1
|
Emeršič A, Ashton NJ, Vrillon A, Lantero‐Rodriguez J, Mlakar J, Gregorič Kramberger M, Gonzalez‐Ortiz F, Kac PR, Dulewicz M, Hanrieder J, Vanmechelen E, Rot U, Zetterberg H, Karikari TK, Čučnik S, Blennow K. Cerebrospinal fluid p-tau181, 217, and 231 in definite Creutzfeldt-Jakob disease with and without concomitant pathologies. Alzheimers Dement 2024; 20:5324-5337. [PMID: 38924651 PMCID: PMC11350132 DOI: 10.1002/alz.13907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 06/28/2024]
Abstract
INTRODUCTION The established cerebrospinal fluid (CSF) phosphorylated tau181 (p-tau181) may not reliably reflect concomitant Alzheimer's disease (AD) and primary age-related tauopathy (PART) found in Creutzfeldt-Jakob disease (CJD) at autopsy. METHODS We investigated CSF N-terminal p-tau181, p-tau217, and p-tau231 with in-house Simoa assays in definite CJD (n = 29), AD dementia (n = 75), mild cognitive impairment (MCI) due to AD (n = 65), and subjective cognitive decline (SCD, n = 28). Post-mortem examination performed in patients with CJD 1.3 (0.3-14.3) months after CSF collection revealed no co-pathology in 10, concomitant AD in 8, PART in 8, and other co-pathologies in 3 patients. RESULTS N-terminal p-tau was increased in CJD versus SCD (p < 0.0001) and correlated with total tau (t-tau) in the presence of AD and PART co-pathology (rho = 0.758-0.952, p ≤ 001). Concentrations in CJD+AD were indistinguishable from AD dementia, with the largest fold-change in p-tau217 (11.6), followed by p-tau231 and p-tau181 (3.2-4.5). DISCUSSION Variable fold-changes and correlation with t-tau suggest that p-tau closely associates with neurodegeneration and concomitant AD in CJD. HIGHLIGHTS N-terminal phosphorylated tau (p-tau) biomarkers are increased in Creutzfeldt-Jakob disease (CJD) with and without concomitant AD. P-tau217, p-tau231, and p-tau181 correlate with total tau (t-tau) and increase in the presence of amyloid beta (Aβ) co-pathology. N-terminal p-tau181 and p-tau231 in Aβ-negative CJD show variation among PRNP genotypes. Compared to mid-region-targeting p-tau181, cerebrospinal fluid (CSF) N-terminal p-tau has greater potential to reflect post-mortem neuropathology in the CJD brain.
Collapse
Affiliation(s)
- Andreja Emeršič
- Department of NeurologyUniversity Medical Centre LjubljanaLjubljanaSlovenia
- Faculty of PharmacyUniversity of LjubljanaLjubljanaSlovenia
| | - Nicholas J. Ashton
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiology, The Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Wallenberg Centre for Molecular and Translational MedicineUniversity of GothenburgGothenburgSweden
- King's College LondonInstitute of Psychiatry, Psychology & NeuroscienceMaurice Wohl Clinical Neuroscience InstituteLondonUK
- NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS FoundationLondonUK
| | - Agathe Vrillon
- Université de Paris Cognitive Neurology CenterGHU Nord APHP Hospital Lariboisière Fernand WidalParisFrance
- Université de Paris Inserm UMR S11‐44 Therapeutic Optimization in NeuropsychopharmacologyParisFrance
| | - Juan Lantero‐Rodriguez
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiology, The Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Jernej Mlakar
- Institute of PathologyFaculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
| | - Milica Gregorič Kramberger
- Department of NeurologyUniversity Medical Centre LjubljanaLjubljanaSlovenia
- Faculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
- Department of Neurobiology, Care Sciences and Society, Division of Clinical GeriatricsKarolinska InstitutetHuddingeSweden
| | - Fernando Gonzalez‐Ortiz
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiology, The Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Przemysław R. Kac
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiology, The Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Maciej Dulewicz
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiology, The Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Jörg Hanrieder
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiology, The Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of Neurodegenerative DiseaseUCL Institute of Neurology, Queen SquareLondonUK
| | | | - Uroš Rot
- Department of NeurologyUniversity Medical Centre LjubljanaLjubljanaSlovenia
- Faculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
| | - Henrik Zetterberg
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiology, The Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Department of Neurodegenerative DiseaseUCL Institute of Neurology, Queen SquareLondonUK
- UK Dementia Research Institute at UCLLondonUK
- Hong Kong Center for Neurodegenerative DiseasesHong KongChina
- School of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Thomas K. Karikari
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiology, The Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of PsychiatrySchool of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Saša Čučnik
- Department of NeurologyUniversity Medical Centre LjubljanaLjubljanaSlovenia
- Faculty of PharmacyUniversity of LjubljanaLjubljanaSlovenia
- Department of RheumatologyUniversity Medical Centre LjubljanaLjubljanaSlovenia
| | - Kaj Blennow
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiology, The Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Paris Brain Institute, ICM, Pitié‐Salpêtrière HospitalSorbonne UniversityParisFrance
- Neurodegenerative Disorder Research CenterDivision of Life Sciences and Medicineand Department of NeurologyInstitute on Aging and Brain DisordersUniversity of Science and Technology of China and First Affiliated Hospital of USTCHefeiP.R. China
| |
Collapse
|
2
|
Somers C, Lewczuk P, Sieben A, Van Broeckhoven C, De Deyn PP, Kornhuber J, Martin JJ, Bjerke M, Engelborghs S. Validation of the Erlangen Score Algorithm for Differential Dementia Diagnosis in Autopsy-Confirmed Subjects. J Alzheimers Dis 2020; 68:1151-1159. [PMID: 30883344 PMCID: PMC6484252 DOI: 10.3233/jad-180563] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Background: Despite decades of research on the optimization of the diagnosis of Alzheimer’s disease (AD), its biomarker-based diagnosis is being hampered by the lack of comparability of raw biomarker data. In order to overcome this limitation, the Erlangen Score (ES), among other approaches, was set up as a diagnostic-relevant interpretation algorithm. Objective: To validate the ES algorithm in a cohort of neuropathologically confirmed cases with AD (n = 106) and non-AD dementia (n = 57). Methods: Cerebrospinal fluid (CSF) biomarker concentrations of Aβ1-42, T-tau, and P-tau181 were measured with commercially available single analyte ELISA kits. Based on these biomarkers, ES was calculated as previously reported. Results: This algorithm proved to categorize AD in different degrees of likelihood, ranging from neurochemically “normal”, “improbably having AD”, “possibly having AD”, to “probably having AD”, with a diagnostic accuracy of 74% using the neuropathology as a reference. Conclusion: The ability of the ES to overcome the high variability of raw CSF biomarker data may provide a useful diagnostic tool for comparing neurochemical diagnoses between different labs or methods used.
Collapse
Affiliation(s)
- Charisse Somers
- Reference Center for Biological Markers of Dementia (BIODEM), Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Piotr Lewczuk
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany.,Department of Neurodegeneration Diagnostics, Medical University of Białystok, Białystok, Poland
| | - Anne Sieben
- Biobank, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, Antwerp, Belgium.,Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Peter Paul De Deyn
- Reference Center for Biological Markers of Dementia (BIODEM), Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Biobank, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | - Maria Bjerke
- Reference Center for Biological Markers of Dementia (BIODEM), Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Sebastiaan Engelborghs
- Reference Center for Biological Markers of Dementia (BIODEM), Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium
| |
Collapse
|
3
|
Rossi M, Kai H, Baiardi S, Bartoletti-Stella A, Carlà B, Zenesini C, Capellari S, Kitamoto T, Parchi P. The characterization of AD/PART co-pathology in CJD suggests independent pathogenic mechanisms and no cross-seeding between misfolded Aβ and prion proteins. Acta Neuropathol Commun 2019; 7:53. [PMID: 30961668 PMCID: PMC6454607 DOI: 10.1186/s40478-019-0706-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 03/21/2019] [Indexed: 12/14/2022] Open
Abstract
Current evidence indicating a role of the human prion protein (PrP) in amyloid-beta (Aβ) formation or a synergistic effect between Aβ and prion pathology remains controversial. Conflicting results also concern the frequency of the association between the two protein misfolding disorders and the issue of whether the apolipoprotein E gene (APOE) and the prion protein gene (PRNP), the major modifiers of Aβ- and PrP-related pathologies, also have a pathogenic role in other proteinopathies, including tau neurofibrillary degeneration. Here, we thoroughly characterized the Alzheimer's disease/primary age-related tauopathy (AD/PART) spectrum in a series of 450 cases with definite sporadic or genetic Creutzfeldt-Jakob disease (CJD). Moreover, we analyzed: (i) the effect of variables known to affect CJD pathogenesis and the co-occurring Aβ- and tau-related pathologies; (II) the influence of APOE genotype on CJD pathology, and (III) the effect of AD/PART co-pathology on the clinical CJD phenotype. AD/PART characterized 74% of CJD brains, with 53.3% and 8.2% showing low or intermediate-high levels of AD pathology, and 12.4 and 11.8% definite or possible PART. There was no significant correlation between variables affecting CJD (i.e., disease subtype, prion strain, PRNP genotype) and those defining the AD/PART spectrum (i.e., ABC score, Thal phase, prevalence of CAA and Braak stage), and no difference in the distribution of APOE ε4 and ε2 genotypes among CJD subtypes. Moreover, AD/PART co-pathology did not significantly affect the clinical presentation of typical CJD, except for a tendency to increase the frequency of cognitive symptoms. Altogether, the present results seem to exclude an increased prevalence AD/PART co-pathology in sporadic and genetic CJD, and indicate that largely independent pathogenic mechanisms drive AD/PART and CJD pathology even when they coexist in the same brain.
Collapse
Affiliation(s)
- Marcello Rossi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Via Altura 1/8, 40139 Bologna, Italy
| | - Hideaki Kai
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Via Altura 1/8, 40139 Bologna, Italy
- Department of Neurological Sciences, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Simone Baiardi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Anna Bartoletti-Stella
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Via Altura 1/8, 40139 Bologna, Italy
| | - Benedetta Carlà
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Via Altura 1/8, 40139 Bologna, Italy
| | - Corrado Zenesini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Via Altura 1/8, 40139 Bologna, Italy
| | - Sabina Capellari
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Via Altura 1/8, 40139 Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Tetsuyuki Kitamoto
- Department of Neurological Sciences, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Piero Parchi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Via Altura 1/8, 40139 Bologna, Italy
| |
Collapse
|
4
|
Nemani SK, Notari S, Cali I, Alvarez VE, Kofskey D, Cohen M, Stern RA, Appleby B, Abrams J, Schonberger L, McKee A, Gambetti P. Co-occurrence of chronic traumatic encephalopathy and prion disease. Acta Neuropathol Commun 2018; 6:140. [PMID: 30563563 PMCID: PMC6299534 DOI: 10.1186/s40478-018-0643-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 12/02/2018] [Indexed: 12/14/2022] Open
Abstract
Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease associated with repetitive traumatic brain injury (TBI). CTE is generally found in athletes participating in contact sports and military personnel exposed to explosive blasts but can also affect civilians. Clinically and pathologically, CTE overlaps with post-traumatic stress disorder (PTSD), a term mostly used in a clinical context. The histopathology of CTE is defined by the deposition of hyperphosphorylated tau protein in neurons and astrocytes preferentially with perivascular distribution and at the depths of the cortical sulci. In addition to hyperphosphorylated tau, other pathologic proteins are deposited in CTE, including amyloid β (Aβ), transactive response (TAR) DNA-binding protein 43 kDa (TDP-43) and α-synuclein. However, the coexistence of prion disease in CTE has not been observed. We report three cases of histopathologically validated CTE with co-existing sporadic prion disease. Two were identified in a cohort of 55 pathologically verified cases of CTE submitted to the CTE Center of Boston University. One was identified among brain tissues submitted to the National Prion Disease Pathology Surveillance Center of Case Western Reserve University. The histopathological phenotype and properties of the abnormal, disease-related prion protein (PrPD) of the three CTE cases were examined using lesion profile, immunohistochemistry, electrophoresis and conformational tests. Subjects with sporadic Creutzfeldt-Jakob disease (sCJD) matched for age, PrP genotype and PrPD type were used as controls. The histopathology phenotype and PrPD properties of the three CTE subjects showed no significant differences from their respective sCJD controls suggesting that recurring neurotrauma or coexisting CTE pathology did not detectably impact the prion disease phenotype and PrPD conformational characteristics. Based on the reported incidence of sporadic prion disease, the detection of two cases with sCJD in the CTE Center series of 55 CTE cases by chance alone would be highly unlikely (p = 8.93*10- 6). Nevertheless, examination of a larger cohort of CTE is required to conclusively determine whether the risk of CJD is significantly increased in patients with CTE.
Collapse
Affiliation(s)
- Satish Kumar Nemani
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, 44106, USA
| | - Silvio Notari
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, 44106, USA.
| | - Ignazio Cali
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, 44106, USA
| | - Victor E Alvarez
- VA Boston Healthcare System, Boston, MA, 02130, USA
- Department of Neurology and Pathology, Boston University School of Medicine, Boston, MA, 02118, USA
- Alzheimer's Disease Center and CTE Program, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Diane Kofskey
- National Prion Disease Pathology Surveillance Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Mark Cohen
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, 44106, USA
- National Prion Disease Pathology Surveillance Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Robert A Stern
- Alzheimer's Disease Center and CTE Program, Boston University School of Medicine, Boston, MA, 02118, USA
- Departments of Neurology, Neurosurgery, and Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Brian Appleby
- National Prion Disease Pathology Surveillance Center, Case Western Reserve University, Cleveland, OH, 44106, USA
- Departments of Neurology and Psychiatry, Case Western Reserve University, School of Medicine, Cleveland, OH, 44106, USA
| | - Joseph Abrams
- Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Center for Disease Control and Prevention, Atlanta, GA, 30333, USA
| | - Lawrence Schonberger
- Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Center for Disease Control and Prevention, Atlanta, GA, 30333, USA
| | - Ann McKee
- VA Boston Healthcare System, Boston, MA, 02130, USA
- Department of Neurology and Pathology, Boston University School of Medicine, Boston, MA, 02118, USA
- Alzheimer's Disease Center and CTE Program, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Pierluigi Gambetti
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
5
|
Furukawa F, Sanjo N, Kobayashi A, Hamaguchi T, Yamada M, Kitamoto T, Mizusawa H, Yokota T. Specific amyloid-β42 deposition in the brain of a Gerstmann-Sträussler-Scheinker disease patient with a P105L mutation on the prion protein gene. Prion 2018; 12:315-319. [PMID: 30394185 DOI: 10.1080/19336896.2018.1541689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Although colocalization of amyloid β (Aβ) with prion protein (PrP) in the kuru plaque has previously been observed in the brain of prion diseases patients, the participating Aβ species has not been identified. Here, we present an immunohistochemical assessment of the brain and spinal cord of a 69-year-old Japanese female patient with Gerstmann-Sträussler-Scheinker disease with a P105L mutation on the PRNP gene (GSS-P105L). Immunohistochemical assessment of serial brain sections was performed using anti-PrP and -Aβ antibodies in the hippocampus, frontal and occipital lobes. She died 69 years after a 21-year clinical course. Immunohistochemistorical examination revealed that ~50% of the kuru plaques in the cerebrum were colocalized with Aβ, and Aβ42 was predominantly observed to be colocalized with PrP-plaques. The Aβ deposition patterns were unique, and distinct from diffuse plaques observed in the normal aging brain or Alzheimer's disease brain. The spinal cord exhibited degeneration in the lateral corticospinal tract, posterior horn, and fasciculus gracilis. We have demonstrated for the first time that Aβ42, rather than Aβ40, is the main Aβ component associated with PrP-plaques, and also the degeneration of the fasciculus gracilis in the spinal cord in GSS-P105L, which could be associated with specific clinical features of GSS-P105L.
Collapse
Affiliation(s)
- Fumiko Furukawa
- a Department of Neurology and Neurological Science , Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences , Yushima Bunkyo-ku , Tokyo , Japan
| | - Nobuo Sanjo
- a Department of Neurology and Neurological Science , Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences , Yushima Bunkyo-ku , Tokyo , Japan
| | - Atsushi Kobayashi
- b Laboratory of Comparative Pathology , Hokkaido University, Graduate School of Veterinary Medicine , Kita-ku, Sapporo , Hokkaido , Japan
| | - Tsuyoshi Hamaguchi
- c Department of Neurology and Neurobiology of Aging , Kanazawa University Graduate School of Medical Science , Kanazawa , Japan
| | - Masahito Yamada
- c Department of Neurology and Neurobiology of Aging , Kanazawa University Graduate School of Medical Science , Kanazawa , Japan
| | - Tetsuyuki Kitamoto
- d Department of Neurological Science , Tohoku University Graduate School of Medicine , Sendai , Japan
| | | | - Takanori Yokota
- a Department of Neurology and Neurological Science , Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences , Yushima Bunkyo-ku , Tokyo , Japan
| |
Collapse
|
6
|
Bondarev SA, Antonets KS, Kajava AV, Nizhnikov AA, Zhouravleva GA. Protein Co-Aggregation Related to Amyloids: Methods of Investigation, Diversity, and Classification. Int J Mol Sci 2018; 19:ijms19082292. [PMID: 30081572 PMCID: PMC6121665 DOI: 10.3390/ijms19082292] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/29/2018] [Accepted: 08/02/2018] [Indexed: 01/04/2023] Open
Abstract
Amyloids are unbranched protein fibrils with a characteristic spatial structure. Although the amyloids were first described as protein deposits that are associated with the diseases, today it is becoming clear that these protein fibrils play multiple biological roles that are essential for different organisms, from archaea and bacteria to humans. The appearance of amyloid, first of all, causes changes in the intracellular quantity of the corresponding soluble protein(s), and at the same time the aggregate can include other proteins due to different molecular mechanisms. The co-aggregation may have different consequences even though usually this process leads to the depletion of a functional protein that may be associated with different diseases. The protein co-aggregation that is related to functional amyloids may mediate important biological processes and change of protein functions. In this review, we survey the known examples of the amyloid-related co-aggregation of proteins, discuss their pathogenic and functional roles, and analyze methods of their studies from bacteria and yeast to mammals. Such analysis allow for us to propose the following co-aggregation classes: (i) titration: deposition of soluble proteins on the amyloids formed by their functional partners, with such interactions mediated by a specific binding site; (ii) sequestration: interaction of amyloids with certain proteins lacking a specific binding site; (iii) axial co-aggregation of different proteins within the same amyloid fibril; and, (iv) lateral co-aggregation of amyloid fibrils, each formed by different proteins.
Collapse
Affiliation(s)
- Stanislav A Bondarev
- Department of Genetics and Biotechnology, St. Petersburg State University, Universitetskaya nab., 7/9, St. Petersburg 199034, Russia.
- Laboratory of Amyloid Biology, St. Petersburg State University, Russia, Universitetskaya nab., 7/9, St. Petersburg 199034, Russia.
| | - Kirill S Antonets
- Department of Genetics and Biotechnology, St. Petersburg State University, Universitetskaya nab., 7/9, St. Petersburg 199034, Russia.
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, Podbelskogo sh., 3, Pushkin, St. Petersburg 196608, Russia.
| | - Andrey V Kajava
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), UMR 5237 CNRS, Université Montpellier 1919 Route de Mende, CEDEX 5, 34293 Montpellier, France.
- Institut de Biologie Computationnelle (IBC), 34095 Montpellier, France.
- University ITMO, Institute of Bioengineering, Kronverksky Pr. 49, St. Petersburg 197101, Russia.
| | - Anton A Nizhnikov
- Department of Genetics and Biotechnology, St. Petersburg State University, Universitetskaya nab., 7/9, St. Petersburg 199034, Russia.
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, Podbelskogo sh., 3, Pushkin, St. Petersburg 196608, Russia.
| | - Galina A Zhouravleva
- Department of Genetics and Biotechnology, St. Petersburg State University, Universitetskaya nab., 7/9, St. Petersburg 199034, Russia.
- Laboratory of Amyloid Biology, St. Petersburg State University, Russia, Universitetskaya nab., 7/9, St. Petersburg 199034, Russia.
| |
Collapse
|
7
|
Bastian FO. Combined Creutzfeldt-Jakob/ Alzheimer's Disease Cases are Important in Search for Microbes in Alzheimer's Disease. J Alzheimers Dis 2018; 56:867-873. [PMID: 28059790 DOI: 10.3233/jad-160999] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The question whether Alzheimer's disease is infectious as brought up in the recent editorial published in the Journal of Alzheimer's Disease is complicated by the controversy whether the causal agent is a microbe or a misfolded host protein (amyloid). The replicating amyloid (prion) theory, based upon data from studies of Creutzfeldt-Jakob disease (CJD) and other transmissible spongiform encephalopathies (TSEs), has been challenged since the prion can be separated from TSE infectivity, and spiroplasma, a wall-less bacterium, has been shown to be involved in the pathogenesis of CJD. Further support for a microbial cause for AD comes from occurrence of mixed CJD/AD cases involving up to 15% of AD brains submitted to brain banks. The association of CJD with AD suggests a common etiology rather than simply being a medical curiosity. A co-infection with the transmissible agent of CJD, which we propose to be a Spiroplasma sp., would explain the diversity of bacteria shown to be associated with cases of AD.
Collapse
Affiliation(s)
- Frank O Bastian
- School of Animal Science, Louisiana State University Agricultural Center, Baton Rouge, LA, USA.,Tulane Medical School, New Orleans, LA, USA.,Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
8
|
Abu Rumeileh S, Lattanzio F, Stanzani Maserati M, Rizzi R, Capellari S, Parchi P. Diagnostic Accuracy of a Combined Analysis of Cerebrospinal Fluid t-PrP, t-tau, p-tau, and Aβ42 in the Differential Diagnosis of Creutzfeldt-Jakob Disease from Alzheimer's Disease with Emphasis on Atypical Disease Variants. J Alzheimers Dis 2018; 55:1471-1480. [PMID: 27886009 PMCID: PMC5181677 DOI: 10.3233/jad-160740] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
According to recent studies, the determination of cerebrospinal fluid (CSF) total tau (t-tau)/phosphorylated tau (p-tau) ratio and total prion protein (t-PrP) levels significantly improves the accuracy of the diagnosis of Alzheimer’s disease (AD) in atypical cases with clinical or laboratory features mimicking Creutzfeldt-Jakob disease (CJD). However, this has neither been validated nor tested in series including atypical CJD variants. Furthermore, the added diagnostic value of amyloid-β (Aβ)42 remains unclear. To address these issues, we measured t-PrP, 14-3-3, t-tau, p-tau, and Aβ42 CSF levels in 45 typical and 44 atypical/rapidly progressive AD patients, 54 typical and 54 atypical CJD patients, and 33 controls. CJD patients showed significantly lower CSF t-PrP levels than controls and AD patients. Furthermore, atypical CJD was associated with lower t-PrP levels in comparison to typical CJD. T-tau, 14-3-3, or t-PrP alone yielded, respectively, 80.6, 63.0, and 73.0% sensitivity and 75.3, 92.1, and 75% specificity in distinguishing AD from CJD. On receiver operating characteristic (ROC) curve analyses of biomarker combinations, the (t-tau×Aβ42)/(p-tau×t-PrP) ratio achieved the best accuracy, with 98.1% sensitivity and 97.7% specificity overall, and 96.2% sensitivity and 95.5% specificity for the “atypical” disease groups. Our results show that the combined analysis of CSF t-PrP, t-tau, p-tau, and Aβ42 is clinically useful in the differential diagnosis between CJD and AD. Furthermore, the finding of reduced CSF t-PrP levels in CJD patients suggest that, likewise Aβ42 in AD, CSF t-PrP levels reflect the extent of PrPc conversion into abnormal PrP (PrPSc) and the burden of PrPSc deposition in CJD.
Collapse
Affiliation(s)
- Samir Abu Rumeileh
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Francesca Lattanzio
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | | | - Romana Rizzi
- Department of Neurology, IRCCS Arcispedale Santa Maria Nuova, Reggio Emilia, Italy
| | - Sabina Capellari
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy
| | - Piero Parchi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy
| |
Collapse
|
9
|
Cali I, Cohen ML, Haik S, Parchi P, Giaccone G, Collins SJ, Kofskey D, Wang H, McLean CA, Brandel JP, Privat N, Sazdovitch V, Duyckaerts C, Kitamoto T, Belay ED, Maddox RA, Tagliavini F, Pocchiari M, Leschek E, Appleby BS, Safar JG, Schonberger LB, Gambetti P. Iatrogenic Creutzfeldt-Jakob disease with Amyloid-β pathology: an international study. Acta Neuropathol Commun 2018; 6:5. [PMID: 29310723 PMCID: PMC5759292 DOI: 10.1186/s40478-017-0503-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 12/13/2017] [Indexed: 12/18/2022] Open
Abstract
The presence of pathology related to the deposition of amyloid-β (Aβ) has been recently reported in iatrogenic Creutzfeldt-Jakob disease (iCJD) acquired from inoculation of growth hormone (GH) extracted from human cadaveric pituitary gland or use of cadaveric dura mater (DM) grafts.To investigate this phenomenon further, a cohort of 27 iCJD cases - 21 with adequate number of histopathological sections - originating from Australia, France, Italy, and the Unites States, were examined by immunohistochemistry, amyloid staining, and Western blot analysis of the scrapie prion protein (PrPSc), and compared with age-group matched cases of sporadic CJD (sCJD), Alzheimer disease (AD) or free of neurodegenerative diseases (non-ND).Cases of iCJD and sCJD shared similar profiles of proteinase K-resistant PrPSc with the exception of iCJD harboring the "MMi" phenotype. Cerebral amyloid angiopathy (CAA), either associated with, or free of, Thioflavin S-positive amyloid core plaques (CP), was observed in 52% of 21 cases of iCJD, which comprised 37.5% and 61.5% of the cases of GH- and DM-iCJD, respectively. If only cases younger than 54 years were considered, Aβ pathology affected 41%, 2% and 0% of iCJD, sCJD and non-ND, respectively. Despite the patients' younger age CAA was more severe in iCJD than sCJD, while Aβ diffuse plaques, in absence of Aβ CP, populated one third of sCJD. Aβ pathology was by far most severe in AD. Tau pathology was scanty in iCJD and sCJD.In conclusion, (i) despite the divergences in the use of cadaveric GH and DM products, our cases combined with previous studies showed remarkably similar iCJD and Aβ phenotypes indicating that the occurrence of Aβ pathology in iCJD is a widespread phenomenon, (ii) CAA emerges as the hallmark of the Aβ phenotype in iCJD since it is observed in nearly 90% of all iCJD with Aβ pathology reported to date including ours, and it is shared by GH- and DM-iCJD, (iii) although the contributions to Aβ pathology of other factors, including GH deficiency, cannot be discounted, our findings increase the mounting evidence that this pathology is acquired by a mechanism resembling that of prion diseases.
Collapse
Affiliation(s)
- Ignazio Cali
- Departments of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, 44106, USA.
- Department of Pathology, 4th floor, room 402C, Case Western Reserve University, 2085 Adelbert Road, Cleveland, OH, 44106, USA.
| | - Mark L Cohen
- Departments of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, 44106, USA
- National Prion Disease Pathology Surveillance Center, Case Western Reserve University, School of Medicine, Cleveland, OH, 44106, USA
| | - Stephane Haik
- Inserm U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris VI UMR S 1127, Institut du Cerveau et de la Moelle épinière, Paris, France
- AP-HP, Cellule Nationale de Référence des maladies de Creutzfeldt-Jakob, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
- AP-HP, Laboratoire de Neuropathologie R Escourolle, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Piero Parchi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
- IRCCS, Institute of Neurological Sciences, Bologna, Italy
| | - Giorgio Giaccone
- Fondazione IRCCS, Istituto Neurologico Carlo Besta, Milan, Italy
| | - Steven J Collins
- Australian National Creutzfeldt-Jakob Disease Registry, Department of Medicine, and The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, 3010, Australia
| | - Diane Kofskey
- Departments of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, 44106, USA
- National Prion Disease Pathology Surveillance Center, Case Western Reserve University, School of Medicine, Cleveland, OH, 44106, USA
| | - Han Wang
- Department of Neurology, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - Catriona A McLean
- Department of Anatomical Pathology, Alfred Health, Melbourne, 3181, Australia
- Victorian Brain Bank, the Florey institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, 3010, Australia
| | - Jean-Philippe Brandel
- Inserm U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris VI UMR S 1127, Institut du Cerveau et de la Moelle épinière, Paris, France
- AP-HP, Cellule Nationale de Référence des maladies de Creutzfeldt-Jakob, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Nicolas Privat
- Inserm U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris VI UMR S 1127, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Véronique Sazdovitch
- Inserm U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris VI UMR S 1127, Institut du Cerveau et de la Moelle épinière, Paris, France
- AP-HP, Laboratoire de Neuropathologie R Escourolle, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Charles Duyckaerts
- Inserm U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris VI UMR S 1127, Institut du Cerveau et de la Moelle épinière, Paris, France
- AP-HP, Laboratoire de Neuropathologie R Escourolle, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Tetsuyuki Kitamoto
- Department of Neurological Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ermias D Belay
- Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Ryan A Maddox
- Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | | - Ellen Leschek
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Brian S Appleby
- Departments of Neurology, Case Western Reserve University, School of Medicine, Cleveland, OH, 44106, USA
- Departments of Psychiatry, Case Western Reserve University, School of Medicine, Cleveland, OH, 44106, USA
- National Prion Disease Pathology Surveillance Center, Case Western Reserve University, School of Medicine, Cleveland, OH, 44106, USA
| | - Jiri G Safar
- Departments of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, 44106, USA
- Departments of Neurology, Case Western Reserve University, School of Medicine, Cleveland, OH, 44106, USA
- National Prion Disease Pathology Surveillance Center, Case Western Reserve University, School of Medicine, Cleveland, OH, 44106, USA
| | - Lawrence B Schonberger
- Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Pierluigi Gambetti
- Departments of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, 44106, USA.
- Department of Pathology, 4th floor, room 419, Case Western Reserve University, 2085 Adelbert Road, Cleveland, OH, 44106, USA.
| |
Collapse
|
10
|
Abstract
Recent studies on iatrogenic Creutzfeldt-Jakob disease (CJD) raised concerns that one of the hallmark lesions of Alzheimer disease (AD), amyloid-β (Aβ), may be transmitted from human-to-human. The neuropathology of AD-related lesions is complex. Therefore, many aspects need to be considered in deciding on this issue. Observations of recent studies can be summarized as follows: 1) The frequency of iatrogenic CJD cases with parencyhmal and vascular Aβ deposits is statistically higher than expected; 2) The morphology and distribution of Aβ deposition may show distinct features; 3) The pituitary and the dura mater themselves may serve as potential sources of Aβ seeds; 4) Cadaveric dura mater from 2 examined cases shows Aβ deposition; and 5) There is a lack of evidence that the clinical phenotype of AD appears following the application of cadaveric pituitary hormone or dura mater transplantation. These studies support the notion that neurodegenerative diseases have common features regarding propagation of disease-associated proteins as seeds. However, until further evidence emerges, prions of transmissible spongiform encephalopathies are the only neurodegenerative disease-related proteins proven to propagate clinicopathological phenotypes.
Collapse
Affiliation(s)
- Gabor G Kovacs
- a Institute of Neurology, Medical University of Vienna , Vienna , Austria
| |
Collapse
|
11
|
Höglund K, Kern S, Zettergren A, Börjesson-Hansson A, Zetterberg H, Skoog I, Blennow K. Preclinical amyloid pathology biomarker positivity: effects on tau pathology and neurodegeneration. Transl Psychiatry 2017; 7:e995. [PMID: 28072416 PMCID: PMC5545720 DOI: 10.1038/tp.2016.252] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 06/01/2016] [Accepted: 06/30/2016] [Indexed: 11/15/2022] Open
Abstract
Brain autopsy and biomarker studies indicate that the pathology of Alzheimer's disease (AD) is initiated at least 10-20 years before clinical symptoms. This provides a window of opportunity to initiate preventive treatment. However, this emphasizes the necessity for biomarkers that identify individuals at risk for developing AD later in life. In this cross-sectional study, originating from three epidemiologic studies in Sweden (n=1428), the objective was to examine whether amyloid pathology, as determined by low cerebrospinal fluid (CSF) concentration of the 42 amino acid form of β-amyloid (Aβ42), is associated with biomarker evidence of other pathological changes in cognitively healthy elderly. A total of 129 patients were included and CSF levels of Aβ42, total tau, tau phosphorylated at threonine 181 (p-tau), neurogranin, VILIP-1, VEGF, FABP3, Aβ40, neurofilament light, MBP, orexin A, BDNF and YKL-40 were measured. Among these healthy elderly, 35.6% (N=46) had CSF Aβ42 levels below 530 pg ml-1. These individuals displayed significantly higher CSF concentrations of t-tau (P<0.001), p-tau (181) (P<0.001), neurogranin (P=0.009) and FABP3 (P=0.044) compared with amyloid-negative individuals. Our study indicates that there is a subpopulation among healthy older individuals who have amyloid pathology along with signs of ongoing neuronal and synaptic degeneration, as well as tangle pathology. Previous studies have demonstrated that increase in CSF tau and p-tau is a specific sign of AD progression that occurs downstream of the deposition of Aβ. On the basis of this, our data suggest that these subjects are at risk for developing AD. We also confirm the association between APOE ɛ4 and amyloid pathology in healthy older individuals.
Collapse
Affiliation(s)
- K Höglund
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, Centre for ageing and Health, AgeCap, University of Gothenburg, Sahlgrenska University Hospital, Mölndal, Sweden,Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Disease Research, Neurogeriatrics Division, Karolinska Institutet, Novum, Stockholm, Sweden,Clinical Neurochemistry Laboratory, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at University of Gothenburg, Sahlgrenska University Hospital, Mölndal SE-431 80, Sweden. E-mail:
| | - S Kern
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, Centre for ageing and Health, AgeCap, University of Gothenburg, Sahlgrenska University Hospital, Mölndal, Sweden,Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| | - A Zettergren
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, Centre for ageing and Health, AgeCap, University of Gothenburg, Sahlgrenska University Hospital, Mölndal, Sweden,Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| | - A Börjesson-Hansson
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, Centre for ageing and Health, AgeCap, University of Gothenburg, Sahlgrenska University Hospital, Mölndal, Sweden,Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| | - H Zetterberg
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, Centre for ageing and Health, AgeCap, University of Gothenburg, Sahlgrenska University Hospital, Mölndal, Sweden,Neuropsychiatric Epidemiology Unit, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, Centre for Ageing and Health, AgeCap, University of Gothenburg, Mölndal, Sweden
| | - I Skoog
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, Centre for ageing and Health, AgeCap, University of Gothenburg, Sahlgrenska University Hospital, Mölndal, Sweden,Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| | - K Blennow
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, Centre for ageing and Health, AgeCap, University of Gothenburg, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
12
|
de Pedro-Cuesta J, Martínez-Martín P, Rábano A, Alcalde-Cabero E, José García López F, Almazán-Isla J, Ruiz-Tovar M, Medrano MJ, Avellanal F, Calero O, Calero M. Drivers: A Biologically Contextualized, Cross-Inferential View of the Epidemiology of Neurodegenerative Disorders. J Alzheimers Dis 2016; 51:1003-22. [PMID: 26923014 PMCID: PMC4927850 DOI: 10.3233/jad-150884] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background: Sutherland et al. (2011) suggested that, instead of risk factors for single neurodegenerative disorders (NDDs), there was a need to identify specific “drivers”, i.e., risk factors with impact on specific deposits, such as amyloid-β, tau, or α-synuclein, acting across entities. Objectives and Methods: Redefining drivers as “neither protein/gene- nor entity-specific features identifiable in the clinical and general epidemiology of conformational NDDs (CNDDs) as potential footprints of templating/spread/transfer mechanisms”, we conducted an analysis of the epidemiology of ten CNDDs, searching for patterns. Results: We identified seven potential drivers, each of which was shared by at least two CNDDs: 1) an age-at-exposure-related susceptibility to Creutzfeldt-Jakob disease (CJD) and several late-life CNDDs; 2) a relationship between age at onset, survival, and incidence; 3) shared genetic risk factors for CJD and late-life CNNDs; 4) partly shared personal (diagnostic, educational, behavioral, and social risk factors) predating clinical onset of late-life CNDDs; 5) two environmental risk factors, namely, surgery for sporadic CJD and amyotrophic lateral sclerosis, and Bordetella pertussis infection for Parkinson’s disease; 6) reticulo-endothelial system stressors or general drivers (andropause or premenopausal estrogen deficiency, APOEɛ4, and vascular risk factors) for late-life CNDDs such as dementia/Alzheimer’s disease, type-2 diabetes mellitus, and some sporadic cardiac and vascular degenerative diseases; and 7) a high, invariant incidence ratio of sporadic to genetic forms of mid- and late-life CNDDs, and type-2 diabetes mellitus. Conclusion: There might be a systematic epidemiologic pattern induced by specific proteins (PrP, TDP-43, SOD1, α-synuclein, amyloid-β, tau, Langerhans islet peptide, and transthyretin) or established combinations of these.
Collapse
Affiliation(s)
- Jesús de Pedro-Cuesta
- Department of Applied Epidemiology, National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain.,Consortium for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Pablo Martínez-Martín
- Department of Applied Epidemiology, National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain.,Consortium for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Alberto Rábano
- Consortium for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Alzheimer Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Center, Madrid, Spain
| | - Enrique Alcalde-Cabero
- Department of Applied Epidemiology, National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain.,Consortium for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Fernando José García López
- Department of Applied Epidemiology, National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain.,Consortium for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Javier Almazán-Isla
- Department of Applied Epidemiology, National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain.,Consortium for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - María Ruiz-Tovar
- Department of Applied Epidemiology, National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain.,Consortium for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Maria-José Medrano
- Department of Applied Epidemiology, National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain
| | - Fuencisla Avellanal
- Department of Applied Epidemiology, National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain.,Consortium for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Olga Calero
- Consortium for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Chronic Disease Programme, Carlos III Institute of Health, Madrid, Spain
| | - Miguel Calero
- Consortium for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Alzheimer Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Center, Madrid, Spain.,Chronic Disease Programme, Carlos III Institute of Health, Madrid, Spain
| |
Collapse
|
13
|
Kovacs GG, Lutz MI, Ricken G, Ströbel T, Höftberger R, Preusser M, Regelsberger G, Hönigschnabl S, Reiner A, Fischer P, Budka H, Hainfellner JA. Dura mater is a potential source of Aβ seeds. Acta Neuropathol 2016; 131:911-23. [PMID: 27016065 PMCID: PMC4865536 DOI: 10.1007/s00401-016-1565-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 12/14/2022]
Abstract
Deposition of amyloid-β (Aβ) in the brain parenchyma and vessels is one of the hallmarks of Alzheimer disease (AD). Recent observations of Aβ deposition in iatrogenic Creutzfeldt-Jakob disease (iCJD) after dural grafting or treatment with pituitary extracts raised concerns whether Aβ is capable of transmitting disease as seen in prion diseases by the disease-associated prion protein. To address this issue, we re-sampled and re-evaluated archival material, including the grafted dura mater of two cases with iCJD (28 and 33-years-old) without mutations in the AβPP, PSEN1 and PSEN2 genes, and carrying ε3/ε3 alleles of the APOE gene. In addition, we evaluated 84 dura mater samples obtained at autopsy (mean age 84.9 ± 0.3) in the community-based VITA study for the presence of Aβ deposition. We show that the dura mater may harbor Aβ deposits (13 %) in the form of cerebral amyloid angiopathy or amorphous aggregates. In both iCJD cases, the grafted dura mater had accumulated Aβ. The morphology and distribution pattern of cerebral Aβ deposition together with the lack of tau pathology distinguishes the Aβ proteinopathy in iCJD from AD, from that seen in young individuals without cognitive decline carrying one or two APOE4 alleles, and from that related to traumatic brain injury. Our novel findings of Aβ deposits in the dura mater, including the grafted dura, and the distinct cerebral Aβ distribution in iCJD support the seeding properties of Aβ. However, in contrast to prion diseases, our study suggests that such Aβ seeding is unable to reproduce the full clinicopathological phenotype of AD.
Collapse
Affiliation(s)
- Gabor G Kovacs
- Institute of Neurology, Medical University Vienna, AKH 4J, Währinger Gürtel 18-20, 1097, Vienna, Austria.
| | - Mirjam I Lutz
- Institute of Neurology, Medical University Vienna, AKH 4J, Währinger Gürtel 18-20, 1097, Vienna, Austria
| | - Gerda Ricken
- Institute of Neurology, Medical University Vienna, AKH 4J, Währinger Gürtel 18-20, 1097, Vienna, Austria
| | - Thomas Ströbel
- Institute of Neurology, Medical University Vienna, AKH 4J, Währinger Gürtel 18-20, 1097, Vienna, Austria
| | - Romana Höftberger
- Institute of Neurology, Medical University Vienna, AKH 4J, Währinger Gürtel 18-20, 1097, Vienna, Austria
| | - Matthias Preusser
- Department of Medicine I and Comprehensive Cancer Center CNS Unit, Medical University Vienna, Vienna, Austria
| | - Günther Regelsberger
- Institute of Neurology, Medical University Vienna, AKH 4J, Währinger Gürtel 18-20, 1097, Vienna, Austria
| | | | - Angelika Reiner
- Institute of Pathology, Danube Hospital Vienna, Vienna, Austria
| | - Peter Fischer
- Psychiatric Department, Medical Research Society Vienna, D.C., Danube Hospital, Vienna, Austria
| | - Herbert Budka
- Institute of Neurology, Medical University Vienna, AKH 4J, Währinger Gürtel 18-20, 1097, Vienna, Austria
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| | - Johannes A Hainfellner
- Institute of Neurology, Medical University Vienna, AKH 4J, Währinger Gürtel 18-20, 1097, Vienna, Austria
| |
Collapse
|
14
|
Variably Protease-sensitive Prionopathy in an Apparent Cognitively Normal 93-Year-Old. Alzheimer Dis Assoc Disord 2016; 29:173-6. [PMID: 24845762 DOI: 10.1097/wad.0000000000000049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Zerr I, Polyakova TA. [Creutzfeldt-Jakob disease: clinical and diagnostic aspects]. Zh Nevrol Psikhiatr Im S S Korsakova 2015. [PMID: 28635779 DOI: 10.17116/jnevro2015115629-16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In this article, authors analyzed a modern approach to the diagnosis of Creutzfeldt-Jakob disease (CJD) based on the clinical signs, cerebrospinal fluid markers, electroencephalography and magnetic resonance imaging. It was demonstrated for the first time that patients with late-onset CJD differed from younger CJD patients with respect to MRI profiles and initial clinical presentation. To date, cerebrospinal fluid (CSF) analysis, particularly protein 14-3-3 testing, presents an important approach to the identification of disease cases. A spectrum of differential diagnosis of rapid progressive dementia varied from neurodegenerative dementias to dementia due to acute neurological conditions. Real-time quaking-induced conversion (RT-QuIC) allows the amplification of miniscule amounts of scrapie prion protein. Recent studies applied the RT-QuIC methodology to CSF for the diagnosis of human prion diseases.
Collapse
Affiliation(s)
- I Zerr
- National Center of Neurodegenerative and Prion Diseases, Georg-August Gottingen University, Gottingen, Germany
| | - T A Polyakova
- Russian Medical Academy of Postgraduate Education, Moscow
| |
Collapse
|
16
|
Kim MO, Cali I, Oehler A, Fong JC, Wong K, See T, Katz JS, Gambetti P, Bettcher BM, DeArmond SJ, Geschwind MD. Genetic CJD with a novel E200G mutation in the prion protein gene and comparison with E200K mutation cases. Acta Neuropathol Commun 2013; 1:80. [PMID: 24330864 PMCID: PMC3880091 DOI: 10.1186/2051-5960-1-80] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 10/26/2013] [Indexed: 11/10/2022] Open
Abstract
A novel point mutation resulting in a glutamate-to-glycine substitution in PRNP at codon 200, E200G with codon 129 MV polymorphism (cis valine) and type 2 PrPSc was identified in a patient with a prolonged disease course leading to pathology-proven Jakob-Creutzfeldt disease. Despite the same codon as the most common genetic form of human PRNP mutation, E200K, this novel mutation (E200G) presented with a different clinical and pathological phenotype, including prolonged duration, large vacuoles, no vacuolation in the hippocampus, severe neuronal loss in the thalamus, mild cerebellar involvement, and abundant punctate linear and curvilinear deposition of PrPSc in synaptic boutons and axonal terminals along the dendrites.
Collapse
|
17
|
Profoundly different prion diseases in knock-in mice carrying single PrP codon substitutions associated with human diseases. Proc Natl Acad Sci U S A 2013; 110:14759-64. [PMID: 23959875 DOI: 10.1073/pnas.1312006110] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In man, mutations in different regions of the prion protein (PrP) are associated with infectious neurodegenerative diseases that have remarkably different clinical signs and neuropathological lesions. To explore the roots of this phenomenon, we created a knock-in mouse model carrying the mutation associated with one of these diseases [Creutzfeldt-Jakob disease (CJD)] that was exactly analogous to a previous knock-in model of a different prion disease [fatal familial insomnia (FFI)]. Together with the WT parent, this created an allelic series of three lines, each expressing the same protein with a single amino acid difference, and with all native regulatory elements intact. The previously described FFI mice develop neuronal loss and intense reactive gliosis in the thalamus, as seen in humans with FFI. In contrast, CJD mice had the hallmark features of CJD, spongiosis and proteinase K-resistant PrP aggregates, initially developing in the hippocampus and cerebellum but absent from the thalamus. A molecular transmission barrier protected the mice from any infectious prion agents that might have been present in our mouse facility and allowed us to conclude that the diseases occurred spontaneously. Importantly, both models created agents that caused a transmissible neurodegenerative disease in WT mice. We conclude that single codon differences in a single gene in an otherwise normal genome can cause remarkably different neurodegenerative diseases and are sufficient to create distinct protein-based infectious elements.
Collapse
|
18
|
Abstract
Prion diseases commonly manifest with the phenotype of subacute myoclonic encephalopathy. However, genetic forms of prion disease may have prolonged evolution mimicking neurodegenerative disease. We present the clinical and neuropathological features of a family with an early and long-standing dementia manifesting with posterior cortical atrophy and related to a 120 bp insertional mutation of the prion protein gene. Two cases exhibited mixed prion and Aβ pathology. The differential diagnosis with Alzheimer disease is discussed.
Collapse
|
19
|
Muñoz-Nieto M, Ramonet N, López-Gastón JI, Cuadrado-Corrales N, Calero O, Díaz-Hurtado M, Ipiens JR, Ramón y Cajal S, de Pedro-Cuesta J, Calero M. A novel mutation I215V in the PRNP gene associated with Creutzfeldt-Jakob and Alzheimer's diseases in three patients with divergent clinical phenotypes. J Neurol 2012; 260:77-84. [PMID: 22763467 DOI: 10.1007/s00415-012-6588-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 05/18/2012] [Accepted: 06/12/2012] [Indexed: 12/24/2022]
Abstract
Genetic human prion diseases are autosomal dominant disorders associated with different mutations in the PRNP gene that are manifested as distinct clinical phenotypes. Here, we report a new pathogenic missense mutation (c.[643A>G], p.[I215V]) in the PRNP gene associated with three pathologically confirmed cases: two of Creutzfeldt-Jakob disease (CJD) and one of Alzheimer's disease (AD) in two different families from the same geographical region in Spain. This mutation has not been found in any of more than 2,000 control cases studied. It represents a conservative amino acid change, and the same change is observed in the PRNP gene from other species. The two CJD cases were homozygous at codon 129 (M/M), but showed divergent clinical phenotypes with onset at ages 55 and 77 years and illness durations of 15 and 6 months, respectively. The postmortem neuropathological analysis of these cases showed homogeneous features compatible with CJD. Interestingly, the AD case (a brother of one of the CJD cases) was heterozygous at codon 129 (M/V). No familiar history was documented for any of the cases, suggesting a de novo mutation, or a partial, age-dependent penetration of the mutation, perhaps related to codon 129 status. This new mutation extends the list of known pathogenic mutations responsible for genetic CJD, reinforces the clinical heterogeneity of the disease, and advocates for the inclusion of PRNP gene examination in the diagnostic workup of patients with poorly classifiable dementia, even in the absence of family history.
Collapse
Affiliation(s)
- Mercedes Muñoz-Nieto
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Transmission of prion strains in a transgenic mouse model overexpressing human A53T mutated α-synuclein. J Neuropathol Exp Neurol 2011; 70:377-85. [PMID: 21487306 DOI: 10.1097/nen.0b013e318217d95f] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
There is a growing interest in the potential roles of misfolded protein interactions in neurodegeneration. To investigate this issue, we inoculated 3 prion strains intracerebrally into transgenic (TgM83) mice that overexpress human A53T α-synuclein. In comparison to nontransgenic controls, there was a striking decrease in the incubation periods of scrapie, classic and H-type bovine spongiform encephalopathies(C-BSE and H-BSE), with conservation of the histopathologic and biochemical features characterizing these 3 prion strains. TgM83 mice died of scrapie or C-BSE prion diseases before accumulating the insoluble and phosphorylated forms of α-synuclein specific to late stages of synucleinopathy. In contrast, the median incubation time for TgM83 mice inoculated with H-BSE was comparable to that observed when these mice were uninfected, thereby allowing the development of molecular alterations of α-synuclein. The last 4 mice of this cohort exhibited early accumulations of H-BSE prion protein along with α-synuclein pathology. The results indicate that a prion disease was triggered concomitantly with an overt synucleinopathy in some transgenic mice overexpressing human A53T α-synuclein after intracerebral inoculation with an H-BSE prion strain.
Collapse
|
21
|
Kovacs GG, Seguin J, Quadrio I, Höftberger R, Kapás I, Streichenberger N, Biacabe AG, Meyronet D, Sciot R, Vandenberghe R, Majtenyi K, László L, Ströbel T, Budka H, Perret-Liaudet A. Genetic Creutzfeldt-Jakob disease associated with the E200K mutation: characterization of a complex proteinopathy. Acta Neuropathol 2011; 121:39-57. [PMID: 20593190 DOI: 10.1007/s00401-010-0713-y] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 06/10/2010] [Accepted: 06/20/2010] [Indexed: 01/15/2023]
Abstract
The E200K mutation is the most frequent prion protein gene (PRNP) mutation detected worldwide that is associated with Creutzfeldt-Jakob disease (CJD) and thought to have overlapping features with sporadic CJD, yet detailed neuropathological studies have not been reported. In addition to the prion protein, deposition of tau, α-synuclein, and amyloid-β has been reported in human prion disease. To describe the salient and concomitant neuropathological alterations, we performed a systematic clinical, neuropathological, and biochemical study of 39 individuals carrying the E200K PRNP mutation originating from different European countries. The most frequent clinical symptoms were dementia and ataxia followed by myoclonus and various combinations of further symptoms, including vertical gaze palsy and polyneuropathy. Neuropathological examination revealed relatively uniform anatomical pattern of tissue lesioning, predominating in the basal ganglia and thalamus, and also substantia nigra, while the deposition of disease-associated PrP was more influenced by the codon 129 constellation, including different or mixed types of PrP(res) detected by immunoblotting. Unique and prominent intraneuronal PrP deposition involving brainstem nuclei was also noted. Systematic examination of protein depositions revealed parenchymal amyloid-β in 53.8%, amyloid angiopathy (Aβ) in 23.1%, phospho-tau immunoreactive neuritic profiles in 92.3%, neurofibrillary degeneration in 38.4%, new types of tau pathology in 33.3%, and Lewy-type α-synuclein pathology in 15.4%. TDP-43 and FUS immunoreactive protein deposits were not observed. This is the first demonstration of intensified and combined neurodegeneration in a genetic prion disease due to a single point mutation, which might become an important model to decipher the molecular interplay between neurodegeneration-associated proteins.
Collapse
Affiliation(s)
- Gabor G Kovacs
- Institute of Neurology, Medical University of Vienna, and Austrian Reference Center for Human Prion Diseases, AKH 4J, Währinger Gürtel 18-20, 1097, Vienna, Austria.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Tomasi V. Signal transduction in neurons: effects of cellular prion protein on fyn kinase and ERK1/2 kinase. IMMUNITY & AGEING 2010; 7 Suppl 1:S5. [PMID: 21172064 PMCID: PMC3024879 DOI: 10.1186/1742-4933-7-s1-s5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Background It has been reported that cellular prion protein (PrPc) co-localizes with caveolin-1 and participates to signal transduction events by recruiting Fyn kinase. As PrPc is a secreted protein anchored to the outer surface membrane through a glycosylphosphatidylinositol (GPI) anchor (secPrP) and caveolin-1 is located in the inner leaflet of plasma membrane, there is a problem of how the two proteins can physically interact each other and transduce signals. Results By using the GST-fusion proteins system we observed that PrPc strongly interacts with caveolin-1 scaffolding domain and with a caveolin-1 hydrophilic C-terminal region, but not with the caveolin-1 N-terminal region. In vitro binding experiments were also performed to define the site(s) of PrPc interacting with cav-1. The results are consistent with a participation of PrPc octapeptide repeats motif in the binding to caveolin-1 scaffolding domain. The caveolar localization of PrPc was ascertained by co-immunoprecipitation, by co-localization after flotation in density gradients and by confocal microscopy analysis of PrPc and caveolin-1 distributions in a neuronal cell line (GN11) expressing caveolin-1 at high levels. Conclusions We observed that, after antibody-mediated cross-linking or copper treatment, PrPc was internalized probably into caveolae. We propose that following translocation from rafts to caveolae or caveolae-like domains, secPrP could interact with caveolin-1 and induce signal transduction events.
Collapse
Affiliation(s)
- Vittorio Tomasi
- Department of Experimental Biology, University of Bologna Via Selmi, 3 40126 - Bologna, Italy.
| |
Collapse
|
23
|
Kell DB. Towards a unifying, systems biology understanding of large-scale cellular death and destruction caused by poorly liganded iron: Parkinson's, Huntington's, Alzheimer's, prions, bactericides, chemical toxicology and others as examples. Arch Toxicol 2010; 84:825-89. [PMID: 20967426 PMCID: PMC2988997 DOI: 10.1007/s00204-010-0577-x] [Citation(s) in RCA: 265] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 07/14/2010] [Indexed: 12/11/2022]
Abstract
Exposure to a variety of toxins and/or infectious agents leads to disease, degeneration and death, often characterised by circumstances in which cells or tissues do not merely die and cease to function but may be more or less entirely obliterated. It is then legitimate to ask the question as to whether, despite the many kinds of agent involved, there may be at least some unifying mechanisms of such cell death and destruction. I summarise the evidence that in a great many cases, one underlying mechanism, providing major stresses of this type, entails continuing and autocatalytic production (based on positive feedback mechanisms) of hydroxyl radicals via Fenton chemistry involving poorly liganded iron, leading to cell death via apoptosis (probably including via pathways induced by changes in the NF-κB system). While every pathway is in some sense connected to every other one, I highlight the literature evidence suggesting that the degenerative effects of many diseases and toxicological insults converge on iron dysregulation. This highlights specifically the role of iron metabolism, and the detailed speciation of iron, in chemical and other toxicology, and has significant implications for the use of iron chelating substances (probably in partnership with appropriate anti-oxidants) as nutritional or therapeutic agents in inhibiting both the progression of these mainly degenerative diseases and the sequelae of both chronic and acute toxin exposure. The complexity of biochemical networks, especially those involving autocatalytic behaviour and positive feedbacks, means that multiple interventions (e.g. of iron chelators plus antioxidants) are likely to prove most effective. A variety of systems biology approaches, that I summarise, can predict both the mechanisms involved in these cell death pathways and the optimal sites of action for nutritional or pharmacological interventions.
Collapse
Affiliation(s)
- Douglas B Kell
- School of Chemistry and the Manchester Interdisciplinary Biocentre, The University of Manchester, Manchester M1 7DN, UK.
| |
Collapse
|
24
|
Abstract
Various misfolded and aggregated neuronal proteins commonly coexist in neurodegenerative disease, but whether the proteins coaggregate and alter the disease pathogenesis is unclear. Here, we used mixtures of distinct prion strains, which are believed to differ in conformation, to test the hypothesis that two different aggregates interact and change the disease in vivo. We tracked two prion strains in mice histopathologically and biochemically, as well as by spectral analysis of plaque-bound PTAA (polythiophene acetic acid), a conformation-sensitive fluorescent amyloid ligand. We found that prion strains interacted in a highly selective and strain-specific manner, with (1) no interaction, (2) hybrid plaque formation, or (3) blockage of one strain by a second (interference). The hybrid plaques were maintained on additional passage in vivo and each strain seemed to maintain its original conformational properties, suggesting that one strain served only as a scaffold for aggregation of the second strain. These findings not only further our understanding of prion strain interactions but also directly demonstrate interactions that may occur in other protein aggregate mixtures.
Collapse
|