401
|
Top-dressing of chelated phytogenic feed additives in the diet of lactating Friesian cows to enhance feed utilization and lactational performance. ANNALS OF ANIMAL SCIENCE 2020. [DOI: 10.2478/aoas-2020-0086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Abstract
The present experiment evaluated the inclusion of chelated phytogenic feed additives mixture in the diet of lactating cows for the first 3 months of lactation. A week before calving, thirty multiparous Friesian cows were divided into three treatments in a complete randomized design and fed a basal diet without supplementation (Control treatment), or the control diet supplemented with chelated phytogenic additives at 3 g (PHY3 treatment), or at 6 g/cow/d (PHY6 treatment). Menthol, levomenthol, β-linaloolm, anethole, hexadecanoic acid and pmenthane were the principal compounds identified in the additives mixture. Milk production, total solid, protein, fat, and lactose were increased with PHY3, but decreased by PHY6 (P<0.01). Whereas the PHY3 treatment increased (P<0.05) milk contents of Ca and Zn, PHY3 and PHY6 treatments increased (P<0.05) milk Fe and Mn concentrations. Though the PHY3 treatment increased (P<0.05) nutrient digestibility, the PHY6 treatment decreased (P<0.05) the digestibility of organic matter, crude protein and neutral detergent fiber. The PHY3 treatment increased (P<0.05) ruminal volatile fatty acids (VFA) concentration and proportional acetate and propionate and decreased butyrate, while the PHY6 treatment decreased ruminal VFA concentration and proportional acetate. The PHY3 treatment increased (P<0.05) serum total protein, glucose, total antioxidant capacity, and the concentrations of Ca and Zn. Both PHY3 and PHY6 treatment decreased (P<0.05) the concentrations of serum triglycerides, and cholesterol. Daily inclusion of 3 g/cow of chelated feed additives mixture in diet of lactating cows improved milk production and ruminal fermentation, but additives dose of 6 g/cow/d had negative impact on cows’ performance.
Collapse
|
402
|
Manasa V, Vaishnav SR, Tumaney AW. Physicochemical characterization and nutraceutical compounds of the selected spice fixed oils. Journal of Food Science and Technology 2020; 58:3094-3105. [PMID: 34294972 DOI: 10.1007/s13197-020-04813-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/11/2020] [Accepted: 09/17/2020] [Indexed: 11/24/2022]
Abstract
Spices and herbs are well appreciated for their medicinal properties since ancient times. Till date, spices are being explored for volatile oils (essential), flavour and for addressing many chronic diseases. In the present study, we investigated the physicochemical properties, fatty acid composition, differential scanning calorimetry (DSC), elemental composition and nutraceutical compounds of fixed oils (non-volatile) from five selected spices viz., Alpinia galanga, Cinnamomum zeylanicum, Trigonella foenum-graecum, Foeniculum vulgare, and Myristica fragrans. The fixed oil (FO) content of volatiles-free powders of the five selected spices ranged from 1.58% (C. zeylanicum) to 26.43% (M. fragrans). The studied FO showed a good quality index which was analysed by estimation of free fatty acids, iodine value and unsaponifiable matter. The fatty acid analysis showed high palmitic acid in the FO of A. galanga and C. zeylanicum. High linoleic, oleic, and myristic acid levels were observed in T. foenum-graecum, F. vulgare and M. fragrans FOs, respectively. The nutraceutical compounds such as total phenolics were high in C. zeylanicum FO (0.53%). Hence the studied FO could be an excellent alternative to oil nutraceutical compounds. It may be used as a functional ingredient in foods which needs further validation for value addition.
Collapse
Affiliation(s)
- Vallamkondu Manasa
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India.,Department of Lipid Science, Council of Scientific and Industrial Research, Central Food Technological Research Institute, Mysore, 570 020 India
| | - Salony R Vaishnav
- Department of Lipid Science, Council of Scientific and Industrial Research, Central Food Technological Research Institute, Mysore, 570 020 India
| | - Ajay W Tumaney
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India.,Department of Lipid Science, Council of Scientific and Industrial Research, Central Food Technological Research Institute, Mysore, 570 020 India
| |
Collapse
|
403
|
Whey protein isolate edible films incorporated with essential oils: Antimicrobial activity and barrier properties. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109285] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
404
|
Lastra‐Vargas L, Lopez‐Malo A, Palou E. Modeling
Salmonella
(
S
. Typhimurium ATCC14028, ATCC 13311,
S
. Typhi ATCC 19430, and
S. enterica
) and
Listeria
(
L. monocytogenes
Scott A, ATCC 7644, and CDBB‐B‐1426) cocktails’ survival under the effects of pH, protein, and essential oil concentration. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Leonor Lastra‐Vargas
- Chemical and Food Engineering Department Universidad de las Américas Puebla Puebla Mexico
| | - Aurelio Lopez‐Malo
- Chemical and Food Engineering Department Universidad de las Américas Puebla Puebla Mexico
| | - Enrique Palou
- Chemical and Food Engineering Department Universidad de las Américas Puebla Puebla Mexico
| |
Collapse
|
405
|
Choi J, Wang L, Liu S, Lu P, Zhao X, Liu H, Lahaye L, Santin E, Liu S, Nyachoti M, Yang C. Effects of a microencapsulated formula of organic acids and essential oils on nutrient absorption, immunity, gut barrier function, and abundance of enterotoxigenic Escherichia coli F4 in weaned piglets challenged with E. coli F4. J Anim Sci 2020; 98:skaa259. [PMID: 32780110 PMCID: PMC7526869 DOI: 10.1093/jas/skaa259] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/07/2020] [Indexed: 12/13/2022] Open
Abstract
The objective was to study the effects of microencapsulated organic acids (OA) and essential oils (EO) on growth performance, immune system, gut barrier function, nutrient digestion and absorption, and abundance of enterotoxigenic Escherichia coli F4 (ETEC F4) in the weaned piglets challenged with ETEC F4. Twenty-four ETEC F4 susceptible weaned piglets were randomly distributed to 4 treatments including (1) sham-challenged control (SSC; piglets fed a control diet and challenged with phosphate-buffered saline (PBS)); (2) challenged control (CC; piglets fed a control diet and challenged with ETEC F4); (3) antibiotic growth promoters (AGP; CC + 55 mg·kg-1 of Aureomycin); and (4) microencapsulated OA and EO [P(OA+EO); (CC + 2 g·kg-1 of microencapsulated OA and EO]. The ETEC F4 infection significantly induced diarrhea at 8, 28, 34, and 40 hr postinoculation (hpi) (P < 0.05) in the CC piglets. At 28 d postinoculation (dpi), piglets fed P(OA+EO) had a lower (P < 0.05) diarrhea score compared with those fed CC, but the P(OA+EO) piglets had a lower (P < 0.05) diarrhea score compared with those fed the AGP diets at 40 dpi. The ETEC F4 infection tended to increase in vivo gut permeability measured by the oral gavaging fluorescein isothiocyanate-dextran 70 kDa (FITC-D70) assay in the CC piglets compared with the SCC piglets (P = 0.09). The AGP piglets had higher FITC-D70 flux than P(OA+EO) piglets (P < 0.05). The ETEC F4 infection decreased mid-jejunal VH in the CC piglets compared with the SCC piglets (P < 0.05). The P(OA+EO) piglets had higher (P < 0.05) VH in the mid-jejunum than the CC piglets. The relative mRNA abundance of Na+-glucose cotransporter and B0AT1 was reduced (P < 0.05) by ETEC F4 inoculation when compared with the SCC piglets. The AGP piglets had a greater relative mRNA abundance of B0AT1 than the CC piglets (P < 0.05). The ETEC F4 inoculation increased the protein abundance of OCLN (P < 0.05), and the AGP piglets had the lowest relative protein abundance of OCLN among the challenged groups (P < 0.05). The supplementation of microencapsulated OA and EO enhanced intestinal morphology and showed anti-diarrhea effects in weaned piglets challenged with ETEC F4. Even if more future studies can be required for further validation, this study brings evidence that microencapsulated OA and EO combination can be useful within the tools to be implemented in strategies for alternatives to antibiotics in swine production.
Collapse
Affiliation(s)
- Janghan Choi
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Lucy Wang
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Shangxi Liu
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Peng Lu
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Xiaoya Zhao
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Haoming Liu
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | | | | | - Song Liu
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Martin Nyachoti
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Chengbo Yang
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
406
|
Kaur M, Santhiya D. UV‐shielding
antimicrobial zein films blended with essential oils for active food packaging. J Appl Polym Sci 2020. [DOI: 10.1002/app.49832] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Manjot Kaur
- Department of Applied Chemistry Delhi Technological University Delhi India
| | - Deenan Santhiya
- Department of Applied Chemistry Delhi Technological University Delhi India
| |
Collapse
|
407
|
Staudt A, Duarte PF, Amaral BPD, Peixoto Andrade BCDO, Simas NK, Correa Ramos Leal I, Sangenito LS, Santos ALSD, de Oliveira D, Junges A, Cansian RL, Paroul N. Biological properties of functional flavoring produced by enzymatic esterification of citronellol and geraniol present in Cymbopogon winterianus essential oil. Nat Prod Res 2020; 35:5981-5987. [PMID: 32840398 DOI: 10.1080/14786419.2020.1810032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The chemical composition and biological properties of citronella essential oil were modified by enzymatic esterification reaction of the major monoterpenic alcohols with cinnamic acid. The almost complete conversion of geraniol and citronellol present in the citronella (Cymbopogon winterianus) essential oil, into geranyl (99%) and citronellyl (98%) cinnamates was obtained after 48 hours of reaction using a molar ratio of 3:1 (cinnamic acid/alcohol), lipase concentration (Novozym 435) of 15% (w/w) and 70 °C. The esterified oil showed higher antimicrobial activity against Staphylococcus aureus bacteria resistant to oxacillin and penicillin and also greater larvicidal activity against Aedes aegypti larvae compared to unesterified oil. The results concerning the evaluation of toxicity against Artemia salina and cytotoxicity against monkey kidney epithelial cells also showed the superiority of the esterified oil.
Collapse
Affiliation(s)
- Amanda Staudt
- Food Engineering Department, Universidade Regional Integrada do Alto Uruguai e das Missões-URI Erechim, Erechim, RS, Brazil.,Laboratory of Natural Products and Biological Assays - LaProNEB, Food and Natural Products Department, Pharmacy Faculty, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, Brazil
| | - Patrícia Fonseca Duarte
- Food Engineering Department, Universidade Regional Integrada do Alto Uruguai e das Missões-URI Erechim, Erechim, RS, Brazil
| | - Bruna Paes do Amaral
- Laboratory of Natural Products and Biological Assays - LaProNEB, Food and Natural Products Department, Pharmacy Faculty, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, Brazil
| | - Bárbara Carolina de Oliveira Peixoto Andrade
- Laboratory of Natural Products and Biological Assays - LaProNEB, Food and Natural Products Department, Pharmacy Faculty, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, Brazil
| | - Naomi Kato Simas
- Laboratory of Natural Products and Biological Assays - LaProNEB, Food and Natural Products Department, Pharmacy Faculty, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, Brazil
| | - Ivana Correa Ramos Leal
- Laboratory of Natural Products and Biological Assays - LaProNEB, Food and Natural Products Department, Pharmacy Faculty, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, Brazil
| | - Leandro Stefano Sangenito
- Laboratory of Advanced Studies of Emerging and Resistant Microorganisms, Department of General Microbiology, Paulo de Góes Institute of Microbiology, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, Brazil
| | - André Luis Souza Dos Santos
- Laboratory of Advanced Studies of Emerging and Resistant Microorganisms, Department of General Microbiology, Paulo de Góes Institute of Microbiology, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, Brazil
| | - Débora de Oliveira
- Department of Chemical and Food Engineering, Universidade Federal de Santa Catarina-UFSC, Florianópolis, SC, Brazil
| | - Alexander Junges
- Food Engineering Department, Universidade Regional Integrada do Alto Uruguai e das Missões-URI Erechim, Erechim, RS, Brazil
| | - Rogério Luis Cansian
- Food Engineering Department, Universidade Regional Integrada do Alto Uruguai e das Missões-URI Erechim, Erechim, RS, Brazil
| | - Natalia Paroul
- Food Engineering Department, Universidade Regional Integrada do Alto Uruguai e das Missões-URI Erechim, Erechim, RS, Brazil
| |
Collapse
|
408
|
Impregnation of pectin-cedarwood essential oil nanocapsules onto mini cotton bag improves larvicidal performances. Sci Rep 2020; 10:14107. [PMID: 32839484 PMCID: PMC7445301 DOI: 10.1038/s41598-020-70889-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 08/06/2020] [Indexed: 12/24/2022] Open
Abstract
The use pesticide is one of the indispensable means to combat mosquito borne diseases. However, the repeated use of synthetic pesticides has induced resistance in the vector pest along with undesirable impact on the environment. The biodegradability, non-persistent and user’s safety are the root cause to prefer plant-derived pesticides to synthetic ones. The botanical based pesticides tend to degrade rapidly under the influence of several environmental factors. For the feasible application as pesticides, the plant products are formulated either as liquid or as purely solid. Despite well-established formulation technology in pesticide delivery, their handling trouble is being ignored. There is difficulty in liquid formulation of pesticide products, as they are prone to splashing and spillage, resulting in contamination, wastage and direct exposure to skin; whereas a solid formulation tends to produce dust. In the present work, cedarwood (Cedrus deodara) essential oil embedded pectin nanocapsules were produced. The nanocapsules were characterized according to their morphology, size, encapsulation efficiency and thermal stability. Furthermore, the nanocapsules were impregnated onto mini cotton tea bags to be employed as RTU (ready to use) formulation for treating the breeding sites of mosquitoes. The larvicidal activity of the bags treated with pectin-cedar wood nanocapsules was assessed against malaria vector, Anopheles culicifacies and 98% mortality was recorded till 4 weeks, this suggests its potential and hassle free applications in controlling mosquito vector.
Collapse
|
409
|
Ivanova K, Ivanova A, Ramon E, Hoyo J, Sanchez-Gomez S, Tzanov T. Antibody-Enabled Antimicrobial Nanocapsules for Selective Elimination of Staphylococcus aureus. ACS APPLIED MATERIALS & INTERFACES 2020; 12:35918-35927. [PMID: 32672937 PMCID: PMC7497629 DOI: 10.1021/acsami.0c09364] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Targeted bactericide nanosystems hold significant promise to improve the efficacy of existing antimicrobials for treatment of severe bacterial infections, minimizing the side effects and lowering the risk of the development of antibiotic resistance. In this work, we developed antibody-functionalized nanocapsules (NCs) containing antibacterial essential oil (EO) for selective and effective eradication of Staphylococcus aureus. Antibacterial EO NCs were produced via self-assembly nanoencapsulation in the plant-derived protein zein. The obtained EO NCs were decorated with aminocellulose to provide more reactive surface groups for carboxyl-to-amine immobilization of a antibody that is specific against S. aureus. The antibody-enabled EO NCs (Ab@EO NCs) demonstrated 2-fold higher bactericidal efficacy against the targeted bacterium compared to the pristine EO NCs at the same concentrations. The improved antibacterial effect of the Ab@EO NCs toward S. aureus was also confirmed in a real-time assay by monitoring bacterial cells elimination using a quartz crystal microbalance. Furthermore, the Ab@EO NCs selectively decreased the load and changed the cell morphology of the targeted S. aureus in a mixed inoculum with nontargeted Pseudomonas aeruginosa. Applying the nanoformulated antibacterial actives to an in vitro coculture model of the bacteria and skin fibroblasts resulted in suppression of S. aureus growth while preserving the human cells viability. The novel antibody-enabled antibacterial NCs showed potential for improving the treatment efficacy of staphylococcal infections, minimally affecting the beneficial microbial and human cells.
Collapse
Affiliation(s)
- Kristina Ivanova
- Grup
de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrasa, Barcelona 08222, Spain
| | - Aleksandra Ivanova
- Grup
de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrasa, Barcelona 08222, Spain
| | - Eva Ramon
- Grup
de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrasa, Barcelona 08222, Spain
| | - Javier Hoyo
- Grup
de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrasa, Barcelona 08222, Spain
| | - Susana Sanchez-Gomez
- Bionanoplus
S.L., Pol. Mocholi, Plaza
Cein No. 5, nave B14, Noain, Navarre 31110, Spain
| | - Tzanko Tzanov
- Grup
de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrasa, Barcelona 08222, Spain
- Tel.: +34 93 739 85 70. Fax: +34 93 739 82 25. (T.T.)
| |
Collapse
|
410
|
Saki M, Seyed-Mohammadi S, Montazeri EA, Siahpoosh A, Moosavian M, Latifi SM. In vitro antibacterial properties of Cinnamomum zeylanicum essential oil against clinical extensively drug-resistant bacteria. Eur J Integr Med 2020. [DOI: 10.1016/j.eujim.2020.101146] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
411
|
de Jesus GS, Micheletti AC, Padilha RG, de Souza de Paula J, Alves FM, Leal CRB, Garcez FR, Garcez WS, Yoshida NC. Antimicrobial Potential of Essential Oils from Cerrado Plants against Multidrug-Resistant Foodborne Microorganisms. Molecules 2020; 25:molecules25143296. [PMID: 32708062 PMCID: PMC7397120 DOI: 10.3390/molecules25143296] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/13/2020] [Accepted: 06/14/2020] [Indexed: 11/16/2022] Open
Abstract
Foodborne pathogens are a real public health concern in an escalating antimicrobial resistance scenario. Natural products represent a promising source of bioactive molecules, and essential oils have attracted much attention due to their myriad of biological properties, including antibacterial activities. In this context, essential oils obtained from the leaves of Chromolaena squalida, Campomanesia sessiliflora, Myrsine guianensis, Matayba guianensis, Siparuna guianensis, Ocotea minarum and Endlicheria paniculata—species from the Cerrado biome of Midwest Brazil—were extracted and evaluated for their antibacterial activity against a panel of four standard and three clinical multidrug−resistant bacterial strains. All tested oils showed moderate to good activity against at least four bacterial strains, including Salmonella Typhi and oxacillin−resistant Staphylococcus. The essential oils from C. squalida, C. sessiliflora, My. guianensis and Ma. guianensis showed strong inhibition of clinical Staphylococcus strains, which cause bovine mastitis and are related to milk−borne diseases. Their chemical profiles were investigated by gas chromatography coupled to mass spectrometry (GC/MS), which revealed a predominance of mono− and sesquiterpene hydrocarbons, some of which with well−known antimicrobial properties. The essential oil from Cerrado plants proved active against resistant Gram−positive and Gram−negative bacteria, revealing their potentialities for the development of new alternative agents to prevent the spreading of resistant bacterial contamination.
Collapse
Affiliation(s)
- Genilson Silva de Jesus
- Institute of Chemistry, Universidade Federal de Mato Grosso do Sul, Av. Senador Filinto Müller 1555, Campo Grande MS 79074460, Brazil; (G.S.d.J.); (A.C.M.); (R.G.P.); (J.d.S.d.P.); (F.R.G.); (W.S.G.)
| | - Ana Camila Micheletti
- Institute of Chemistry, Universidade Federal de Mato Grosso do Sul, Av. Senador Filinto Müller 1555, Campo Grande MS 79074460, Brazil; (G.S.d.J.); (A.C.M.); (R.G.P.); (J.d.S.d.P.); (F.R.G.); (W.S.G.)
| | - Rafael Gonçalves Padilha
- Institute of Chemistry, Universidade Federal de Mato Grosso do Sul, Av. Senador Filinto Müller 1555, Campo Grande MS 79074460, Brazil; (G.S.d.J.); (A.C.M.); (R.G.P.); (J.d.S.d.P.); (F.R.G.); (W.S.G.)
| | - Jessica de Souza de Paula
- Institute of Chemistry, Universidade Federal de Mato Grosso do Sul, Av. Senador Filinto Müller 1555, Campo Grande MS 79074460, Brazil; (G.S.d.J.); (A.C.M.); (R.G.P.); (J.d.S.d.P.); (F.R.G.); (W.S.G.)
| | - Flavio Macedo Alves
- Institute of Biosciences, Universidade Federal de Mato Grosso do Sul, Av. Costa e Silva s/n, Campo Grande MS 79070900, Brazil;
| | - Cassia Rejane Brito Leal
- Faculty of Veterinary Medicine and Animal Science, Universidade Federal de Mato Grosso do Sul, Av. Senador Filinto Müller 2443, Campo Grande MS 79070900, Brazil;
| | - Fernanda Rodrigues Garcez
- Institute of Chemistry, Universidade Federal de Mato Grosso do Sul, Av. Senador Filinto Müller 1555, Campo Grande MS 79074460, Brazil; (G.S.d.J.); (A.C.M.); (R.G.P.); (J.d.S.d.P.); (F.R.G.); (W.S.G.)
| | - Walmir Silva Garcez
- Institute of Chemistry, Universidade Federal de Mato Grosso do Sul, Av. Senador Filinto Müller 1555, Campo Grande MS 79074460, Brazil; (G.S.d.J.); (A.C.M.); (R.G.P.); (J.d.S.d.P.); (F.R.G.); (W.S.G.)
| | - Nidia Cristiane Yoshida
- Institute of Chemistry, Universidade Federal de Mato Grosso do Sul, Av. Senador Filinto Müller 1555, Campo Grande MS 79074460, Brazil; (G.S.d.J.); (A.C.M.); (R.G.P.); (J.d.S.d.P.); (F.R.G.); (W.S.G.)
- Correspondence: ; Tel.: +55-67-3345-3554
| |
Collapse
|
412
|
Αntoniadou M, Varzakas T. Breaking the vicious circle of diet, malnutrition and oral health for the independent elderly. Crit Rev Food Sci Nutr 2020; 61:3233-3255. [PMID: 32686465 DOI: 10.1080/10408398.2020.1793729] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aging impairs senses, mastication, oral status and function, causing nutritional needs and diet insufficiencies. The present needs of independent older adults suggest that health research and oral health care should shift from reductionist disease management to integral and personal treatment plans, including lifestyle, psychological, nutritional and oral health coaching approaches. Dentists and other medical professionals that work in the field of gerodontology should be educated on the macro and micronutrient needs of the elderly and incorporate certain nutritional plans early in the life of their patients with their approval and cooperation, in order to postpone tooth loss and masticatory impairment. Old recipes such as the Mediterranean diet should be kept as a base for all the elderly and be enriched in a customized interpersonal way from the dentist as well as the medical professional according to the specific needs of one's oral and general health status. In this nonsystematic review paper, the basic aspects of the vicious cycle of nutrition and oral health status are discussed and suggestions of major nutrients' influence and needs for independent elders are reported. Based on the scientific data collected, suggestions are made for the food industry for better quality and dosage of foods for this category of individuals. Such strategies can be a whole new area of interest for the food industry in order to obtain better quality of food packaging for the independent OA with accepted texture, odor, colors, macronutrients and micronutrients' consistency and in specific portions.
Collapse
Affiliation(s)
- Maria Αntoniadou
- Dental School, National and Kapodistrian University of Athens, Greece
| | - Theodoros Varzakas
- Dept. Food Science and Technology, University of the Peloponnese, Kalamata, Greece
| |
Collapse
|
413
|
Johansen B, Duval RE, Sergere JC. Antimicrobial Spectrum of Titroleane™: A New Potent Anti-Infective Agent. Antibiotics (Basel) 2020; 9:E391. [PMID: 32650521 PMCID: PMC7400619 DOI: 10.3390/antibiotics9070391] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/03/2020] [Accepted: 07/05/2020] [Indexed: 01/22/2023] Open
Abstract
Tea Tree oil (TTO) is well known for its numerous good properties but might be also irritating or toxic when used topically or ingested, thus limiting the number of possible applications in Humans. The aim of the study was to characterize the antimicrobial spectrum as well as the toxicity of Titroleane™, a new anti-infective agent obtained from TTO but cleared of its toxic monoterpenes part. The susceptibility to Titroleane™ of various pathogens (bacteria and fungi) encountered in animal and human health was studied in comparison with that of TTO. Antimicrobial screening was carried out using the broth microdilution method. Activities against aerobic, anaerobic, fastidious and non-fastidious microorganisms were performed. For all microorganisms tested, the MIC values for Titroleane™ ranged from 0.08% to 2.5%, except for Campylobacter jejuni, and Aspergillus niger. In particular, Titroleane™ showed good efficacy against skin and soft tissue infection pathogens, such as methicillin resistant Staphylococcus aureus (MRSA), intra-abdominal infections and oral pathogens, as well as fish farming pathogens. Toxicity testing showed little and similar cytotoxicities between TTO and Titroleane™ of 37% and 23%, respectively at a concentration of 0.025% (v/v). Finally, we demonstrated that the antimicrobial activity of Titroleane™ is similar to that of TTO.
Collapse
Affiliation(s)
- Bianca Johansen
- SETUBIO SA, Bioparc Vichy, F-03270 Hauterive, France
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
| | | | | |
Collapse
|
414
|
Chanaj-Kaczmarek J, Paczkowska M, Osmałek T, Kaproń B, Plech T, Szymanowska D, Karaźniewicz-Łada M, Kobus-Cisowska J, Cielecka-Piontek J. Hydrogel Delivery System Containing Calendulae flos Lyophilized Extract with Chitosan as a Supporting Strategy for Wound Healing Applications. Pharmaceutics 2020; 12:E634. [PMID: 32645859 PMCID: PMC7407229 DOI: 10.3390/pharmaceutics12070634] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/14/2020] [Accepted: 06/29/2020] [Indexed: 12/19/2022] Open
Abstract
Calendulae flos is a valued plant material with known anti-inflammatory and antimicrobiological properties. The limitation for its use in the treatment of chronic wounds is the lack of adhesion to the required site of action. Obtaining the Calendulae flos lyophilized extract from water-ethanolic extract allowed to prepare valuable material whose biological activity in the wound healing process was confirmed by a positive result of the scratch test. The Calendulae flos lyophilized extract was standardized for the contents of the chlorogenic acid and the narcissin. The significant potency of the Calendulae flos pharmacological activity has become the reason for studies on its novel applications in combination with the multifunctional chitosan carrier, to create a new, valuable solution in the treatment of chronic wounds. The use of chitosan as a carrier allowed for the controlled release of the chlorogenic acid and the narcissin. These substances, characterized by prolonged release from the chitosan delivery system, were identified as well permeable, based on the results of the studies of the parallel artificial membrane permeability assay (PAMPA Skin) a model simulating permeability through membrane skin. The combination of the Calendulae flos lyophilized extract and the chitosan allowed for synergy of action towards hyaluronidase inhibition and effective microbiological activity. Optimization of the hypromellose hydrogel preparation ensuring the required rheological properties necessary for the release of the chlorogenic acid and the narcissin from the chitosan delivery system, as well as demonstrated antimicrobial activity allows indicating formulations of 3% Calendulae flos lyophilized extract with chitosan 80/500 in weight ratio 1:1 and 2% or 3% hypromellose as an important support with high compliance of response and effectiveness for patients suffering from chronic wounds.
Collapse
Affiliation(s)
- Justyna Chanaj-Kaczmarek
- Department of Pharmacognosy, Poznan University of Medical Sciences, 4 Swiecickiego Street, 60781 Poznan, Poland; (J.C.-K.); (M.P.)
| | - Magdalena Paczkowska
- Department of Pharmacognosy, Poznan University of Medical Sciences, 4 Swiecickiego Street, 60781 Poznan, Poland; (J.C.-K.); (M.P.)
| | - Tomasz Osmałek
- Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60780 Poznan, Poland;
| | - Barbara Kaproń
- Department of Clinical Genetics, Medical University of Lublin, 11 Radziwillowska Street, 20080 Lublin, Poland;
| | - Tomasz Plech
- Department of Pharmacology, Faculty of Health Sciences, Medical University of Lublin, 4a Chodzki Street, 20093 Lublin, Poland;
| | - Daria Szymanowska
- Faculty of Food Science and Nutrition, Poznan University of Life Sciences, 31 Wojska Polskiego Street, 60-634 Poznan, Poland;
| | - Marta Karaźniewicz-Łada
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 6 Swiecickiego Street, 60781 Poznan, Poland;
| | - Joanna Kobus-Cisowska
- Department of Gastronomy Science and Functional Foods, Poznan University of Life Sciences, Wojska Polskiego 28, 60637 Poznan, Poland;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy, Poznan University of Medical Sciences, 4 Swiecickiego Street, 60781 Poznan, Poland; (J.C.-K.); (M.P.)
| |
Collapse
|
415
|
Zaïri A, Nouir S, Khalifa MA, Ouni B, Haddad H, Khelifa A, Trabelsi M. Phytochemical Analysis and Assessment of Biological Properties of Essential Oils Obtained from Thyme and Rosmarinus Species. Curr Pharm Biotechnol 2020; 21:414-424. [PMID: 31738133 DOI: 10.2174/1389201020666191019124630] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/02/2019] [Accepted: 10/08/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND The plant species Thymus algeriensis (TA); Thymus capitatus (TC) and Rosmarinus officinalis (RO), are widely used in traditional medicine in Tunisia. The bioactivities of their essential oils have also been reported previously. The main objective of this work was to assess the phytochemical composition, the antioxidant activity, cytotoxic potential and the antibacterial, antifungal, of the essential oil (EO) of these plants. METHODS Gas Chromatography-Mass Spectrometry (GC-MS) was used to identify and quantify the constituents of the tested EO. Chemical tests, and spectrophotometric methods were used for antioxidant activities and for the screening and quantification of phytochemicals. The cytotoxic potential of the EO was checked using HCT 116 cultures. The extracts were evaluated for their antibacterial potential by the microdilution method. Antifungal activities were tested using the Poisoned food technique against Aspergillus niger and Aspergillus flavus. RESULTS The EO of tested plants presented several components, mainly monoterpenes and sesquiterpenes. The results revealed that T. capitatus EO is not toxic compared to the other tested samples. Phenolic compounds were detected and this EO showed excellent antioxidant activity presenting dosedependent relationship. Regarding antimicrobial activity, T. capitatus EO, also had the highest inhibition against all tested bacteria and fungi. CONCLUSION This study showed the importance of the bioactivities (antioxidant, antimicrobial, and safety potential) of EOs of the plant species TC, RO, and TA used in traditional medicine.
Collapse
Affiliation(s)
- Amira Zaïri
- Department of Biochemistry, Faculty of Medicine Sousse, University of Sousse Tunisia, 4002 Sousse, Tunisia.,Laboratory BIOLIVAL, High Institute of Biotechnology, University of Monastir, 5000 Monastir, Tunisia
| | - Sahar Nouir
- Department of Biochemistry, Faculty of Medicine Sousse, University of Sousse Tunisia, 4002 Sousse, Tunisia
| | - Mohamed A Khalifa
- Orthopedics and Trauma Surgery Department, Sahloul Hospital, Sousse, Tunisia
| | - Bouraoui Ouni
- Clinical Pharmacology Department, Faculty of Medicine Sousse, University of Sousse Tunisia 4002 Sousse, Tunisia
| | - Houda Haddad
- Department of Biochemistry, Faculty of Medicine Sousse, University of Sousse Tunisia, 4002 Sousse, Tunisia.,Laboratory BIOLIVAL, High Institute of Biotechnology, University of Monastir, 5000 Monastir, Tunisia
| | - Améni Khelifa
- Department of Biochemistry, Faculty of Medicine Sousse, University of Sousse Tunisia, 4002 Sousse, Tunisia.,Laboratory BIOLIVAL, High Institute of Biotechnology, University of Monastir, 5000 Monastir, Tunisia
| | - Mounir Trabelsi
- Laboratory of Cytogenetic, Molecular Biology and Biology of Reproduction, University of Tunis El-Manar, El-Manar, Tunisia
| |
Collapse
|
416
|
Detection of Volatiles in Dark Chocolate Flavored with Orange Essential Oil by Electronic Nose. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01763-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
417
|
Synergy of Herbal Oil Extracts/Antibiotic Combinations in Drug- Resistant Uropathogenic E. coli. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.2.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
418
|
Marchese E, D’onofrio N, Balestrieri ML, Castaldo D, Ferrari G, Donsì F. Bergamot essential oil nanoemulsions: antimicrobial and cytotoxic activity. ACTA ACUST UNITED AC 2020; 75:279-290. [DOI: 10.1515/znc-2019-0229] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/17/2020] [Indexed: 12/17/2022]
Abstract
Abstract
Bergamot essential oil (BEO) is well-known for its food preservation activity, as well as anticancer efficacy. However, the poor BEO water solubility and deriving low bioaccessibility have limited its wider applications. The incorporation in nanoemulsions of BEO and its refined fractions was investigated to enhance its dispersibility in water to promote its antimicrobial activity, tested against Escherichia coli, Lactobacillus delbrueckii, and Saccharomyces cerevisiae, and its cytotoxicity already at low concentrations. Different nanoemulsion formulations were tested based on food-grade ingredients, which were characterized in terms of hydrodynamic diameter and polydispersity index, and physical stability. The antimicrobial activity against all the tested micro-organisms was observed to be higher for BEO in its initial composition, than the light fraction, richer in d-limonene, ß-pinene, and γ-terpinene, or the heavy fraction, richer in linalyl acetate and linalool. Remarkably, the use of BEO nanoemulsions notably enhanced the antimicrobial activity for all the tested oils. BEO exhibited also a measurable cytotoxic activity against Caco-2 cells, which was also enhanced by the use of the different nanoemulsions tested, in comparison with free oil, which discourages the direct use of BEO nanoemulsions as a food preservative. Conversely, BEO nanoemulsions might find use in therapeutic applications as anticarcinogenic agents.
Collapse
Affiliation(s)
- Enrico Marchese
- Department of Industrial Engineering , University of Salerno , via Giovanni Paolo II 132, 84084 , Fisciano , Italy
| | - Nunzia D’onofrio
- Department of Precision Medicine , Università degli Studi della Campania “Luigi Vanvitelli” , Via L. De Crecchio 7, 80138 , Napoli , Italy
| | - Maria Luisa Balestrieri
- Department of Precision Medicine , Università degli Studi della Campania “Luigi Vanvitelli” , Via L. De Crecchio 7, 80138 , Napoli , Italy
| | - Domenico Castaldo
- ProdAl Scarl , via Giovanni Paolo II 132, 84084 , Fisciano , Italy
- Stazione Sperimentale per le Industrie delle Essenze e dei derivati dagli Agrumi (SSEA), Azienda Speciale della CCIAA di Reggio Calabria , Via Generale Tommasini 2, 89127 , Reggio Calabria , Italy
- Ministero dello Sviluppo Economico (MiSE) , Via Molise 2 , Roma , Italy
| | - Giovanna Ferrari
- Department of Industrial Engineering , University of Salerno , via Giovanni Paolo II 132, 84084 , Fisciano , Italy
- ProdAl Scarl , via Giovanni Paolo II 132, 84084 , Fisciano , Italy
| | - Francesco Donsì
- Department of Industrial Engineering , University of Salerno , via Giovanni Paolo II 132, 84084 , Fisciano , Italy
| |
Collapse
|
419
|
Banerjee S, Bagchi B, Pal K, Bhandary S, Kool A, Hoque NA, Biswas P, Thakur P, Das K, Karmakar P, Das S. Essential oil impregnated luminescent hydroxyapatite: Antibacterial and cytotoxicity studies. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111190. [PMID: 32806309 DOI: 10.1016/j.msec.2020.111190] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 05/18/2020] [Accepted: 06/11/2020] [Indexed: 10/24/2022]
Abstract
In this study, porous fluorescent nanocrystalline erbium doped hydroxyapatite (eHAp) was synthesized via hydrothermal assisted co-precipitation method. Eucalyptus oil (EU), frankincense oil (FO), Tea tree oil (TTO), wintergreen oil (WO) were successfully absorbed into eHAp pellet by vacuum filtration technique using Buckner funnel. Phase crystallization, fluorescence property and microstructure of eHAp were confirmed by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Photoluminiscence spectroscopy (PL) and Field emission scanning electron microscopy (FESEM). Strong antimicrobial activity was observed for EU, TTO and WO on both E. coli and S. aureus mediated by cell membrane damage and leakage of cytoplasmic components. The oil absorbed eHAp nanocomposites were found to be moderately biocompatible with normal WI-38 cells up to MIC concentration various time scale. The nanocomposites showed significant cytotoxic activity on breast cancer cell line MDA-MB 468 and the fluorescent property of the eHAp was utilized to visualize internalization of particles in the cells. The release profile of the oils from the eHAp matrix showed pH dependent release indicated that the porous matrix can be used as a suitable carrier for modulated and sustained release of bioactive components. Thus, given the multifunctional attributes these natural essential oil-based nanocomposites show great promise as an alternative to conventional therapeutic treatments.
Collapse
Affiliation(s)
| | - Biswajoy Bagchi
- Department of Medical Physics and Biomedical Engineering, University College London, W1W 7TS, United Kingdom.
| | - Kunal Pal
- Life Science &Biotechnology Department, Jadavpur University, Kolkata 700032, India
| | - Suman Bhandary
- Department of Biotechnology, Brainware University, Kolkata 700125, India
| | - Arpan Kool
- Physics Department, Jadavpur University, Kolkata 700032, India; Department of Physics, Vidyanagar College, West Bengal 743503, India
| | - Nur Amin Hoque
- Physics Department, Jadavpur University, Kolkata 700032, India
| | | | - Pradip Thakur
- Department of Physics, Netaji Nagar College for Women, Kolkata 700092, India
| | - Kaustuv Das
- Physics Department, Jadavpur University, Kolkata 700032, India
| | - Parimal Karmakar
- Life Science &Biotechnology Department, Jadavpur University, Kolkata 700032, India
| | - Sukhen Das
- Physics Department, Jadavpur University, Kolkata 700032, India.
| |
Collapse
|
420
|
Tavares TD, Antunes JC, Padrão J, Ribeiro AI, Zille A, Amorim MTP, Ferreira F, Felgueiras HP. Activity of Specialized Biomolecules against Gram-Positive and Gram-Negative Bacteria. Antibiotics (Basel) 2020; 9:E314. [PMID: 32526972 PMCID: PMC7344598 DOI: 10.3390/antibiotics9060314] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/01/2020] [Accepted: 06/08/2020] [Indexed: 11/24/2022] Open
Abstract
The increased resistance of bacteria against conventional pharmaceutical solutions, the antibiotics, has raised serious health concerns. This has stimulated interest in the development of bio-based therapeutics with limited resistance, namely, essential oils (EOs) or antimicrobial peptides (AMPs). This study envisaged the evaluation of the antimicrobial efficacy of selected biomolecules, namely LL37, pexiganan, tea tree oil (TTO), cinnamon leaf oil (CLO) and niaouli oil (NO), against four bacteria commonly associated to nosocomial infections: Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli and Pseudomonas aeruginosa. The antibiotic vancomycin and silver nanoparticles (AgNPs) were used as control compounds for comparison purposes. The biomolecules were initially screened for their antibacterial efficacy using the agar-diffusion test, followed by the determination of minimal inhibitory concentrations (MICs), kill-time kinetics and the evaluation of the cell morphology upon 24 h exposure. All agents were effective against the selected bacteria. Interestingly, the AgNPs required a higher concentration (4000-1250 µg/mL) to induce the same effects as the AMPs (500-7.8 µg/mL) or EOs (365.2-19.7 µg/mL). Pexiganan and CLO were the most effective biomolecules, requiring lower concentrations to kill both Gram-positive and Gram-negative bacteria (62.5-7.8 µg/mL and 39.3-19.7 µg/mL, respectively), within a short period of time (averaging 2 h 15 min for all bacteria). Most biomolecules apparently disrupted the bacteria membrane stability due to the observed cell morphology deformation and by effecting on the intracellular space. AMPs were observed to induce morphological deformations and cellular content release, while EOs were seen to split and completely envelope bacteria. Data unraveled more of the potential of these new biomolecules as replacements for the conventional antibiotics and allowed us to take a step forward in the understanding of their mechanisms of action against infection-related bacteria.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Helena P. Felgueiras
- Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal; (T.D.T.); (J.C.A.); (J.P.); (A.I.R.); (A.Z.); (M.T.P.A.); (F.F.)
| |
Collapse
|
421
|
Giovagnoni G, Rossi B, Tugnoli B, Ghiselli F, Bonetti A, Piva A, Grilli E. Thymol and Carvacrol Downregulate the Expression of Salmonella typhimurium Virulence Genes during an In Vitro Infection on Caco-2 Cells. Microorganisms 2020; 8:microorganisms8060862. [PMID: 32517327 PMCID: PMC7355688 DOI: 10.3390/microorganisms8060862] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 11/16/2022] Open
Abstract
Salmonella typhimurium is one of the major bacteria responsible for gastroenteritis in humans caused by foodborne pathogens. As pork is one of the main routes of transmission, bioactive compounds used as feed additives may be an important strategy to control Salmonella typhimurium. The aim of this study was to assess the antimicrobial activity of several organic acids and nature identical compounds against Salmonella typhimurium ATCC®® 6994™. Moreover, the effect of sub-lethal concentrations of thymol and carvacrol in counteracting a Salmonella typhimurium in vitro infection on Caco-2 cells was evaluated, focusing on the maintenance of the epithelial barrier and the alteration of Salmonella virulence genes. The results showed a protective effect of the compounds on the integrity of the intestinal monolayer, improving transepithelial electrical resistance and bacterial translocation compared to the non-treated cells. A real-time PCR study highlighted a significant downregulation of the main virulence genes of Salmonella (hilA, prgH, invA, sipA, sipC, sipD, sopB, sopE2). These findings indicate that thymol and carvacrol could be good candidates for the control of Salmonella typhimurium in pigs.
Collapse
Affiliation(s)
- Giulia Giovagnoni
- DIMEVET, Dipartimento di Scienze Mediche Veterinarie, Università di Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell’Emilia (BO), Italy; (G.G.); (F.G.); (A.B.); (A.P.)
| | - Barbara Rossi
- Vetagro S.p.A., via Porro 2, 42124 Reggio Emilia, Italy; (B.R.); (B.T.)
| | - Benedetta Tugnoli
- Vetagro S.p.A., via Porro 2, 42124 Reggio Emilia, Italy; (B.R.); (B.T.)
| | - Federico Ghiselli
- DIMEVET, Dipartimento di Scienze Mediche Veterinarie, Università di Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell’Emilia (BO), Italy; (G.G.); (F.G.); (A.B.); (A.P.)
| | - Andrea Bonetti
- DIMEVET, Dipartimento di Scienze Mediche Veterinarie, Università di Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell’Emilia (BO), Italy; (G.G.); (F.G.); (A.B.); (A.P.)
| | - Andrea Piva
- DIMEVET, Dipartimento di Scienze Mediche Veterinarie, Università di Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell’Emilia (BO), Italy; (G.G.); (F.G.); (A.B.); (A.P.)
- Vetagro S.p.A., via Porro 2, 42124 Reggio Emilia, Italy; (B.R.); (B.T.)
| | - Ester Grilli
- DIMEVET, Dipartimento di Scienze Mediche Veterinarie, Università di Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell’Emilia (BO), Italy; (G.G.); (F.G.); (A.B.); (A.P.)
- Vetagro Inc., 116 W. Jackson Blvd., Suite #320, Chicago, IL 60604, USA
- Correspondence:
| |
Collapse
|
422
|
Mota I, Sánchez-Sánchez J, Pedro LG, Sousa MJ. Composition variation of the essential oil from Ocimum basilicum L. cv. Genovese Gigante in response to Glomus intraradices and mild water stress at different stages of growth. BIOCHEM SYST ECOL 2020. [DOI: 10.1016/j.bse.2020.104021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
423
|
Successive exposure to Mentha piperita L. essential oil affects the culturability and induces membrane repair in a persister epidemic Salmonella Typhimurium PT4. Microb Pathog 2020; 149:104264. [PMID: 32464302 DOI: 10.1016/j.micpath.2020.104264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/12/2020] [Accepted: 05/12/2020] [Indexed: 01/08/2023]
Abstract
This study had as aims to evaluate the effects of successive exposures to Mentha piperita L. essential oil (MPEO) on culturability and physiological functions of Salmonella Typhimurium PT4. S. Typhimurium PT4 cells (108 log CFU/mL) were exposed to the same (1.25 μL/mL) or increasing MPEO concentrations (1.25-80 μL/mL) during 252 h. At each 36-h interval, the viable cell counts, and distinct cell functions were assessed using plate counting and flow cytometry, respectively. As the exposure time to the same MPEO concentration increased, the population of S. Typhimurium PT4 cells with damaged, permeabilized and depolarized membrane, and compromised efflux activity decreased. Otherwise, S. Typhimurium PT4 cells with damaged membrane physiological functions increased over the exposure to increasing concentrations of MPEO. Genomic analyses showed that the strain carries 17 genes associated with stress responses and the persistence of the tested strain among sources associated with poultry spanning more than 16 years and its virulence for humans. Therefore, successive exposure to a sublethal concentration of MPEO induced S. Typhimurium PT4 cells capable of maintaining the membrane integrity and its functions despite their non-culturable state.
Collapse
|
424
|
In Vitro Activity of Essential Oils Against Planktonic and Biofilm Cells of Extended-Spectrum β-Lactamase (ESBL)/Carbapenamase-Producing Gram-Negative Bacteria Involved in Human Nosocomial Infections. Antibiotics (Basel) 2020; 9:antibiotics9050272. [PMID: 32466117 PMCID: PMC7277674 DOI: 10.3390/antibiotics9050272] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/15/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022] Open
Abstract
The aim of this study was to analyze the antibacterial activity of four essential oils (EOs), Melaleuca alternifolia, Eucalyptus globulus, Mentha piperita, and Thymus vulgaris, in preventing the development and spread of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae, metallo-beta-lactamase (MBL)-producing Pseudomonas aeruginosa and carbapenemase (KPC)-producing Klebsiella pneumoniae. A total of 60 strains were obtained from the stock collection from the Microbiology Laboratory of Hesperia Hospital, Modena, Italy. Twenty ESBL-producing E. coli, 5 K. pneumoniae, 13 KPC-producing K. pneumoniae, and 20 MBL-producing P. aeruginosa were cultured and reconfirmed as ESBL and carbapenamase producers. Polymerase chain reaction was used for the detection of genes responsible for antibiotic resistance (ESBL and KPC/MBL). Antibacterial activity of the EOs was determined using the agar disk diffusion assay, and minimal inhibitory concentrations (MICs) were also evaluated. Lastly, adhesion capability and biofilm formation on polystyrene and glass surfaces were studied in 24 randomly selected strains. M. alternifolia and T. vulgaris EOs showed the best antibacterial activity against all tested strains and, as revealed by agar disk diffusion assay, M. alternifolia was the most effective, even at low concentrations. This effect was also confirmed by MICs, with values ranging from 0.5 to 16 µg/mL and from 1 to 16 µg/mL, for M. alternifolia and T. vulgaris EOs, respectively. The EOs' antibacterial activity compared to antibiotics confirmed M. alternifolia EO as the best antibacterial agent. T. vulgaris EO also showed a good antibacterial activity with MICs lower than both reference antibiotics. Lastly, a significant anti-biofilm activity was observed for the two EOs (*P < 0.05 and **P < 0.01 for M. alternifolia and T. vulgaris EOs, respectively). A good antibacterial and anti-biofilm activity of M. alternifolia and T. vulgaris EOs against all selected strains was observed, thus demonstrating a future possible use of these EOs to treat infections caused by ESBL/carbapenemase-producing strains, even in association with antibiotics.
Collapse
|
425
|
Netopilova M, Houdkova M, Urbanova K, Rondevaldova J, van Damme P, Kokoska L. In vitro antimicrobial combinatory effect of Cinnamomum cassia essential oil with 8-hydroxyquinoline against Staphylococcus aureus in liquid and vapour phase. J Appl Microbiol 2020; 129:906-915. [PMID: 32350955 DOI: 10.1111/jam.14683] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/17/2020] [Accepted: 04/26/2020] [Indexed: 01/31/2023]
Abstract
AIMS The objective of the study was to evaluate the antimicrobial interactions between two volatile agents, Cinnamomum cassia essential oil (CCEO) and 8-hydroxyquinoline (8-HQ) against Staphylococcus aureus strains in liquid and vapour phases. METHODS AND RESULTS In vitro antimicrobial effect of CCEO in combination with 8-HQ was evaluated against 12 strains of S. aureus by broth volatilization chequerboard method. Results show additive effects against all S. aureus strains for both phases. In several cases, sums of fractional inhibitory concentration values of our test combinations were lower than 0·6, which can be considered as a strong additive interaction. Moreover, composition of CCEO was analysed by gas chromatography-mass spectrometry analysis. In the CCEO, 26 compounds in total were identified, where (E)-cinnamaldehyde was the predominant compound, followed by cinnamyl acetate, α-copaene, bornyl acetate and caryophyllene. CONCLUSIONS Results showed additive in vitro growth-inhibitory effect of CCEO and 8-HQ combination against various standard strains and clinical isolates of S. aureus. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first report on antibacterial effect of 8-HQ and CCEO combination in liquid and vapour phases. Results of the study suggest these agents as potential candidates for development of new anti-staphylococcal applications that can be used in the inhalation therapy against respiratory infections.
Collapse
Affiliation(s)
- M Netopilova
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Praha - Suchdol, Czech Republic
| | - M Houdkova
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Praha - Suchdol, Czech Republic
| | - K Urbanova
- Department of Sustainable Technologies, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Praha - Suchdol, Czech Republic
| | - J Rondevaldova
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Praha - Suchdol, Czech Republic
| | - P van Damme
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Praha - Suchdol, Czech Republic.,Laboratory of Tropical and Subtropical Agriculture and Ethnobotany, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - L Kokoska
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Praha - Suchdol, Czech Republic
| |
Collapse
|
426
|
Trinh PC, Thao LTT, Ha HTV, Nguyen T. DPPH-Scavenging and Antimicrobial Activities of Asteraceae Medicinal Plants on Uropathogenic Bacteria. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:7807026. [PMID: 32508954 PMCID: PMC7245677 DOI: 10.1155/2020/7807026] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 04/14/2020] [Accepted: 04/20/2020] [Indexed: 01/18/2023]
Abstract
Asteraceae species were widely applied in traditional medicines in Asian countries as sources of natural antioxidants and antimicrobial agents. This study aimed to evaluate DPPH-scavenging capacities and antimicrobial activities of nine Asteraceae species collected from Southern Vietnam. Antioxidant and antimicrobial activities were determined by standard protocols. Essential oils from Ageratum conyzoides, Helianthus annuus, and Artemisia vulgaris indicated significant inhibitory effects on Staphylococcus aureus and Candida spp. Crude extracts and fractions from Taraxacum officinale, Chrysanthemum morifolium, A. conyzoides, and Tagetes erecta showed inhibitory ability on at least one testing bacterial strains including S. aureus, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. In a study on clinical isolates, ethyl acetate fraction from A. conyzoides flower displayed the most potent effect on uropathogenic E. coli and K. pneumoniae with MIC at 1.25-10 mg/ml and 5-12.5 mg/ml, respectively. DPPH-scavenging assay indicated that T. erecta extract had the lowest IC50 (17.280 μg/ml) and is 2.4 times higher than vitamin C (7.321 μg/ml). This study revealed that A. conyzoides has good potential against uropathogenic E. coli and K. pneumoniae, and therefore could be applied for prophylactic treatment of urinary infection.
Collapse
Affiliation(s)
- Phan-Canh Trinh
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh 700000, Vietnam
| | - Le-Thi-Thanh Thao
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh 700000, Vietnam
| | - Hoang-Tran-Viet Ha
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh 700000, Vietnam
| | - TuAnh Nguyen
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh 700000, Vietnam
| |
Collapse
|
427
|
Eldurini S, Abd El-Hady BM, Shafaa MW, Gad AAM, Tolba E. A multicompartment vascular implant of electrospun wintergreen oil/ polycaprolactone fibers coated with poly(ethylene oxide). Biomed J 2020; 44:589-597. [PMID: 32389823 PMCID: PMC8640569 DOI: 10.1016/j.bj.2020.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/25/2020] [Accepted: 04/27/2020] [Indexed: 11/28/2022] Open
Abstract
Background The aim of the present study was to fabricate double layered scaffolds of electrospun polycaprolactone (PCL) and poly(ethylene oxide) (PEO). The electrospun PCL fibers were functionalized with wintergreen oil (WO) as a novel approach to prevent vascular grafts failure due to thrombosis by adjusting biomaterial–blood interactions. Methods PCL tubular scaffolds were prepared by electrospinning approach and coated with PEO as a hydrophilic polymer. The single and double layered scaffolds were characterized in terms of their morphological, chemical properties -as well as-hemocompatibility assays (i.e. prothrombin time, hemolysis percentage and platelets adhesion). Moreover, the antioxidant potential of WO-PCL samples were measured by 2,2-diphenyl-1-picrylhydrazyl hydrate (DPPH) free radical assay. Results The results demonstrated that incorporation of WO during the electrospinning process decreased the PCL fiber diameter. In addition, the prothrombine time assay shows that WO could be used to lower the electrospun PCL fiber tendency to induce blood clotting. Moreover, SEM observations of platelets adhesion of both single and double layered PCL/PEO scaffolds fiber shows an increase of platelets number, compared with the scaffolds containing WO. Conclusions The antioxidant potential and blood compatibility measurements of WO-PCL/PEO samples highlight the approach made so far as an ideal synthetic small size vascular grafts to overcome autogenous grafts shortages and drawbacks.
Collapse
Affiliation(s)
- Shima Eldurini
- Physics Department, Faculty of Science, Helwan University, Cairo, Egypt
| | | | - Medhat W Shafaa
- Physics Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Abdul Aziz M Gad
- Molecular Biology Department, National Research Centre, Giza, Egypt
| | - Emad Tolba
- Polymers and Pigments Department, National Research Center, Cairo, Egypt.
| |
Collapse
|
428
|
Physicochemical characterization, fatty acid profile, antioxidant activity and antibacterial potential of cacay oil, coconut oil and cacay butter. PLoS One 2020; 15:e0232224. [PMID: 32343717 PMCID: PMC7188257 DOI: 10.1371/journal.pone.0232224] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/09/2020] [Indexed: 12/12/2022] Open
Abstract
The Amazon region is rich in genetic resources such as oilseeds which have potentially important local commercial exploitation. Despite its high concentration of bioactive compounds, cacay (Caryodendron orinocense Karst.) oil is poorly investigated and explored. Thus, this study focuses on the physicochemical characterization (moisture, density, and saponification, iodine, and acidity values), fatty acid composition as determined by gas chromatograph mass spectrometry (GC/MS), total phenolic content (TPC), and antioxidant activity (DPPH and ABTS radical scavenging assay) of cacay oil, coconut oil and a coconut/cacay oil blend, also known as cacay butter. The antibacterial activity of cacay oil was additionally evaluated. Our study demonstrated that cacay oil presents a high amount of polyunsaturated fatty acid (PUFA) (58.3%) with an emphasis on linoleic acid and a lower acidity value (2.67 ± 0.01 cg I2/g) than butter and coconut oil, indicating a low concentration of free fatty acids. In contrast, cacay butter and coconut oil presented higher saturated fatty acid percentages (69.1% and 78.4%, respectively) and higher saponification values (242.78 and 252.22 mg KOH/g, respectively). The samples showed low moisture and relative density between 912 and 916 kg/m3. The hydrophilic fraction of cacay oil was highlighted in the quantification of TPC (326.27 ± 6.79 mg GAE/kg) and antioxidant capacity in vitro by DPPH radical scavenging assay (156.57 ± 2.25 μmol TE/g). Cacay oil inhibited the growth of Bacillus cereus (44.99 ± 7.68%), Enterococcus faecalis (27.76 ± 0.00%), and Staphylococcus aureus (11.81 ± 3.75%). At long last, this is the first study reporting the physicochemical characterization and bioactive properties of cacay butter. Coconut oil and cacay butter showed great oxidative stability potential due to higher contents of saturated fatty acids. Moreover, cacay oil presents as an alternative source of raw materials for cosmetic and biotechnology industries due to its high concentration of PUFA and for being a rich source of phenolic compounds.
Collapse
|
429
|
Allenspach MD, Valder C, Steuer C. Absolute quantification of terpenes in conifer-derived essential oils and their antibacterial activity. J Anal Sci Technol 2020. [DOI: 10.1186/s40543-020-00212-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractA simple, robust, and precise method for the absolute quantification of the terpenes α-pinene, camphene, β-pinene, 3-carene, limonene, bornyl acetate, β-caryophyllene, and borneol was developed using gas chromatography coupled to a flame ionization detector (GC-FID) and validated according to the International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use. The GC-FID method shows high accuracy (91–105%) and low imprecision (< 7.6%) for all terpenes at quality control (QC) low, medium, and high level. The curves are linear with strong correlation (R2 ≥ 0.999) for all terpenes. Additionally, the relative response factor (RRF) for each terpene is calculated. The method was validated in terms of specificity, linearity, accuracy, precision, LOD, LOQ, stability tests, and carry-over. The method was successfully applied to quantify the selected terpenes in conifer-derived essential oils (CEOs). The total amount of terpenes ranged from 6.3 to 11.8 mM. Additionally, the CEOs were screened in vitro for the antibacterial activity against E. coli and S. aureus using the broth microdilution method to determine the minimum inhibitory concentration (MIC). All the CEOs showed antibacterial activity in the concentration from 0.3 to 50 μg/mL (S. aureus) and 1.2 to 50 μg/mL (E. coli), respectively. CEO14 showed the most effective antibacterial activity of the entire tested CEOs (MIC values 0.3 μg/mL (S. aureus); 1.2 μg/mL (E. coli)). Our results suggest that the terpenoid profile should be considered for a comprehensive evaluation of the antibacterial activity, as none of the single compounds seems to be fully responsible for antibacterial activity.
Collapse
|
430
|
In vitro Antimicrobial Activity of Essential Oil Extracted from Leaves of Leoheo domatiophorus Chaowasku, D.T. Ngo and H.T. Le in Vietnam. PLANTS 2020; 9:plants9040453. [PMID: 32260297 PMCID: PMC7237999 DOI: 10.3390/plants9040453] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/26/2020] [Accepted: 04/01/2020] [Indexed: 12/18/2022]
Abstract
:The present study aimed to determine the antimicrobial activity and chemical composition of leaves-extracted essential oil of Leoheo domatiophorus Chaowasku, D.T. Ngo and H.T. Le (L. domatiophorus), including antibacterial, antimycotic, antitrichomonas and antiviral effects. The essential oil was obtained using hydrodistillation, with an average yield of 0.34 ± 0.01% (v/w, dry leaves). There were 52 constituents as identified by GC/MS with available authentic standards, representing 96.74% of the entire leaves oil. The essential oil was comprised of three main components, namely viridiflorene (16.47%), (-)-δ-cadinene(15.58%) and γ-muurolene (8.00%). The oil showed good antimicrobial activities against several species: Gram-positive strains: Staphylococcus aureus (two strains) and Enterococcus faecalis, with Minimum Inhibitory Concentration (MIC) and Minimum Lethal Concentration (MLC) values from 0.25 to 1% (v/v); Gram-negative strains such as Escherichia coli (two strains), Pseudomonas aeruginosa (two strains) and Klebsiella pneumoniae, with MIC and MLC values between 2% and 8% (v/v); and finally Candida species, having MIC and MLC between 0.12 and 4% (v/v).Antitrichomonas activity of the oil was also undertaken, showing IC50, IC90 and MLC values of 0.008%, 0.016% and 0.03% (v/v), respectively, after 48h of incubation. The essential oil resultedin being completely ineffective against tested viruses, ssRNA+ (HIV-1, YFV, BVDV, Sb-1, CV-B4), ssRNA- (hRSVA2, VSV), dsRNA (Reo-1), and dsDNA (HSV-1, VV) viruses with EC50 values over 100 µg/mL. This is the first, yet comprehensive, scientific report about the chemical composition and pharmacological properties of the essential oil in L. domatiophorus.
Collapse
|
431
|
Vasile BS, Birca AC, Musat MC, Holban AM. Wound Dressings Coated with Silver Nanoparticles and Essential Oils for The Management of Wound Infections. MATERIALS 2020; 13:ma13071682. [PMID: 32260273 PMCID: PMC7178656 DOI: 10.3390/ma13071682] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/25/2020] [Accepted: 03/31/2020] [Indexed: 12/29/2022]
Abstract
Infection represents one of the major risk factors in persistent and difficult to treat wounds. This study focuses on developing antimicrobial wound dressings coated with silver nanoparticles, sodium alginate and different essential oils, to avoid wound infection and biofilm formation. The design of the wound dressings was done by the dip coating method. The characteristics of the developed materials were analysed by physicochemical (FT-IR, XRD, SEM, TEM) and biological (antimicrobial tests) approaches. The results demonstrated uniform silver nanoparticle formation on the substrate, and the developed nanomodified dressings were proven to have increased antimicrobial and antibiofilm potential. The developed wound dressings based on silver nanoparticles, sodium alginate and essential oils have real potential in treating infections, and can be investigated as an efficient alternative to antibiotics and topical preparations for wound management.
Collapse
Affiliation(s)
- Bogdan Stefan Vasile
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independenţei Street, No. 313, 060042 Bucharest, Romania;
- Department of Science and Engineering of Oxide Materials and nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Polizu Street, No. 1-7, 060042 Bucharest, Romania
- Correspondence:
| | - Alexandra Catalina Birca
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independenţei Street, No. 313, 060042 Bucharest, Romania;
- Department of Science and Engineering of Oxide Materials and nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Polizu Street, No. 1-7, 060042 Bucharest, Romania
| | - Mihaela Carmen Musat
- Faculty of Engineering in Foreign Language, University Politehnica of Bucharest, Romania, Splaiul Independenţei Street, No. 313, 060042 Bucharest, Romania;
| | - Alina Maria Holban
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Aleea Portocalelor, No. 1-3, 050663 Bucharest, Romania;
| |
Collapse
|
432
|
Control of Salmonella in chicken meat using a combination of a commercial bacteriophage and plant-based essential oils. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106984] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
433
|
Jafri H, Ahmad I. Thymus vulgaris essential oil and thymol inhibit biofilms and interact synergistically with antifungal drugs against drug resistant strains of Candida albicans and Candida tropicalis. J Mycol Med 2020; 30:100911. [DOI: 10.1016/j.mycmed.2019.100911] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/05/2019] [Accepted: 11/05/2019] [Indexed: 01/19/2023]
|
434
|
Vedashree M, Asha MR, Roopavati C, Naidu MM. Characterization of volatile components from ginger plant at maturity and its value addition to ice cream. Journal of Food Science and Technology 2020; 57:3371-3380. [PMID: 32728284 DOI: 10.1007/s13197-020-04370-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/26/2020] [Accepted: 03/20/2020] [Indexed: 01/19/2023]
Abstract
Ginger is widely consumed spice across the globe and especially in Asian countries routinely employed in various culinary preparations. Ginger possesses many distinct bioactive molecules, have shown marked therapeutic benefits. The ginger aroma is mainly due to the volatile compounds present in the rhizome. The current paper focuses on comparison of volatile constituents present in different plant parts of ginger concerning maturity and effect of incorporation of freeze-dried ginger extract into ice cream. Fresh ginger was collected for 5 months (every 30 days) and analysed for their differences in volatile composition with respect to maturity. Later ginger juice was extracted from fresh ginger and freeze-dried. Freeze-dried ginger powder was incorporated into icecream at various concentrations and studied the microbiological and sensory quality. Results from GC-MS profiles revealed the dominance of sesquiterpenes. Zingiberene a major volatile compound, increased from 2.52 to 18.15% with an increase in maturity days, whereas ar-curcumin decreased from 12.58 to 3.84%. The freeze-dried ginger powder yielded 10.2 ± 0.1% of oleoresin, which consists of 3.6 ± 0.2% of 6-gingerol. The value added ice cream with gingerols had the desirable sensory attributes with the novelty of natural ginger flavour. Icecream was pleasant, with attractive visual appeal, which is an essential determinant for consumer acceptance. The microbial quality of the ice cream was compared with the FSSAI standards, and the study was found to be within acceptable limits.
Collapse
Affiliation(s)
- M Vedashree
- Department of Spices and Flavour Sciences, CSIR-CFTRI, Mysuru, Karnataka 570020 India.,Academy of Scientific and Innovative Research (AcSIR), Chennai, Tamil Nadu 600113 India
| | - M R Asha
- Department of Tradidtional Food and Sensory Sciences, Central Food Technological Research Institute, Mysuru, India
| | - C Roopavati
- Department of Microbiology and Fermentation Technology, CSIR- Central Food Technological Research Institute (CFTRI), Mysuru, 570020 India
| | - M Madhava Naidu
- Department of Spices and Flavour Sciences, CSIR-CFTRI, Mysuru, Karnataka 570020 India
| |
Collapse
|
435
|
Marino A, Nostro A, Mandras N, Roana J, Ginestra G, Miceli N, Taviano MF, Gelmini F, Beretta G, Tullio V. Evaluation of antimicrobial activity of the hydrolate of Coridothymus capitatus (L.) Reichenb. fil. (Lamiaceae) alone and in combination with antimicrobial agents. BMC Complement Med Ther 2020; 20:89. [PMID: 32183792 PMCID: PMC7076923 DOI: 10.1186/s12906-020-2877-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 03/04/2020] [Indexed: 11/10/2022] Open
Abstract
Background Hydrolates, complex mixtures containing traces of essential oils (EOs), are inexpensive, easy to make and less toxic than their corresponding EOs. The antibacterial and antifungal activity of the hydrolate of Coridothymus capitatus (L.) Reichenb. fil. (Lamiaceae) alone and in combination with antimicrobial drugs, such as tetracycline and itraconazole, were evaluated. Methods The chemical composition was analysed by gas-chromatography-mass spectrometry (GC-MS). Standard methods were performed to evaluate the susceptibility of some Gram-positive and Gram-negative bacteria, and Candida spp. to the hydrolate, in comparison with its EO. The hydrolate mechanism of action was assayed by propidium iodide and MitoTracker staining. Checkerboard tests were carried out for combinations studies. Results GC-MS identified 0.14% (v/v) of total EO content into hydrolate and carvacrol as a dominant component. The hydrolate showed a good antimicrobial activity against bacteria and yeasts. It exhibited a synergistic effect with itraconazole against Candida krusei, and an additive effect with tetracycline against methicillin-resistant Staphylococcus aureus strains. Hydrolate changed the membranes permeability of bacteria and yeasts and altered mitochondrial function of yeasts. Conclusions Our study extends the knowledge by exploiting non-conventional antimicrobial agents to fight the emergence of antibiotic resistance.
Collapse
Affiliation(s)
- Andreana Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Polo Annunziata, 98168, Messina, Italy.
| | - Antonia Nostro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Polo Annunziata, 98168, Messina, Italy
| | - Narcisa Mandras
- Department of Public Health and Pediatrics, Microbiology Division, University of Turin, Via Santena 9, 10126, Turin, Italy
| | - Janira Roana
- Department of Public Health and Pediatrics, Microbiology Division, University of Turin, Via Santena 9, 10126, Turin, Italy
| | - Giovanna Ginestra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Polo Annunziata, 98168, Messina, Italy
| | - Natalizia Miceli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Polo Annunziata, 98168, Messina, Italy
| | - Maria Fernanda Taviano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Polo Annunziata, 98168, Messina, Italy
| | - Fabrizio Gelmini
- Department of Environmental Science and Policy - ESP, University of Milan, Via Celoria, 2, 20133, Milan, Italy
| | - Giangiacomo Beretta
- Department of Environmental Science and Policy - ESP, University of Milan, Via Celoria, 2, 20133, Milan, Italy
| | - Vivian Tullio
- Department of Public Health and Pediatrics, Microbiology Division, University of Turin, Via Santena 9, 10126, Turin, Italy
| |
Collapse
|
436
|
Bora H, Kamle M, Mahato DK, Tiwari P, Kumar P. Citrus Essential Oils (CEOs) and Their Applications in Food: An Overview. PLANTS (BASEL, SWITZERLAND) 2020; 9:E357. [PMID: 32168877 PMCID: PMC7154898 DOI: 10.3390/plants9030357] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 12/19/2022]
Abstract
Citrus is a genus belonging to the Rutaceae family and includes important crops like orange, lemons, pummelos, grapefruits, limes, etc. Citrus essential oils (CEOs) consist of some major biologically active compounds like α-/β-pinene, sabinene, β-myrcene, d-limonene, linalool, α-humulene, and α-terpineol belonging to the monoterpenes, monoterpene aldehyde/alcohol, and sesquiterpenes group, respectively. These compounds possess several health beneficial properties like antioxidant, anti-inflammatory, anticancer, etc., in addition to antimicrobial properties, which have immense potential for food applications. Therefore, this review focused on the extraction, purification, and detection methods of CEOs along with their applications for food safety, packaging, and preservation. Further, the concerns of optimum dose and safe limits, their interaction effects with various food matrices and packaging materials, and possible allergic reactions associated with the use of CEOs in food applications were briefly discussed, which needs to be addressed in future research along with efficient, affordable, and "green" extraction methods to ensure CEOs as an ecofriendly, cost-effective, and natural alternative to synthetic chemical preservatives.
Collapse
Affiliation(s)
- Himashree Bora
- Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli 791109, India; (H.B.); (M.K.)
| | - Madhu Kamle
- Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli 791109, India; (H.B.); (M.K.)
| | - Dipendra Kumar Mahato
- School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Hwy, Burwood, VIC 3125, Australia;
| | - Pragya Tiwari
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea
| | - Pradeep Kumar
- Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli 791109, India; (H.B.); (M.K.)
| |
Collapse
|
437
|
Basavegowda N, Patra JK, Baek KH. Essential Oils and Mono/bi/tri-Metallic Nanocomposites as Alternative Sources of Antimicrobial Agents to Combat Multidrug-Resistant Pathogenic Microorganisms: An Overview. Molecules 2020; 25:E1058. [PMID: 32120930 PMCID: PMC7179174 DOI: 10.3390/molecules25051058] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 02/06/2023] Open
Abstract
Over the past few decades, many pathogenic bacteria have become resistant to existing antibiotics, which has become a threat to infectious disease control worldwide. Hence, there has been an extensive search for new, efficient, and alternative sources of antimicrobial agents to combat multidrug-resistant pathogenic microorganisms. Numerous studies have reported the potential of both essential oils and metal/metal oxide nanocomposites with broad spectra of bioactivities including antioxidant, anticancer, and antimicrobial attributes. However, only monometallic nanoparticles combined with essential oils have been reported on so far with limited data. Bi- and tri-metallic nanoparticles have attracted immense attention because of their diverse sizes, shapes, high surface-to-volume ratios, activities, physical and chemical stability, and greater degree of selectivity. Combination therapy is currently blooming and represents a potential area that requires greater attention and is worthy of future investigations. This review summarizes the synergistic effects of essential oils with other antimicrobial combinations such as mono-, bi-, and tri-metallic nanocomposites. Thus, the various aspects of this comprehensive review may prove useful in the development of new and alternative therapeutics against antibiotic resistant pathogens in the future.
Collapse
Affiliation(s)
- Nagaraj Basavegowda
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38451, Korea;
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Goyang 10326, Korea
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38451, Korea;
| |
Collapse
|
438
|
Dávila-Aviña J, Gil-Solís C, Merino-Mascorro J, García S, Heredia N. Phenolics with Bactericidal Activity Alter Motility and Biofilm Formation in Enterotoxigenic, Enteropathogenic, and Enterohemorrhagic Escherichia coli. Foodborne Pathog Dis 2020; 17:568-575. [PMID: 32043899 DOI: 10.1089/fpd.2019.2766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Most Escherichia coli strains are innocuous to human beings; however, some strains can cause diarrhea and are grouped into pathotypes. Since current trends promote the use of natural-origin compounds to control bacteria, in this study, the effects of the phenolic compounds (PCs) tannic acid (TA), gallic acid (GA), methyl gallate (MG), and epigallocatechin gallate (EG) on the growth, swarming motility, biofilm formation, and expression of selected virulence genes of three E. coli pathotypes (enteropathogenic Escherichia coli [EPEC], enterohemorrhagic Escherichia coli [EHEC], and enterotoxigenic Escherichia coli [ETEC]) were evaluated. Minimum bactericidal concentrations (MBCs) were determined by using microtiter plates, and the effects of sublethal PC concentrations on swarming motility were evaluated on Luria-Bertani agar. Biofilm formation was assessed in microtiter plates via crystal violet staining, and the expression levels of genes involved in biofilm formation (flhC, fliA, fliC, and csgA) and swarming motility (csgD and cyaA) were evaluated via quantitative PCR. All PC were bactericidal with minimal bactericidal concentrations ranging from 0.07 to 2.1 mg/mL. At concentrations lower than the MBC, PCs decreased swarming motility (14.8-100%). GA reduced biofilm formation in all of the tested strains; however, TA, MG, and EG induced biofilm formation in some strains at specific concentrations. TA induced the overexpression of csgA, csgD, and cyaA, whereas the other PCs did not have any effects or reduced their expression levels. The PCs tested in this study showed potential to control E. coli strains belonging to the EHEC, ETEC, and EPEC pathotypes by affecting their growth, swarming motility, and virulence gene expression; however, proper concentrations must be used to avoid the induction of undesirable virulence factor genes.
Collapse
Affiliation(s)
- Jorge Dávila-Aviña
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
| | - Carolina Gil-Solís
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
| | - Jose Merino-Mascorro
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
| | - Santos García
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
| | - Norma Heredia
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
| |
Collapse
|
439
|
Bilal M, Zhao Y, Iqbal HMN. Development and characterization of essential oils incorporated chitosan-based cues with antibacterial and antifungal potentialities. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2020. [DOI: 10.1080/16878507.2020.1719336] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Yuping Zhao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Monterrey, Mexico
| |
Collapse
|
440
|
Abstract
Fruits come in a wide variety of colors, shapes, and flavors. This chapter will cover selected fruits that are known to be healthy and highly nutritious. These fruits were chosen due to their common usage and availability. Since it is not possible to cover all health benefits or essential nutrients and important phytochemicals of the fruit composition, this chapter will focus on the key valuable constituents and their potential health effects.
Collapse
Affiliation(s)
- Sawsan G Mohammed
- Qatar Research Leadership Program (QRLP), Qatar Foundation, Doha, Qatar.
| | - M Walid Qoronfleh
- Research & Policy Department, World Innovation Summit for Health (WISH), Qatar Foundation, Doha, Qatar.
| |
Collapse
|
441
|
Mohammadi M, Azizi MH, Zoghi A. Antimicrobial activity of carboxymethyl cellulose-gelatin film containing Dianthus barbatus essential oil against aflatoxin-producing molds. Food Sci Nutr 2020; 8:1244-1253. [PMID: 32148830 DOI: 10.1002/fsn3.v8.210.1002/fsn3.1413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/14/2019] [Accepted: 12/18/2019] [Indexed: 05/27/2023] Open
Abstract
Edible films, as novel degradable materials in food packaging, play an important role in removing consumers' concerns about environmental pollution and food contaminations. Carboxymethyl cellulose (CMC)-gelatin (G) edible films with the ratio 4 to 1 was selected as the optimal film based on physical, mechanical, and physicochemical findings. Then, the effects of 0, 300, 450, and 600 ppm Dianthus barbatus essential oil (DbE) on water vapor permeability, tensile strength, elongation at break, water solubility, glass transition temperature, color, oxygen permeability, and antimicrobial activities on the optimal film were investigated. CMC: G (4:1) containing 600 ppm DbE as the antibacterial-antioxidant film was the best formulae (p < .05) for preventing three types of aflatoxin-producing mold including A. flavus (PTCC-5004), A. parasiticus (PTCC-5286), and A. parasiticus (PTCC-5018) on pistachios for 6 months.
Collapse
Affiliation(s)
- Mehrdad Mohammadi
- Department of Food Technology Research National Nutrition and Food Technology Research Institute Faculty of Nutrition Sciences and Food Technology Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Mohammad Hossein Azizi
- Department of Food Science and Technology Faculty of Agriculture Tarbiat Modarres University Tehran Iran
| | - Alaleh Zoghi
- Department of Food Technology Research National Nutrition and Food Technology Research Institute Faculty of Nutrition Sciences and Food Technology Shahid Beheshti University of Medical Sciences Tehran Iran
| |
Collapse
|
442
|
Bonin E, Carvalho VM, Avila VD, Aparecida dos Santos NC, Benassi-Zanqueta É, Contreras Lancheros CA, Santos Previdelli IT, Ueda-Nakamura T, Alves de Abreu Filho B, Nunes do Prado I. Baccharis dracunculifolia: Chemical constituents, cytotoxicity and antimicrobial activity. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108920] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
443
|
Mohammadi M, Azizi MH, Zoghi A. Antimicrobial activity of carboxymethyl cellulose-gelatin film containing Dianthus barbatus essential oil against aflatoxin-producing molds. Food Sci Nutr 2020; 8:1244-1253. [PMID: 32148830 PMCID: PMC7020294 DOI: 10.1002/fsn3.1413] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/14/2019] [Accepted: 12/18/2019] [Indexed: 11/24/2022] Open
Abstract
Edible films, as novel degradable materials in food packaging, play an important role in removing consumers' concerns about environmental pollution and food contaminations. Carboxymethyl cellulose (CMC)-gelatin (G) edible films with the ratio 4 to 1 was selected as the optimal film based on physical, mechanical, and physicochemical findings. Then, the effects of 0, 300, 450, and 600 ppm Dianthus barbatus essential oil (DbE) on water vapor permeability, tensile strength, elongation at break, water solubility, glass transition temperature, color, oxygen permeability, and antimicrobial activities on the optimal film were investigated. CMC: G (4:1) containing 600 ppm DbE as the antibacterial-antioxidant film was the best formulae (p < .05) for preventing three types of aflatoxin-producing mold including A. flavus (PTCC-5004), A. parasiticus (PTCC-5286), and A. parasiticus (PTCC-5018) on pistachios for 6 months.
Collapse
Affiliation(s)
- Mehrdad Mohammadi
- Department of Food Technology ResearchNational Nutrition and Food Technology Research InstituteFaculty of Nutrition Sciences and Food TechnologyShahid Beheshti University of Medical SciencesTehranIran
| | - Mohammad Hossein Azizi
- Department of Food Science and TechnologyFaculty of AgricultureTarbiat Modarres UniversityTehranIran
| | - Alaleh Zoghi
- Department of Food Technology ResearchNational Nutrition and Food Technology Research InstituteFaculty of Nutrition Sciences and Food TechnologyShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
444
|
Ayari S, Shankar S, Follett P, Hossain F, Lacroix M. Potential synergistic antimicrobial efficiency of binary combinations of essential oils against Bacillus cereus and Paenibacillus amylolyticus-Part A. Microb Pathog 2020; 141:104008. [PMID: 31991163 DOI: 10.1016/j.micpath.2020.104008] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 10/25/2022]
Abstract
The checkerboard method was used to study the potential interactions between eight essential oils (Basil, Cinnamon, Eucalyptus, Mandarin, Oregano, Peppermint, Tea tree, and Thyme) when used as antibacterial agents against Bacillus cereus LSPQ 2872 and Paenibacillus amylolyticus ATCC 9995. The minimum inhibitory concentration (MIC) of each essential oil (EO) and the fractional inhibitory concentration (FIC) index for the binary combinations of essential oils (EOs) were determined. According to FIC index values, some of the compound binary combinations showed an additive effect; however, Thyme/Tea tree and Cinnamon/Thyme EOs exhibited a synergistic effect against P. amylolyticus and B. cereus, respectively. Cinnamon/Thyme EOs mixture exhibited no interactive effect against P. amylolyticus, but a synergistic effect against B. cereus. The combination of Oregano/Thyme EOs displayed the best antibacterial activity and showed a synergistic effect against B. cereus and P. amylolyticus bacteria. The Oregano/Thyme EOs mixture has potential application in food preservation to reduce the contamination of B. cereus and P. amylolyticus.
Collapse
Affiliation(s)
- Samia Ayari
- Research Laboratory in Sciences, Applied to Food, INRS Armand-Frappier Health and Biotechnology Centre, Canadian Irradiation Centre, Institute of Nutrition and Functional Foods (INAF), 531 Boulevard des Prairies, Laval, Quebec, Canada, H7V 1B7; National Center for Nuclear Sciences and Technologies (CNSTN), Tunis Cedex, 2020, Tunisia; National Institute for Applied Sciences and Technology (INSAT), B.P. 676, Tunis Cedex, 1080, Tunisia
| | - Shiv Shankar
- Research Laboratory in Sciences, Applied to Food, INRS Armand-Frappier Health and Biotechnology Centre, Canadian Irradiation Centre, Institute of Nutrition and Functional Foods (INAF), 531 Boulevard des Prairies, Laval, Quebec, Canada, H7V 1B7
| | - Peter Follett
- United States Department of Agriculture, Agricultural Research Service, U.S. Pacific Basin Agricultural Research Center, 64 Nowelo Street, Hilo, HI, 96720, USA.
| | - Farah Hossain
- Research Laboratory in Sciences, Applied to Food, INRS Armand-Frappier Health and Biotechnology Centre, Canadian Irradiation Centre, Institute of Nutrition and Functional Foods (INAF), 531 Boulevard des Prairies, Laval, Quebec, Canada, H7V 1B7
| | - Monique Lacroix
- Research Laboratory in Sciences, Applied to Food, INRS Armand-Frappier Health and Biotechnology Centre, Canadian Irradiation Centre, Institute of Nutrition and Functional Foods (INAF), 531 Boulevard des Prairies, Laval, Quebec, Canada, H7V 1B7.
| |
Collapse
|
445
|
Study of Allelopathic Interaction of Essential Oils from Medicinal and Aromatic Plants on Seed Germination and Seedling Growth of Lettuce. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10020163] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Medicinal and aromatic plants have the ability to transmit volatile allelochemicals and affect their surrounding organisms. In this regard, their interaction should also be considered. The inhibitory effects of 112 essential oils on lettuce seed and seedling were investigated by cotton swab method. Germination (G%), Mean germination time (MGT), Lethal of embryo (L%), dormancy (D%), radicle growth (R%), and hypocotyl growth (H%) were measured. Two methods were used for evaluating allelopathic interaction effects: the simplified modified dilution check-board technique (SMCT) and the isobologram. Thymus daenensis had the highest inhibitory effect on G% (IC50 = 2.9 ppm) and the most lethal effect on the embryo (LC50 = 7.2 ppm). Thymus transcaspicus, Dracocephalum moldavica, Artemisia sieberi and Amomum subulatum had the greatest effect on MGT. Ziziphora tenuior, Trachyspermum ammi and Pelargonium graveolens had the highest effect on D%. Origanum vulgare was the strongest growth inhibitor. The highest synergistic effect on G% was in A. subulatum + Mentha suaveolens, on H% was related to Perovskia abrotanoides + T. daenensis, and on R% was observed in Artemisia vulgaris + M. suaveolens. The results of this study can lead to identification of new phytotoxic compounds in EOs and control weeds more effectively.
Collapse
|
446
|
Yang SK, Yusoff K, Thomas W, Akseer R, Alhosani MS, Abushelaibi A, Lim SHE, Lai KS. Lavender essential oil induces oxidative stress which modifies the bacterial membrane permeability of carbapenemase producing Klebsiella pneumoniae. Sci Rep 2020; 10:819. [PMID: 31964900 PMCID: PMC6972767 DOI: 10.1038/s41598-019-55601-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 11/30/2019] [Indexed: 12/13/2022] Open
Abstract
Misuse of antibiotics in the clinical and agricultural sectors has caused the emergence of multidrug-resistant (MDR) Klebsiella pneumoniae which contributes a threat to human health. In this study, we assessed the feasibility of lavender essential oil (LVO) as an antimicrobial agent in combinatory therapy with meropenem in suppressing the growth of carbapenemase-producing K. pneumoniae (KPC-KP). Synergistic interactions between LVO and meropenem were detected, which significantly reduce the inhibitory concentration of both LVO and meropenem by 15 and 4-fold respectively. Comparative proteomic profiling identified a disruption in the bacterial membrane via oxidative stress that was indicated by loss of membrane and cytoplasmic proteins and the upregulation of oxidative regulators. As a proof of concept, zeta potential measurements showed a change in cell surface charge while outer membrane permeability measurement indicated an increase in membrane permeability following exposure to LVO. This was indicative of a disrupted outer membrane. Ethidium bromide influx/efflux assays demonstrated no significant efflux pump inhibition by LVO, and scanning electron microscopy revealed irregularities on the cell surface after exposure to LVO. Oxidative stress was also detected with increased level of ROS and lipid peroxidation in LVO-treated cells. In conclusion, our data suggest that LVO induced oxidative stress in K. pneumoniae which oxidizes the outer membrane, enabling the influx of generated ROS, LVO and meropenem into the bacterial cells, causing damage to the cells and eventually death.
Collapse
Affiliation(s)
- Shun-Kai Yang
- Health Sciences Division, Abu Dhabi Women's College, Higher Colleges of Technology, 41012, Abu Dhabi, United Arab Emirates
| | - Khatijah Yusoff
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Warren Thomas
- Perdana University-Royal College of Surgeons in Ireland School of Medicine, Perdana University, MAEPS Building, 43400, Serdang, Selangor, Malaysia
| | - Riaz Akseer
- Health Sciences Division, Abu Dhabi Women's College, Higher Colleges of Technology, 41012, Abu Dhabi, United Arab Emirates
| | - Maryam Sultan Alhosani
- Health Sciences Division, Abu Dhabi Women's College, Higher Colleges of Technology, 41012, Abu Dhabi, United Arab Emirates
| | - Aisha Abushelaibi
- Health Sciences Division, Abu Dhabi Women's College, Higher Colleges of Technology, 41012, Abu Dhabi, United Arab Emirates
| | - Swee-Hua-Erin Lim
- Health Sciences Division, Abu Dhabi Women's College, Higher Colleges of Technology, 41012, Abu Dhabi, United Arab Emirates. .,Perdana University-Royal College of Surgeons in Ireland School of Medicine, Perdana University, MAEPS Building, 43400, Serdang, Selangor, Malaysia.
| | - Kok-Song Lai
- Health Sciences Division, Abu Dhabi Women's College, Higher Colleges of Technology, 41012, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
447
|
Raita MS, Iconaru SL, Groza A, Cimpeanu C, Predoi G, Ghegoiu L, Badea ML, Chifiriuc MC, Marutescu L, Trusca R, Furnaris CF, Turculet CS, Enache DV, Predoi D. Multifunctional Hydroxyapatite Coated with Arthemisia absinthium Composites. Molecules 2020; 25:E413. [PMID: 31963829 PMCID: PMC7024177 DOI: 10.3390/molecules25020413] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 12/18/2022] Open
Abstract
There is significant research showing that essential oils extracted from the plants have antibacterial effects. The purpose of this study was to develop a biocomposite based on hydroxyapatite coated with Artemisia absinthium essential oil and to highlight its antibacterial activity. Therefore, present studies are aimed at developing new materials combining hydroxyapatite with Artemisia absinthium essential oil, in order to avoid postoperative infections. The purpose of this work is to highlight the antimicrobial properties of the Artemisia absinthium essential oil-hydroxyapatite composites obtained by a simple method and at low costs. The structural properties and antimicrobial efficiency of the Artemisia absinthium essential oil-hydroxyapatite composite have been studied. The samples based on Artemisia absinthium essential oil analyzed in this study showed that wormwood essential oil presented the highest efficacy against the fungal strain of C. parapsilosis. It has been shown that wormwood essential oil has a strong antimicrobial effect against the microbial strains tested in this study. Furthermore, the antimicrobial properties of the biocomposites based on hydroxyapatite and essential oil are due to the presence of the essential oil in the samples.
Collapse
Affiliation(s)
- Mariana Stefania Raita
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Splaiul Independentei, Sector 5, 050097 Bucharest, Romania; (M.S.R.); (G.P.); (C.F.F.)
| | - Simona Liliana Iconaru
- Multifunctional Materials and Structures Laboratory, National Institute of Materials Physics, Atomistilor Street, No. 405A, P.O. Box MG 07, 077125 Magurele, Romania; (S.L.I.); (L.G.); (M.L.B.)
| | - Andreea Groza
- Low Temperature Plasma Laboratory, National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Street, P.O. Box MG 36, 077125 Magurele, Romania;
| | - Carmen Cimpeanu
- Faculty of Land Reclamation and Environmental Engineering, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd, Sector 1, 011464 Bucharest, Romania;
| | - Gabriel Predoi
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Splaiul Independentei, Sector 5, 050097 Bucharest, Romania; (M.S.R.); (G.P.); (C.F.F.)
| | - Liliana Ghegoiu
- Multifunctional Materials and Structures Laboratory, National Institute of Materials Physics, Atomistilor Street, No. 405A, P.O. Box MG 07, 077125 Magurele, Romania; (S.L.I.); (L.G.); (M.L.B.)
| | - Monica Luminita Badea
- Multifunctional Materials and Structures Laboratory, National Institute of Materials Physics, Atomistilor Street, No. 405A, P.O. Box MG 07, 077125 Magurele, Romania; (S.L.I.); (L.G.); (M.L.B.)
- Faculty of Horticulture, University of Agronomic Sciences and Veterinary Medicine, 59 Marasti Blvd., 011464 Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Microbiology Department, Faculty of Biology, University of Bucharest, 1–3 Portocalelor Lane, 77206 Bucharest, Romania; (M.C.C.); (L.M.)
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest (ICUB), 91-95 Splaiul Independentei, 050095 Bucharest, Romania
| | - Luminita Marutescu
- Microbiology Department, Faculty of Biology, University of Bucharest, 1–3 Portocalelor Lane, 77206 Bucharest, Romania; (M.C.C.); (L.M.)
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest (ICUB), 91-95 Splaiul Independentei, 050095 Bucharest, Romania
| | - Roxana Trusca
- National Centre for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania;
| | - Ciprian Florin Furnaris
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Splaiul Independentei, Sector 5, 050097 Bucharest, Romania; (M.S.R.); (G.P.); (C.F.F.)
| | - Claudiu Stefan Turculet
- Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari, Sector 5, 050474 Bucharest, Romania;
| | - Dorin Valter Enache
- Faculty of Food and Tourism, Transilvania University of Brasov, 29 Eroilor Blvd., 500036 Brașov, Romania;
| | - Daniela Predoi
- Multifunctional Materials and Structures Laboratory, National Institute of Materials Physics, Atomistilor Street, No. 405A, P.O. Box MG 07, 077125 Magurele, Romania; (S.L.I.); (L.G.); (M.L.B.)
| |
Collapse
|
448
|
Chemical Composition and Antibacterial Activity of Essential Oils from the Algerian Endemic Origanum glandulosum Desf. against Multidrug-Resistant Uropathogenic E. coli Isolates. Antibiotics (Basel) 2020; 9:antibiotics9010029. [PMID: 31952165 PMCID: PMC7169401 DOI: 10.3390/antibiotics9010029] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/10/2020] [Accepted: 01/12/2020] [Indexed: 11/28/2022] Open
Abstract
Antibiotics are becoming ineffective against resistant bacteria. The use of essential oils (EOs) may constitute an alternative solution to fight against multidrug-resistant bacteria. This study aims to determine the chemical composition of EOs from five populations of the endemic Algerian Origanum glandulosum Desf. and to investigate their potential antibacterial activity against multidrug-resistant uropathogenic E. coli strains. The EOs were obtained by hydrodistillation and their composition was investigated by gas chromatography/mass spectrometry (GC/MS). The antibacterial activity was evaluated by the disc diffusion method against eight E. coli strains (six uropathogenic resistant and two referenced susceptible strains). Minimum inhibitory and bactericidal concentrations (MIC/MBC) were obtained by the broth microdilution method. The main EO components were thymol (15.2–56.4%), carvacrol (2.8–59.6%), γ-terpinene (9.9–21.8%) and p-cymene (8.5–13.9%). The antibacterial tests showed that all the EOs were active against all the strains, including the multidrug-resistant strains. The EO from the Bordj location, which contained the highest amount of carvacrol (59.6%), showed the highest antibacterial activity (inhibition diameters from 12 to 24.5 mm at a dilution of 1/10). To our knowledge, this is the first description of the activity of O. glandulosum EOs against resistant uropathogenic strains. Our study suggests that O. glandulosum EO could be used in some clinical situations to treat or prevent infections (e.g., urinary tract infections) with multidrug-resistant strains.
Collapse
|
449
|
Zemljič LF, Plohl O, Vesel A, Luxbacher T, Potrč S. Physicochemical Characterization of Packaging Foils Coated by Chitosan and Polyphenols Colloidal Formulations. Int J Mol Sci 2020; 21:E495. [PMID: 31941018 PMCID: PMC7014365 DOI: 10.3390/ijms21020495] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/09/2020] [Accepted: 01/09/2020] [Indexed: 12/27/2022] Open
Abstract
In this research, antimicrobial polysaccharide chitosan was used as a surface coating for packaging material. The aim of our research was to establish an additive formulation of chitosan and antioxidative plant extracts as dispersion of nanoparticles. Chitosan nanoparticles with embedded thyme, rosemary and cinnamon extracts were synthesized, and characterized for this purpose. Two representative, commercially used foils, polypropylene (PP) and polyethylene (PE), previously activated by UV/ozone to improve coating adhesion, were functionalized using chitosan-extracts nanoparticle dispersions. The foils were coated by two layers. A solution of macromolecular chitosan was applied onto foils as a first layer, followed by the deposition of various extracts embedded into chitosan nanoparticles that were attached as an upper layer. Since active packaging must assure bioactive efficiency at the interface with food, it is extremely important to understand the surface characteristics and phenomena of functionalized foils. The physico-chemical analyses of functionalized foils were thus comprised of surface elemental composition, surface charge, wettability, as well as surface morphology. It has been shown that coatings were applied successfully with an elemental composition, surface charge and morphology that should enable coating stability, homogeneity and consequently provide an active concept of the packaging surface in contact with food. Moreover, the wettability of foils was improved in order to minimize the anti-fogging behavior.
Collapse
Affiliation(s)
- Lidija Fras Zemljič
- Laboratory for Characterization and Processing of Polymers, Faculty of Mechanical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia; (O.P.); (S.P.)
| | - Olivija Plohl
- Laboratory for Characterization and Processing of Polymers, Faculty of Mechanical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia; (O.P.); (S.P.)
| | - Alenka Vesel
- Department of Surface Engineering and Optoelectronics, Jožef Stefan Institute, Teslova 30, SI-1000 Ljubljana, Slovenia;
| | | | - Sanja Potrč
- Laboratory for Characterization and Processing of Polymers, Faculty of Mechanical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia; (O.P.); (S.P.)
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia
| |
Collapse
|
450
|
Prasanna J, Madhavi B. Pragmatic effect of an essential oil mouthwash as an adjunct to scaling on bacterial growth and gingival inflammation: A randomized controlled study. JOURNAL OF ORAL RESEARCH AND REVIEW 2020. [DOI: 10.4103/jorr.jorr_39_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|