1
|
Pezzali JG, Shoveller AK. Herbal paw-sibilities: potential use and challenges of Astragalus membranaceus and Panax species (ginseng) in diets intended for cats and dogs. Anim Front 2024; 14:17-27. [PMID: 38910952 PMCID: PMC11188985 DOI: 10.1093/af/vfae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024] Open
Affiliation(s)
- Júlia Guazzelli Pezzali
- Centre for Nutrition Modelling, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Anna K Shoveller
- Centre for Nutrition Modelling, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
2
|
Tian L, Gao R, Cai Y, Chen J, Dong H, Chen S, Yang Z, Wang Y, Huang L, Xu Z. A systematic review of ginsenoside biosynthesis, spatiotemporal distribution, and response to biotic and abiotic factors in American ginseng. Food Funct 2024; 15:2343-2365. [PMID: 38323507 DOI: 10.1039/d3fo03434h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
American ginseng (Panax quinquefolius) has gained recognition as a medicinal and functional food homologous product with several pharmaceutical, nutritional, and industrial applications. However, the key regulators involved in ginsenoside biosynthesis, the spatiotemporal distribution characteristics of ginsenosides, and factors influencing ginsenosides are largely unknown, which make it challenging to enhance the quality and chemical extraction processes of the cultivated American ginseng. This review presents an overview of the pharmacological effects, biosynthesis and spatiotemporal distribution of ginsenosides, with emphasis on the impacts of biotic and abiotic factors on ginsenosides in American ginseng. Modern pharmacological studies have demonstrated that American ginseng has neuroprotective, cardioprotective, antitumor, antidiabetic, and anti-obesity effects. Additionally, most genes involved in the upregulation of ginsenoside biosynthesis have been identified, while downstream regulators (OSCs, CYP450, and UGTs) require further investigation. Futhermore, limited knowledge exists regarding the molecular mechanisms of the impact of biotic and abiotic factors on ginsenosides. Notably, the nonmedicinal parts of American ginseng, particularly its flowers, fibrous roots, and leaves, exhibit higher ginsenoside content than its main roots and account for a considerable amount of weight in the whole plant, representing promising resources for ginsenosides. Herein, the prospects of molecular breeding and metabolic engineering based on multi-omics to improve the unstable quality of cultivated American ginseng and the shortage of ginsenosides are proposed. This review highlights the gaps in the current research on American ginseng and proposes solutions to address these limitations, providing a guide for future investigations into American ginseng ginsenosides.
Collapse
Affiliation(s)
- Lixia Tian
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Ranran Gao
- The Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100007, China
| | - Yuxiang Cai
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Junxian Chen
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Hongmei Dong
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Shanshan Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Beijing, 100700, China
| | - Zaichang Yang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Yu Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| | - Linfang Huang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| | - Zhichao Xu
- College of Life Science, Northeast Forestry University, Harbin, 150006, China.
| |
Collapse
|
3
|
Lu Q, Yan Q, Li X. Regulation of Intestinal Flora and Immune Response by Cyanidin Exhibits Protective Effect against Type-2 Diabetes in Rat Model. DOKL BIOCHEM BIOPHYS 2023; 513:S67-S74. [PMID: 38379077 DOI: 10.1134/s1607672923600422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 02/22/2024]
Abstract
In the current study the effects of metformin and cyanidin on the immune system and intestinal flora in rats with type-2 diabetes was investigated. The findings showed that metformin or cyanidin treatment considerably reduced the rise in body weight and glucose levels induced by type-2 diabetes. The type-2 diabetic rats' glucose tolerance was significantly increased by cyanidin administration comparable to that of metformin. Cyanidin administration resulted in a significant reduction in serum cholesterol and low-density lipoprotein (LDL) levels in rats with type-2 diabetes. Treatment with cyanidin significantly increased the ratio of high-density lipoprotein to low-density lipoprotein in type-2 diabetes rats. Cyanidin administration significantly raised the ratio of Firmicutes to Bacteroidetes in the fecal samples of type-2 diabetic rats compared to the model group. In comparison to the model group, it also significantly raised the levels of Lactobacillus intestinalis, Lactobacillus gasseri, and Lactobacillus reuteri in the type-2 diabetes rats. In type-2 diabetes rat fecal samples, the abundance of Christensenellaceae significantly increased while Enterobacteriaceae and Proteobacteria were found to decrease upon cyanidin administration. Furthermore, cyanidin administration to the rats with type-2 diabetes significantly improved the glucose homeostasis. In conclusion, the study demonstrates that cyanidin enhances glucose homeostasis in rats with type-2 diabetes, potentially through controlling intestinal flora. Thus, cyanidin may be looked into more as a possible therapeutic agent for type 2 diabetes.
Collapse
Affiliation(s)
- Qingyan Lu
- Department of Clinical Laboratory, Xuzhou Central Hospital, no. 199, 221009, Xuzhou, China
| | - Qiannan Yan
- Department of Clinical Laboratory, Xuzhou Central Hospital, no. 199, 221009, Xuzhou, China
| | - Xiaojie Li
- Department of Clinical Laboratory, Xuzhou Central Hospital, no. 199, 221009, Xuzhou, China.
| |
Collapse
|
4
|
Shaik Mohamed Sayed UF, Moshawih S, Goh HP, Kifli N, Gupta G, Singh SK, Chellappan DK, Dua K, Hermansyah A, Ser HL, Ming LC, Goh BH. Natural products as novel anti-obesity agents: insights into mechanisms of action and potential for therapeutic management. Front Pharmacol 2023; 14:1182937. [PMID: 37408757 PMCID: PMC10318930 DOI: 10.3389/fphar.2023.1182937] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/06/2023] [Indexed: 07/07/2023] Open
Abstract
Obesity affects more than 10% of the adult population globally. Despite the introduction of diverse medications aimed at combating fat accumulation and obesity, a significant number of these pharmaceutical interventions are linked to substantial occurrences of severe adverse events, occasionally leading to their withdrawal from the market. Natural products serve as attractive sources for anti-obesity agents as many of them can alter the host metabolic processes and maintain glucose homeostasis via metabolic and thermogenic stimulation, appetite regulation, pancreatic lipase and amylase inhibition, insulin sensitivity enhancing, adipogenesis inhibition and adipocyte apoptosis induction. In this review, we shed light on the biological processes that control energy balance and thermogenesis as well as metabolic pathways in white adipose tissue browning, we also highlight the anti-obesity potential of natural products with their mechanism of action. Based on previous findings, the crucial proteins and molecular pathways involved in adipose tissue browning and lipolysis induction are uncoupling protein-1, PR domain containing 16, and peroxisome proliferator-activated receptor-γ in addition to Sirtuin-1 and AMP-activated protein kinase pathway. Given that some phytochemicals can also lower proinflammatory substances like TNF-α, IL-6, and IL-1 secreted from adipose tissue and change the production of adipokines like leptin and adiponectin, which are important regulators of body weight, natural products represent a treasure trove for anti-obesity agents. In conclusion, conducting comprehensive research on natural products holds the potential to accelerate the development of an improved obesity management strategy characterized by heightened efficacy and reduced incidence of side effects.
Collapse
Affiliation(s)
| | - Said Moshawih
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei
| | - Hui Poh Goh
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei
| | - Nurolaini Kifli
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur, India
- Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai, India
| | - Sachin Kumar Singh
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, Australia
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, Australia
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Andi Hermansyah
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas AirlanggaSurabaya, Indonesia
| | - Hooi Leng Ser
- School of Medical and Life Sciences, Sunway University, Sunway, Malaysia
| | - Long Chiau Ming
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas AirlanggaSurabaya, Indonesia
- School of Medical and Life Sciences, Sunway University, Sunway, Malaysia
| | - Bey Hing Goh
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Derosa G, D'Angelo A, Maffioli P. The role of selected nutraceuticals in management of prediabetes and diabetes: An updated review of the literature. Phytother Res 2022; 36:3709-3765. [PMID: 35912631 PMCID: PMC9804244 DOI: 10.1002/ptr.7564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 01/05/2023]
Abstract
Dysglycemia is a disease state preceding the onset of diabetes and includes impaired fasting glycemia and impaired glucose tolerance. This review aimed to collect and analyze the literature reporting the results of clinical trials evaluating the effects of selected nutraceuticals on glycemia in humans. The results of the analyzed trials, generally, showed the positive effects of the nutraceuticals studied alone or in association with other supplements on fasting plasma glucose and post-prandial plasma glucose as primary outcomes, and their efficacy in improving insulin resistance as a secondary outcome. Some evidences, obtained from clinical trials, suggest a role for some nutraceuticals, and in particular Berberis, Banaba, Curcumin, and Guar gum, in the management of prediabetes and diabetes. However, contradictory results were found on the hypoglycemic effects of Morus, Ilex paraguariensis, Omega-3, Allium cepa, and Trigonella faenum graecum, whereby rigorous long-term clinical trials are needed to confirm these data. More studies are also needed for Eugenia jambolana, as well as for Ascophyllum nodosum and Fucus vesiculosus which glucose-lowering effects were observed when administered in combination, but not alone. Further trials are also needed for quercetin.
Collapse
Affiliation(s)
- Giuseppe Derosa
- Department of Internal Medicine and TherapeuticsUniversity of PaviaPaviaItaly
- Centre of Diabetes, Metabolic Diseases, and DyslipidemiasUniversity of PaviaPaviaItaly
- Regional Centre for Prevention, Surveillance, Diagnosis and Treatment of Dyslipidemias and AtherosclerosisFondazione IRCCS Policlinico San MatteoPaviaItaly
- Italian Nutraceutical Society (SINut)BolognaItaly
- Laboratory of Molecular MedicineUniversity of PaviaPaviaItaly
| | - Angela D'Angelo
- Department of Internal Medicine and TherapeuticsUniversity of PaviaPaviaItaly
- Laboratory of Molecular MedicineUniversity of PaviaPaviaItaly
| | - Pamela Maffioli
- Centre of Diabetes, Metabolic Diseases, and DyslipidemiasUniversity of PaviaPaviaItaly
- Regional Centre for Prevention, Surveillance, Diagnosis and Treatment of Dyslipidemias and AtherosclerosisFondazione IRCCS Policlinico San MatteoPaviaItaly
- Italian Nutraceutical Society (SINut)BolognaItaly
| |
Collapse
|
6
|
Sng KS, Li G, Zhou LY, Song YJ, Chen XQ, Wang YJ, Yao M, Cui XJ. Ginseng extract and ginsenosides improve neurological function and promote antioxidant effects in rats with spinal cord injury: A meta-analysis and systematic review. J Ginseng Res 2022; 46:11-22. [PMID: 35058723 PMCID: PMC8753526 DOI: 10.1016/j.jgr.2021.05.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/26/2021] [Accepted: 05/31/2021] [Indexed: 02/07/2023] Open
Abstract
Spinal cord injury (SCI) is defined as damage to the spinal cord that temporarily or permanently changes its function. There is no definite treatment established for neurological complete injury patients. This study investigated the effect of ginseng extract and ginsenosides on neurological recovery and antioxidant efficacies in rat models following SCI and explore the appropriate dosage. Searches were done on PubMed, Embase, and Chinese databases, and animal studies matches the inclusion criteria were selected. Pair-wise meta-analysis and subgroup analysis were performed. Ten studies were included, and the overall methodological qualities were low quality. The result showed ginseng extract and ginsenosides significantly improve neurological function, through the Basso, Beattie, and Bresnahan (BBB) locomotor rating scale (pooled MD = 4.40; 95% CI = 3.92 to 4.88; p < 0.00001), significantly decrease malondialdehyde (MDA) (n = 290; pooled MD = −2.19; 95% CI = −3.16 to −1.22; p < 0.0001) and increase superoxide dismutase (SOD) levels (n = 290; pooled MD = 2.14; 95% CI = 1.45 to 2.83; p < 0.00001). Both low (<25 mg/kg) and high dosage (≥25 mg/kg) showed significant improvement in the motor function recovery in SCI rats. Collectively, this review suggests ginseng extract and ginsenosides has a protective effect on SCI, with good safety and a clear mechanism of action and may be suitable for future clinical trials and applications.
Collapse
|
7
|
Bell L, Whyte A, Duysburgh C, Marzorati M, Van den Abbeele P, Le Cozannet R, Fança-Berthon P, Fromentin E, Williams C. A randomized, placebo-controlled trial investigating the acute and chronic benefits of American Ginseng (Cereboost®) on mood and cognition in healthy young adults, including in vitro investigation of gut microbiota changes as a possible mechanism of action. Eur J Nutr 2021; 61:413-428. [PMID: 34396468 PMCID: PMC8783888 DOI: 10.1007/s00394-021-02654-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 08/04/2021] [Indexed: 12/01/2022]
Abstract
Purpose Cereboost®, an American ginseng extract, has shown improved short-term memory and attention/alertness in healthy young and middle-aged individuals, potentially via modulation of the gut microbiome and upregulation of neurotransmitters such as acetylcholine. Here, we explored the effects of Cereboost® on cognition and mood in the first 6 h post intervention (acute), after 2 weeks daily supplementation (chronic), and whether 2 weeks daily supplementation altered the response to a single acute dose (acute-on-chronic). A concurrent in vitro study evaluated effects of repeated Cereboost® administration on human gut microbiota. Methods Cognitive effects of Cereboost® were assessed using a double-blind, randomized, placebo-controlled clinical trial, with 61 healthy young adults. Modulation of the gut microbiome was concurrently modelled using the Simulator of the Human Microbial Ecosystem (SHIME®), using a young adult donor. Results Consistent with previous findings, Cereboost® improved working memory and attention during the immediate postprandial period; effects that were amplified following two weeks’ treatment (acute-on-chronic) compared to acute testing alone. Chronic supplementation improved cognition on an acetylcholine-sensitive attention task and improved mental fatigue and self-assurance aspects of mood. The parallel in vitro study revealed significantly increased acetate, propionate, and butyrate levels in simulated proximal and distal colon regions, linked with observed increases in Akkermansia muciniphila and Lactobacillus. Conclusion This study confirmed the promising effects of Cereboost® on cognitive function and mood, while suggesting a possible link to alterations of the gut microbiome and modulation of acetylcholine. Further studies will be required to unravel the underlying mechanisms that are involved. Registration The study was pre-registered at ClinicalTrials.gov on 6th July 2018 (Identifier: NCT03579095). Supplementary Information The online version contains supplementary material available at 10.1007/s00394-021-02654-5.
Collapse
Affiliation(s)
- Lynne Bell
- School of Psychology & Clinical Language Sciences, University of Reading, Earley Gate, Whiteknights Road, Reading, RG6 6ES, UK
| | - Adrian Whyte
- School of Psychology & Clinical Language Sciences, University of Reading, Earley Gate, Whiteknights Road, Reading, RG6 6ES, UK
| | | | | | | | | | | | | | - Claire Williams
- School of Psychology & Clinical Language Sciences, University of Reading, Earley Gate, Whiteknights Road, Reading, RG6 6ES, UK.
| |
Collapse
|
8
|
Naveen Y, Urooj A, Byrappa K. A review on medicinal plants evaluated for anti-diabetic potential in clinical trials: Present status and future perspective. J Herb Med 2021. [DOI: 10.1016/j.hermed.2021.100436] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
Rod-in W, Talapphet N, Monmai C, Jang AY, You S, Park WJ. Immune enhancement effects of Korean ginseng berry polysaccharides on RAW264.7 macrophages through MAPK and NF-κB signalling pathways. FOOD AGR IMMUNOL 2021. [DOI: 10.1080/09540105.2021.1934419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Weerawan Rod-in
- Department of Marine Biotechnology, Gangneung-Wonju National University, Gangneung, Korea
- East Coast Life Sciences Institute, Gangneung-Wonju National University, Gangneung, Korea
| | - Natchanok Talapphet
- Department of Marine Biotechnology, Gangneung-Wonju National University, Gangneung, Korea
| | - Chaiwat Monmai
- Department of Marine Biotechnology, Gangneung-Wonju National University, Gangneung, Korea
- East Coast Life Sciences Institute, Gangneung-Wonju National University, Gangneung, Korea
| | - A.-yeong Jang
- Department of Marine Biotechnology, Gangneung-Wonju National University, Gangneung, Korea
| | - SangGuan You
- Department of Marine Biotechnology, Gangneung-Wonju National University, Gangneung, Korea
- East Coast Life Sciences Institute, Gangneung-Wonju National University, Gangneung, Korea
| | - Woo Jung Park
- Department of Marine Biotechnology, Gangneung-Wonju National University, Gangneung, Korea
- East Coast Life Sciences Institute, Gangneung-Wonju National University, Gangneung, Korea
| |
Collapse
|
10
|
Ahmad R, AlLehaibi LH, AlSuwaidan HN, Alghiryafi AF, Almubarak LS, AlKhalifah KN, AlMubarak HJ, Alkhathami MA. Evaluation of clinical trials for natural products used in diabetes: An evidence-based systemic literature review. Medicine (Baltimore) 2021; 100:e25641. [PMID: 33879744 PMCID: PMC8078398 DOI: 10.1097/md.0000000000025641] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/22/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND RELEVANCE A plethora of literature is available regarding the clinical trials for natural products however; no information is available for critical assessments of the quality of these clinical trials. AIM OF STUDY This is a first time report to critically evaluate the efficacy, safety and large scale applications of up-to-date clinical trials for diabetes, based on the three scales of Jadad, Delphi, and Cochrane. METHODOLOGY An in-depth and extensive literature review was performed using various databases, journals, and books. The keywords searched included, "clinical trials," "clinical trial in diabetes," "diabetes," "natural products in diabetes," "ethnopharmacological relevance of natural products in diabetes," etc. RESULTS Based on eligibility criteria, 16 plants with 74 clinical trials were found and evaluated. Major drawbacks observed were; "non-randomization and blindness of the studies," "non-blindness of patients/healthcare/outcome assessors," "lack of patient compliance and co-intervention reports," "missing information regarding drop-out/withdrawal procedures," and "inappropriate baseline characteristics." Principal component analysis and Pearson correlation revealed four components with %variability; PC1: 23.12, PC2: 15.83, PC3: 13.11, and PC4: 11.38 (P ≤ .000). According to descriptive statistics, "non-blinding of outcome assessors" was the major drawback (82%) whereas, "not mentioning the timing of outcome assessment" was observed lowest (6.8%). An in-house quality grading (scale 0-24) classified these clinical trials as; poor (67.6%), acceptable (19.9%), and good quality trials (13.5%). CONCLUSION Proper measures in terms of more strict regulations with pharmacovigilance of plants are utmost needed in order to achieve quality compliance of clinical trials.
Collapse
Affiliation(s)
- Rizwan Ahmad
- Natural Products and Alternative Medicines, College of Clinical Pharmacy, Imam Abdul Rahman Bin Faisal University, Kingdom of Saudi Arabia
| | | | - Hind Nasser AlSuwaidan
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Ali Fuad Alghiryafi
- College of Clinical Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Lyla Shafiq Almubarak
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Khawlah Nezar AlKhalifah
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Hawra Jassim AlMubarak
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Majed Ali Alkhathami
- First Health Cluster in Eastern Province, Dammam Medical Complex, Dammam, Saudi Arabia
| |
Collapse
|
11
|
Kou T, Ye J, Wang J, Peng Y, Wang Z, Shi C, Wu X, Hu X, Chen H, Zhang L, Chen X, Zhu Y, Li H, Zhuang S. Terahertz Spectroscopy for Accurate Identification of Panax quinquefolium Basing on Nonconjugated 24(R)-Pseudoginsenoside F 11. PLANT PHENOMICS (WASHINGTON, D.C.) 2021; 2021:6793457. [PMID: 33860277 PMCID: PMC8043154 DOI: 10.34133/2021/6793457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/29/2020] [Indexed: 06/12/2023]
Abstract
Panax quinquefolium is a perennial herbaceous plant that contains many beneficial ginsenosides with diverse pharmacological effects. 24(R)-pseudoginsenoside F11 is specific to P. quinquefolium, a useful biomarker for distinguishing this species from other related plants. However, because of its nonconjugated property and the complexity of existing detection methods, this biomarker cannot be used as the identification standard. We herein present a stable 24(R)-pseudoginsenoside F11 fingerprint spectrum in the terahertz band, thereby proving that F11 can be detected and quantitatively analyzed via terahertz spectroscopy. We also analyzed the sample by high-performance liquid chromatography-triple quadrupole mass spectrometry. The difference between the normalized data for the two analytical methods was less than 5%. Furthermore, P. quinquefolium from different areas and other substances can be clearly distinguished based on these terahertz spectra with a standard principal component analysis. Our method is a fast, simple, and cost-effective approach for identifying and quantitatively analyzing P. quinquefolium.
Collapse
Affiliation(s)
- Tianyi Kou
- Terahertz Technology Innovation Research Institute, Shanghai Key Lab of Modern Optical System, Terahertz Science Cooperative Innovation Center, University of Shanghai for Science and Technology, Shanghai Institute of Intelligent Science and Technology, Shanghai, China
| | - Ji Ye
- Department of Pharmacy, Second Military Medical University, Shanghai, China
| | - Jing Wang
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Yan Peng
- Terahertz Technology Innovation Research Institute, Shanghai Key Lab of Modern Optical System, Terahertz Science Cooperative Innovation Center, University of Shanghai for Science and Technology, Shanghai Institute of Intelligent Science and Technology, Shanghai, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University Shanghai, China
| | - Zefang Wang
- Terahertz Technology Innovation Research Institute, Shanghai Key Lab of Modern Optical System, Terahertz Science Cooperative Innovation Center, University of Shanghai for Science and Technology, Shanghai Institute of Intelligent Science and Technology, Shanghai, China
| | - Chenjun Shi
- Terahertz Technology Innovation Research Institute, Shanghai Key Lab of Modern Optical System, Terahertz Science Cooperative Innovation Center, University of Shanghai for Science and Technology, Shanghai Institute of Intelligent Science and Technology, Shanghai, China
| | - Xu Wu
- Terahertz Technology Innovation Research Institute, Shanghai Key Lab of Modern Optical System, Terahertz Science Cooperative Innovation Center, University of Shanghai for Science and Technology, Shanghai Institute of Intelligent Science and Technology, Shanghai, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University Shanghai, China
| | - Xitian Hu
- Terahertz Technology Innovation Research Institute, Shanghai Key Lab of Modern Optical System, Terahertz Science Cooperative Innovation Center, University of Shanghai for Science and Technology, Shanghai Institute of Intelligent Science and Technology, Shanghai, China
| | - Haihong Chen
- Terahertz Technology Innovation Research Institute, Shanghai Key Lab of Modern Optical System, Terahertz Science Cooperative Innovation Center, University of Shanghai for Science and Technology, Shanghai Institute of Intelligent Science and Technology, Shanghai, China
| | - Ling Zhang
- Terahertz Technology Innovation Research Institute, Shanghai Key Lab of Modern Optical System, Terahertz Science Cooperative Innovation Center, University of Shanghai for Science and Technology, Shanghai Institute of Intelligent Science and Technology, Shanghai, China
| | - Xiaohong Chen
- Terahertz Technology Innovation Research Institute, Shanghai Key Lab of Modern Optical System, Terahertz Science Cooperative Innovation Center, University of Shanghai for Science and Technology, Shanghai Institute of Intelligent Science and Technology, Shanghai, China
| | - Yiming Zhu
- Terahertz Technology Innovation Research Institute, Shanghai Key Lab of Modern Optical System, Terahertz Science Cooperative Innovation Center, University of Shanghai for Science and Technology, Shanghai Institute of Intelligent Science and Technology, Shanghai, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University Shanghai, China
| | - Huiliang Li
- Department of Pharmacy, Second Military Medical University, Shanghai, China
| | - Songlin Zhuang
- Terahertz Technology Innovation Research Institute, Shanghai Key Lab of Modern Optical System, Terahertz Science Cooperative Innovation Center, University of Shanghai for Science and Technology, Shanghai Institute of Intelligent Science and Technology, Shanghai, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University Shanghai, China
| |
Collapse
|
12
|
Zurbau A, Smircic Duvnjak L, Magas S, Jovanovski E, Miocic J, Jenkins AL, Jenkins DJA, Josse RG, Leiter LA, Sievenpiper JL, Vuksan V. Co-administration of viscous fiber, Salba-chia and ginseng on glycemic management in type 2 diabetes: a double-blind randomized controlled trial. Eur J Nutr 2021; 60:3071-3083. [PMID: 33486572 DOI: 10.1007/s00394-020-02434-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/29/2020] [Indexed: 11/28/2022]
Abstract
PURPOSE Viscous dietary fiber, functional seeds and ginseng roots have individually been proposed for the management of diabetes. We explored whether their co-administration would improve glycemic control in type 2 diabetes beyond conventional therapy. METHODS In a randomized, double-blind, controlled trial conducted at two academic centers (Toronto, Canada and Zagreb, Croatia), individuals with type 2 diabetes were assigned to either an active intervention (10 g viscous fiber, 60 g white chia seeds, 1.5 g American and 0.75 g Korean red ginseng extracts), or energy and fiber-matched control (53 g oat bran, 25 g inulin, 25 g maltodextrose and 2.25 g wheat bran) intervention for 24 weeks, while on conventional standard of care. The prespecified primary endpoint was end difference at week 24 in HbA1c, following an intent-to-treat analysis adjusted for center and baseline. RESULTS Between January 2016 and April 2018, 104 participants (60M:44F; mean ± SEM age 59 ± 0.8 years; BMI 29.0 ± 0.4 kg/m2; HbA1c 7.0 ± 0.6%) managed with antihyperglycemic agent(s) (n = 98) or lifestyle (n = 6), were randomized (n = 52 test; n = 52 control). At week 24, HbA1c levels were 0.27 ± 0.1% lower on test compared to control (p = 0.03). There was a tendency towards an interaction by baseline HbA1c (p = 0.07), in which a greater reduction was seen in participants with baseline HbA1c > 7% vs ≤ 7% (- 0.56 ± 0.2% vs 0.03 ± 0.2%). Diet and body weight remained unchanged. The interventions were well tolerated with no related adverse events and with high retention rate of 84%. CONCLUSIONS Co-administration of selected dietary and herbal therapies was well-tolerated and may provide greater glycemic control as add-on therapy in type 2 diabetes. Registration: Clinicaltrials.gov NCT02553382 (registered on September 17, 2015).
Collapse
Affiliation(s)
- Andreea Zurbau
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Clinical Nutrition and Risk Factor Modification Center, St. Michael's Hospital, Toronto, ON, Canada.,Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Toronto, ON, Canada
| | - Lea Smircic Duvnjak
- Vuk Vrhovac Clinic for Diabetes, Endocrinology and Metabolic Diseases, University Hospital Merkur, Zagreb, Croatia.,School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Sasa Magas
- Vuk Vrhovac Clinic for Diabetes, Endocrinology and Metabolic Diseases, University Hospital Merkur, Zagreb, Croatia
| | - Elena Jovanovski
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Clinical Nutrition and Risk Factor Modification Center, St. Michael's Hospital, Toronto, ON, Canada
| | - Jelena Miocic
- Vuk Vrhovac Clinic for Diabetes, Endocrinology and Metabolic Diseases, University Hospital Merkur, Zagreb, Croatia
| | - Alexandra L Jenkins
- Clinical Nutrition and Risk Factor Modification Center, St. Michael's Hospital, Toronto, ON, Canada
| | - David J A Jenkins
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Clinical Nutrition and Risk Factor Modification Center, St. Michael's Hospital, Toronto, ON, Canada.,Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada.,Division of Endocrinology and Metabolism, St. Michael's Hospital, Toronto, ON, Canada.,Departments of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Robert G Josse
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Clinical Nutrition and Risk Factor Modification Center, St. Michael's Hospital, Toronto, ON, Canada.,Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada.,Division of Endocrinology and Metabolism, St. Michael's Hospital, Toronto, ON, Canada.,Departments of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Lawrence A Leiter
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Clinical Nutrition and Risk Factor Modification Center, St. Michael's Hospital, Toronto, ON, Canada.,Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada.,Division of Endocrinology and Metabolism, St. Michael's Hospital, Toronto, ON, Canada.,Departments of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - John L Sievenpiper
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Clinical Nutrition and Risk Factor Modification Center, St. Michael's Hospital, Toronto, ON, Canada.,Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Toronto, ON, Canada.,Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada.,Division of Endocrinology and Metabolism, St. Michael's Hospital, Toronto, ON, Canada.,Departments of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Vladimir Vuksan
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada. .,Clinical Nutrition and Risk Factor Modification Center, St. Michael's Hospital, Toronto, ON, Canada. .,Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada. .,Division of Endocrinology and Metabolism, St. Michael's Hospital, Toronto, ON, Canada. .,Departments of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
13
|
Qiang B, Miao J, Phillips N, Wei K, Gao Y. Recent Advances in the Tissue Culture of American Ginseng (Panax quinquefolius). Chem Biodivers 2020; 17:e2000366. [PMID: 32734631 DOI: 10.1002/cbdv.202000366] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022]
Abstract
The in vitro tissue culture of medicinal plants is considered as a potential source for plant-derived bioactive secondary metabolites. The in vitro tissue culture of American ginseng has wide commercial applications in pharmaceutical, nutraceutical, food, and cosmetic fields with regard to the production of bioactive compounds such as ginsenosides and polysaccharides. This review highlights the recent progress made on different types of tissue culture practices with American ginseng, including callus culture, somatic embryo culture, cell suspension culture, hairy root culture, and adventitious root culture. The tissue culture conditions for inducing ginseng callus, somatic embryos, cell suspension, hairy roots, and adventitious roots were analyzed. In addition, the optimized conditions for increasing the production of ginsenosides and polysaccharides were discussed. This review provides references for the use of modern biotechnology to improve the production of bioactive compounds from American ginseng, as well as references for the development and sustainable utilization of American ginseng resources.
Collapse
Affiliation(s)
- Baobao Qiang
- International Ginseng Institute, School of Agriculture, Middle Tennessee State University, Tennessee, 37132, USA.,Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, P. R. China
| | - Jianhua Miao
- Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, P. R. China.,Guangxi University of Traditional Medicine, Nanning, 530001, P. R. China
| | - Nate Phillips
- International Ginseng Institute, School of Agriculture, Middle Tennessee State University, Tennessee, 37132, USA
| | - Kunhua Wei
- Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, P. R. China.,Guangxi University of Traditional Medicine, Nanning, 530001, P. R. China
| | - Ying Gao
- International Ginseng Institute, School of Agriculture, Middle Tennessee State University, Tennessee, 37132, USA
| |
Collapse
|
14
|
Semwal DK, Kumar A, Aswal S, Chauhan A, Semwal RB. Protective and therapeutic effects of natural products against diabetes mellitus via regenerating pancreatic β-cells and restoring their dysfunction. Phytother Res 2020; 35:1218-1229. [PMID: 32987447 DOI: 10.1002/ptr.6885] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/31/2020] [Accepted: 08/31/2020] [Indexed: 12/11/2022]
Abstract
Diabetes mellitus is a growing public health concern and an increasing interest has been raised to search for new compounds with therapeutic effects on β-cells. There are chronic insulin resistance and loss of β-cell mass in the case of type-2 diabetes which covers about 90% of total diabetic patients. This work aims to critically review the protective and regenerative effects of various antidiabetic natural products on pancreatic β-cells. A thorough literature survey was conducted on the natural molecules and extracts having a protective, regenerative, and repairing effect on β-cells. The primary source of the literature was online scientific databases such as PubMed, Scopus, and Google Scholar. Besides, selected relevant textbooks were also consulted. Various natural molecules including berberine, curcumin, mangiferin, stevioside and capsaicin, and extracts obtained from the plants like Capsicum annum, Gymnema sylvestre, Stevia rebaudiana and Nymphaea stellate, were found to produce regenerative and anti-apoptosis effects on β-cells. These natural products were also found to increase insulin secretion by stimulating β-cells. The present review concluded that a large number of molecules and extracts, abundantly found in nature, possess antidiabetic effect via targeting β-cells. Further research is warranted to use these agents as a drug against diabetes.
Collapse
Affiliation(s)
- Deepak Kumar Semwal
- Department of Phytochemistry, Faculty of Biomedical Sciences, Uttarakhand Ayurved University, Dehradun, India
| | - Ankit Kumar
- Research and Development Centre, Faculty of Biomedical Sciences, Uttarakhand Ayurved University, Dehradun, India
| | - Sonali Aswal
- Research and Development Centre, Faculty of Biomedical Sciences, Uttarakhand Ayurved University, Dehradun, India
| | - Ashutosh Chauhan
- Department of Biotechnology, Faculty of Biomedical Sciences, Uttarakhand Ayurved University, Dehradun, India
| | - Ruchi Badoni Semwal
- Department of Chemistry, Pt. Lalit Mohan Sharma Government Postgraduate College, Rishikesh, India
| |
Collapse
|
15
|
Zhao Q, Bai Y, Liu D, Zhao N, Gao H, Zhang X. Quinetides: diverse posttranslational modified peptides of ribonuclease-like storage protein from Panax quinquefolius as markers for differentiating ginseng species. J Ginseng Res 2020; 44:680-689. [PMID: 32913397 PMCID: PMC7471211 DOI: 10.1016/j.jgr.2019.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 05/13/2019] [Accepted: 05/23/2019] [Indexed: 10/27/2022] Open
Abstract
Background Peptides have diverse and important physiological roles in plants and are ideal markers for species identification. It is unclear whether there are specific peptides in Panax quinquefolius L. (PQ). The aims of this study were to identify Quinetides, a series of diverse posttranslational modified native peptides of the ribonuclease-like storage protein (ginseng major protein), from PQ to explore novel peptide markers and develop a new method to distinguish PQ from Panax ginseng. Methods We used different fragmentation modes in the LTQ Orbitrap analysis to identify the enriched Quinetide targets of PQ, and we discovered Quinetide markers of PQ and P. ginseng using ultrahigh-performance liquid chromatography-quadrupole time-of-flight mass spectrometry analysis. These "peptide markers" were validated by simultaneously monitoring Rf and F11 as standard ginsenosides. Results We discovered 100 Quinetides of PQ with various post-translational modifications (PTMs), including a series of glycopeptides, all of which originated from the protein ginseng major protein. We effectively distinguished PQ from P. ginseng using new "peptide markers." Four unique peptides (Quinetides TP6 and TP7 as markers of PQ and Quinetides TP8 and TP9 as markers of P. ginseng) and their associated glycosylation products were discovered in PQ and P. ginseng. Conclusion We provide specific information on PQ peptides and propose the clinical application of peptide markers to distinguish PQ from P. ginseng.
Collapse
Affiliation(s)
- Qiang Zhao
- KeyLaboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China.,CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yunpeng Bai
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Dan Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Nan Zhao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Huiyuan Gao
- KeyLaboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaozhe Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| |
Collapse
|
16
|
Han SW, Shi SM, Zou YX, Wang ZC, Wang YQ, Shi L, Yan TC. Chemical constituents from acid hydrolyzates of Panax quinquefolius total saponins and their inhibition activity to α-glycosidase and protein tyrosine phosphatase 1B. CHINESE HERBAL MEDICINES 2020; 12:195-199. [PMID: 36119797 PMCID: PMC9476787 DOI: 10.1016/j.chmed.2020.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/23/2020] [Accepted: 02/05/2020] [Indexed: 12/04/2022] Open
Abstract
Objective To investigate the hypoglycemic components from the acid hydrolyzates of Panax quinquefolius total saponins, and screen the active compounds by in vitro inhibitory activities to α-glycosidase enzymes and protein tyrosine phosphatase-1B (PTP1B). Methods The hydrolyzates were chromatographed repeatedly over silica gel column, and the structures of the compounds were determined by means of NMR. The in vitro bioassay was performed through the inhibitory effects on α-glucosidase or/and PTP1B. Results Eight compounds were isolated, which identified as 20(S)-panaxadiol (1), (20S,24R)-dammarane-20,24-epoxy-3β,6α,12β,25-tetraol (2), 20(R)-dammarane-3β,12β,20,25-tetraol (3), 20(S)-dammarane-3β,6α,12β,20,25-pentol (4), 20(R)-dammarane-3β,12β,20,25-tetrahydroxy-3β-O-β-d-glucopyranoside (5), β-sitosterol (6), oleanolic acid (7) and 20(S)-protopanaxadiol (8). Compound 5 was ginseng triterpenoid isolated from the acid hydrolysates of total saponins from P. quinquefolius for the first time. In this paper, the possible in vitro inhibitory activities were investigated. Compound 5 exhibited significantly inhibitory activity against α-glucosidase, and the IC50 value [(0.22 ± 0.21) µmol/L] was about 43-fold lower than positive control. For the PTP1B inhibition assay, compound 5 indicated the strongest inhibitory effect with IC50 of (5.91 ± 0.38) µmol/L, followed by compound 4 with IC50 of (6.21 ± 0.21) µmol/L, which were all showed competitive inhibitory pattern by using a Lineweaver-Burk plot. Conclusion These results supported the potential application of dammaranes from acid hydrolyzates of P. quinquefolius total saponins can be used as ingredients of ancillary anti-diabetic agent or functional factor.
Collapse
|
17
|
Xie H, Wang D, Zhang W, Yan X, Zhao Y. Comparative Pharmacokinetic Studies of Four Ginsenosides in Rat Plasma by UPLC-MS/MS after Oral Administration of Panax quinquefolius- Acorus gramineus and Panax quinquefolius Extracts. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2019; 2019:4972816. [PMID: 31781472 PMCID: PMC6875038 DOI: 10.1155/2019/4972816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 07/31/2019] [Accepted: 08/10/2019] [Indexed: 06/10/2023]
Abstract
Panax quinquefolius (PQ) and Acorus gramineus (AG) are drug target pairs in traditional Chinese medicine (TCM), which are used to treat age-related diseases. In the present study, we simultaneously determined the contents of four main bioactive ginsenosides (Rb1, Rb2, Rd, and Re) in rat plasma using an ultrahigh-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method. Plasma specimens were purified by using the solid-phase extraction procedure, and separation was performed on Waters ACQUITY UPLC BEH C18 (100 mm × 2.1 mm, 1.7 μm) in multiple reaction monitoring (MRM) mode and negative electrospray ionization (ESI) mode. The established UPLC-MS/MS method showed good linear correlation (r ≥ 0.9978), stability (-11.93 to 12.11%), precision (RSD < 14.63%), and recovery (76.43%-95.20%). The lower limit of quantification was 3.6 ng/mL for Rb1, 1.6 ng/mL for Rb2, 1.2 ng/mL for Rd, and 2.5 ng/mL for Re. This validated method was successfully employed to investigate the pharmacokinetics of the four ginsenosides in rat plasma after oral administration of PQ-AG and PQ extracts. The results revealed the pharmacokinetic profiles of PQ-AG drug pair and clarified that AG played a critical role in stimulating the absorption of active ginsenosides in PQ. Collectively, our findings provided valid and reliable evidence for the rational use of PQ-AG in clinical practice.
Collapse
Affiliation(s)
- Hailong Xie
- College of Pharmacy, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin 150040, China
- College of Pharmacy, Harbin University of Commerce, 138 Tongda Road, Harbin 150076, China
| | - Dongxue Wang
- College of Pharmacy, Harbin University of Commerce, 138 Tongda Road, Harbin 150076, China
| | - Wenjun Zhang
- College of Pharmacy, Harbin University of Commerce, 138 Tongda Road, Harbin 150076, China
| | - Xinjia Yan
- College of Pharmacy, Harbin University of Commerce, 138 Tongda Road, Harbin 150076, China
| | - Ying Zhao
- College of Pharmacy, Harbin University of Commerce, 138 Tongda Road, Harbin 150076, China
| |
Collapse
|
18
|
Banga S, Kumar V, Suri S, Kaushal M, Prasad R, Kaur S. Nutraceutical Potential of Diet Drinks: A Critical Review on Components, Health Effects, and Consumer Safety. J Am Coll Nutr 2019; 39:272-286. [DOI: 10.1080/07315724.2019.1642811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Shareen Banga
- Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Vikas Kumar
- Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Sheenam Suri
- Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Manisha Kaushal
- Department of Food Science and Technology, Dr. Y. S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Rasane Prasad
- Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Sawinder Kaur
- Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
19
|
Lin H, Zhu H, Tan J, Wang C, Dong Q, Wu F, Wang H, Liu J, Li P, Liu J. Comprehensive Investigation on Metabolites of Wild-Simulated American Ginseng Root Based on Ultra-High-Performance Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:5801-5819. [PMID: 31050418 DOI: 10.1021/acs.jafc.9b01581] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Aiming to evaluate the similarities and differences of the phytochemicals in different morphological regions of wild-simulated American ginseng (WsAG) root, the comprehensive metabolite profiling of main root (MR), branch root (BR), rhizome (RH), adventitious root (AR), and fibrous root (FR) was performed on the basis of ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry for the first time. First, in the screening analysis, a total of 128 shared compounds were identified or tentatively characterized. The results showed that these five parts were all rich in phytochemicals and contained similar structure types. Second, in the untargeted metabolomic study, it was found that there indeed existed differences between the MR&BR group, RH&AR group, and FR part when considering the contents of every ingredient. A total of 31 (12, 7, and 12 for MR&BR, RH&AR, and FR, respectively) potential chemical markers enabling the differentiation were discovered. This comprehensive phytochemical profile study revealed the structural diversity of secondary metabolites and the similar/different patterns in five morphological regions of WsAG root. It could provide chemical evidence for the rational application of different parts of WsAG root.
Collapse
|
20
|
Szczuka D, Nowak A, Zakłos-Szyda M, Kochan E, Szymańska G, Motyl I, Blasiak J. American Ginseng ( Panax quinquefolium L.) as a Source of Bioactive Phytochemicals with Pro-Health Properties. Nutrients 2019; 11:E1041. [PMID: 31075951 PMCID: PMC6567205 DOI: 10.3390/nu11051041] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 12/12/2022] Open
Abstract
Panax quinquefolium L. (American Ginseng, AG) is an herb characteristic for regions of North America and Asia. Due to its beneficial properties it has been extensively investigated for decades. Nowadays, it is one of the most commonly applied medical herbs worldwide. Active compounds of AG are ginsenosides, saponins of the glycosides group that are abundant in roots, leaves, stem, and fruits of the plant. Ginsenosides are suggested to be primarily responsible for health-beneficial effects of AG. AG acts on the nervous system; it was reported to improve the cognitive function in a mouse model of Alzheimer's disease, display anxiolytic activity, and neuroprotective effects against neuronal damage resulting from ischemic stroke in animals, demonstrate anxiolytic activity, and induce neuroprotective effects against neuronal damage in ischemic stroke in animals. Administration of AG leads to inhibition of hypertrophy in heart failure by regulation of reactive oxygen species (ROS) in mice as well as depletion of cardiac contractile function in rats. It also has an anti-diabetic and anti-obesity potential as it increases insulin sensitivity and inhibits formation of adipose tissue. AG displays anti-cancer effect by induction of apoptosis of cancer cells and reducing local inflammation. It exerts antimicrobial effects against several pathogenic strains of bacteria. Therefore, AG presents a high potential to induce beneficial health effects in humans and should be further explored to formulate precise nutritional recommendations, as well as to assess its value in prevention and therapy of some disorders, including cancer.
Collapse
Affiliation(s)
- Daria Szczuka
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland.
| | - Adriana Nowak
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland.
| | - Małgorzata Zakłos-Szyda
- Institute of Technical Biochemistry, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland.
| | - Ewa Kochan
- Pharmaceutical Biotechnology Department, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland.
| | - Grażyna Szymańska
- Pharmaceutical Biotechnology Department, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland.
| | - Ilona Motyl
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland.
| | - Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| |
Collapse
|
21
|
Lin H, Zhu H, Tan J, Wang H, Dong Q, Wu F, Liu Y, Li P, Liu J. Non-Targeted Metabolomic Analysis of Methanolic Extracts of Wild-Simulated and Field-Grown American Ginseng. Molecules 2019; 24:molecules24061053. [PMID: 30889792 PMCID: PMC6470646 DOI: 10.3390/molecules24061053] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 03/08/2019] [Accepted: 03/14/2019] [Indexed: 02/05/2023] Open
Abstract
Aiming at revealing the structural diversity of secondary metabolites and the different patterns in wild-simulated American ginseng (WsAG) and field-grown American ginseng (FgAG), a comprehensive and unique phytochemical profile study was carried out. In the screening analysis, a total of 121 shared compounds were characterized in FgAG and WsAG, respectively. The results showed that both of these two kinds of American ginseng were rich in natural components, and were similar in terms of the kinds of compound they contained. Furthermore, in non-targeted metabolomic analysis, when taking the contents of the constituents into account, it was found that there indeed existed quite a difference between FgAG and WsAG, and 22 robust known biomarkers enabling the differentiation were discovered. For WsAG, there were 12 potential biomarkers including two ocotillol-type saponins, two steroids, six damarane-type saponins, one oleanane-type saponins and one other compound. On the other hand, for FgAG, there were 10 potential biomarkers including two organic acids, six damarane-type saponins, one oleanane-type saponin, and one ursane. In a word, this study illustrated the similarities and differences between FgAG and WsAG, and provides a basis for explaining the effect of different growth environments on secondary metabolites.
Collapse
Affiliation(s)
- Hongqiang Lin
- Research Center of Natural Drug, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| | - Hailin Zhu
- Research Center of Natural Drug, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| | - Jing Tan
- Research Center of Natural Drug, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| | - Han Wang
- Research Center of Natural Drug, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| | - Qinghai Dong
- Research Center of Natural Drug, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| | - Fulin Wu
- Research Center of Natural Drug, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| | - Yunhe Liu
- Research Center of Natural Drug, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| | - Pingya Li
- Research Center of Natural Drug, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| | - Jinping Liu
- Research Center of Natural Drug, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| |
Collapse
|
22
|
Feinberg T, Wieland LS, Miller LE, Munir K, Pollin TI, Shuldiner AR, Amoils S, Gallagher L, Bahr-Robertson M, D'Adamo CR. Polyherbal dietary supplementation for prediabetic adults: study protocol for a randomized controlled trial. Trials 2019; 20:24. [PMID: 30616613 PMCID: PMC6323847 DOI: 10.1186/s13063-018-3032-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 11/01/2018] [Indexed: 12/15/2022] Open
Abstract
Background Prediabetes describes a state of hyperglycemia outside of normal limits that does not meet the criteria for diabetes diagnosis, is generally symptomless, and affects an estimated 38% of adults in the United States. Prediabetes typically precedes the diagnosis of type 2 diabetes, which accounts for increased morbidity and mortality. Although the use of dietary and herbal supplements is popular worldwide, and a variety of single herbal medicines have been examined for glycemic management, the potential of increasingly common polyherbal formulations to return glycemic parameters to normal ranges among adults with prediabetes remains largely unexplored. The purpose of this study is to evaluate the efficacy of a commercially available, polyherbal dietary supplement on glycemic and lipid parameters in prediabetic individuals. Methods In this multi-site, double-blinded, randomized controlled clinical trial, 40 participants with prediabetes will be randomized to either a daily oral polyherbal dietary supplement (GlucoSupreme™ Herbal; Designs for Health®, Suffield, CT, USA; containing cinnamon bark (Cinnamomum cassia), banaba leaf (Lagerstroemia speciosa standardized to 1% corosolic acid), kudzu root (Pueraria lobata standardized to 40% isoflavones), fenugreek seed (Trigonella foenum-graceum standardized to 60% saponins), gymnema leaf (Gymnema sylvestre standardized to 25% gymnemic acid), American ginseng root (Panax quinquefolius standardized to 5% ginsenosides), and berberine HCl derived from bark (Berberis aristata)) or placebo for 12 weeks. Short-, medium-, and comparatively long-term markers of glycemic control (blood glucose and fasting insulin, fructosamine, and glycated hemoglobin/A1c, respectively), and other glycemic parameters (GlycoMark, β-cell function, and insulin sensitivity/resistance) will be obtained. Lipid profile (total cholesterol, LDL, HDL, and triglycerides), inflammation (hs-CRP), progression to type 2 diabetes mellitus, as well as safety indices (ALT, AST) will be obtained. An intention-to-treat analysis will be used to assess changes in study outcomes. Discussion Treatment options for adults with prediabetes are currently limited. This study aims to evaluate the safety and efficacy of a commercially available dietary supplement in the popular, but as yet insufficiently studied, category of polyherbal formulas for the management of glycemic parameters and other biomarkers associated with prediabetes. Trial registration ClinicalTrials.gov, ID: NCT03388762. Retrospectively registered on 4 January 2018. Electronic supplementary material The online version of this article (10.1186/s13063-018-3032-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Termeh Feinberg
- University of Maryland School of Medicine Center for Integrative Medicine, Baltimore, MD, USA. .,Yale University School of Medicine Center for Medical Informatics, New Haven, CT, USA.
| | - L Susan Wieland
- University of Maryland School of Medicine Center for Integrative Medicine, Baltimore, MD, USA
| | | | - Kashif Munir
- University of Maryland School of Medicine Center for Diabetes and Endocrinology, Baltimore, MD, USA
| | - Toni I Pollin
- University of Maryland School of Medicine Department of Medicine, Baltimore, MD, USA
| | - Alan R Shuldiner
- University of Maryland School of Medicine Department of Medicine, Baltimore, MD, USA
| | - Steve Amoils
- Alliance Integrative Medicine, Cincinatti, OH, USA
| | | | - Mary Bahr-Robertson
- University of Maryland School of Medicine Center for Integrative Medicine, Baltimore, MD, USA
| | - Christopher R D'Adamo
- University of Maryland School of Medicine Center for Integrative Medicine, Baltimore, MD, USA
| |
Collapse
|
23
|
Karmazyn M, Gan XT. Ginseng for the treatment of diabetes and diabetes-related cardiovascular complications: a discussion of the evidence 1. Can J Physiol Pharmacol 2018; 97:265-276. [PMID: 30395481 DOI: 10.1139/cjpp-2018-0440] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder associated with elevated blood glucose levels due either to insufficient insulin production (type 1 DM) or to insulin resistance (type 2 DM). The incidence of DM around the world continues to rise dramatically with more than 400 million cases reported today. Among the most serious consequences of chronic DM are cardiovascular complications that can have deleterious effects. Although numerous treatment options are available, including both pharmacological and nonpharmacological, there is substantial emerging interest in the use of traditional medicines for the treatment of this condition and its complications. Among these is ginseng, a medicinal herb that belongs to the genus Panax and has been used for thousands of years as a medicinal agent especially in Asian cultures. There is emerging evidence from both animal and clinical studies that ginseng, ginseng constituents including ginsenosides, and ginseng-containing formulations can produce beneficial effects in terms of normalization of blood glucose levels and attenuation of cardiovascular complications through a multiplicity of mechanisms. Although more research is required, ginseng may offer a useful therapy for the treatment of diabetes as well as its complications.
Collapse
|
24
|
Xia YG, Song Y, Liang J, Guo XD, Yang BY, Kuang HX. Quality Analysis of American Ginseng Cultivated in Heilongjiang Using UPLC-ESI --MRM-MS with Chemometric Methods. Molecules 2018; 23:molecules23092396. [PMID: 30235827 PMCID: PMC6225424 DOI: 10.3390/molecules23092396] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/13/2018] [Accepted: 09/17/2018] [Indexed: 11/16/2022] Open
Abstract
American ginseng (Panax quinquefolium) has long been cultivated in China for the function food and medicine. Here, ultra-high performance liquid chromatography was coupled with electrospray ionization and triple quadrupole mass spectrometry (UPLC-ESI−-TQ-MS) for simultaneous detection of 22 ginsenosides in American ginseng cultivated in Mudanjiang district of Heilongjiang. The extraction conditions also were optimized by a Box Behnken design experiment. The optimized result was 31.8 mL/g as ratio of liquid to raw materials, 20.3 min of extraction time, and 235.0 W of extraction powers. The quantitative MS parameters for these 22 compounds were rapidly optimized by single factor experiments employing UPLC-ESI−-multiple reaction monitoring or multiple ion monitoring (MRM/MIM) scans. Furthermore, the established UPLC-ESI−-MRM-MS method showed good linear relationships (R2 > 0.99), repeatability (RSD < 3.86%), precision (RSD < 2.74%), and recovery (94–104%). This method determined 22 bioactive ginsenosides in different parts of the plant (main roots, hairy roots, rhizomes, leaves, and stems) and growth years (one year to four years) of P. quinquefolium. The highest total content of the 22 analytes was in the hairy roots (1.3 × 105 µg/g) followed by rhizomes (7.1 × 104 µg/g), main roots (6.5 × 104 µg/g), leaves (4.2 × 104 µg/g), and stems (2.4 × 104 µg/g). Finally, chemometric methods, hierarchical clustering analysis (HCA) and partial least squares discrimination analysis (PLS-DA), were successfully used to classify and differentiate American ginseng attributed to different growth years. The proposed UPLC-ESI−-MRM-MS coupled with HCA and PLS-DA methods was elucidated to be a simple and reliable method for quality evaluation of American ginseng.
Collapse
Affiliation(s)
- Yong-Gang Xia
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China.
| | - Yan Song
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China.
| | - Jun Liang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China.
| | - Xin-Dong Guo
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China.
| | - Bing-You Yang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China.
| | - Hai-Xue Kuang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China.
| |
Collapse
|
25
|
Shin KO, Choe SJ, Uchida Y, Kim I, Jeong Y, Park K. Ginsenoside Rb1 Enhances Keratinocyte Migration by a Sphingosine-1-Phosphate-Dependent Mechanism. J Med Food 2018; 21:1129-1136. [PMID: 30148701 DOI: 10.1089/jmf.2018.4246] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The cutaneous wound healing process is tightly regulated by a range of cellular responses, including migration. Sphingosine-1-phosphate (S1P) is a signaling lipid produced in keratinocytes (KC) and it is known to stimulate skin wound repair through increased KC migration. Of the multifunctional triterpene ginsenosides, Rb1 enhances cutaneous wound healing process by increasing KC migration, but cellular mechanisms responsible for the Rb1-mediated increase in KC migration are largely unknown. Therefore, we hypothesized that, and assessed whether, Rb1 could stimulate KC migration through S1P-dependent mechanisms. Rb1 significantly increases S1P production by regulating the activity of metabolic conversion enzymes associated with S1P generation and degradation, sphingosine kinase 1 (SPHK1) and S1P lyase, respectively, in parallel with enhanced KC migration. However, blockade of ceramide to S1P metabolic conversion using a specific inhibitor of SPHK1 attenuated the expected Rb1-mediated increase in KC migration. Furthermore, a pan-S1P receptor inhibitor pertussis toxin significantly attenuated Rb1-induced stimulation of KC migration. Moreover, the Rb1-induced increases in KC migration required S1P receptor(s)-mediated activation of ERK1/2 and NF-κB, leading to production of key cutaneous migrating proteins, matrix metalloproteinase (MMP)-2 and MMP-9. Taken together, the results show that Rb1 stimulates KC migration through an S1P→S1P receptor(s)→ERK1/2→NF-κB→MMP-2/-9 pathway. This research revealed a previously unidentified cellular mechanism for Rb1 in enhancing KC migration and pointing to a new therapeutic approach to stimulate the cutaneous wound healing process.
Collapse
Affiliation(s)
- Kyong-Oh Shin
- 1 Department of Food Science and Nutrition, and Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University , Chuncheon, Korea
| | - Sung Jay Choe
- 2 Department of Dermatology, Yonsei University Wonju College of Medicine , Wonju, Korea
| | - Yoshikazu Uchida
- 3 Department of Dermatology, School of Medicine, University of California , San Francisco, San Francisco, California, USA
- 4 Northern California Institute for Research and Education , Veterans Affairs Medical Center, San Francisco, California, USA
| | - Inyong Kim
- 5 Research Center for Industrialization of Natural Nutraceuticals, Dankook University , Cheonan, Korea
| | - Yoonhwa Jeong
- 5 Research Center for Industrialization of Natural Nutraceuticals, Dankook University , Cheonan, Korea
- 6 Department of Food Science and Nutrition, Dankook University , Cheonan, Korea
| | - Kyungho Park
- 1 Department of Food Science and Nutrition, and Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University , Chuncheon, Korea
| |
Collapse
|
26
|
Bharti SK, Krishnan S, Kumar A, Kumar A. Antidiabetic phytoconstituents and their mode of action on metabolic pathways. Ther Adv Endocrinol Metab 2018; 9:81-100. [PMID: 29492244 PMCID: PMC5813859 DOI: 10.1177/2042018818755019] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/01/2017] [Indexed: 12/25/2022] Open
Abstract
Diabetes Mellitus, characterized by persistent hyperglycaemia, is a heterogeneous group of disorders of multiple aetiologies. It affects the human body at multiple organ levels thus making it difficult to follow a particular line of the treatment protocol and requires a multimodal approach. The increasing medical burden on patients with diabetes-related complications results in an enormous economic burden, which could severely impair global economic growth in the near future. This shows that today's healthcare system has conventionally been poorly equipped towards confronting the mounting impact of diabetes on a global scale and demands an urgent need for newer and better options. The overall challenge of this field of diabetes treatment is to identify the individualized factors that can lead to improved glycaemic control. Plants are traditionally used worldwide as remedies for diabetes healing. They synthesize a diverse array of biologically active compounds having antidiabetic properties. This review is an endeavour to document the present armamentarium of antidiabetic herbal drug discovery and developments, highlighting mechanism-based antidiabetic properties of over 300 different phytoconstituents of various chemical categories from about 100 different plants modulating different metabolic pathways such as glycolysis, Krebs cycle, gluconeogenesis, glycogen synthesis and degradation, cholesterol synthesis, carbohydrate metabolism as well as peroxisome proliferator activated receptor activation, dipeptidyl peptidase inhibition and free radical scavenging action. The aim is to provide a rich reservoir of pharmacologically established antidiabetic phytoconstituents with specific references to the novel, cost-effective interventions, which might be of relevance to other low-income and middle-income countries of the world.
Collapse
Affiliation(s)
| | | | - Ashwini Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, Chhattisgarh, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, GE Road, Raipur, Chhattisgarh, 492010, India
| |
Collapse
|
27
|
Efficacy and safety of American ginseng (Panax quinquefolius L.) extract on glycemic control and cardiovascular risk factors in individuals with type 2 diabetes: a double-blind, randomized, cross-over clinical trial. Eur J Nutr 2018; 58:1237-1245. [PMID: 29478187 DOI: 10.1007/s00394-018-1642-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 02/17/2018] [Indexed: 12/13/2022]
Abstract
PURPOSE Despite the lack of evidence, a growing number of people are using herbal medicine to attenuate the burden of diabetes. There is an urgent need to investigate the clinical potential of herbs. Preliminary observations suggest that American ginseng (Panax quinquefolius [AG]) may reduce postprandial glycemia. Thus, we aimed to evaluate the efficacy and safety of AG as an add-on therapy in individuals with type 2 diabetes (T2DM) controlled by conventional treatment. METHODS 24 individuals living with T2DM completed the study (F:M = 11:13; age = 64 ± 7 year; BMI = 27.8 ± 4.6 kg/m2; HbA1c = 7.1 ± 1.2%). Utilizing a double-blind, cross-over design, the participants were randomized to receive either 1 g/meal (3 g/day) of AG extract or placebo for 8 weeks while maintaining their original treatment. Following a ≥ 4-week washout period, the participants were crossed over to the opposite 8-week treatment arm. The primary objective was HbA1c, and secondary endpoints included fasting blood glucose and insulin, blood pressure, plasma lipids, serum nitrates/nitrites (NOx), and plasominogen-activating factor-1 (PAI-1). Safety parameters included liver and kidney function. RESULTS Compared to placebo, AG significantly reduced HbA1c (- 0.29%; p = 0.041) and fasting blood glucose (- 0.71 mmol/L; p = 0.008). Furthermore, AG lowered systolic blood pressure (- 5.6 ± 2.7 mmHg; p < 0.001), increased NOx (+ 1.85 ± 2.13 µmol/L; p < 0.03), and produced a mean percent end-difference of - 12.3 ± 3.9% in LDL-C and - 13.9 ± 5.8% in LDL-C/HDL. The safety profiles were unaffected. CONCLUSIONS AG extract added to conventional treatment provided an effective and safe adjunct in the management of T2DM. Larger studies using physiologically standardized ginseng preparations are warranted to substantiate the present findings and to demonstrate therapeutic effectiveness of AG. CLINICALTRIALS. GOV IDENTIFIER NCT02923453.
Collapse
|
28
|
Dong H, Ma J, Li T, Xiao Y, Zheng N, Liu J, Gao Y, Shao J, Jia L. Global deregulation of ginseng products may be a safety hazard to warfarin takers: solid evidence of ginseng-warfarin interaction. Sci Rep 2017; 7:5813. [PMID: 28725042 PMCID: PMC5517508 DOI: 10.1038/s41598-017-05825-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 06/05/2017] [Indexed: 12/20/2022] Open
Abstract
Recent global deregulation of ginseng as the table food raises our concern about the possible ginseng-warfarin interaction that could be life-threatening to patients who take warfarin for preventing fatal strokes and thromboembolism while using ginseng products for bioenergy recovery. Here we show that quality-control ginsenosides, extracted from ginseng and containing its major active ingredients, produce dose- and time-dependent antagonism in rats against warfarin's anti-coagulation assessed by INR and rat thrombosis model. The interactions between ginsenosides and warfarin on thrombosis, pharmacokinetics, activities of coagulation factors and liver cytochrome P450 isomers are determined by using thrombosis analyzer, UPLC/MS/MS, ELISA and real-time PCR, respectively. The antagonism correlates well with the related pharmacokinetic interaction showing that the blood plateaus of warfarin reached by one-week warfarin administration are significantly reduced after three-week co-administration of warfarin with ginsenosides while 7-hydroxywarfarin is increased. The one-week warfarin and three-week warfarin-ginsenosides regimen result in restoring the suppressed levels by warfarin of the coagulating factors II, VII and protein Z, and significantly enhance activities of P450 3A4 and 2C9 that metabolize warfarin. The present study, for the first time, provides the solid evidence to demonstrate the warfarin-ginsenoside interaction, and warns the warfarin users and regulation authorities of the dangerous interaction.
Collapse
Affiliation(s)
- Haiyan Dong
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, 350116, China
| | - Ji Ma
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, 350116, China
| | - Tao Li
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, 350116, China
| | - Yingying Xiao
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, 350116, China
| | - Ning Zheng
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, 350116, China
| | - Jian Liu
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, 350116, China
| | - Yu Gao
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, 350116, China
| | - Jingwei Shao
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, 350116, China
| | - Lee Jia
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, China.
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, 350116, China.
| |
Collapse
|
29
|
Tabandeh MR, Hosseini SA, Hosseini M. Ginsenoside Rb1 exerts antidiabetic action on C2C12 muscle cells by leptin receptor signaling pathway. J Recept Signal Transduct Res 2017; 37:370-378. [PMID: 28554304 DOI: 10.1080/10799893.2017.1286676] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
CONTEXT Ginsenoside Rb1 improves insulin sensitivity and glucose uptake in muscle cells via different signaling pathways; however, it is not clear that it has any effect on leptin signaling in skeletal muscle. OBJECTIVES The aim of this study was to investigate the effect of ginsenoside Rb1 on leptin receptors expression and main signaling pathways of leptin (STAT3, PI3 kinase and ERK kinase) in C2C12 skeletal muscle cells. MATERIALS AND METHODS C2C12 myotubes were incubated with various concentrations of Rb1 (0.1, 1 and 10 μM) for different incubation times (1-12 h). Leptin receptors expression and GLUT-4 translocation were analyzed using realtime PCR and western blot analyses, respectively. PI3 and ERK kinases were blocked using their specific inhibitors (wortmannin and PD98059) in the presence and absence of RB1 to determine the main signaling pathway related to leptin receptor activation in C2C12 cells. RESULTS Rb1 could maximally stimulate both leptin receptors (OBRa and OBRb) mRNA and protein expression and phosphorylation of STAT3, PI3K and ERK2 in C2C12 myotubes at 10 μM for 3 h. Rb1 induced GLUT4 translocation was inhibited by the silencing of OBRb mRNA, demonstrated that glucose uptake was mediated via leptin receptor activation. GLUT4 recruitment to the cell surface induced by Rb1 was inhibited by wortmannin, an inhibitor of PI3K in combination with OBRb siRNA, but not by PD98059 an ERK2 kinase-1 inhibitor, indicating that GLUT4 translocation induced by Rb1 was associated with the leptin receptor upregulation and subsequent activation of PI3K. CONCLUSIONS Our results suggest that Rb1 promote translocation of GLUT4 by upregulation of leptin receptors and activation of PI3K.
Collapse
Affiliation(s)
- Mohammad Reza Tabandeh
- a Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine , Shahid Chamran University of Ahvaz , Ahvaz , Iran
| | - Seyed Ahmad Hosseini
- b Cellular and Molecular Research Center (CMRC), Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences (AJUMS) , Ahvaz , Iran
| | - Maryam Hosseini
- a Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine , Shahid Chamran University of Ahvaz , Ahvaz , Iran
| |
Collapse
|
30
|
Choi HS, Kim S, Kim MJ, Kim MS, Kim J, Park CW, Seo D, Shin SS, Oh SW. Efficacy and safety of Panax ginseng berry extract on glycemic control: A 12-wk randomized, double-blind, and placebo-controlled clinical trial. J Ginseng Res 2017; 42:90-97. [PMID: 29348727 PMCID: PMC5766700 DOI: 10.1016/j.jgr.2017.01.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 12/18/2016] [Accepted: 01/04/2017] [Indexed: 12/12/2022] Open
Abstract
Background Antihyperglycemic effects of Panax ginseng berry have never been explored in humans. The aims of this study were to assess the efficacy and safety of a 12-wk treatment with ginseng berry extract in participants with a fasting glucose level between 100 mg/dL and 140 mg/dL. Methods This study was a 12-wk, randomized, double-blind, placebo-controlled clinical trial. A total of 72 participants were randomly allocated to two groups of either ginseng berry extract or placebo, and 63 participants completed the study. The parameters related to glucose metabolism were assessed. Results Although the present study failed to show significant antihyperglycemic effects of ginseng berry extract on the parameters related to blood glucose and lipid metabolism in the total study population, it demonstrated that ginseng berry extract could significantly decrease serum concentration of fasting glucose by 3.7% (p = 0.035), postprandial glucose at 60 min during 75 g oral glucose tolerance test by 10.7% (p = 0.006), and the area under the curve for glucose by 7.7% (p = 0.024) in those with fasting glucose level of 110 mg/dL or higher, while the placebo group did not exhibit a statistically significant decrease. Safety profiles were not different between the two groups. Conclusion The present study suggests that ginseng berry extract has the potential to improve glucose metabolism in human, especially in those with fasting glucose level of 110 mg/dL or higher. For a more meaningful benefit, further research in people with higher blood glucose levels is required.
Collapse
Affiliation(s)
- Han Seok Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Dongguk University Ilsan Hospital, Goyang, Gyeonggi, Republic of Korea
| | - Sunmi Kim
- Research and Development Center, Amorepacific Corporation, Yongin, Gyeonggi, Republic of Korea
| | - Min Jung Kim
- Nutrition and Metabolism Research Group, Korea Food Research Institute, Seongnam, Gyeonggi-do, Republic of Korea
| | - Myung-Sunny Kim
- Nutrition and Metabolism Research Group, Korea Food Research Institute, Seongnam, Gyeonggi-do, Republic of Korea
| | - Juewon Kim
- Research and Development Center, Amorepacific Corporation, Yongin, Gyeonggi, Republic of Korea
| | - Chan-Woong Park
- Research and Development Center, Amorepacific Corporation, Yongin, Gyeonggi, Republic of Korea
| | - Daebang Seo
- Research and Development Center, Amorepacific Corporation, Yongin, Gyeonggi, Republic of Korea
| | - Song Seok Shin
- Research and Development Center, Amorepacific Corporation, Yongin, Gyeonggi, Republic of Korea
| | - Sang Woo Oh
- Department of Family Medicine, Dongguk University Ilsan Hospital, Goyang, Gyeonggi, Republic of Korea
| |
Collapse
|
31
|
Yang L, Yu QT, Ge YZ, Zhang WS, Fan Y, Ma CW, Liu Q, Qi LW. Distinct urine metabolome after Asian ginseng and American ginseng intervention based on GC-MS metabolomics approach. Sci Rep 2016; 6:39045. [PMID: 27991533 PMCID: PMC5171912 DOI: 10.1038/srep39045] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 11/17/2016] [Indexed: 12/22/2022] Open
Abstract
Ginseng occupies a prominent position in the list of best-selling natural products worldwide. Asian ginseng (Panax ginseng) and American ginseng (Panax quinquefolius) show different properties and medicinal applications in pharmacology, even though the main active constituents of them are both thought to be ginsenosides. Metabolomics is a promising method to profile entire endogenous metabolites and monitor their fluctuations related to exogenous stimulus. Herein, an untargeted metabolomics approach was applied to study the overall urine metabolic differences between Asian ginseng and American ginseng in mice. Metabolomics analyses were performed using gas chromatography-mass spectrometry (GC-MS) together with multivariate statistical data analysis. A total of 21 metabolites related to D-glutamine and D-glutamate metabolism, glutathione metabolism, TCA cycle and glyoxylate and dicarboxylate metabolism, differed significantly under the Asian ginseng treatment; 34 metabolites mainly associated with glyoxylate and dicarboxylate metabolism, TCA cycle and taurine and hypotaurine metabolism, were significantly altered after American ginseng treatment. Urinary metabolomics reveal that Asian ginseng and American ginseng can benefit organism physiological and biological functions via regulating multiple metabolic pathways. The important pathways identified from Asian ginseng and American ginseng can also help to explore new therapeutic effects or action targets so as to broad application of these two ginsengs.
Collapse
Affiliation(s)
- Liu Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 210009, P. R. China
| | - Qing-Tao Yu
- Research &Development Centre, Infinitus (China) Company Ltd, Guangzhou 510663, China
| | - Ya-Zhong Ge
- Research &Development Centre, Infinitus (China) Company Ltd, Guangzhou 510663, China
| | - Wen-Song Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 210009, P. R. China
| | - Yong Fan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 210009, P. R. China
| | - Chung-Wah Ma
- Research &Development Centre, Infinitus (China) Company Ltd, Guangzhou 510663, China
| | - Qun Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 210009, P. R. China
| | - Lian-Wen Qi
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 210009, P. R. China
| |
Collapse
|
32
|
Liang S, Xu XW, Zhao XF, Hou ZG, Wang XH, Lu ZB. Two new fatty acids esters were detected in ginseng stems by the application of azoxystrobin and the increasing of antioxidant enzyme activity and ginsenosides content. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2016; 134:63-72. [PMID: 27914541 DOI: 10.1016/j.pestbp.2016.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 04/15/2016] [Accepted: 04/18/2016] [Indexed: 06/06/2023]
Abstract
Panax ginseng C.A. Meyer is a valuable herb in China that has also gained popularity in the West because of its pharmacological properties. The constituents isolated and characterized in ginseng stems include ginsenosides, fatty acids, amino acids, volatile oils, and polysaccharides. In this study, the effects of fungicide azoxystrobin applied on antioxidant enzyme activity and ginsenosides content in ginseng stems was studied by using Panax ginseng C. A. Mey. cv. (the cultivar of Ermaya) under natural environmental conditions. The azoxystrobin formulation (25% SC) was sprayed three times on ginseng plants at different doses (150ga.i./ha and 225ga.i./ha), respectively. Two new fatty acids esters (ethyl linoleate and methyl linolenate) were firstly detected in ginseng stems by the application of azoxystrobin as foliar spray. The results indicated that activities of enzymatic antioxidants, the content of ginsenosides and two new fatty acids esters in ginseng stems in azoxystrobin-treated plants were increased. Azoxystrobin treatments to ginseng plants at all growth stages suggest that the azoxystrobin-induced delay of senescence is due to an enhanced antioxidant enzyme activity protecting the plants from harmful active oxygen species (AOS). The activity of superoxide dismutase (SOD) in azoxystrobin-treated plants was about 1-3 times higher than that in untreated plants. And the effects was more significant (P=0.05) when azoxystrobin was applied at dose of 225ga.i./ha. This work suggests that azoxystrobin plays an important role in delaying of senescence by changing physiological and biochemical indicators and increasing ginsenosides content in ginseng stems.
Collapse
Affiliation(s)
- Shuang Liang
- College of Resources and Environment Science, Jilin Agricultural University, Changchun, Jilin, 130118, PR China
| | - Xuan-Wei Xu
- Ginseng and Antler Products Testing Center of the Ministry of Agricultural PRC, Jilin Agricultural University, Changchun, Jilin 130118, PR China
| | - Xiao-Feng Zhao
- College of Resources and Environment Science, Jilin Agricultural University, Changchun, Jilin, 130118, PR China
| | - Zhi-Guang Hou
- College of Resources and Environment Science, Jilin Agricultural University, Changchun, Jilin, 130118, PR China
| | - Xin-Hong Wang
- College of Resources and Environment Science, Jilin Agricultural University, Changchun, Jilin, 130118, PR China
| | - Zhong-Bin Lu
- College of Resources and Environment Science, Jilin Agricultural University, Changchun, Jilin, 130118, PR China
| |
Collapse
|
33
|
Kim MJ, Koo YD, Kim M, Lim S, Park YJ, Chung SS, Jang HC, Park KS. Rg3 Improves Mitochondrial Function and the Expression of Key Genes Involved in Mitochondrial Biogenesis in C2C12 Myotubes. Diabetes Metab J 2016; 40:406-413. [PMID: 27535645 PMCID: PMC5069397 DOI: 10.4093/dmj.2016.40.5.406] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 01/04/2016] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Panax ginseng has glucose-lowering effects, some of which are associated with the improvement in insulin resistance in skeletal muscle. Because mitochondria play a pivotal role in the insulin resistance of skeletal muscle, we investigated the effects of the ginsenoside Rg3, one of the active components of P. ginseng, on mitochondrial function and biogenesis in C2C12 myotubes. METHODS C2C12 myotubes were treated with Rg3 for 24 hours. Insulin signaling pathway proteins were examined by Western blot. Cellular adenosine triphosphate (ATP) levels and the oxygen consumption rate were measured. The protein or mRNA levels of mitochondrial complexes were evaluated by Western blot and quantitative reverse transcription polymerase chain reaction analysis. RESULTS Rg3 treatment to C2C12 cells activated the insulin signaling pathway proteins, insulin receptor substrate-1 and Akt. Rg3 increased ATP production and the oxygen consumption rate, suggesting improved mitochondrial function. Rg3 increased the expression of peroxisome proliferator-activated receptor γ coactivator 1α, nuclear respiratory factor 1, and mitochondrial transcription factor, which are transcription factors related to mitochondrial biogenesis. Subsequent increased expression of mitochondrial complex IV and V was also observed. CONCLUSION Our results suggest that Rg3 improves mitochondrial function and the expression of key genes involved in mitochondrial biogenesis, leading to an improvement in insulin resistance in skeletal muscle. Rg3 may have the potential to be developed as an anti-hyperglycemic agent.
Collapse
Affiliation(s)
- Min Joo Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Korea Cancer Center Hospital, Seoul, Korea
| | - Young Do Koo
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea
| | - Min Kim
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea
| | - Soo Lim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Young Joo Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Sung Soo Chung
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Biomedical Research Institute and Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Hak C Jang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Kyong Soo Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
34
|
Ebrahimi E, Shirali S, Afrisham R. Effect and Mechanism of Herbal Ingredients in Improving Diabetes Mellitus Complications. Jundishapur J Nat Pharm Prod 2016. [DOI: 10.17795/jjnpp-31657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
35
|
Ebrahimi E, Shirali S, Afrisham R. Effect and Mechanism of Herbal Ingredients in Improving Diabetes Mellitus Complications. Jundishapur J Nat Pharm Prod 2016; 12. [DOI: 10.5812/jjnpp.31657] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2025] Open
|
36
|
Yilmaz Z, Piracha F, Anderson L, Mazzola N. Supplements for Diabetes Mellitus: A Review of the Literature. J Pharm Pract 2016; 30:631-638. [PMID: 27619931 DOI: 10.1177/0897190016663070] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The primary approach to controlling diabetes involves diet and lifestyle modification combined with pharmacologic interventions. Patients who are interested in exploring dietary supplements in the management of diabetes may have questions about which supplement to choose and whether any issues will arise with their current medication regimen. After reading this review, the pharmacist should be able to identify supplements that may provide benefit to improve diabetes management, understand what potential harm to the patient may occur, and be able to assist the patient in choosing high-quality supplements. This review will focus on the safety and efficacy data surrounding nicotinamide, ginseng, fenugreek, vitamin D, chromium, and cinnamon. These supplements are commonly listed in general circulation periodicals with claims to improve blood sugar management. Efficacy data showed a modest decrease in fasting plasma glucose of -0.96 mmol/dL (-17.29 mg/dL) for fenugreek and -24.59 mg/dL for cinnamon. It remains to be seen whether supplementation with these products can affect outcomes such as morbidity and mortality. Despite many studies being available, the majority lack uniformity across multiple dimensions, including varying participant characteristics, inconsistent formulations of supplement and dose, and differing study durations. This, coupled with variation in quality and purity of commercially available products, prevents universal recommendation for use in diabetes management.
Collapse
Affiliation(s)
- Zera Yilmaz
- 1 Memorial Sloan Kettering Cancer Center, Outpatient Pharmacy Department, New York, NY, USA
| | - Fawad Piracha
- 2 College of Pharmacy and Health Sciences, St John's University, Queens, NY, USA
| | - Leeann Anderson
- 2 College of Pharmacy and Health Sciences, St John's University, Queens, NY, USA
| | - Nissa Mazzola
- 2 College of Pharmacy and Health Sciences, St John's University, Queens, NY, USA
| |
Collapse
|
37
|
Guo M, Zi MJ, Xi RX, Yang QN, Bai RN, Zhang YS, Wang YH, Wang PL, Shi DZ. Effect of Xinyue capsules on patients with coronary heart disease after percutaneous coronary intervention: study protocol for a randomized controlled trial. Trials 2016; 17:412. [PMID: 27538952 PMCID: PMC4991005 DOI: 10.1186/s13063-016-1531-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/29/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The risk of cardiovascular events remains high in patients with coronary heart disease (CHD) after successful percutaneous coronary intervention (PCI). Panax quinquefolius saponin, a major component of Xinyue capsule, has been used to treat patients with CHD. The aim of this study is to evaluate the efficacy and safety of Xinyue capsules in patients with CHD after PCI. METHODS/DESIGN This study is a multicenter, placebo-controlled, double-blind, randomized controlled clinical trial. A total of 1100 participants are randomly allocated to two groups: the intervention group and a placebo group. The intervention group receives Xinyue capsules plus conventional treatment, and the placebo group receives placebo capsules plus conventional treatment. The patients receive either Xinyue or placebo capsules three times daily (1.8 g/day) for up to 24 weeks. The primary outcome measure is the time from randomization to the first occurrence of major adverse cardiovascular events. The secondary outcome measure is the time from randomization to the first occurrence of stroke, pulmonary embolism, and peripheral vascular events, as well as death due to any cause. All outcome measures will be assessed at 12, 24, 36, and 48 weeks after randomization. Adverse events will be monitored during the trial. DISCUSSION The aim of this study is to evaluate the effects of Xinyue capsules on patients with CHD after interventional treatment. The results of this trial will provide critical evidence regarding Chinese herbal medicine treatment for CHD. TRIAL REGISTRATION Chinese Clinical Trials Registry identifier ChiCTR-IPR-14005475. Registered on 10 November 2014.
Collapse
Affiliation(s)
- Ming Guo
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, 1 Xiyuan Caochang, Haidian District, Beijing, 100091 China
| | - Ming-jie Zi
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, 1 Xiyuan Caochang, Haidian District, Beijing, 100091 China
| | - Rui-xi Xi
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, 1 Xiyuan Caochang, Haidian District, Beijing, 100091 China
- Department of Medicine, Jilin Jilin Yisheng Pharmaceutical Co., Ltd., 17 Wen Hua Dong Lu Road, Ji’an, 134200 China
| | - Qiao-ning Yang
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, 1 Xiyuan Caochang, Haidian District, Beijing, 100091 China
| | - Rui-na Bai
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, 1 Xiyuan Caochang, Haidian District, Beijing, 100091 China
| | - Yi-sheng Zhang
- Department of Medicine, Jilin Jilin Yisheng Pharmaceutical Co., Ltd., 17 Wen Hua Dong Lu Road, Ji’an, 134200 China
| | - Yu-hua Wang
- Department of Medicine, Jilin Jilin Yisheng Pharmaceutical Co., Ltd., 17 Wen Hua Dong Lu Road, Ji’an, 134200 China
| | - Pei-li Wang
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, 1 Xiyuan Caochang, Haidian District, Beijing, 100091 China
| | - Da-zhuo Shi
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, 1 Xiyuan Caochang, Haidian District, Beijing, 100091 China
| |
Collapse
|
38
|
The inhibition of α-glycosidase and protein tyrosine phosphatase 1B (PTP1B) activities by ginsenosides from Panax ginseng C.A. Meyer and simultaneous determination by HPLC-ELSD. J Funct Foods 2016. [DOI: 10.1016/j.jff.2015.12.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
39
|
Gui QF, Xu ZR, Xu KY, Yang YM. The Efficacy of Ginseng-Related Therapies in Type 2 Diabetes Mellitus: An Updated Systematic Review and Meta-analysis. Medicine (Baltimore) 2016; 95:e2584. [PMID: 26871778 PMCID: PMC4753873 DOI: 10.1097/md.0000000000002584] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Few randomized clinical trials have evaluated the efficacy of ginseng in patients with type 2 diabetes mellitus (T2DM). The current meta-analysis evaluated the ginseng-induced improvement in glucose control and insulin sensitivity in patients with type-2 diabetes or impaired glucose tolerance.Randomized clinical trials comparing ginseng supplementation versus control, in patients with T2DM or impaired glucose tolerance, were hand-searched from Medline, Cochrane, and Google Scholar databases by 2 independent reviewers using the terms "type 2 diabetes/diabetes/diabetic, impaired glucose tolerance, and ginseng/ginsenoside(s)." The primary outcome analyzed was the change in HbA1c, whereas the secondary outcomes included fasting glucose, postprandial glucose, fasting insulin, postprandial insulin, insulin resistance Homeostatic Model Assessment of Insulin Resistance (HOMA-IR), triglycerides, total cholesterol, low density lipoprotein (LDL), and high density lipoprotein (HDL).Of the 141 studies identified, 8 studies were chosen for the current meta-analysis. The average number of patients, age, and sex distribution among the groups were comparable. Results reveal no significant difference in HbA1c levels between the ginseng supplementation and the control groups (pooled standardized difference in means = -0.148, 95% CI: -0.637 to 0.228, P = 0.355). Ginseng supplementation improved fasting glucose, postprandial insulin, and HOMA-IR levels, though no difference in postprandial glucose or fasting insulin was observed among the groups. Similarly, triglycerides, total cholesterol, and LDL levels showed significant difference between the treatment groups, while no difference in HDL was seen. In addition, ginseng-related therapy was ineffective in decreasing the fasting glucose levels in patients treated with oral hypoglycemic agents or insulin.The present results establish the benefit of ginseng supplementation in improving glucose control and insulin sensitivity in patients with T2DM or impaired glucose intolerance.
Collapse
Affiliation(s)
- Qi-Feng Gui
- From the Department of Geriatrics, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | | | | | | |
Collapse
|
40
|
Pesticide Residue Rapid Extraction from Ginseng Tea Using a Modified Luke Method for GC–MS. FOOD ANAL METHOD 2016. [DOI: 10.1007/s12161-016-0400-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
41
|
Wang Y, Choi HK, Brinckmann JA, Jiang X, Huang L. Chemical analysis of Panax quinquefolius (North American ginseng): A review. J Chromatogr A 2015; 1426:1-15. [DOI: 10.1016/j.chroma.2015.11.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 11/01/2015] [Accepted: 11/02/2015] [Indexed: 11/30/2022]
|
42
|
Wang CW, Su SC, Huang SF, Huang YC, Chan FN, Kuo YH, Hung MW, Lin HC, Chang WL, Chang TC. An Essential Role of cAMP Response Element Binding Protein in Ginsenoside Rg1-Mediated Inhibition of Na+/Glucose Cotransporter 1 Gene Expression. Mol Pharmacol 2015; 88:1072-83. [PMID: 26429938 DOI: 10.1124/mol.114.097352] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 09/23/2015] [Indexed: 02/14/2025] Open
Abstract
The Na(+)/glucose cotransporter 1 (SGLT1) is responsible for glucose uptake in intestinal epithelial cells. It has been shown that the intestinal SGLT1 level is significantly increased in diabetic individuals and positively correlated with the pathogenesis of diabetes. The development of targeted therapeutics that can reduce the intestinal SGLT1 expression level is, therefore, important. In this study, we showed that ginsenoside Rg1 effectively decreased intestinal glucose uptake through inhibition of SGLT1 gene expression in vivo and in vitro. Transient transfection analysis of the SGLT1 promoter revealed an essential cAMP response element (CRE) that confers the Rg1-mediated inhibition of SGLT1 gene expression. Chromatin immunoprecipitation assay and targeted CRE-binding protein (CREB) silencing demonstrated that Rg1 reduced the promoter binding of CREB and CREB binding protein associated with an inactivated chromatin status. In addition, further studies showed that the epidermal growth factor receptor (EGFR) signaling pathway also plays an essential role in the inhibitory effect of Rg1; taken together, our study demonstrates the involvement of the EGFR-CREB signaling pathway in the Rg1-mediated downregulation of SGLT1 expression, which offers a potential strategy in the development of antihyperglycemic and antidiabetic treatments.
Collapse
Affiliation(s)
- Chun-Wen Wang
- Graduate Institute of Life Sciences (C.-W.W., T.-C.C.), Department of Biochemistry (S.-C.S., S.-F.H., F.-N.C., Y.-H.K., T.-C.C.), Institute of Preventive Medicine (Y.-C.H.), and School of Pharmacy, National Defense Medical Center, Taipei, Taiwan, Republic of China (H.-C.L., W.-L.C.); Department of Research and Education, Veteran General Hospital, Taipei, Taiwan, Republic of China (M.-W.H.); Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan, Republic of China (T.-C.C.); and Department of Biotechnology, Asia University, Taichung, Taiwan, Republic of China (T.-C.C.)
| | - Shih-Chieh Su
- Graduate Institute of Life Sciences (C.-W.W., T.-C.C.), Department of Biochemistry (S.-C.S., S.-F.H., F.-N.C., Y.-H.K., T.-C.C.), Institute of Preventive Medicine (Y.-C.H.), and School of Pharmacy, National Defense Medical Center, Taipei, Taiwan, Republic of China (H.-C.L., W.-L.C.); Department of Research and Education, Veteran General Hospital, Taipei, Taiwan, Republic of China (M.-W.H.); Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan, Republic of China (T.-C.C.); and Department of Biotechnology, Asia University, Taichung, Taiwan, Republic of China (T.-C.C.)
| | - Shu-Fen Huang
- Graduate Institute of Life Sciences (C.-W.W., T.-C.C.), Department of Biochemistry (S.-C.S., S.-F.H., F.-N.C., Y.-H.K., T.-C.C.), Institute of Preventive Medicine (Y.-C.H.), and School of Pharmacy, National Defense Medical Center, Taipei, Taiwan, Republic of China (H.-C.L., W.-L.C.); Department of Research and Education, Veteran General Hospital, Taipei, Taiwan, Republic of China (M.-W.H.); Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan, Republic of China (T.-C.C.); and Department of Biotechnology, Asia University, Taichung, Taiwan, Republic of China (T.-C.C.)
| | - Yu-Chuan Huang
- Graduate Institute of Life Sciences (C.-W.W., T.-C.C.), Department of Biochemistry (S.-C.S., S.-F.H., F.-N.C., Y.-H.K., T.-C.C.), Institute of Preventive Medicine (Y.-C.H.), and School of Pharmacy, National Defense Medical Center, Taipei, Taiwan, Republic of China (H.-C.L., W.-L.C.); Department of Research and Education, Veteran General Hospital, Taipei, Taiwan, Republic of China (M.-W.H.); Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan, Republic of China (T.-C.C.); and Department of Biotechnology, Asia University, Taichung, Taiwan, Republic of China (T.-C.C.)
| | - Fang-Na Chan
- Graduate Institute of Life Sciences (C.-W.W., T.-C.C.), Department of Biochemistry (S.-C.S., S.-F.H., F.-N.C., Y.-H.K., T.-C.C.), Institute of Preventive Medicine (Y.-C.H.), and School of Pharmacy, National Defense Medical Center, Taipei, Taiwan, Republic of China (H.-C.L., W.-L.C.); Department of Research and Education, Veteran General Hospital, Taipei, Taiwan, Republic of China (M.-W.H.); Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan, Republic of China (T.-C.C.); and Department of Biotechnology, Asia University, Taichung, Taiwan, Republic of China (T.-C.C.)
| | - Yu-Han Kuo
- Graduate Institute of Life Sciences (C.-W.W., T.-C.C.), Department of Biochemistry (S.-C.S., S.-F.H., F.-N.C., Y.-H.K., T.-C.C.), Institute of Preventive Medicine (Y.-C.H.), and School of Pharmacy, National Defense Medical Center, Taipei, Taiwan, Republic of China (H.-C.L., W.-L.C.); Department of Research and Education, Veteran General Hospital, Taipei, Taiwan, Republic of China (M.-W.H.); Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan, Republic of China (T.-C.C.); and Department of Biotechnology, Asia University, Taichung, Taiwan, Republic of China (T.-C.C.)
| | - Mei-Whey Hung
- Graduate Institute of Life Sciences (C.-W.W., T.-C.C.), Department of Biochemistry (S.-C.S., S.-F.H., F.-N.C., Y.-H.K., T.-C.C.), Institute of Preventive Medicine (Y.-C.H.), and School of Pharmacy, National Defense Medical Center, Taipei, Taiwan, Republic of China (H.-C.L., W.-L.C.); Department of Research and Education, Veteran General Hospital, Taipei, Taiwan, Republic of China (M.-W.H.); Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan, Republic of China (T.-C.C.); and Department of Biotechnology, Asia University, Taichung, Taiwan, Republic of China (T.-C.C.)
| | - Hang-Chin Lin
- Graduate Institute of Life Sciences (C.-W.W., T.-C.C.), Department of Biochemistry (S.-C.S., S.-F.H., F.-N.C., Y.-H.K., T.-C.C.), Institute of Preventive Medicine (Y.-C.H.), and School of Pharmacy, National Defense Medical Center, Taipei, Taiwan, Republic of China (H.-C.L., W.-L.C.); Department of Research and Education, Veteran General Hospital, Taipei, Taiwan, Republic of China (M.-W.H.); Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan, Republic of China (T.-C.C.); and Department of Biotechnology, Asia University, Taichung, Taiwan, Republic of China (T.-C.C.)
| | - Wen-Liang Chang
- Graduate Institute of Life Sciences (C.-W.W., T.-C.C.), Department of Biochemistry (S.-C.S., S.-F.H., F.-N.C., Y.-H.K., T.-C.C.), Institute of Preventive Medicine (Y.-C.H.), and School of Pharmacy, National Defense Medical Center, Taipei, Taiwan, Republic of China (H.-C.L., W.-L.C.); Department of Research and Education, Veteran General Hospital, Taipei, Taiwan, Republic of China (M.-W.H.); Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan, Republic of China (T.-C.C.); and Department of Biotechnology, Asia University, Taichung, Taiwan, Republic of China (T.-C.C.).
| | - Tsu-Chung Chang
- Graduate Institute of Life Sciences (C.-W.W., T.-C.C.), Department of Biochemistry (S.-C.S., S.-F.H., F.-N.C., Y.-H.K., T.-C.C.), Institute of Preventive Medicine (Y.-C.H.), and School of Pharmacy, National Defense Medical Center, Taipei, Taiwan, Republic of China (H.-C.L., W.-L.C.); Department of Research and Education, Veteran General Hospital, Taipei, Taiwan, Republic of China (M.-W.H.); Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan, Republic of China (T.-C.C.); and Department of Biotechnology, Asia University, Taichung, Taiwan, Republic of China (T.-C.C.).
| |
Collapse
|
43
|
Bardoxolone Methyl Prevents Mesenteric Fat Deposition and Inflammation in High-Fat Diet Mice. ScientificWorldJournal 2015; 2015:549352. [PMID: 26618193 PMCID: PMC4651788 DOI: 10.1155/2015/549352] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/18/2015] [Indexed: 12/15/2022] Open
Abstract
Mesenteric fat belongs to visceral fat. An increased deposition of mesenteric fat contributes to obesity associated complications such as type 2 diabetes and cardiovascular diseases. We have investigated the therapeutic effects of bardoxolone methyl (BARD) on mesenteric adipose tissue of mice fed a high-fat diet (HFD). Male C57BL/6J mice were administered oral BARD during HFD feeding (HFD/BARD), only fed a high-fat diet (HFD), or fed low-fat diet (LFD) for 21 weeks. Histology and immunohistochemistry were used to analyse mesenteric morphology and macrophages, while Western blot was used to assess the expression of inflammatory, oxidative stress, and energy expenditure proteins. Supplementation of drinking water with BARD prevented mesenteric fat deposition, as determined by a reduction in large adipocytes. BARD prevented inflammation as there were fewer inflammatory macrophages and reduced proinflammatory cytokines (interleukin-1 beta and tumour necrosis factor alpha). BARD reduced the activation of extracellular signal-regulated kinase (ERK) and Akt, suggesting an antioxidative stress effect. BARD upregulates energy expenditure proteins, judged by the increased activity of tyrosine hydroxylase (TH) and AMP-activated protein kinase (AMPK) and increased peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), and uncoupling protein 2 (UCP2) proteins. Overall, BARD induces preventive effect in HFD mice through regulation of mesenteric adipose tissue.
Collapse
|
44
|
Liu C, Hu M, Guo H, Zhang M, Zhang J, Li F, Zhong Z, Chen Y, Li Y, Xu P, Li J, Liu L, Liu X. Combined Contribution of Increased Intestinal Permeability and Inhibited Deglycosylation of Ginsenoside Rb1 in the Intestinal Tract to the Enhancement of Ginsenoside Rb1 Exposure in Diabetic Rats after Oral Administration. Drug Metab Dispos 2015; 43:1702-10. [PMID: 26265741 DOI: 10.1124/dmd.115.064881] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 08/10/2015] [Indexed: 02/13/2025] Open
Abstract
Panax ginseng is becoming a promising antidiabetic herbal medication. As the main active constituents of Panax ginseng, ginsenosides are well known, poorly absorbed chemicals. However, the pharmacokinetic behavior of ginsenosides under diabetic conditions is not fully understood. This study aimed to explore the alterations and potential mechanisms of pharmacokinetic behavior of ginsenoside Rb1 in diabetic rats compared with normal rats and rats fed a high-fat diet. Systemic exposure (area under the concentration-time curve extrapolated from zero to infinity) was significantly increased in diabetic rats after oral administration of Rb1. Oral bioavailability of Rb1 was significantly higher in diabetic rats (2.25%) compared with normal rats (0.90%) and rats fed a high-fat diet (0.78%). Further studies revealed that increased Rb1 exposure in diabetic rats may be mainly attributed to increased Rb1 absorption via the intestine and inhibited Rb1 deglycosylation by the intestinal microflora. Neither metabolic enzymes nor drug transporters displayed appreciable effects on Rb1 disposition. The transport of paracellular markers (fluorescein sodium and fluorescein isothiocyanate-dextran of 4 kDa) as well as Rb1 itself across the Caco-2 monolayer cultured with diabetic serum was promoted, demonstrating that increased paracellular permeability of the Caco-2 monolayer may benefit intestinal Rb1 absorption. In addition, Rb1 exposure was decreased in diabetic rats after Rb1 intravenous administration, which may result from increased Rb1 urinary excretion. In conclusion, Rb1 oral exposure was significantly increased under diabetic conditions, which is of positive significance to clinical treatment. The potential mechanism may be associated with the combined contribution of increased gut permeability and inhibited deglycosylation of ginsenoside Rb1 by intestinal microflora.
Collapse
Affiliation(s)
- Can Liu
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China (C.L., M.H., M.Z., J.Z., F.L., Z.Z., Y.C., Y.L., P.X., J.L., L.L., X.L.); Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida (C.L.); and Bioanalytical and Pharmacokinetics/Toxicokinetics Center, Jiangsu Tripod Preclinical Research Laboratories Inc., Nanjing, China (H.G.)
| | - Mengyue Hu
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China (C.L., M.H., M.Z., J.Z., F.L., Z.Z., Y.C., Y.L., P.X., J.L., L.L., X.L.); Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida (C.L.); and Bioanalytical and Pharmacokinetics/Toxicokinetics Center, Jiangsu Tripod Preclinical Research Laboratories Inc., Nanjing, China (H.G.)
| | - Haifang Guo
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China (C.L., M.H., M.Z., J.Z., F.L., Z.Z., Y.C., Y.L., P.X., J.L., L.L., X.L.); Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida (C.L.); and Bioanalytical and Pharmacokinetics/Toxicokinetics Center, Jiangsu Tripod Preclinical Research Laboratories Inc., Nanjing, China (H.G.)
| | - Mian Zhang
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China (C.L., M.H., M.Z., J.Z., F.L., Z.Z., Y.C., Y.L., P.X., J.L., L.L., X.L.); Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida (C.L.); and Bioanalytical and Pharmacokinetics/Toxicokinetics Center, Jiangsu Tripod Preclinical Research Laboratories Inc., Nanjing, China (H.G.)
| | - Ji Zhang
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China (C.L., M.H., M.Z., J.Z., F.L., Z.Z., Y.C., Y.L., P.X., J.L., L.L., X.L.); Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida (C.L.); and Bioanalytical and Pharmacokinetics/Toxicokinetics Center, Jiangsu Tripod Preclinical Research Laboratories Inc., Nanjing, China (H.G.)
| | - Feng Li
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China (C.L., M.H., M.Z., J.Z., F.L., Z.Z., Y.C., Y.L., P.X., J.L., L.L., X.L.); Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida (C.L.); and Bioanalytical and Pharmacokinetics/Toxicokinetics Center, Jiangsu Tripod Preclinical Research Laboratories Inc., Nanjing, China (H.G.)
| | - Zeyu Zhong
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China (C.L., M.H., M.Z., J.Z., F.L., Z.Z., Y.C., Y.L., P.X., J.L., L.L., X.L.); Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida (C.L.); and Bioanalytical and Pharmacokinetics/Toxicokinetics Center, Jiangsu Tripod Preclinical Research Laboratories Inc., Nanjing, China (H.G.)
| | - Yang Chen
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China (C.L., M.H., M.Z., J.Z., F.L., Z.Z., Y.C., Y.L., P.X., J.L., L.L., X.L.); Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida (C.L.); and Bioanalytical and Pharmacokinetics/Toxicokinetics Center, Jiangsu Tripod Preclinical Research Laboratories Inc., Nanjing, China (H.G.)
| | - Ying Li
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China (C.L., M.H., M.Z., J.Z., F.L., Z.Z., Y.C., Y.L., P.X., J.L., L.L., X.L.); Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida (C.L.); and Bioanalytical and Pharmacokinetics/Toxicokinetics Center, Jiangsu Tripod Preclinical Research Laboratories Inc., Nanjing, China (H.G.)
| | - Ping Xu
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China (C.L., M.H., M.Z., J.Z., F.L., Z.Z., Y.C., Y.L., P.X., J.L., L.L., X.L.); Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida (C.L.); and Bioanalytical and Pharmacokinetics/Toxicokinetics Center, Jiangsu Tripod Preclinical Research Laboratories Inc., Nanjing, China (H.G.)
| | - Jia Li
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China (C.L., M.H., M.Z., J.Z., F.L., Z.Z., Y.C., Y.L., P.X., J.L., L.L., X.L.); Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida (C.L.); and Bioanalytical and Pharmacokinetics/Toxicokinetics Center, Jiangsu Tripod Preclinical Research Laboratories Inc., Nanjing, China (H.G.)
| | - Li Liu
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China (C.L., M.H., M.Z., J.Z., F.L., Z.Z., Y.C., Y.L., P.X., J.L., L.L., X.L.); Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida (C.L.); and Bioanalytical and Pharmacokinetics/Toxicokinetics Center, Jiangsu Tripod Preclinical Research Laboratories Inc., Nanjing, China (H.G.)
| | - Xiaodong Liu
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China (C.L., M.H., M.Z., J.Z., F.L., Z.Z., Y.C., Y.L., P.X., J.L., L.L., X.L.); Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida (C.L.); and Bioanalytical and Pharmacokinetics/Toxicokinetics Center, Jiangsu Tripod Preclinical Research Laboratories Inc., Nanjing, China (H.G.)
| |
Collapse
|
45
|
New SIRT1 activator from alkaline hydrolysate of total saponins in the stems-leaves of Panax ginseng. Bioorg Med Chem Lett 2015; 25:5321-5. [DOI: 10.1016/j.bmcl.2015.09.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 09/12/2015] [Accepted: 09/15/2015] [Indexed: 01/25/2023]
|
46
|
Pesticides Residues Rapid Extraction from Panax Ginseng Using a Modified QuEChERS Method for GC–MS. Chromatographia 2015. [DOI: 10.1007/s10337-015-2984-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Oh YS. Plant-Derived Compounds Targeting Pancreatic Beta Cells for the Treatment of Diabetes. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2015; 2015:629863. [PMID: 26587047 PMCID: PMC4637477 DOI: 10.1155/2015/629863] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/04/2015] [Indexed: 12/11/2022]
Abstract
Diabetes is a global health problem and a national economic burden. Although several antidiabetic drugs are available, the need for novel therapeutic agents with improved efficacy and few side effects remains. Drugs derived from natural compounds are more attractive than synthetic drugs because of their diversity and minimal side effects. This review summarizes the most relevant effects of various plant-derived natural compounds on the functionality of pancreatic beta cells. Published data suggest that natural compounds directly enhance insulin secretion, prevent pancreatic beta cell apoptosis, and modulate pancreatic beta cell differentiation and proliferation. It is essential to continuously investigate natural compounds as sources of novel pharmaceuticals. Therefore, more studies into these compounds' mechanisms of action are warranted for their development as potential anti-diabetics.
Collapse
Affiliation(s)
- Yoon Sin Oh
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 406-840, Republic of Korea
- Gachon Medical Research Institute, Gil Hospital, Incheon 405-760, Republic of Korea
| |
Collapse
|
48
|
Medagama AB. The glycaemic outcomes of Cinnamon, a review of the experimental evidence and clinical trials. Nutr J 2015; 14:108. [PMID: 26475130 PMCID: PMC4609100 DOI: 10.1186/s12937-015-0098-9] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 10/09/2015] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Cinnamon is currently marketed as a remedy for obesity, glucose intolerance, diabetes mellitus and dyslipidaemia. Integrative medicine is a new concept that combines conventional treatment with evidence-based complementary therapies. AIM The aim of this review is to critically evaluate the experimental evidence available for cinnamon in improving glycaemic targets in animal models and humans. RESULTS Insulin receptor auto-phosphorlylation and de-phosphorylation, glucose transporter 4 (GLUT-4 ) receptor synthesis and translocation, modulation of hepatic glucose metabolism through changes in Pyruvate kinase (PK) and Phosphenol Pyruvate Carboxikinase (PEPCK), altering the expression of PPAR (γ) and inhibition of intestinal glucosidases are some of the mechanisms responsible for improving glycaemic control with cinnamon therapy. We reviewed 8 clinical trials that used Cinnamomum cassia in aqueous or powder form in doses ranging from 500 mg to 6 g per day for a duration lasting from 40 days to 4 months as well as 2 clinical trials that used cinnamon on treatment naïve patients with pre-diabetes. An improvement in glycaemic control was seen in patients who received Cinnamon as the sole therapy for diabetes, those with pre-diabetes (IFG or IGT) and in those with high pre-treatment HbA1c. In animal models, cinnamon reduced fasting and postprandial plasma glucose and HbA1c. CONCLUSION Cinnamon has the potential to be a useful add-on therapy in the discipline of integrative medicine in managing type 2 diabetes. At present the evidence is inconclusive and long-term trials aiming to establish the efficacy and safety of cinnamon is needed. However, high coumarin content of Cinnamomum cassia is a concern, but Cinnamomum zeylanicum with its low coumarin content would be a safer alternate.
Collapse
Affiliation(s)
- Arjuna B Medagama
- Department of Medicine, Senior Lecturer in Medicine, University of Peradeniya, Peradeniya, Sri Lanka.
| |
Collapse
|
49
|
Kibiti CM, Afolayan AJ. Herbal therapy: A review of emerging pharmacological tools in the management of diabetes mellitus in Africa. Pharmacogn Mag 2015; 11:S258-74. [PMID: 26664014 PMCID: PMC4653336 DOI: 10.4103/0973-1296.166046] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 09/26/2014] [Accepted: 09/24/2015] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Diabetes mellitus is a chronic physiological glucose metabolic disorder. It has affected millions of people all over the world thereby having a significant impact on quality of life. The management of diabetes includes both nonpharmacological and conventional interventions. Drawbacks in conventional therapy have led to seeking alternative therapy in herbal medicine. Therefore, the need to review, elucidate and classify their mode of action in therapy for diabetes disease arises. MATERIALS AND METHODS Comprehensive literature reports were used to review all conventional agents and herbal therapy used in the management of diabetes. An online database search was conducted for medicinal plants of African origin that have been investigated for their antidiabetic therapeutic potentials. RESULTS The results showed that of the documented sixty five plants used, fourteen inhibit intestinal absorption of glucose, three exhibit insulin-mimetic properties, seventeen stimulate insulin secretion from pancreatic beta cells, twelve enhance peripheral glucose uptake, one promotes regeneration of beta-cell of islets of Langerhans, thirteen ameliorate oxidative stress and twenty induces hypoglycemic effect (mode of action is still obscure). Thirteen of these plants have a duplicate mode of actions while one of them has three modes of actions. These agents have a similar mechanism of action as the conventional drugs. CONCLUSION In conclusion, antidiabetic activities of these plants are well established; however, the molecular modulation remains unknown. It is envisaged that the use of herbal therapy will promote good health and improve the status of diabetic patients.
Collapse
Affiliation(s)
- Cromwell Mwiti Kibiti
- Department of Botany, Medicinal Plants and Economic Development (MPED) Research Centre, University of Fort Hare, Alice, 5700, South Africa
| | - Anthony Jide Afolayan
- Department of Botany, Medicinal Plants and Economic Development (MPED) Research Centre, University of Fort Hare, Alice, 5700, South Africa
| |
Collapse
|
50
|
Medagama AB, Senadhira D. Use of household ingredients as complementary medicines for perceived hypoglycemic benefit among Sri Lankan diabetic patients; a cross-sectional survey. JOURNAL OF COMPLEMENTARY MEDICINE RESEARCH 2015; 4:138-42. [PMID: 26401401 PMCID: PMC4566774 DOI: 10.5455/jice.20150202035223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 02/02/2015] [Indexed: 11/18/2022]
Abstract
Background: Biologic based therapies are frequently used as complementary medicines in diabetes. The aim of this study was to identify the commonly used herbal remedies and their preparations in Sri Lankan patients with Type 2 diabetes. Methods: This is a descriptive, cross-sectional study on 220 diabetic patients using herbal remedies for perceived glycemic benefit. Results: All the patients used their regular conventional medications together with herbal remedies. The most commonly used medication was metformin (91.4%). Ivy gourd (Coccinia grandis) was the most commonly used herbal remedy (32%), followed by crepe ginger (Costus speciosus) (25%) and bitter gourd (Momordica charantia) (20%). Herbal remedies used less frequently were finger millet (Eleusine corocana) (5%), anguna leaves (Wattakaka volubilis) (5%), goat weed (Scoparia dulcis) (4%), Salacia reticulata (4%), fenugreek (Trigonella foenum-graecum) (3%) and tree turmeric (Coscinium fenestratum) (0.5%). None of the patients used commercially available over-the-counter herbal products. The common preparations were salads (72.8%), curries (12.8%), herbal tea (6%), and herbal porridges (6%). Conclusion: The practice of using household ingredients as complementary medicines is common in Sri Lanka. Few herbal remedies and their methods of preparation have limited evidence for efficacy. In view of the frequent use by diabetic patients each needs to be documented for reference and scientifically explored about their hypoglycemic potential.
Collapse
|