potential target for GC therapy.
Collapse
Affiliation(s)
- Mingming Zhang
- Department of Gastrointestinal surgery, Liuzhou People's Hospital
| | - Yingheng Jiang
- Surgery Medical Insurance Office, Liuzhou People's Hospital
| |
Collapse
|
424
|
Correia de Sousa M, Calo N, Sobolewski C, Gjorgjieva M, Clément S, Maeder C, Dolicka D, Fournier M, Vinet L, Montet X, Dufour JF, Humar B, Negro F, Sempoux C, Foti M. Mir-21 Suppression Promotes Mouse Hepatocarcinogenesis. Cancers (Basel) 2021; 13:4983. [PMID: 34638467 PMCID: PMC8508272 DOI: 10.3390/cancers13194983] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 12/14/2022] Open
Abstract
The microRNA 21 (miR-21) is upregulated in almost all known human cancers and is considered a highly potent oncogene and potential therapeutic target for cancer treatment. In the liver, miR-21 was reported to promote hepatic steatosis and inflammation, but whether miR-21 also drives hepatocarcinogenesis remains poorly investigated in vivo. Here we show using both carcinogen (Diethylnitrosamine, DEN) or genetically (PTEN deficiency)-induced mouse models of hepatocellular carcinoma (HCC), total or hepatocyte-specific genetic deletion of this microRNA fosters HCC development-contrasting the expected oncogenic role of miR-21. Gene and protein expression analyses of mouse liver tissues further indicate that total or hepatocyte-specific miR-21 deficiency is associated with an increased expression of oncogenes such as Cdc25a, subtle deregulations of the MAPK, HiPPO, and STAT3 signaling pathways, as well as alterations of the inflammatory/immune anti-tumoral responses in the liver. Together, our data show that miR-21 deficiency promotes a pro-tumoral microenvironment, which over time fosters HCC development via pleiotropic and complex mechanisms. These results question the current dogma of miR-21 being a potent oncomiR in the liver and call for cautiousness when considering miR-21 inhibition for therapeutic purposes in HCC.
Collapse
Affiliation(s)
- Marta Correia de Sousa
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (M.C.d.S.); (N.C.); (C.S.); (M.G.); (C.M.); (D.D.); (M.F.)
| | - Nicolas Calo
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (M.C.d.S.); (N.C.); (C.S.); (M.G.); (C.M.); (D.D.); (M.F.)
| | - Cyril Sobolewski
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (M.C.d.S.); (N.C.); (C.S.); (M.G.); (C.M.); (D.D.); (M.F.)
| | - Monika Gjorgjieva
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (M.C.d.S.); (N.C.); (C.S.); (M.G.); (C.M.); (D.D.); (M.F.)
| | - Sophie Clément
- Division of Clinical Pathology, Geneva University Hospitals, 1206 Geneva, Switzerland; (S.C.); (F.N.)
| | - Christine Maeder
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (M.C.d.S.); (N.C.); (C.S.); (M.G.); (C.M.); (D.D.); (M.F.)
| | - Dobrochna Dolicka
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (M.C.d.S.); (N.C.); (C.S.); (M.G.); (C.M.); (D.D.); (M.F.)
| | - Margot Fournier
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (M.C.d.S.); (N.C.); (C.S.); (M.G.); (C.M.); (D.D.); (M.F.)
| | - Laurent Vinet
- Department of Radiology, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (L.V.); (X.M.)
| | - Xavier Montet
- Department of Radiology, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (L.V.); (X.M.)
| | - Jean-François Dufour
- Department for Visceral Surgery and Medicine, University Hospital Bern, 3010 Bern, Switzerland;
| | - Bostjan Humar
- Department of Visceral & Transplantation Surgery, University Hospital Zürich, 8006 Zürich, Switzerland;
| | - Francesco Negro
- Division of Clinical Pathology, Geneva University Hospitals, 1206 Geneva, Switzerland; (S.C.); (F.N.)
| | - Christine Sempoux
- Service of Clinical Pathology, University Institute of Pathology, Vaud University Hospital Center, 1011 Lausanne, Switzerland;
| | - Michelangelo Foti
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (M.C.d.S.); (N.C.); (C.S.); (M.G.); (C.M.); (D.D.); (M.F.)
| |
Collapse
|
425
|
Dang Y, Zhou Y, Ou X, Wang Q, Wei D, Xie F. lncRNA AC007207.2 Promotes Malignant Properties of Osteosarcoma via the miR-1306-5p/SIRT7 Axis. Cancer Manag Res 2021; 13:7277-7288. [PMID: 34584454 PMCID: PMC8464591 DOI: 10.2147/cmar.s318975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/08/2021] [Indexed: 12/12/2022] Open
Abstract
Background Long non-coding RNAs (lncRNAs) have been implicated in initiation and development of numerous cancers. In the present study, we explored the role of lncRNAs AC007207.2 in osteosarcoma (OS). Methods Gene expression data of OS tissues was downloaded from the TARGET database. All the experiments were repeated at least three times. Data were analyzed using Perl, R, SPSS v12.0 and GraphPad Prism 8 software. Results We found lncRNA AC007207.2 was over-expressed in OS tissues and cell lines, and this phenomenon was associated with the worse prognosis of OS. Moreover, we found that AC007207.2 promotes proliferation and metastasis of OS cells via the miR-1306-5p/SIRT7 axis. Meanwhile, we found miR-1306-5p remarkably inhibits the malignant behavior of OS cells. Conclusion lncRNA AC007207.2 promotes progression of OS by upregulating SIRT7 expression through miR-1306-5p sponging. Thus, lncRNA AC007207.2/miR-1306-5p/SIRT7 axis is a promising therapeutic target for OS treatment.
Collapse
Affiliation(s)
- Youting Dang
- Department of Pediatric Orthopedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, Shaanxi, 710054, People's Republic of China
| | - Yunping Zhou
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, Shaanxi, 710054, People's Republic of China
| | - Xuehai Ou
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, Shaanxi, 710054, People's Republic of China
| | - Qiang Wang
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, Shaanxi, 710054, People's Republic of China
| | - Dengke Wei
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, Shaanxi, 710054, People's Republic of China
| | - Fei Xie
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, Shaanxi, 710054, People's Republic of China
| |
Collapse
|
426
|
Li J, Ma J, Huang S, Li J, Zhou L, Sun J, Chen L. WITHDRAWN: Circ-LAMP2 regulates aortic smooth muscle cell proliferation and apoptosis in thoracic aortic aneurysm via modulation of autophagy and NF-κB pathway. Hum Pathol 2021:S0046-8177(21)00161-1. [PMID: 34592240 DOI: 10.1016/j.humpath.2021.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 10/20/2022]
Abstract
This article has been withdrawn at the request of the editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Jun Li
- Department of Neurosurgery, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China.
| | - Junfeng Ma
- Department of Neurosurgery, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
| | - Shan Huang
- Department of Neurosurgery, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
| | - Jun Li
- Department of Neurosurgery, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
| | - Liang Zhou
- Department of Neurosurgery, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
| | - Jiahua Sun
- Department of Neurosurgery, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
| | - Lin Chen
- Department of Neurosurgery, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
| |
Collapse
|
427
|
Yuan DD, Jia CD, Yan MY, Wang J. Circular RNA hsa_circ_0000730 restrains cell proliferation, migration, and invasion in cervical cancer through miR-942-5p/PTEN axis. Kaohsiung J Med Sci 2021; 37:964-972. [PMID: 34562344 DOI: 10.1002/kjm2.12443] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 06/07/2021] [Accepted: 06/24/2021] [Indexed: 12/19/2022] Open
Abstract
Circular RNAs (circRNAs) play prominent roles in regulating the progression of cancers. This study is aimed to decipher the role of hsa_circ_0000730 in cervical cancer (CC).The differentially expressed circRNAs of CC were screened out from the Gene Expression Omnibus database. qRT-PCR was used to detect circ_0000730 expression in CC tissues and cell lines, and the Kaplan-Meier curve was adopted to figure out the relationship between circ_000730 expression and the overall survival time of CC patients. BrdU assay and Tanswell assay were utilized to examine the proliferation, migration, and invasion of CC cells. Western blot was adopted to detect PTEN protein expression. Bioinformatics analysis and dual-luciferase reporter assay were used to examine the target relationship between miR-942-5p and circ_0000730 or PTEN, respectively.Circ_0000730 was among the differentially expressed circRNAs in CC. Circ_0000730 was significantly down-regulated in the cancer tissues of 50 CC patients and CC cell lines. Additionally, underexpression of circ_0000730 was associated with the shorter survival time of CC patients. Gain- and loss-of-function assays highlighted that circ_0000730 significantly inhibited the proliferation, migration, and invasion of CC cells. Mechanistically, miR-942-5p was identified as a downstream target of circ_0000730, and circ_0000730 could positively regulate PTEN expression via repressing miR-942-5p in CC cells.Circ_0000730 inhibits the proliferation, migration, and invasion of CC cells via regulating miR-942-5p/PTEN axis. Circ_0000730 probably acts as a tumor suppressor in CC, and it may be a candidate target for the treatment of CC.
Collapse
Affiliation(s)
- Dan-Dan Yuan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, PR China
| | - Cun-De Jia
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, PR China
| | - Ming-Yu Yan
- Department of Respiratory, The Third Affiliated Hospital of Inner Mongolia Medical College, Baotou, PR China
| | - Jian Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, PR China
| |
Collapse
|
428
|
Bakre AA, Duffy C, Abdullah H, Cosby SL, Tripp RA. Small Non-coding RNA Expression Following Respiratory Syncytial Virus or Measles Virus Infection of Neuronal Cells. Front Microbiol 2021; 12:671852. [PMID: 34539595 PMCID: PMC8446675 DOI: 10.3389/fmicb.2021.671852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 08/03/2021] [Indexed: 11/24/2022] Open
Abstract
Respiratory syncytial virus (RSV) or measles virus (MeV) infection modifies host responses through small non-coding RNA (sncRNA) expression. We show that RSV or MeV infection of neuronal cells induces sncRNAs including various microRNAs and transfer RNA fragments (tRFs). We show that these tRFs originate from select tRNAs (GCC and CAC for glycine, CTT and AAC for Valine, and CCC and TTT for Lysine). Some of the tRNAs are rarely used by RSV or MeV as indicated by relative synonymous codon usage indices suggesting selective cleavage of the tRNAs occurs in infected neuronal cells. The data implies that differentially expressed sncRNAs may regulate host gene expression via multiple mechanisms in neuronal cells.
Collapse
Affiliation(s)
- Abhijeet A Bakre
- Department of Infectious Diseases, University of Georgia, Athens, GA, United States
| | - Catherine Duffy
- Virology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom
| | - Hani'ah Abdullah
- Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - S Louise Cosby
- Virology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom.,Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Ralph A Tripp
- Department of Infectious Diseases, University of Georgia, Athens, GA, United States
| |
Collapse
|
429
|
Chen J, Zhao H, Huang Y, Li Y, Fan J, Wang R, Han Z, Yang Z, Wu L, Wu D, Luo Y, Ji X. Dysregulation of Principal Circulating miRNAs in Non-human Primates Following Ischemic Stroke. Front Neurosci 2021; 15:738576. [PMID: 34539341 PMCID: PMC8441133 DOI: 10.3389/fnins.2021.738576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/13/2021] [Indexed: 11/13/2022] Open
Abstract
Despite the recent interest in plasma microRNA (miRNA) biomarkers in acute ischemic stroke patients, there is limited knowledge about the miRNAs directly related to stroke itself due to the multiple complications in patients, which has hindered the research progress of biomarkers and therapeutic targets of ischemic stroke. Therefore, in this study, we compared the differentially expressed miRNA profiles in the plasma of three rhesus monkeys pre- and post-cerebral ischemia. After cerebral ischemia, Rfam sequence category revealed increased ribosomic RNA (rRNA) and decreased transfer RNAs (tRNAs) in plasma. Of the 2049 miRNAs detected after cerebral ischemia, 36 were upregulated, and 76 were downregulated (fold change ≥2.0, P < 0.05). For example, mml-miR-191-5p, miR-421, miR-409-5p, and let-7g-5p were found to be significantly overexpressed, whereas mml-miR-128a-5p_R − 2, miR-431_R − 1, and let-7g-3p_1ss22CT were significantly downregulated. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed that these differentially expressed miRNAs were implicated in the regulation of ubiquitin-mediated proteolysis and signaling pathways in cancer, glioma, chronic myeloid leukemia, and chemokine signaling. miRNA clustering analysis showed that mml-let-7g-5p and let-7g-3p_1ss22CT, which share three target genes [RB1-inducible coiled-coil 1 (RB1CC1), G-protein subunit γ 5 (GNG5), and chemokine (C-X-C motif) receptor 4 (CXCR4)], belong to one cluster, were altered in opposite directions following ischemia. These data suggest that circulating mml-let-7g may serve as a therapeutic target for ischemic stroke.
Collapse
Affiliation(s)
- Jian Chen
- Department of Neurosurgery, Institute of Cerebrovascular Diseases Research, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Haiping Zhao
- National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Yuyou Huang
- National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Yuqian Li
- National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Junfen Fan
- National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Rongliang Wang
- National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Ziping Han
- National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Zhenhong Yang
- National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Longfei Wu
- Department of Neurosurgery, Institute of Cerebrovascular Diseases Research, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Di Wu
- National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Yumin Luo
- Beijing Institute for Brain Disorders, Beijing, China
| | - Xunming Ji
- Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
430
|
Wang F, Wang G, Dalielihan B, Wang Z, Chang T, Yang G, Lei C, Dang R. A novel 31bp deletion within the CDKL5 gene is significantly associated with growth traits in Dezhou donkey. Anim Biotechnol 2021:1-5. [PMID: 34543156 DOI: 10.1080/10495398.2021.1977653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The discovery of molecular markers which associate with livestock economic traits is of great significance for livestock breeding. Selective analysis has found a potential correlation between CDKL5 and growth traits, but there is still a lack of experimental proof. In this study, a 31-bp deletion (g.176595_176626delATGTCACATGTGGTACTGCCATGTGGAATTT) of CDKL5 gene was found by sequencing. The 31-bp indel was then genotyped in 380 individuals of Dezhou donkeys by polyacrylamide gel electrophoresis and there were three genotypes in this population. After the association analysis between growth traits and genotypes, it was found that this 31-bp indel polymorphism was significantly associated with the chest circumference of Dezhou donkeys (p < 0.05), and body length, chest depth and rump width (p < 0.01). In addition, all individuals with DD genotype were better than those with other genotypes in growth traits. This study revealed that a newly identified polymorphic locus in the CDKL5 gene is related to growth traits, which provides a molecular marker for genetic improvement of Dezhou donkey and may lay a solid foundation for the breeding of Dezhou donkey.
Collapse
Affiliation(s)
- Fuwen Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, Shaanxi Province, China
| | - Gang Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, Shaanxi Province, China
| | - Baligen Dalielihan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, Shaanxi Province, China
| | - Zhaofei Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, Shaanxi Province, China
| | - Tingjin Chang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, Shaanxi Province, China
| | - Ge Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, Shaanxi Province, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, Shaanxi Province, China
| | - Ruihua Dang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, Shaanxi Province, China
| |
Collapse
|
431
|
Xu S, Zhai J, Xu K, Zuo X, Wu C, Lin T, Zeng L. M1 macrophages-derived exosomes miR-34c-5p regulates interstitial cells of Cajal through targeting SCF. J Biosci 2021. [DOI: 10.1007/s12038-021-00212-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
432
|
Zhou J, Xu L, Yang P, Lu Y, Lin S, Yuan G. The exosomal transfer of human bone marrow mesenchymal stem cell-derived miR-1913 inhibits osteosarcoma progression by targeting NRSN2. Am J Transl Res 2021; 13:10178-10192. [PMID: 34650689 PMCID: PMC8507079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE Osteosarcoma is a malignant bone tumor consisting of mesenchymal cells. This study aimed to investigate the inhibitory effects of human bone marrow mesenchymal stem cell (hBMSC)-derived miR-1913 on osteosarcoma. METHODS Cell viability was determined using CCK8 and colony formation assays. The cell migration and invasion abilities were assessed using wound healing and transwell assays. RT-qPCR and western blot were used to measure the miR-1913, Neurensin-2 (NRSN2), N-cadherin, and E-cadherin expression levels. Dual luciferase reporter assays were conducted to identify the target relationship between miR-1913 and NRSN2. The exosomes were extracted and identified using TEM and NTA assays. RESULTS In the osteosarcoma tumor tissues and cell lines, the NRSN2 expressions were up-regulated, which correlated with a poor osteosarcoma prognosis. MiR-1913 inhibited the cell viability, proliferation, migration, and invasion by negatively targeting NRSN2. Furthermore, the hBMSC-derived exosomes delivered miR-1913 to inhibit the NRSN2 expression in the osteosarcoma cells. CONCLUSION The inhibitory role of hBMSC-derived miR-1913 on osteosarcoma progression was achieved by targeting NRSN2, indicating the potential therapeutic value of hBMSC-derived miR-1913.
Collapse
Affiliation(s)
- Jihui Zhou
- Department of Traumatic Orthopedics, Maoming People’s HospitalMaoming, Guangdong Province, China
| | - Lili Xu
- Department of Center Vaccination Clinic, Fuchunjiang Community Health Service Center of Changjiang RoadWest Coast New District of Qingdao, Qingdao, Shandong Province, China
| | - Peng Yang
- Department of Hand and Foot Surgery, The Eighth People’s Hospital of QingdaoQingdao, Shandong Province, China
| | - Yao Lu
- Department of Hand and Foot Surgery, The Eighth People’s Hospital of QingdaoQingdao, Shandong Province, China
| | - Shibang Lin
- Department of Traumatic Orthopedics, Maoming People’s HospitalMaoming, Guangdong Province, China
| | - Guanghai Yuan
- Department of Hand and Foot Surgery, The Eighth People’s Hospital of QingdaoQingdao, Shandong Province, China
| |
Collapse
|
433
|
Xin Y, Song X, Ge Q. Circular RNA SMEK1 promotes neuropathic pain in rats through targeting microRNA-216a-5p to mediate Thioredoxin Interacting Protein (TXNIP) expression. Bioengineered 2021; 12:5540-5551. [PMID: 34517790 PMCID: PMC8806878 DOI: 10.1080/21655979.2021.1965811] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Neuropathic pain (NP) is a disease induced by damage to the nervous system. A large number of studies have manifested that circular RNAs (circRNAs) are key in the development of neurological diseases. However, the role of circRNA in NP remains ambiguous. In this study, the biological function and molecular mechanism of circSMEK1 were investigated in NP. NP rat and cell models were established by chronic contractile injury (CCI) surgery and lipopolysaccharide (LPS) treatment, separately. The results exposed that circSMEK1 and TXNIP were up-regulated in NP, while miR-216a-5p was down-regulated. The claw retraction threshold and claw retraction latency in rats were elevated and reduced separately via knockdown circSMEK1 and miR-216a-5p. Meanwhile, knockout circSMEK1 or elevated miR-216a-5p declined inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL6 in spinal cord, and the activation of microglia, but promoted the polarization of microglia into anti-inflammatory type, while up-regulation of circSMEK1 or knockdown of miR-216a-5p was opposite. Mechanism studies demonstrated that circSMEK1 mediated TXNIP expression through competitive adsorption of miR-216a-5p. Functional rescue experiments manifested that the suppressive effect of circSMEK1 knockdown on NP was reversed by declined miR-216a-5p simultaneously. In conclusion, the results of this study affirmed that circSMEK1 facilitates NP inflammation and microglia M1 polarization by modulating miR-216a-5p/TXNIP axis, providing a new molecular target for the future treatment of NP.
Collapse
Affiliation(s)
- Yufu Xin
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang City, Henan Province, 471000, China
| | - Xinrong Song
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang City, Henan Province, 471000, China
| | - Qingye Ge
- Department of Rehabilitation Medicine of Chinese Medicine Hospital of PuYang Henan, Puyang City, Henan Province, 457000, China
| |
Collapse
|
434
|
Xu J, Liu X, Liu X, Zhi Y. Long noncoding RNA KCNMB2-AS1 promotes the development of esophageal cancer by modulating the miR-3194-3p/PYGL axis. Bioengineered 2021; 12:6687-6702. [PMID: 34516362 PMCID: PMC8806829 DOI: 10.1080/21655979.2021.1973775] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Esophageal cancer (ESCA), as a common cancer worldwide, is a main cause of cancer-related mortality. Comprehensive studies on molecular mechanism of ESCA have been carried out. Though numerous long noncoding RNAs (lncRNAs) was reported to participate in the occurrence and development of ESCA, the potential role of lncRNA potassium calcium-activated channel subfamily M regulatory beta subunit 2 (KCNMB2) antisense RNA 1 (KCNMB2-AS1) in ESCA remains to be discovered. This study intends to investigate the detailed function and molecular mechanism of KCNMB2-AS1 in ESCA. Gene expression was evaluated by reverse transcription quantitative polymerase chain reaction (RT-qPCR). Cell proliferation was examined by Cell Counting Kit-8 (CCK-8) assay and colony formation assay. Cell invasion and migration were measured by wound healing assay and Transwell assay. Luciferase reporter assay was adopted to validate the interaction between KCNMB2-AS1 and miR-3194-3p. Western blotting was performed to assess protein levels. We discovered that KCNMB2-AS1 was significantly upregulated in ESCA. KCNMB2-AS1 downregulation suppressed the growth, invasion, migration and stemness of ESCA cells. KCNMB2-AS1 bound with miR-3194-3p, and glycogen phosphorylase L (PYGL) was a direct target of miR-3194-3p. KCNMB2-AS1 upregulated PYGL expression by directly binding with miR-3194-3p. Additionally, PYGL overexpression abolished the inhibitory influence of KCNMB2-AS1 depletion on ESCA cell behaviors. Collectively, lncRNA KCNMB2-AS1 promotes ESCA development through targeting the miR-3194-3p/ PYGL axis, which might provide theoretical basis to explore novel biomarkers for ESCA treatment.
Collapse
Affiliation(s)
- Jiwen Xu
- Department of Gastroenterology, Linyi Traditional Chinese Medical Hospital, Linyi, Shandong, China
| | - Xiaoyan Liu
- Department of Gastroenterology, Linyi Traditional Chinese Medical Hospital, Linyi, Shandong, China
| | - Xueting Liu
- Department of Gastroenterology, Linyi Traditional Chinese Medical Hospital, Linyi, Shandong, China
| | - Yunlai Zhi
- Department of Urology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| |
Collapse
|
435
|
Zhou W, Xu M, Wang Z, Yang M. Engineered exosomes loaded with miR-449a selectively inhibit the growth of homologous non-small cell lung cancer. Cancer Cell Int 2021; 21:485. [PMID: 34521413 PMCID: PMC8438888 DOI: 10.1186/s12935-021-02157-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/17/2021] [Indexed: 01/22/2023] Open
Abstract
As an efficient drug carrier, exosome has been widely used in the delivery of genetic drugs, chemotherapeutic drugs, and anti-inflammatory drugs. As a genetic drug carrier, exosomes are beneficial to improve transfection efficiency and weaken side effects at the same time. Here, we use genetic engineering to prepare engineered exosomes (miR-449a Exo) that can actively deliver miR-449a. It was verified that miR-449a Exo had good homology targeting capacity and was specifically taken up by A549 cells. Moreover, miR-449a Exo had high delivery efficiency of miR-449a in vitro and in vivo. We demonstrated that miR-449a Exo effectively inhibited the proliferation of A549 cells and promoted their apoptosis. In addition, miR-449a Exo was found to control the progression of mouse tumors and prolong their survival in vivo. Our research provides new ideas for exosomes to efficiently and actively load gene drugs, and finds promising methods for the treatment of non-small cell lung cancer.
Collapse
Affiliation(s)
- Wen Zhou
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Nantong, 226021, Jiangsu, China
| | - Mingming Xu
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Nantong, 226021, Jiangsu, China
| | - Zhipeng Wang
- Department of Thoracic Surgery, Haimen People's Hospital, No. 253 Renmin West Road, Nantong, Jiangsu, China
| | - Mingjun Yang
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Nantong, 226021, Jiangsu, China.
| |
Collapse
|
436
|
Zeng CY, Xu J, Liu X, Lu YQ. Cardioprotective Roles of Endothelial Progenitor Cell-Derived Exosomes. Front Cardiovasc Med 2021; 8:717536. [PMID: 34513956 PMCID: PMC8428070 DOI: 10.3389/fcvm.2021.717536] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/27/2021] [Indexed: 12/20/2022] Open
Abstract
With the globally increasing prevalence, cardiovascular diseases (CVDs) have become the leading cause of mortality. The transplantation of endothelial progenitor cells (EPCs) holds a great promise due to their potential for vasculogenesis, angiogenesis, and protective cytokine release, whose mechanisms are essential for CVD therapies. In reality, many investigations have attributed the therapeutic effects of EPC transplantation to the secretion of paracrine factors rather than the differentiation function. Of note, previous studies have suggested that EPCs could also release exosomes (diameter range of 30–150 nm), which carry various lipids and proteins and are abundant in microRNAs. The EPC-derived exosomes (EPC-EXs) were reported to act on the heart and blood vessels and were implicated in anti-inflammation, anti-oxidation, anti-apoptosis, the inhibition of endothelial-to-mesenchymal transition (EndMT), and cardiac fibrosis, as well as anti-vascular remodeling and angiogenesis, which were considered as protective effects against CVDs. In this review, we summarize the current knowledge on using EPC-EXs as therapeutic agents and provide a detailed description of their identified mechanisms of action to promote the prognosis of CVDs.
Collapse
Affiliation(s)
- Cai-Yu Zeng
- Department of Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jia Xu
- Department of Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xin Liu
- Department of Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuan-Qiang Lu
- Department of Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
437
|
Lai X, Guo Y, Chen M, Wei Y, Yi W, Shi Y, Xiong L. Caveolin1: its roles in normal and cancer stem cells. J Cancer Res Clin Oncol 2021; 147:3459-3475. [PMID: 34498146 DOI: 10.1007/s00432-021-03793-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 09/03/2021] [Indexed: 12/09/2022]
Abstract
PURPOSE Stem cells are characterized by the capability of self-renewal and multi-differentiation. Normal stem cells, which are important for tissue repair and tissue regeneration, can be divided into embryonic stem cells (ESCs) and somatic stem cells (SSCs) depending on their origin. As a subpopulation of cells within cancer, cancer stem cells (CSCs) are at the root of therapeutic resistance. Tumor-initiating cells (TICs) are necessary for tumor initiation. Caveolin1 (Cav1), a membrane protein located at the caveolae, participates in cell lipid transport, cell migration, cell proliferation, and cell signal transduction. The purpose of this review was to explore the relationship between Cav1 and stem cells. RESULTS In ESCs, Cav1 is beneficial for self-renewal, proliferation, and migration. In SSCs, Cav1 exhibits positive or/and negative effects on stem cell self-renewal, differentiation, proliferation, migration, and angiogenic capacity. Cav1 deficiency impairs normal stem cell-based tissue repair. In CSCs, Cav1 inhibits or/and promotes CSC self-renewal, differentiation, invasion, migration, tumorigenicity ability, and CSC formation. And suppressing Cav1 promotes chemo-sensitivity in CSCs and TICs. CONCLUSION Cav1 shows dual roles in stem cell biology. Targeting the Cav1-stem cell axis would be a new way for tissue repair and cancer drug resistance.
Collapse
Affiliation(s)
- Xingning Lai
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang, China.,Second Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Yiling Guo
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang, China.,Second Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Miaomiao Chen
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang, China.,First Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Yuxuan Wei
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang, China.,Queen Mary School, Jiangxi Medical College of Nanchang University, Nanchang, 330006, China
| | - Wanting Yi
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang, China.,First Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Yubo Shi
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang, China.,Queen Mary School, Jiangxi Medical College of Nanchang University, Nanchang, 330006, China
| | - Lixia Xiong
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang, China. .,Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, Nanchang, 330006, China.
| |
Collapse
|
438
|
Qin Y, Zheng Y, Huang C, Li Y, Gu M, Wu Q. Downregulation of miR-181b-5p Inhibits the Viability, Migration, and Glycolysis of Gallbladder Cancer by Upregulating PDHX Under Hypoxia. Front Oncol 2021; 11:683725. [PMID: 34485121 PMCID: PMC8415503 DOI: 10.3389/fonc.2021.683725] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/19/2021] [Indexed: 01/22/2023] Open
Abstract
Background Gallbladder cancer (GBC) is a malignant cancer with poor prognosis. Evidences have shown that miRNAs are closely related to the occurrence of GBC; thus, we aimed to explore miRNAs, which plays an important role in the occurrence and development of GBC. Methods Microarray analysis was performed to investigate the differentially expressed miRNAs between five non-neoplastic gallbladder tissues (normal tissues) and five gallbladder tumor tissues (tumor tissues). RT-qPCR was performed to detect the level of miR-181b-5p in cells, and CCK-8 was performed to detect cell viability. Then, glucose assay kit or lactic acid assay kit was performed to detect the level of glucose consumption or lactate production. Next, transwell and wound healing assays were used to assess cell migration. In addition, dual-luciferase reporter assay was used to verify the relationship between miR-181b-5p and PDHX. At last, Western blotting was performed to determine the protein level of PDHX. Results Microarray analysis suggested miR-181b-5p was significantly upregulated in GBC tumor tissue. KEGG analysis for the protein targets of miR-181b-5p indicates a close relationship existed between miR-181b-5p and glycolysis. In addition, the level of miR-181b-5p was notably increased in GBC-SD or G415 cells, compared with HIBEpiC cells. GBC cell viability was significantly decreased under hypoxia, and these decreases were exacerbated by miR-181b-5p antagomir. Moreover, glucose consumption or lactate production of GBC cells was significantly upregulated under hypoxia, whereas these increases were completely revered by miR-181b-5p antagomir. Further investigation revealed that PDHX was a direct target of miR-181b-5p. Conclusion In this study, downregulation of miR-181b-5p inhibits the viability, migration, and glycolysis of GBC by upregulating PDHX under hypoxia. This finding suggested that miR-181b-5p might be considered as a novel therapeutic target for the treatment of GBC.
Collapse
Affiliation(s)
- Yiyu Qin
- Clinical Medical College, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Yongliang Zheng
- Rehabilitation College, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Cheng Huang
- Clinical Medical College, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Yuanyuan Li
- Clinical Medical College, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Min Gu
- Clinical Medical College, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Qin Wu
- Clinical Medical College, Jiangsu Vocational College of Medicine, Yancheng, China
| |
Collapse
|
439
|
Dai Y, Liu X, Gao Y. Aberrant miR-219-5p is correlated with TLR4 and serves as a novel biomarker in patients with multiple organ dysfunction syndrome caused by acute paraquat poisoning. Int J Immunopathol Pharmacol 2021; 34:2058738420974888. [PMID: 33233960 PMCID: PMC7691899 DOI: 10.1177/2058738420974888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
This study aimed to investigate the clinical significance of serum
microRNA-219-5p (miR-219-5p) in patients with multiple organ dysfunction
syndrome (MODS) caused by acute paraquat (PQ) poisoning, and its correlation
with Toll-like Receptor 4 (TLR4). Luciferase reporter assay was used to
investigate in vitro the correlation of miR-219-5p with TLR4. Serum miR-219-5p
levels were evaluated by quantitative real-time polymerase chain reaction. Serum
levels of TLR4, IL-1β, and TNF-α were measured by Enzyme-linked immune sorbent
assay (ELISA). ROC analysis was performed to assess the diagnostic significance,
Kaplan-Meier survival curves and Cox regression analysis were used to evaluate
the prognostic value of miR-219-5p in MODS patients. TLR4 was a target gene of
miR-219-5p and was increased in MODS patients. Serum miR-219-5p level was
decreased and negatively correlated with TLR4 level in MODS patients
(r = −0.660, P < 0.001), which had
important diagnostic value and negatively correlated with APACHE II score in
MODS patients. The miR-219-5p expression was markedly associated with the WBC,
ALT, AST, PaCO2, Lac, and APACHE II score. Non-survivals had more
patients with low miR-219-5p expression. Patients with low miR-219-5p expression
had shorter survival time. MiR-219-5p and APACHE II score were two independently
prognostic factors for 28-day survival. MiR-219-5p was negatively correlated
with, while TLR4 was positively correlated with the levels of IL-1β and TNF-α.
The serum miR-219-5p level may be a potential biomarker for acute PQ-induced
MODS diagnosis and prognosis. Furthermore, miR-219-5p may be associated with the
progression of MODS by regulating TLR4-related inflammatory response.
Collapse
Affiliation(s)
- Yunxiang Dai
- Emergency Department, Qingdao Jiaozhou Central Hospital, Qingdao, Shandong, China
| | - Xia Liu
- Radiology Department, Qingdao Jiaozhou Central Hospital, Qingdao, Shandong, China
| | - Yuming Gao
- Emergency Department, Qingdao Jiaozhou Central Hospital, Qingdao, Shandong, China
| |
Collapse
|
440
|
Guo T, Liu D, Peng S, Wang M, Li Y. A Positive Feedback Loop of lncRNA MIR31HG-miR-361-3p -YY1 Accelerates Colorectal Cancer Progression Through Modulating Proliferation, Angiogenesis, and Glycolysis. Front Oncol 2021; 11:684984. [PMID: 34485123 PMCID: PMC8416113 DOI: 10.3389/fonc.2021.684984] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/29/2021] [Indexed: 12/19/2022] Open
Abstract
Background Colorectal cancer (CRC) is a common malignant tumor with high metastatic and recurrent rates. This study probes the effect and mechanism of long non-coding RNA MIR31HG on the progression of CRC cells. Materials and Methods Quantitative real-time PCR (qRT-PCR) was used to analyze the expression of MIR31HG and miR-361-3p in CRC tissues and normal tissues. Gain- or loss-of-function assays were conducted to examine the roles of MIR31HG, miR-361-3p and YY1 transcription factor (YY1) in the CRC progression. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and colony formation experiment were conducted to test CRC cell proliferation. CRC cell invasion was determined by Transwell assay. The glucose detection kit and lactic acid detection kit were utilized to monitor the levels of glucose and lactate in CRC cells. The glycolysis level in CRC cells was examined by the glycolytic stress experiment. Western blot was performed to compare the expression of glycolysis-related proteins (PKM2, GLUT1 and HK2) and angiogenesis-related proteins (including VEGFA, ANGPT1, HIF1A and TIMP1) in HUVECs. The binding relationships between MIR31HG and miR-361-3p, miR-361-3p and YY1 were evaluated by the dual-luciferase reporter assay and RNA immunoprecipitation (RIP). Results MIR31HG was up-regulated in CRC tissues and was associated with poorer prognosis of CRC patients. The in-vitro and in-vivo experiments confirmed that overexpressing MIR31HG heightened the proliferation, growth, invasion, glycolysis and lung metastasis of CRC cells as well as the angiogenesis of HUVECs. In addition, MIR3HG overexpression promoted YY1 mRNA and protein level, and forced overexpression of YY1 enhanced MIR31HG level. Overexpressing YY1 reversed the tumor-suppressive effect mediated by MIR31HG knockdown. miR-361-3p, which was inhibited by MIR31HG overexpression, repressed the malignant behaviors of CRC cells. miR-361-3p-mediated anti-tumor effects were mostly reversed by upregulating MIR31HG. Further mechanism studies illustrated that miR-361-3p targeted and negatively regulated the expression of YY1. Conclusion This study reveals that MIR31HG functions as an oncogenic gene in CRC via forming a positive feedback loop of MIR31HG-miR-361-3p-YY1.
Collapse
Affiliation(s)
- Tao Guo
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Defeng Liu
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shihao Peng
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Meng Wang
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yangyang Li
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
441
|
Liu F, Dong Z, Lin Y, Yang H, Wang P, Zhang Y. MicroRNA‑502‑3p promotes Mycobacterium tuberculosis survival in macrophages by modulating the inflammatory response by targeting ROCK1. Mol Med Rep 2021; 24:753. [PMID: 34476503 PMCID: PMC8436224 DOI: 10.3892/mmr.2021.12393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 07/29/2021] [Indexed: 01/22/2023] Open
Abstract
Tuberculosis (TB) is caused by Mycobacterium tuberculosis (M. tuberculosis) infection and has the highest mortality rate of any single infectious disease worldwide. The aim of the present study was to investigate the function of microRNA (miR)-502-3p in M. tuberculosis-infected macrophages. The Gene Expression Omnibus database was used to analyze miR-502-3p expression in patients with TB and healthy individuals. THP-1 and RAW 264.7 cells were transfected with miR-502-3p mimic, miR-502-3p inhibitor, pcDNA3.1-ROCK1 or their negative controls. The expression levels of miR-502-3p and inflammatory cytokines were evaluated using reverse transcription-quantitative PCR. The colony-forming unit assay was performed to assess the survival of M. tuberculosis in macrophages, and Toll-like receptor (TLR)4/NF-κB signaling pathway-associated protein expression levels were detected by western blotting. The nuclear translocation of NF-κB p65 was detected via immunocytochemistry. TargetScan was used to predict the binding sites between miR-502-3p and ROCK1. The interaction between miR-502-3p and Rho-associated coiled-coil-forming protein kinase 1 (ROCK1) was confirmed using a dual-luciferase reporter assay; ROCK1 was demonstrated to be a direct target gene of miR-502-3p. Results from the present study demonstrated that miR-502-3p expression was significantly increased during M. tuberculosis infection in macrophages. Upregulation of miR-502-3p expression levels significantly enhanced the survival of intracellular M. tuberculosis. IL-6, TNF-α, and IL-1β mRNA expression levels were significantly upregulated during M. tuberculosis infection but were downregulated by miR-502-3p overexpression. Moreover, miR-502-3p mimics transfection significantly downregulated TLR4/NF-κB signaling pathway-associated protein expression and significantly reduced nuclear transcription of NF-κB in M. tuberculosis-infected macrophages. ROCK1 overexpression reversed the miR-502-3p inhibitory effect on cytokine production in M. tuberculosis-infected macrophages. In conclusion, miR-502-3p/ROCK1 may serve an anti-inflammatory role and may improve the survival of M. tuberculosis within macrophages, which may provide a promising therapeutic target for TB.
Collapse
Affiliation(s)
- Fang Liu
- Respiratory Endoscopy Room, Linyi People's Hospital, Linyi, Shandong 276034, P.R. China
| | - Zhen Dong
- East Medical District Office, Linyi People's Hospital, Linyi, Shandong 276034, P.R. China
| | - Yuefu Lin
- Department of Prevention, Linyi People's Hospital, Linyi, Shandong 276034, P.R. China
| | - Haibo Yang
- Department of Occupational Diseases, Linyi People's Hospital, Linyi, Shandong 276034, P.R. China
| | - Pingping Wang
- Rehabilitation Department, Shandong Coal Linyi Hot Spring Sanatorium, Linyi, Shandong 276034, P.R. China
| | - Yongxia Zhang
- Emergency Department, Linyi People's Hospital, Linyi, Shandong 276034, P.R. China
| |
Collapse
|
442
|
MicroRNA-590-3p relieves hypoxia/reoxygenation induced cardiomyocytes apoptosis and autophagy by targeting HIF-1α. Exp Ther Med 2021; 22:1077. [PMID: 34447470 PMCID: PMC8355641 DOI: 10.3892/etm.2021.10511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 06/21/2021] [Indexed: 12/12/2022] Open
Abstract
Autophagy and apoptosis are key factors in myocardial ischemia/reperfusion (I/R) injury. MicroRNAs (miRNAs or miRs) participate in occurrence and development of myocardial I/R injury by regulating autophagy and apoptosis. The purpose of the present study was to investigate the role of miR-590-3p in the regulation of autophagy and apoptosis in hypoxia/reoxygenation (H/R)-treated cardiomyocytes. Following 6 h hypoxia and 6 h reoxygenation in primary rat cardiomyocytes, miR-590-3p was downregulated. Transfection of miR-590-3p mimic inhibited the increased autophagy and apoptosis following H/R treatment. Subsequent experiments demonstrated that miR-590-3p regulated induction of autophagy and apoptosis by targeting hypoxia inducible factor (HIF)-1α. Forced expression of HIF-1α rescued the protective effect of miR-590-3p on H/R-induced cardiomyocytes. In summary, the present study showed that miR-590-3p exhibited a protective effect on H/R-induced cardiomyocyte injury and may be a novel target for the treatment of myocardial ischemia disease.
Collapse
|
443
|
MiRNAs and Cancer: Key Link in Diagnosis and Therapy. Genes (Basel) 2021; 12:genes12081289. [PMID: 34440464 PMCID: PMC8395027 DOI: 10.3390/genes12081289] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 02/07/2023] Open
Abstract
Since the discovery of the first microRNA (miRNA), the exploration of miRNA biology has come to a new era in recent decades. Monumental studies have proven that miRNAs can be dysregulated in different types of cancers and the roles of miRNAs turn out to function to either tumor promoters or tumor suppressors. The interplay between miRNAs and the development of cancers has grabbed attention of miRNAs as novel tools and targets for therapeutic attempts. Moreover, the development of miRNA delivery system accelerates miRNA preclinical implications. In this review, we depict recent advances of miRNAs in cancer and discuss the potential diagnostic or therapeutic approaches of miRNAs.
Collapse
|
444
|
He X, Tao Z, Zhang Z, He W, Xie Y, Zhang L. The potential role of RAAS-related hsa_circ_0122153 and hsa_circ_0025088 in essential hypertension. Clin Exp Hypertens 2021; 43:715-722. [PMID: 34392742 DOI: 10.1080/10641963.2021.1945077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Background: The dysregulation of renin-angiotensin-aldosterone system (RAAS) is closely related to the development of essential hypertension (EH). MicroRNAs (miRNAs) are an important regulator of RAAS. The sponge effect of circular RNAs (circRNAs) on miRNAs makes the circRNA-miRNA-mRNA axis in EH possible, however, there is currently a lack of relevant evidence.Material and Methods: A circRNA-miRNA network was constructed based on the previous circRNAs microarray results. The expression of RAAS-related miRNAs and circRNAs were verified by qRT-PCR. Peripheral blood samples of 106 EH patients and 106 healthy volunteers were included in this study. GO and KEGG enrichment were performed to predict the role of candidate circRNAs in EH.Results: In EH patients, RAAS-related hsa-miR-483-3p and hsa-miR-27a-3p were down-regulated, and hsa_circ_0122153 and hsa_circ_0025088 were up-regulated. The relative expression of RAAS-related circRNAs and target miRNAs showed a negative correlation (hsa_circ_0122153-hsa-miR-483-3p and hsa_circ_0025088-hsa-miR-27a-3p). Hsa_circ_0122153 or hsa_circ_0025088 combined with corresponding miRNAs and environmental factors may support the early diagnosis of EH. Hsa_circ_0122153 and hsa_circ_0025088 may participate in the regulation of aldosterone and the secretion of renin through the circRNA-miRNA-mRNA network, respectively.Conclusion: Highly expressed hsa_circ_0122153 and hsa_circ_0025088 increase the risk of EH. The hsa_circ_0122153/hsa-miR-483-3p and hsa_circ_0025088/hsa-miR-27a-3p axis involving RAAS were potential EH pathways.
Collapse
Affiliation(s)
- Xin He
- Insitute of Geriatrics, the Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang Province, China.,Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, Zhejiang Province, China
| | - Zhenbo Tao
- Insitute of Geriatrics, the Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang Province, China
| | - Zebo Zhang
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, Zhejiang Province, China
| | - Wenming He
- Insitute of Geriatrics, the Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang Province, China
| | - Yanqing Xie
- Insitute of Geriatrics, the Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang Province, China
| | - Lina Zhang
- Insitute of Geriatrics, the Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang Province, China
| |
Collapse
|
445
|
Kolanska K, Bendifallah S, Canlorbe G, Mekinian A, Touboul C, Aractingi S, Chabbert-Buffet N, Daraï E. Role of miRNAs in Normal Endometrium and in Endometrial Disorders: Comprehensive Review. J Clin Med 2021; 10:jcm10163457. [PMID: 34441754 PMCID: PMC8396961 DOI: 10.3390/jcm10163457] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/15/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022] Open
Abstract
The molecular responses to hormonal stimuli in the endometrium are modulated at the transcriptional and post-transcriptional stages. Any imbalance in cellular and molecular endometrial homeostasis may lead to gynecological disorders. MicroRNAs (miRNAs) are involved in a wide variety of physiological mechanisms and their expression patterns in the endometrium are currently attracting a lot of interest. miRNA regulation could be hormone dependent. Conversely, miRNAs could regulate the action of sexual hormones. Modifications to miRNA expression in pathological situations could either be a cause or a result of the existing pathology. The complexity of miRNA actions and the diversity of signaling pathways controlled by numerous miRNAs require rigorous analysis and findings need to be interpreted with caution. Alteration of miRNA expression in women with endometriosis has been reported. Thus, a potential diagnostic test supported by a specific miRNA signature could contribute to early diagnosis and a change in the therapeutic paradigm. Similarly, specific miRNA profile signatures are expected for RIF and endometrial cancer, with direct implications for associated therapies for RIF and adjuvant therapies for endometrial cancer. Advances in targeted therapies based on the regulation of miRNA expression are under evaluation.
Collapse
Affiliation(s)
- Kamila Kolanska
- Service de Gynécologie Obstétrique et Médecine de la Reproduction, Hôpital Tenon, AP-HP, Sorbonne Université, 4 Rue de la Chine, 75020 Paris, France; (S.B.); (C.T.); (N.C.-B.); (E.D.)
- INSERM UMRS 938, Sorbonne Université, Site Saint-Antoine, 27 Rue Chaligny, CEDEX 12, 75571 Paris, France; (G.C.); (S.A.)
- Centre Expert En Endométriose (C3E), Groupe de Recherche Clinique en Endométriose (GRC6), Sorbonne Université, 4 Rue de la Chine, 75020 Paris, France
- Correspondence:
| | - Sofiane Bendifallah
- Service de Gynécologie Obstétrique et Médecine de la Reproduction, Hôpital Tenon, AP-HP, Sorbonne Université, 4 Rue de la Chine, 75020 Paris, France; (S.B.); (C.T.); (N.C.-B.); (E.D.)
- INSERM UMRS 938, Sorbonne Université, Site Saint-Antoine, 27 Rue Chaligny, CEDEX 12, 75571 Paris, France; (G.C.); (S.A.)
- Centre Expert En Endométriose (C3E), Groupe de Recherche Clinique en Endométriose (GRC6), Sorbonne Université, 4 Rue de la Chine, 75020 Paris, France
| | - Geoffroy Canlorbe
- INSERM UMRS 938, Sorbonne Université, Site Saint-Antoine, 27 Rue Chaligny, CEDEX 12, 75571 Paris, France; (G.C.); (S.A.)
- Service de Chirurgie et Cancérologie Gynécologique et Mammaire, Hôpitaux Universitaires Pitié-Salpêtrière, Charles-Foix, Sorbonne Université, 47/83, Boulevard de l’Hôpital, 75013 Paris, France
| | - Arsène Mekinian
- Service de Médecine Interne, Hôpital Saint Antoine, AP-HP, 184 Rue du Faubourg Saint Antoine, Sorbonne Université, 75012 Paris, France;
| | - Cyril Touboul
- Service de Gynécologie Obstétrique et Médecine de la Reproduction, Hôpital Tenon, AP-HP, Sorbonne Université, 4 Rue de la Chine, 75020 Paris, France; (S.B.); (C.T.); (N.C.-B.); (E.D.)
- INSERM UMRS 938, Sorbonne Université, Site Saint-Antoine, 27 Rue Chaligny, CEDEX 12, 75571 Paris, France; (G.C.); (S.A.)
- Centre Expert En Endométriose (C3E), Groupe de Recherche Clinique en Endométriose (GRC6), Sorbonne Université, 4 Rue de la Chine, 75020 Paris, France
| | - Selim Aractingi
- INSERM UMRS 938, Sorbonne Université, Site Saint-Antoine, 27 Rue Chaligny, CEDEX 12, 75571 Paris, France; (G.C.); (S.A.)
- Faculté de Médecine Paris 5 Descartes, 12 Rue de l’Ecole de Médecine, 75006 Paris, France
| | - Nathalie Chabbert-Buffet
- Service de Gynécologie Obstétrique et Médecine de la Reproduction, Hôpital Tenon, AP-HP, Sorbonne Université, 4 Rue de la Chine, 75020 Paris, France; (S.B.); (C.T.); (N.C.-B.); (E.D.)
- INSERM UMRS 938, Sorbonne Université, Site Saint-Antoine, 27 Rue Chaligny, CEDEX 12, 75571 Paris, France; (G.C.); (S.A.)
- Centre Expert En Endométriose (C3E), Groupe de Recherche Clinique en Endométriose (GRC6), Sorbonne Université, 4 Rue de la Chine, 75020 Paris, France
| | - Emile Daraï
- Service de Gynécologie Obstétrique et Médecine de la Reproduction, Hôpital Tenon, AP-HP, Sorbonne Université, 4 Rue de la Chine, 75020 Paris, France; (S.B.); (C.T.); (N.C.-B.); (E.D.)
- INSERM UMRS 938, Sorbonne Université, Site Saint-Antoine, 27 Rue Chaligny, CEDEX 12, 75571 Paris, France; (G.C.); (S.A.)
- Centre Expert En Endométriose (C3E), Groupe de Recherche Clinique en Endométriose (GRC6), Sorbonne Université, 4 Rue de la Chine, 75020 Paris, France
| |
Collapse
|
446
|
Yi X, He Z, Tian T, Kou Z, Pang W. LncIMF2 promotes adipogenesis in porcine intramuscular preadipocyte through sponging MiR-217. Anim Biotechnol 2021; 34:268-279. [PMID: 34346296 DOI: 10.1080/10495398.2021.1956509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Intramuscular fat is positively related to meat quality including tenderness, flavor, and juiciness. Long noncoding RNA (LncRNA) plays a vital role in regulating adipogenesis. However, it is largely unknown about lncRNAs associated with porcine intramuscular adipocyte adipogenesis. In the present study, we focus on a novel LncRNA, which is named lncIMF2, associated with adipogenesis by our previous RNA-sequence analysis and bioinformatics analysis. We demonstrated LncIMF2 knockdown inhibited the proliferation of porcine intramuscular adipocytes while expression of cell cycle-related genes was decreased. Besides, we found LncIMF2 knockdown inhibited expression of adipogenic differentiation marker genes including PPARγ (Peroxisome proliferator-activated reporter gamma) and ATGL (Adipose triglyceride lipase). Similarly, overexpression of LncIMF2 promotes proliferation and differentiation of porcine intramuscular preadipocytes. Moreover, we proved that IncIMF2 acts as a molecular sponge for MicroRNA-217 (miR-217), which has been found associated with adipogenesis, thereby affecting the expression of the miR-217 target gene. Collectively, our findings will contribute to a deeper understanding of the role of LncRNA in pig IMF deposition for the improvement of meat quality.
Collapse
Affiliation(s)
- XuDong Yi
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Shaanxi, P.R. China
| | - ZhaoZhao He
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Shaanxi, P.R. China
| | - TingTing Tian
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Shaanxi, P.R. China
| | - ZhongYun Kou
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Shaanxi, P.R. China
| | - WeiJun Pang
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Shaanxi, P.R. China
| |
Collapse
|
447
|
Cheng X, Zhao L, Ke T, Wang X, Cao L, Liu S, He J, Rong W. Celecoxib ameliorates diabetic neuropathy by decreasing apoptosis and oxidative stress in dorsal root ganglion neurons via the miR-155/COX-2 axis. Exp Ther Med 2021; 22:825. [PMID: 34149871 PMCID: PMC8200812 DOI: 10.3892/etm.2021.10257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Celecoxib (CXB) is the only clinical cyclooxygenase-2 (COX-2) inhibitor. Oral administration of CXB in experimental diabetic mice effectively relieved the symptoms of diabetic neuropathy (DN); however, the molecular mechanism remains unclear. The present study aimed to investigate the potential molecular mechanisms of CXB in the treatment of DN. An in vitro cellular model of DN was produced by stimulating dorsal root ganglion (DRG) neurons with high glucose. Cell viability and apoptosis were assessed by Cell Counting Kit-8 assays and flow cytometry, respectively. Reactive oxygen species (ROS) kits, ELISA kits and western blotting were used to determine oxidative cellular damage. The expression level of microRNA (miR)-155 was analyzed by reverse transcription-quantitative PCR. The starBase database and dual-luciferase assays were performed to predict and determine the interaction between miR-155 and COX-2. Protein expression of neurotrophic factors, oxidative stress-related proteins and COX-2 were analyzed by western blotting. Incubation with high glucose led to a decrease in DRG neuron cell viability, facilitated apoptosis, downregulated NGF and BDNF expression, increased ROS and MDA generation and decreased SOD activity. Treatment with CXB significantly protected DRG neurons against high glucose-evoked damage. CXB promoted the expression of miR-155 and COX-2 was revealed to be a direct target of miR-155. Inhibition of COX-2 enhanced the protective effect of CXB on DRG neurons and that treatment with an miR-155 inhibitor partially rescued this effect. The present study demonstrated the involvement of the miR-155/COX-2 axis in the protective effect of CXB against high glucose-induced DN.
Collapse
Affiliation(s)
- Xiaoliang Cheng
- Department of Endocrinology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Ling Zhao
- Department of Endocrinology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Tingyu Ke
- Department of Endocrinology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Xi Wang
- Department of Endocrinology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Lijun Cao
- Department of Endocrinology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Shuyan Liu
- Department of Endocrinology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Jie He
- Department of Endocrinology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Wei Rong
- Department of Neurology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| |
Collapse
|
448
|
Shen M, Li X, Qian B, Wang Q, Lin S, Wu W, Zhu S, Zhu R, Zhao S. Crucial Roles of microRNA-Mediated Autophagy in Urologic Malignancies. Int J Biol Sci 2021; 17:3356-3368. [PMID: 34512152 PMCID: PMC8416737 DOI: 10.7150/ijbs.61175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/14/2021] [Indexed: 12/24/2022] Open
Abstract
Urologic oncologies are major public health problems worldwide. Both microRNA and autophagy, separately or concurrently, are involved in a variety of the cellular and molecular processes of multiple cancers, including urologic malignancies. In this review, we have summarized the related studies and found that microRNA-mediated autophagy acted as carcinogenic factors or suppressors in prostate cancer, kidney cancer, and bladder cancer. MiRNAs, targeted genes, and the different signaling pathways constitute a complex network that orchestrates autophagy regulation, militating the oncogenic and tumor-suppressive effects in urologic malignancies. Aberrant expression of miRNAs may induce the dysregulation of the autophagy process, resulting in tumorigenesis, progression, and resistance to anticancer therapies. Targeting specific miRNAs for autophagy modulation may present as reliable diagnostic and prognostic biomarkers or promising therapeutic strategies for urologic oncologies.
Collapse
Affiliation(s)
- Maolei Shen
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, China
| | - Xin Li
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, China
| | - Biao Qian
- Department of Urology, the First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Qiang Wang
- Department of Thoracic Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, China
| | - Shanan Lin
- Department of Thoracic Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, China
| | - Wenhao Wu
- School of Medicine, Taizhou University, Taizhou, 318000, Zhejiang, China
| | - Shuai Zhu
- School of Medicine, Taizhou University, Taizhou, 318000, Zhejiang, China
| | - Rui Zhu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, Henan, China
| | - Shankun Zhao
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, China
| |
Collapse
|
449
|
LncRNA as a multifunctional regulator in cancer multi-drug resistance. Mol Biol Rep 2021; 48:1-15. [PMID: 34333735 DOI: 10.1007/s11033-021-06603-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/26/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Malignant tumors have become the most dangerous disease in recent years. Chemotherapy is the most effective treatment for this disease; however, the problem of drug resistance has become even more common, which leads to the poor prognosis of patients suffering from cancers. Thus, necessary measures should be taken to address these problems at the earliest. Many studies have demonstrated that drug resistance is closely related to the abnormal expressions of long non-coding RNAs (lncRNAs). METHODS AND RESULTS This review aimed to summarize the molecular mechanisms underlying the association of lncRNAs and the development of drug resistance and to find potential strategies for the clinical diagnosis and treatment of cancer drug resistance. Studies showed that lncRNAs can regulate the expression of genes through chromatin remodeling, transcriptional regulation, and post-transcriptional processing. Furthermore, lncRNAs have been reported to be closely related to the occurrence of malignant tumors. In summary, lncRNAs have gained attention in related fields during recent years. According to previous studies, lncRNAs have a vital role in several different types of cancers owing to their multiple mechanisms of action. Different mechanisms have different functions that could result in different consequences in the same disease. CONCLUSIONS LncRNAs closely participated in cancer drug resistance by regulating miRNA, signaling pathways, proteins, cancer stem cells, pro- and ant-apoptosis, and autophagy. lncRNAs can be used as biomarkers of the possible treatment target in chemotherapy, which could provide solutions to the problem of drug resistance in chemotherapy in the future.
Collapse
|
450
|
Shi W, Hu D, Xing Y, Zhuo R, Lao Q, Liu H, Pang W. Deciphering the Oncogenic Role of VPS28 Modulated by miR-491-5p in Breast Cancer Cells Using In Silico and Functional Analysis. Front Mol Biosci 2021; 8:634183. [PMID: 34395516 PMCID: PMC8360854 DOI: 10.3389/fmolb.2021.634183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/29/2021] [Indexed: 12/31/2022] Open
Abstract
Vacuolar protein sorting–associated protein 28 (VPS28), one of the four cytosolic proteins comprising the endosomal sorting complex required for the transport I (ESCRT-I) component, has been reported to be linked to various cancers. However, less evidence is available regarding the involvement of VPS28 in breast cancer. To this end, this study focused on exploring the function of VPS28 in breast cancer cells using the in silico analysis. VPS28 expression pattern data in breast cancer tissues were collected using the Cancer Genome Atlas (TCGA) and Clinical Proteomic Tumor Analysis Consortium (CPTAC) databases and analyzed to assess the association of VPS28 with breast cancer prognosis. The elevated VPS28 expression was found in breast cancer tissues and was associated with a poor prognosis (p < 0.001). A higher VPS28 expression indicated a short survival duration (HR = 2.43; 95% CI: 1.44–4.1; p < 0.001). The CCLE database showed that VPS28 was expressed in breast cancer cell lines. The upstream targets of VPS28 were identified using the mirDIP, starBase, and TargetScan online tools. The correlation and binding relationship between miR-491-5p and VPS28 was analyzed. VPS28 or miR-491-5p gain and loss of function experiments were performed to verify their potential effect on the biological functions of breast cancer cells. Knockdown of VPS28 was shown to suppress the biological functions and enhance the apoptosis of breast cancer cell lines. Micro RNA-491-5p, identified as a posttranscriptional regulator of VPS28, was downregulated in breast cancer tissues. In contrast to the miR-491-5p inhibitor, the miR-491-5p mimic could suppress the migration, wound healing ability, and proliferation, while accelerating apoptosis. However, co-transfection of VPS28 and miR-491-5p counteracted the effect of the miR-491-5p mimic on breast cancer cell functions. Thus, our in silico analysis demonstrates that miR-491-5p can suppress breast cancer progression by attenuating the expression of VPS28.
Collapse
Affiliation(s)
- Wenjie Shi
- School of Public Health, Guilin Medical University, Guilin, China
| | - Daojun Hu
- Department of Clinical Laboratory, Xinhua Hospital Chongming Branch, Shanghai, China
| | - Yu Xing
- School of Public Health, Guilin Medical University, Guilin, China
| | - Rui Zhuo
- Department of Breast Surgery, Guilin TCM Hospital of China, Affiliated to Guang Xi University of Chinese Medicine Guilin, Guilin, China
| | - Qiufeng Lao
- School of Public Health, Guilin Medical University, Guilin, China
| | - Hui Liu
- School of Public Health, Guilin Medical University, Guilin, China
| | - Weiyi Pang
- School of Public Health, Guilin Medical University, Guilin, China
| |
Collapse
|