1
|
Razmjou AA, Kremer JM, Pappas DA, Curtis JR, Wang J, Shahbazian A, Elashoff DA, Guo R, Meriwether D, Sulaiman D, O'Connor E, Reddy ST, Charles-Schoeman C. Disease response in rheumatoid arthritis across four biologic therapies associates with improvement in paraoxonase-1 activity and oxylipins. RMD Open 2024; 10:e004829. [PMID: 39461874 PMCID: PMC11529732 DOI: 10.1136/rmdopen-2024-004829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/30/2024] [Indexed: 10/29/2024] Open
Abstract
OBJECTIVE Paraoxonase-1 (PON1) is a high-density lipoprotein (HDL)-associated enzyme, that has been implicated as a biomarker of cardiovascular risk in patients with rheumatoid arthritis (RA). We aimed to investigate how different biologic therapies affect levels of PON1 and oxylipins. METHODS 1213 adult patients with RA in the Comparative Effectiveness Registry to study Therapies for Arthritis and Inflammatory CoNditions cohort study with moderate-to-high disease activity (Clinical Disease Activity Index (CDAI) >10) who initiated a new biologic (tocilizumab (TCZ), n=296; abatacept, n=374; tumour necrosis factor inhibitors, n=427; rituximab, n=116) were followed prospectively with serum specimens analysed for PON1 activity by arylesterase (ARYL), lactonase (LAC) and PON assays at baseline and after 6 months of biologic therapy. A targeted panel of oxylipins was evaluated by liquid chromatography-mass spectrometry/mass spectrometry in a subset of patients with the lowest and highest 6-month Disease Activity Score 28 (DAS28)-C reactive protein (CRP) responses in each treatment group. RESULTS PON1 activity generally increased in the entire cohort after 6 months of new biologic therapy, showing the greatest, most consistent increases in the TCZ group. Increases in all three PON1 domains associated with significant decreases in disease activity in DAS28-CRP/CDAI (p<0.05), and increases in LAC/ARYL were significantly associated with the American College of Rheumatology 20/50/70 responses (OR (95% CI) of 1.12 (1.04, 1.22) and 1.13 (1.04, 1.23), p<0.01, respectively), after controlling for other RA disease characteristics. Some oxylipins, including 12-hydroxyeicosatetraenoic acid correlated with RA disease activity measures. CONCLUSION Improvement in disease activity across four classes of biologics is associated with enhanced PON1 activity, which has significant implications for cardiovascular safety.
Collapse
Affiliation(s)
- Amir A Razmjou
- Department of Medicine, Division of Rheumatology, University of California Los Angeles, David Geffen School of Medicine, Los Angeles, California, USA
| | | | - Dimitrios A Pappas
- Corrona Research Foundation, Albany, New York, USA
- CorEvitas LLC, Waltham, Massachusetts, USA
| | - Jeffrey R Curtis
- Department of Medicine, Division of Rheumatology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jennifer Wang
- Department of Medicine, Division of Rheumatology, University of California Los Angeles, David Geffen School of Medicine, Los Angeles, California, USA
| | - Ani Shahbazian
- Department of Medicine, Division of Rheumatology, University of California Los Angeles, David Geffen School of Medicine, Los Angeles, California, USA
| | - David A Elashoff
- Division of General Internal Medicine and Health Services Research, UCLA, Los Angeles, California, USA
| | - Rong Guo
- Division of General Internal Medicine and Health Services Research, UCLA, Los Angeles, California, USA
| | - David Meriwether
- Department of Medicine, Division of Cardiology, UCLA, Los Angeles, California, USA
| | - Dawoud Sulaiman
- Department of Medicine, Division of Cardiology, UCLA, Los Angeles, California, USA
| | - Ellen O'Connor
- Department of Medicine, Division of Cardiology, UCLA, Los Angeles, California, USA
| | - Srinivasa T Reddy
- Department of Medicine, Division of Cardiology, UCLA, Los Angeles, California, USA
| | - Christina Charles-Schoeman
- Department of Medicine, Division of Rheumatology, University of California Los Angeles, David Geffen School of Medicine, Los Angeles, California, USA
| |
Collapse
|
2
|
Monero-Paredes M, Santiago E, Carrasquillo-Carrion K, Renta JY, Rogozin IB, Roche-Lima A, Duconge J. Paraoxonase-1 as a Cardiovascular Biomarker in Caribbean Hispanic Patients Treated with Clopidogrel: Abundance and Functionality. Int J Mol Sci 2024; 25:10657. [PMID: 39408985 PMCID: PMC11477108 DOI: 10.3390/ijms251910657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/29/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
Clopidogrel, a prescription drug to reduce ischemic events in cardiovascular patients, has been extensively studied in mostly European individuals but not among Caribbean Hispanics. This study evaluated the low abundance and reduced activity of paraoxonase-1 (PON1) in clopidogrel-resistant patients as a predictive risk biomarker of poor responders and disease severity in this population. Thirty-six patients on clopidogrel (cases divided into poor and normal responders) were enrolled, along with 11 cardiovascular patients with no clopidogrel indications (positive control) and 13 healthy volunteers (negative control). Residual on-treatment platelet reactivity unit (PRU), PON1 abundance by Western blotting, and PON1 activity by enzymatic assays were measured. PON1 genotyping and computational haplotype phasing were performed on 512 DNA specimens for two genetic loci (rs662 and rs854560). No statistical differences in mean relative PON1 abundance were found among the groups (p > 0.05). However, a significantly lower enzymatic activity was found in poor responders (10.57 ± 6.79 µU/mL) when compared to controls (22.66 ± 8.30 µU/mL and 22.21 ± 9.66 µU/mL; p = 0.004). PON1 activity among carriers of the most prevalent PON1 haplotype (AA|AA) was significantly lower than in wild types (7.90 µU/mL vs. 22.03 µU/mL; p = 0.005). Our findings suggested that PON1 is a potential biomarker of cardiovascular disease severity in Caribbean Hispanics.
Collapse
Affiliation(s)
- Mariangeli Monero-Paredes
- Department of Pharmacology and Toxicology, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA;
| | - Ednalise Santiago
- Research Centers in Minority Institutions (RCMI) Program, Center for Collaborative Research in Health Disparities (CCRHD), University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA; (E.S.); (K.C.-C.); (J.Y.R.); (A.R.-L.)
| | - Kelvin Carrasquillo-Carrion
- Research Centers in Minority Institutions (RCMI) Program, Center for Collaborative Research in Health Disparities (CCRHD), University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA; (E.S.); (K.C.-C.); (J.Y.R.); (A.R.-L.)
| | - Jessicca Y. Renta
- Research Centers in Minority Institutions (RCMI) Program, Center for Collaborative Research in Health Disparities (CCRHD), University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA; (E.S.); (K.C.-C.); (J.Y.R.); (A.R.-L.)
| | - Igor B. Rogozin
- Computational Biology Branch, National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), Rockville Pike MSC 3830, Bethesda, MD 20894, USA;
| | - Abiel Roche-Lima
- Research Centers in Minority Institutions (RCMI) Program, Center for Collaborative Research in Health Disparities (CCRHD), University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA; (E.S.); (K.C.-C.); (J.Y.R.); (A.R.-L.)
| | - Jorge Duconge
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA
| |
Collapse
|
3
|
Rafinezhad M, Kheirouri S, Abbasnezhad M, Alizadeh M. What Dietary Vitamins and Minerals Might Be Associated with Paraoxonase-1 Serum Levels in Patients with Coronary Artery Disease? Biol Trace Elem Res 2024:10.1007/s12011-024-04382-3. [PMID: 39313692 DOI: 10.1007/s12011-024-04382-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024]
Abstract
Paraoxonase-1 (PON-1) is an antioxidant enzyme inversely associated with atherosclerosis incidence. Dietary antioxidants help to increase PON-1 serum levels. Since most vitamins and minerals have antioxidant properties, this research aimed to examine the association between PON-1 serum levels and dietary intake of vitamins and minerals in patients with coronary artery disease (CAD). In this cross-sectional study, 102 inpatients with CAD and 60 healthy individuals participated. The average dietary vitamins and minerals intake were computed using information from the food frequency questionnaire with the assistance of Nutritionist IV software. The serum PON-1 level was measured using the ELISA method. Regarding minerals, serum PON-1 level was positively correlated with dietary calcium (β = 0.57, p = 0.001), phosphorus (β = 0.52, p = 0.004), and potassium intake (β = 0.40, p = 0.03), but inversely associated with dietary consumption of iron (β = - 0.43, p = 0.04), and sodium (β = - 0.41, p = 0.02). Concerning vitamins, serum levels of PON-1 were positively associated with vitamin B6 (β = 0.53, p = 0.01) and riboflavin (β = 0.44, p = 0.03) but inversely correlated with niacin (β = - 0.49, p = 0.03). The serum level of PON-1 might be associated with the dietary intake of minerals and vitamins. Therefore, a diet rich in certain minerals and vitamins may be advantageous in increasing serum PON-1 levels and preventing CAD.
Collapse
Affiliation(s)
- Masoumeh Rafinezhad
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sorayya Kheirouri
- Department of Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohsen Abbasnezhad
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Alizadeh
- Department of Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Toh R. Genetic Determinants of High-density Lipoprotein Cholesterol Efflux Capacity: Insights from Paraoxonase 1 Polymorphisms. J Atheroscler Thromb 2024; 31:1260-1262. [PMID: 38910119 PMCID: PMC11374540 DOI: 10.5551/jat.ed267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024] Open
Affiliation(s)
- Ryuji Toh
- Division of Evidence-based Laboratory Medicine, Kobe University Graduate School of Medicine
| |
Collapse
|
5
|
Oniki K, Ohura K, Endo M, Akatwijuka D, Matsumoto E, Nakamura T, Ogata Y, Yoshida M, Harada-Shiba M, Saruwatari J, Ogura M, Imai T. The Association of the Cholesterol Efflux Capacity with the Paraoxonase 1 Q192R Genotype and the Paraoxonase Activity. J Atheroscler Thromb 2024; 31:1263-1276. [PMID: 38508740 PMCID: PMC11374542 DOI: 10.5551/jat.64711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
AIMS Paraoxonase 1 (PON1) binds to high-density lipoprotein (HDL) and protects against atherosclerosis. However, the relationship between functional PON1 Q192R polymorphism, which is associated with the hydrolysis of paraoxon (POXase activity) and atherosclerotic cardiovascular disease (ASCVD), remains controversial. As the effect of PON1 Q192R polymorphism on the HDL function is unclear, we investigated the relationship between this polymorphism and the cholesterol efflux capacity (CEC), one of the biological functions of HDL, in association with the PON1 activity. METHODS The relationship between PON1 Q192R polymorphisms and CEC was investigated retrospectively in 150 subjects without ASCVD (50 with the PON1 Q/Q genotype, 50 with the Q/R genotype, and 50 with the R/R genotype) who participated in a health screening program. The POXase and arylesterase (AREase: hydrolysis of aromatic esters) activities were used as measures of the PON1 activity. RESULTS The AREase activity was positively correlated with CEC independent of the HDL cholesterol levels. When stratified by the PON1 Q192R genotype, the POXase activity was also positively correlated with CEC independent of HDL cholesterol. PON1 Q192R R/R genotype carriers had a lower CEC than Q/Q or Q/R genotype carriers, despite having a higher POXase activity. Moreover, in a multiple regression analysis, the PON1 Q192R genotype was associated with the degree of CEC, independent of the HDL cholesterol and POXase activity. CONCLUSIONS The PON1 Q192R R allele is associated with reduced CEC in Japanese people without ASCVD. Further studies on the impact of this association on the severity of atherosclerosis and ASCVD development are thus called for.
Collapse
Affiliation(s)
- Kentaro Oniki
- Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Kayoko Ohura
- Graduate School of Pharmaceutical Sciences, Kumamoto University
- Headquarters for Admissions and Education, Kumamoto University
| | - Megumi Endo
- Graduate School of Pharmaceutical Sciences, Kumamoto University
| | | | - Erika Matsumoto
- Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Teruya Nakamura
- Graduate School of Pharmaceutical Sciences, Kumamoto University
| | | | | | - Mariko Harada-Shiba
- Cardiovascular Center, Osaka Medical and Pharmaceutical University
- Department of Molecular Innovation in Lipidology, National Cerebral and Cardiovascular Center Research Institute
| | | | - Masatsune Ogura
- Department of Molecular Innovation in Lipidology, National Cerebral and Cardiovascular Center Research Institute
- Department of Clinical Laboratory Technology, Faculty of Medical Science, Juntendo University
| | - Teruko Imai
- Graduate School of Pharmaceutical Sciences, Kumamoto University
- Daiichi University of Pharmacy
| |
Collapse
|
6
|
Baranska M, Rychlik-Sych M, Dudarewicz M, Wiktorowska-Owczarek A, Owczarek J. Polymorphism rs662 (Q192R) of paraoxonase-1 and susceptibility to atherosclerosis of the coronary arteries. Arch Med Sci 2024; 20:1328-1333. [PMID: 39439706 PMCID: PMC11493066 DOI: 10.5114/aoms/192273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/13/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction The present study concerns a connection of the Q192RPON1 polymorphism with atherosclerosis requiring percutaneous coronary intervention (PCI) or coronary artery bypass grafting (CABG) in the Polish population. Methods A total of 282 individuals who underwent coronary angiography took part in this study. The polymorphism was determined with the PCR-RFLP method. Results The odds ratio for atherosclerosis in carriers of the 192RR genotype was 2.50 (p = 0.002). The median HDL-C concentration was significantly lower in the study group than the control group (p = 0.02). Conclusions The presence of the 192RR genotype and 192R allele are indicative of at least a two-fold increased risk of atherosclerosis requiring PCI or CABG in the Polish population.
Collapse
Affiliation(s)
- Malgorzata Baranska
- Department of Hospital Pharmacy, Laboratory of Pharmacogenetics, Medical University of Lodz, Poland
| | - Mariola Rychlik-Sych
- Department of Hospital Pharmacy, Laboratory of Pharmacogenetics, Medical University of Lodz, Poland
| | - Michal Dudarewicz
- Department of Hospital Pharmacy, Laboratory of Pharmacogenetics, Medical University of Lodz, Poland
| | | | - Jacek Owczarek
- Department of Hospital Pharmacy, Laboratory of Pharmacogenetics, Medical University of Lodz, Poland
| |
Collapse
|
7
|
Erdman V, Tuktarova I, Nasibullin T, Timasheva Y, Petintseva A, Korytina G. Polygenic markers of survival and longevity in the antioxidant genes PON1, PON2, MTHFR, MSRA, SOD1, NQO1, and CAT in a 20-year follow-up study in the population from the Volga-Ural region. Gene 2024; 919:148510. [PMID: 38679184 DOI: 10.1016/j.gene.2024.148510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Genetic background of healthy or pathological styles of aging and human lifespan is determined by joint gene interactions. Lucky combinations of antioxidant gene polymorphisms can result in a highly adaptive phenotype, providing a successful way to interact with external triggers. Our purpose was to identify the polygenic markers of survival and longevity in the antioxidant genes among elderly people with physiological and pathological aging. METHODS In a 20-year follow-up study of 2350 individuals aged 18-114 years residing in the Volga-Ural region of Russia, sex-adjusted association analyses of MTHFR rs1801133, MSRA rs10098474, PON1 rs662, PON2 rs7493, SOD1 rs2070424, NQO1 rs1131341 and CAT rs1001179 polymorphic loci with longevity were carried out. Survival analysis was subsequently performed using the established single genes and gene-gene combinations as cofactors. RESULTS The PON1 rs662*G allele was defined as the main longevity marker in women (OR = 1.44, p = 3E-04 in the log-additive model; HR = 0.77, p = 1.9E-04 in the Cox-survival model). The polymorphisms in the MTHFR, MSRA, PON2, SOD1, and CAT genes had an additive effect on longevity. A strong protective effect of combined MTHFR rs1801133*C, MSRA rs10098474*T, PON1 rs662*G, and PON2 rs7493*C alleles against mortality was obtained in women (HR = 0.81, p = 5E-03). The PON1 rs662*A allele had a meaningful impact on mortality for both long-lived men with cerebrovascular accidents (HR = 1.76, p = 0.027 for the PON1 rs662*AG genotype) and women with cardiovascular diseases (HR = 1.43, p = 0.002 for PON1 rs662*AA genotype). The MTHFR rs1801133*TT (HR = 1.91, p = 0.036), CAT rs1001179*TT (HR = 2.83, p = 0.031) and SOD1 rs2070424*AG (HR = 1.58, p = 0.018) genotypes were associated with the cancer mortality. CONCLUSION In our longitudinal 20-year study, we found the combinations of functional polymorphisms in antioxidant genes involved in longevity and survival in certain clinical phenotypes in the advanced age.
Collapse
Affiliation(s)
- Vera Erdman
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa 450054, Russia.
| | - Ilsia Tuktarova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa 450054, Russia
| | - Timur Nasibullin
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa 450054, Russia
| | - Yanina Timasheva
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa 450054, Russia; Bashkir State Medical University, Ufa 450008, Russia
| | - Anna Petintseva
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa 450054, Russia
| | - Gulnaz Korytina
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa 450054, Russia; Bashkir State Medical University, Ufa 450008, Russia
| |
Collapse
|
8
|
Abdelaziz TA, Mesbah NM, Abo-Elmatty DM, El-Sabbagh FO. Association of paraoxonase-1 (Q192R) gene polymorphism with coronary artery spasm during cardiac catheterisation in Egyptians. Arch Physiol Biochem 2024:1-7. [PMID: 39105458 DOI: 10.1080/13813455.2024.2387691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/08/2024] [Accepted: 07/28/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND Coronary artery spasm is among the etiology of myocardial infarction. Oxidative stress is involved in the pathogenesis of coronary artery spasm (CAS). Paraoxonase-1 (PON1) is an HDL-bound antioxidant enzyme that protects LDL from oxidative modification. Oxidative-stress-related genetic factors and certain polymorphisms in the paraoxonase 1 gene might influence the pathogenesis of CAS. We aimed to investigate the association between PON1 gene polymorphism and its enzymatic activity and coronary artery spasm during cardiac catheterization. METHODS AND RESULTS The study population was 150 patients who underwent elective coronary angiography. Subjects were genotyped to the Q192R polymorphism (rs662) on the PON1 gene by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP), and PON1 activity was quantitatively analyzed by enzyme linked immunosorbent assay. Results showed that the subjects carrying the RR genotype and R allele were significantly more likely to develop coronary artery spasm (OR=4.2, 2.03, P< 0.006, P˂0.02, respectively). Moreover, serum PON1 levels were significantly decreased (P˂0.001) in the CAS group. RR genotype of PON1 Q192R polymorphism, Tc, LDLc, TG, catheter size, and paroxonase-1 serum level are independent predictors of coronary spasm. CONCLUSION We conclude that the PON1 (rs662) gene polymorphism is associated with CAS during cardiac catheterization in Egyptians. The PON1-192R allele and lower serum enzyme concentration may play an important role in coronary spasm.
Collapse
Affiliation(s)
- Tarek A Abdelaziz
- Department of Cardiology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Noha M Mesbah
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Dina M Abo-Elmatty
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Farah O El-Sabbagh
- Department of Biochemistry, Faculty of Pharmacy, Sinai University (Kantra Campus), El-Arish, Egypt
| |
Collapse
|
9
|
Durrington P, Soran H. Paraoxonase 1: evolution of the enzyme and of its role in protecting against atherosclerosis. Curr Opin Lipidol 2024; 35:171-178. [PMID: 38887979 PMCID: PMC11224571 DOI: 10.1097/mol.0000000000000936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
PURPOSE OF REVIEW To review the discoveries which led to the concept that serum paraoxonase 1 (PON1) is inversely related to atherosclerotic cardiovascular disease (ASCVD) incidence, how this association came to be regarded as causal and how such a role might have evolved. RECENT FINDINGS Animal models suggest a causal link between PON1 present on HDL and atherosclerosis. Serum PON1 activity predicts ASCVD with a similar reliability to HDL cholesterol, but at the extremes of high and low HDL cholesterol, there is discordance with PON1 being potentially more accurate. The paraoxonase gene family has its origins in the earliest life forms. Its greatest hydrolytic activity is towards lactones and organophosphates, both of which can be generated in the natural environment. It is active towards a wide range of substrates and thus its conservation may have resulted from improved survival of species facing a variety of evolutionary challenges. SUMMARY Protection against ASCVD is likely to be the consequence of some promiscuous activity of PON1, but nonetheless has the potential for exploitation to improve risk prediction and prevention of ASCVD.
Collapse
Affiliation(s)
- Paul Durrington
- Faculty of Biology, Medicine and Health, Cardiovascular Research Group, University of Manchester
| | - Handrean Soran
- NIHR/Wellcome Trust Clinical Research Facility & Department of Diabetes, Metabolism and Endocrinology, Manchester University NHS Foundation Trust, Manchester, UK
| |
Collapse
|
10
|
Jakubowski H. Homocysteine Thiolactone Detoxifying Enzymes and Alzheimer's Disease. Int J Mol Sci 2024; 25:8095. [PMID: 39125665 PMCID: PMC11312131 DOI: 10.3390/ijms25158095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Elevated levels of homocysteine (Hcy) and related metabolites are associated with Alzheimer's disease (AD). Severe hyperhomocysteinemia causes neurological deficits and worsens behavioral and biochemical traits associated with AD. Although Hcy is precluded from entering the Genetic Code by proofreading mechanisms of aminoacyl-tRNA synthetases, and thus is a non-protein amino acid, it can be attached to proteins via an N-homocysteinylation reaction mediated by Hcy-thiolactone. Because N-homocysteinylation is detrimental to a protein's function and biological integrity, Hcy-thiolactone-detoxifying enzymes-PON1, BLMH, BPHL-have evolved. This narrative review provides an account of the biological function of these enzymes and of the consequences of their impairments, leading to the phenotype characteristic of AD. Overall, accumulating evidence discussed in this review supports a hypothesis that Hcy-thiolactone contributes to neurodegeneration associated with a dysregulated Hcy metabolism.
Collapse
Affiliation(s)
- Hieronim Jakubowski
- Department of Biochemistry and Biotechnology, University of Life Sciences, 60-637 Poznań, Poland; ; Tel.: +48-973-972-8733; Fax: +48-973-972-8981
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, International Center for Public Health, Newark, NJ 07103, USA
| |
Collapse
|
11
|
Zhao X, Li J, Liu Y, Liu Y, Jiang X, Long L, Wang J, Yao Y, Zhang Q, Li M, Li X, Zhang B, Liao J. A prospective cohort study of exposure to household pesticide with cardiovascular diseases mortality in older adults. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134316. [PMID: 38669923 DOI: 10.1016/j.jhazmat.2024.134316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/08/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024]
Abstract
OBJECTIVES We examined the associations of self-reported exposures, and urinary metabolites related to household pesticide with cardiovascular disease (CVD) mortality in older adults based on the 2007 to 2014 waves of National Health and Nutrition Examination Survey (NHANES). METHODS Information on application and urinary metabolites related to household pesticide exposure were collected. We estimated the risks of household pesticide exposure, urinary metabolites with subsequent incident CVD death using Cox proportional hazards regression models. The indirect effects of urinary metabolites and effect modifications were examined. RESULTS The participants who reported exposure to household pesticide had a higher risk of incident CVD death (adjusted HR 1.40, 95% CI 1.08 to 1.81). Per 1-log10 increase in urinary N, N-diethyl-3-methylbenzamide (DEET) related to household insect repellents was associated with a higher risk of incident CVD death (adjusted HR 1.97, 95% CI 1.14 to 3.40). Urinary DEET explained 4.21% of the total association between household pesticide exposure and CVD death risk. The participants who persisted a low level of health diet exhibited pronounced CVD death risks with household pesticide exposures. CONCLUSIONS Exposure to household pesticide, especially household insect repellents, was consistently associated with an elevated CVD death risk in older adults. A heatlhy diet could partly attenuate the associations.
Collapse
Affiliation(s)
- Xiyao Zhao
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Department of Systematic Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Research Center for Prevention and Therapy of Occupational Diseases, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, Sichuan, 610041, China; Department of Occupational and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jiayuan Li
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Department of Systematic Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yongqi Liu
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Department of Systematic Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Research Center for Prevention and Therapy of Occupational Diseases, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, Sichuan, 610041, China; Department of Occupational and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yunjie Liu
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Department of Systematic Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xia Jiang
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Department of Systematic Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lu Long
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Department of Systematic Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jintao Wang
- Department of Occupational and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yuqing Yao
- Department of Systematic Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Research Center for Prevention and Therapy of Occupational Diseases, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, Sichuan, 610041, China; Department of Occupational and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Qin Zhang
- Department of Systematic Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Research Center for Prevention and Therapy of Occupational Diseases, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, Sichuan, 610041, China; Department of Occupational and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ming Li
- Department of Systematic Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiaomeng Li
- Department of Systematic Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ben Zhang
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Department of Systematic Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Department of Occupational and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jiaqiang Liao
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Department of Systematic Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Research Center for Prevention and Therapy of Occupational Diseases, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
12
|
Mahrooz A. Pleiotropic functions and clinical importance of circulating HDL-PON1 complex. Adv Clin Chem 2024; 121:132-171. [PMID: 38797541 DOI: 10.1016/bs.acc.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
High density lipoprotein (HDL) functions are mostly mediated through a complex proteome, particularly its enzymes. HDL can provide a scaffold for the assembly of several proteins that affect each other's function. HDL particles, particularly small, dense HDL3, are rich in paraoxonase 1 (PON1), which is an important enzyme in the functionality of HDL, so the antioxidant and antiatherogenic properties of HDL are largely attributed to this enzyme. There is an increasing need to represent a valid, reproducible, and reliable method to assay HDL function in routine clinical laboratories. In this context, HDL-associated proteins may be key players; notably PON1 activity (its arylesterase activity) may be a proper candidate because its decreased activity can be considered an important risk factor for HDL dysfunctionality. Of note, automated methods have been developed for the measurement of serum PON1 activity that facilitates its assay in large sample numbers. Arylesterase activity is proposed as a preferred activity among the different activities of PON1 for its assay in epidemiological studies. The binding of PON1 to HDL is critical for the maintenance of its activity and it appears apolipoprotein A-I plays an important role in HDL-PON1 interaction as well as in the biochemical and enzymatic properties of PON1. The interrelationships between HDL, PON1, and HDL's other components are complex and incompletely understood. The purpose of this review is to discuss biochemical and clinical evidence considering the interactions of PON1 with HDL and the role of this enzyme as an appropriate biomarker for HDL function as well as a potential therapeutic target.
Collapse
Affiliation(s)
- Abdolkarim Mahrooz
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Department of Clinical Biochemistry and Medical Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
13
|
Nicholls SJ, Nelson AJ. New targets and mechanisms of action for lipid-lowering and anti-inflammatory therapies in atherosclerosis: where does the field stand? Expert Opin Ther Targets 2024; 28:375-384. [PMID: 38815057 DOI: 10.1080/14728222.2024.2362644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/29/2024] [Indexed: 06/01/2024]
Abstract
INTRODUCTION Atherosclerotic cardiovascular disease remains a leading cause of morbidity and mortality worldwide, despite widespread use of statins. There is a need to develop additional therapeutic strategies that will complement statins to achieve more effective reductions in cardiovascular risk. AREAS COVERED This review provides a comprehensive summary of current areas of therapeutic development targeting both lipid and inflammatory factors implicated in the pathogenesis of atherosclerosis. In addition to develop of novel approaches that will produce more effective lowering of low-density lipoprotein cholesterol, clinical trials are currently evaluating the potential to target other atherogenic lipid parameters such as triglyceride-rich lipoproteins and Lp(a), in addition to promoting the biological properties of high-density lipoproteins. Targeting inflammation within the vascular wall has emerged as a new frontier in cardiovascular prevention, with early evidence that use of anti-inflammatory agents have the potential to reduce cardiovascular risk. EXPERT OPINION Clinical practice has an increasing array of therapeutic tools to achieve more effective lowering of low-density lipoprotein cholesterol for high-risk patients. In addition, clinical trials have the potential to deliver a range of additional agents to the clinic, that target alternative lipid and inflammatory mediators. This will permit the potential to personalize cardiovascular prevention.
Collapse
Affiliation(s)
| | - Adam J Nelson
- Victorian Heart Institute, Monash University, Melbourne, Australia
| |
Collapse
|
14
|
Dornas W, Silva M. Modulation of the antioxidant enzyme paraoxonase-1 for protection against cardiovascular diseases. Nutr Metab Cardiovasc Dis 2024:S0939-4753(24)00154-6. [PMID: 39277536 DOI: 10.1016/j.numecd.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/12/2024] [Accepted: 04/04/2024] [Indexed: 09/17/2024]
Abstract
AIM The enzyme paraoxonase 1 (PON1) bound to high-density lipoprotein has received special attention for its protective role against stress-mediated damage and use as a potential regulatory target in atherosclerosis and related vascular diseases. DATA SYNTHESIS We present an overview of the literature on PON1 activity and mRNA levels by investigating its modulation for clinical translations. Specifically, the expression of PON1 and its regulated activity can be modified in different ways with natural substances, drugs, and lifestyle factors thar affect the development of atherosclerosis. CONCLUSIONS The endothelial contribution of PON1 to overcome differences considering an individual's disease development risk is supported by polymorphism interaction data and the susceptibility to modify PON1 responses in chronic events composed by biological and environmental factors.
Collapse
Affiliation(s)
- Waleska Dornas
- Course Superior of Technology in Radiology, School of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Maisa Silva
- Department of Basic Life Sciences, Universidade Federal de Juiz de Fora, Governador Valadares, MG, Brazil
| |
Collapse
|
15
|
Morvaridzadeh M, Zoubdane N, Heshmati J, Alami M, Berrougui H, Khalil A. High-Density Lipoprotein Metabolism and Function in Cardiovascular Diseases: What about Aging and Diet Effects? Nutrients 2024; 16:653. [PMID: 38474781 DOI: 10.3390/nu16050653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Cardiovascular diseases (CVDs) have become the leading global cause of mortality, prompting a heightened focus on identifying precise indicators for their assessment and treatment. In this perspective, the plasma levels of HDL have emerged as a pivotal focus, given the demonstrable correlation between plasma levels and cardiovascular events, rendering them a noteworthy biomarker. However, it is crucial to acknowledge that HDLs, while intricate, are not presently a direct therapeutic target, necessitating a more nuanced understanding of their dynamic remodeling throughout their life cycle. HDLs exhibit several anti-atherosclerotic properties that define their functionality. This functionality of HDLs, which is independent of their concentration, may be impaired in certain risk factors for CVD. Moreover, because HDLs are dynamic parameters, in which HDL particles present different atheroprotective properties, it remains difficult to interpret the association between HDL level and CVD risk. Besides the antioxidant and anti-inflammatory activities of HDLs, their capacity to mediate cholesterol efflux, a key metric of HDL functionality, represents the main anti-atherosclerotic property of HDL. In this review, we will discuss the HDL components and HDL structure that may affect their functionality and we will review the mechanism by which HDL mediates cholesterol efflux. We will give a brief examination of the effects of aging and diet on HDL structure and function.
Collapse
Affiliation(s)
- Mojgan Morvaridzadeh
- Department of Medicine, Geriatric Service, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 4N4, Canada
| | - Nada Zoubdane
- Department of Medicine, Geriatric Service, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 4N4, Canada
| | - Javad Heshmati
- Department of Medicine, Geriatric Service, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 4N4, Canada
| | - Mehdi Alami
- Department of Medicine, Geriatric Service, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 4N4, Canada
| | - Hicham Berrougui
- Department of Medicine, Geriatric Service, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 4N4, Canada
| | - Abdelouahed Khalil
- Department of Medicine, Geriatric Service, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 4N4, Canada
| |
Collapse
|
16
|
Biswas S, Hilser JR, Woodward NC, Wang Z, Gukasyan J, Nemet I, Schwartzman WS, Huang P, Han Y, Fouladian Z, Charugundla S, Spencer NJ, Pan C, Tang WW, Lusis AJ, Hazen SL, Hartiala JA, Allayee H. Effect of Genetic and Dietary Perturbation of Glycine Metabolism on Atherosclerosis in Humans and Mice. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.08.23299748. [PMID: 38168321 PMCID: PMC10760269 DOI: 10.1101/2023.12.08.23299748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Objective Epidemiological and genetic studies have reported inverse associations between circulating glycine levels and risk of coronary artery disease (CAD). However, these findings have not been consistently observed in all studies. We sought to evaluate the causal relationship between circulating glycine levels and atherosclerosis using large-scale genetic analyses in humans and dietary supplementation experiments in mice. Methods Serum glycine levels were evaluated for association with prevalent and incident CAD in the UK Biobank. A multi-ancestry genome-wide association study (GWAS) meta-analysis was carried out to identify genetic determinants for circulating glycine levels, which were then used to evaluate the causal relationship between glycine and risk of CAD by Mendelian randomization (MR). A glycine feeding study was carried out with atherosclerosis-prone apolipoprotein E deficient (ApoE-/-) mice to determine the effects of increased circulating glycine levels on amino acid metabolism, metabolic traits, and aortic lesion formation. Results Among 105,718 subjects from the UK Biobank, elevated serum glycine levels were associated with significantly reduced risk of prevalent CAD (Quintile 5 vs. Quintile 1 OR=0.76, 95% CI 0.67-0.87; P<0.0001) and incident CAD (Quintile 5 vs. Quintile 1 HR=0.70, 95% CI 0.65-0.77; P<0.0001) in models adjusted for age, sex, ethnicity, anti-hypertensive and lipid-lowering medications, blood pressure, kidney function, and diabetes. A meta-analysis of 13 GWAS datasets (total n=230,947) identified 61 loci for circulating glycine levels, of which 26 were novel. MR analyses provided modest evidence that genetically elevated glycine levels were causally associated with reduced systolic blood pressure and risk of type 2 diabetes, but did provide evidence for an association with risk of CAD. Furthermore, glycine-supplementation in ApoE-/- mice did not alter cardiometabolic traits, inflammatory biomarkers, or development of atherosclerotic lesions. Conclusions Circulating glycine levels were inversely associated with risk of prevalent and incident CAD in a large population-based cohort. While substantially expanding the genetic architecture of circulating glycine levels, MR analyses and in vivo feeding studies in humans and mice, respectively, did not provide evidence that the clinical association of this amino acid with CAD represents a causal relationship, despite being associated with two correlated risk factors.
Collapse
Affiliation(s)
- Subarna Biswas
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
- Department of Population & Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - James R. Hilser
- Department of Population & Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Nicholas C. Woodward
- Department of Population & Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Zeneng Wang
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
- Department of Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195
- Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Janet Gukasyan
- Department of Population & Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Ina Nemet
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
- Department of Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195
| | - William S. Schwartzman
- Department of Population & Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Pin Huang
- Department of Population & Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Yi Han
- Department of Population & Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Zachary Fouladian
- Department of Medicine, Immunology, & Molecular Genetics, David Geffen School of Medicine of UCLA, Los Angeles, CA 90095
| | - Sarada Charugundla
- Department of Medicine, Immunology, & Molecular Genetics, David Geffen School of Medicine of UCLA, Los Angeles, CA 90095
| | - Neal J. Spencer
- Department of Population & Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Calvin Pan
- Department of Human Genetics, Immunology, & Molecular Genetics, David Geffen School of Medicine of UCLA, Los Angeles, CA 90095
| | - W.H. Wilson Tang
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
- Department of Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195
- Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Aldons J. Lusis
- Department of Medicine, Immunology, & Molecular Genetics, David Geffen School of Medicine of UCLA, Los Angeles, CA 90095
- Department of Human Genetics, Immunology, & Molecular Genetics, David Geffen School of Medicine of UCLA, Los Angeles, CA 90095
- Department of Microbiology, Immunology, & Molecular Genetics, David Geffen School of Medicine of UCLA, Los Angeles, CA 90095
| | - Stanley L. Hazen
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
- Department of Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195
- Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Jaana A. Hartiala
- Department of Population & Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Hooman Allayee
- Department of Population & Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| |
Collapse
|
17
|
Silva M, Faustino P. From Stress to Sick(le) and Back Again-Oxidative/Antioxidant Mechanisms, Genetic Modulation, and Cerebrovascular Disease in Children with Sickle Cell Anemia. Antioxidants (Basel) 2023; 12:1977. [PMID: 38001830 PMCID: PMC10669666 DOI: 10.3390/antiox12111977] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Sickle cell anemia (SCA) is a genetic disease caused by the homozygosity of the HBB:c.20A>T mutation, which results in the production of hemoglobin S (HbS). In hypoxic conditions, HbS suffers autoxidation and polymerizes inside red blood cells, altering their morphology into a sickle shape, with increased rigidity and fragility. This triggers complex pathophysiological mechanisms, including inflammation, cell adhesion, oxidative stress, and vaso-occlusion, along with metabolic alterations and endocrine complications. SCA is phenotypically heterogeneous due to the modulation of both environmental and genetic factors. Pediatric cerebrovascular disease (CVD), namely ischemic stroke and silent cerebral infarctions, is one of the most impactful manifestations. In this review, we highlight the role of oxidative stress in the pathophysiology of pediatric CVD. Since oxidative stress is an interdependent mechanism in vasculopathy, occurring alongside (or as result of) endothelial dysfunction, cell adhesion, inflammation, chronic hemolysis, ischemia-reperfusion injury, and vaso-occlusion, a brief overview of the main mechanisms involved is included. Moreover, the genetic modulation of CVD in SCA is discussed. The knowledge of the intricate network of altered mechanisms in SCA, and how it is affected by different genetic factors, is fundamental for the identification of potential therapeutic targets, drug development, and patient-specific treatment alternatives.
Collapse
Affiliation(s)
- Marisa Silva
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisboa, Portugal;
| | - Paula Faustino
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisboa, Portugal;
- Grupo Ecogenética e Saúde Humana, Instituto de Saúde Ambiental (ISAMB), Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
- Laboratório Associado TERRA, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| |
Collapse
|
18
|
Brinholi FF, Michelin AP, Matsumoto AK, de O Semeão L, Almulla AF, Supasitthumrong T, Tunvirachaisakul C, Barbosa DS, Maes M. Paraoxonase 1 status is a major Janus-faced component of mild and moderate acute ischemic stroke and consequent disabilities. Metab Brain Dis 2023; 38:2115-2131. [PMID: 37204661 DOI: 10.1007/s11011-023-01232-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/09/2023] [Indexed: 05/20/2023]
Abstract
AIMS This study aims to examine the associations between paraoxonase 1 (PON)1 status and acute ischemic stroke (AIS) and consequent disabilities. METHODS This study recruited 122 patients with AIS and 40 healthy controls and assessed the Q192R gene variants, arylesterase (AREase) and chloromethyl phenylacetate (CMPAase) activities, and high-density lipoprotein cholesterol (HDLc) in baseline conditions. AREase and CMPAase were measured 3 months later. The National Institutes of Health Stroke Scale (NIHSS) and the modified Rankin score (mRS) were assessed at baseline and 3 and 6 months later. RESULTS Reduced CMPAase and increased AREase activities are significantly associated with AIS and mRS and NIHSS scores (baseline and 3 and 6 months later). The best predictor of AIS/disabilities was a decrease in the z-unit-based composite zCMPAase-zAREase score. Serum high density lipoprotein cholsterol (HDLc) was significantly correlated with CMPAase, but not AREase, activity and a lowered zCMPAase + zHDLc score was the second best predictor of AIS/disabilities. Regression analysis showed that 34.7% of the variance in baseline NIHSS was explained by zCMPAase-zAREase and zCMPAase + zHDLc composites, HDLc, and hypertension. Neural network analysis showed that stroke was differentiated from controls with an area under the ROC curve of 0.975 using both new composite scores, PON1 status, hypertension, dyslipidemia, previous stroke as body mass index. The PON1 Q192R genotype has many significant direct and mediated effects on AIS/disabilities, however, its overall effect was not significant. DISCUSSION PON1 status and the CMPAase-HDLc complex play key roles in AIS and its disabilities at baseline and 3 and 6 months later.
Collapse
Affiliation(s)
- Francis F Brinholi
- Health Sciences Graduate Program, Health Sciences Center, State University of Londrina, Londrina, Brazil
| | - Ana Paula Michelin
- Health Sciences Graduate Program, Health Sciences Center, State University of Londrina, Londrina, Brazil
| | - Andressa K Matsumoto
- Health Sciences Graduate Program, Health Sciences Center, State University of Londrina, Londrina, Brazil
| | - Laura de O Semeão
- Health Sciences Graduate Program, Health Sciences Center, State University of Londrina, Londrina, Brazil
| | - Abbas F Almulla
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Rd., Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Thitiporn Supasitthumrong
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Rd., Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Chavit Tunvirachaisakul
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Rd., Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Décio S Barbosa
- Health Sciences Graduate Program, Health Sciences Center, State University of Londrina, Londrina, Brazil
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Rd., Phayathai Road, Pathumwan, Bangkok, 10330, Thailand.
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria.
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea.
| |
Collapse
|
19
|
Otocka-Kmiecik A, Orłowska-Majdak M, Stawski R, Szkudlarek U, Padula G, Gałczyński S, Nowak D. Effect of Exercise Repetitions on Arylesterase Activity of PON1 in Plasma of Average-Trained Men-The Dissociation between Activity and Concentration. Antioxidants (Basel) 2023; 12:1296. [PMID: 37372026 DOI: 10.3390/antiox12061296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Exercise may increase the antioxidant capacity of plasma by stimulating antioxidant enzymes. The study aimed to measure the effect of three repetitions of acute exercise on arylesterase (ARE) activity of the paraoxonase 1 (PON1) enzyme. Eleven average-trained men (age 34.0 ± 5.2 years) completed three treadmill runs. ARE activity in plasma was evaluated spectrophotometrically and compared with PON1 concentration (PON1c), paraoxonase (PON) activity, and high-density lipoprotein cholesterol (HDL-C) at rest and after exercise. In all repetitions of the exercise, ARE activity remained stable, and ARE activity standardized for PON1c (ARE/PON1c) was lower post- than pre-exercise. The ARE/PON1c ratio changes returned to baseline levels during rest after each exercise session. Pre-exercise ARE activity correlated negatively with post-exercise C-reactive protein (CRP) (ρ = -0.35, p = 0.049), white blood cell count (WBC) (ρ = -0.35, p = 0.048), polymorphonuclear leukocytes (PMN) (ρ = -0.37, p = 0.037), and creatine kinase (CK) (ρ = -0.37, p = 0.036). ARE activity may be depleted under conditions of oxidative stress, as increases in PON1c during acute exercise did not result in parallel increases in ARE activity. No adaptation of the response of ARE activity to exercise was detected in subsequent exercise sessions. Individuals with lower pre-exercise ARE activity may develop a higher inflammatory response to strenuous exercise.
Collapse
Affiliation(s)
- Aneta Otocka-Kmiecik
- Department of Experimental Physiology, Interfaculty Chair of Experimental and Clinical Physiology, Medical University of Lodz, 6/8 Mazowiecka St., 92-215 Lodz, Poland
| | - Monika Orłowska-Majdak
- Department of Experimental Physiology, Interfaculty Chair of Experimental and Clinical Physiology, Medical University of Lodz, 6/8 Mazowiecka St., 92-215 Lodz, Poland
| | - Robert Stawski
- Department of Clinical Physiology, Interfaculty Chair of Experimental and Clinical Physiology, Medical University of Lodz, 6/8 Mazowiecka St., 92-215 Lodz, Poland
| | - Urszula Szkudlarek
- Department of Experimental Physiology, Interfaculty Chair of Experimental and Clinical Physiology, Medical University of Lodz, 6/8 Mazowiecka St., 92-215 Lodz, Poland
| | - Gianluca Padula
- Academic Laboratory of Movement and Human Physical Performance, Medical University of Lodz, 251 Pomorska St., 92-213 Lodz, Poland
| | - Szymon Gałczyński
- Academic Laboratory of Movement and Human Physical Performance, Medical University of Lodz, 251 Pomorska St., 92-213 Lodz, Poland
| | - Dariusz Nowak
- Department of Clinical Physiology, Interfaculty Chair of Experimental and Clinical Physiology, Medical University of Lodz, 6/8 Mazowiecka St., 92-215 Lodz, Poland
| |
Collapse
|
20
|
Jakubowski H. Proteomic Exploration of Paraoxonase 1 Function in Health and Disease. Int J Mol Sci 2023; 24:7764. [PMID: 37175471 PMCID: PMC10178420 DOI: 10.3390/ijms24097764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/08/2023] [Accepted: 04/14/2023] [Indexed: 05/15/2023] Open
Abstract
High-density lipoprotein (HDL) exhibits cardio- and neuro-protective properties, which are thought to be promoted by paraoxonase 1 (PON1), a hydrolytic enzyme associated with an HDL subfraction also enriched with an anticoagulant protein (PROS1) and amyloid beta-transport protein clusterin (CLU, APOJ). Reduced levels of PON1 activity, characterized biochemically by elevated levels of homocysteine (Hcy)-thiolactone, oxidized lipids, and proteins modified by these metabolites in humans and mice, are associated with pathological abnormalities affecting the cardiovascular system (atherothrombosis) and the central nervous system (cognitive impairment, Alzheimer's disease). The molecular bases of these abnormalities have been largely unknown. Proteomic and metabolic studies over the past decade have significantly contributed to our understanding of PON1 function and the mechanisms by which PON1 deficiency can lead to disease. Recent studies discussed in this review highlight the involvement of dysregulated proteostasis in the pro-oxidative, pro-atherothrombotic, and pro-amyloidogenic phenotypes associated with low PON1 activity.
Collapse
Affiliation(s)
- Hieronim Jakubowski
- Department of Biochemistry and Biotechnology, University of Life Sciences, 60-637 Poznań, Poland; ; Tel.: +48-973-972-8733; Fax: +48-973-972-8981
- Department of Microbiology, Biochemistry and Molecular Genetics, International Center for Public Health, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| |
Collapse
|
21
|
Witucki Ł, Jakubowski H. Depletion of Paraoxonase 1 (Pon1) Dysregulates mTOR, Autophagy, and Accelerates Amyloid Beta Accumulation in Mice. Cells 2023; 12:746. [PMID: 36899882 PMCID: PMC10001133 DOI: 10.3390/cells12050746] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Paraoxonase 1 (PON1), a homocysteine (Hcy)-thiolactone detoxifying enzyme, has been associated with Alzheimer's disease (AD), suggesting that PON1 plays an important protective role in the brain. To study the involvement of PON1 in the development of AD and to elucidate the mechanism involved, we generated a new mouse model of AD, the Pon1-/-xFAD mouse, and examined how Pon1 depletion affects mTOR signaling, autophagy, and amyloid beta (Aβ) accumulation. To elucidate the mechanism involved, we examined these processes in N2a-APPswe cells. We found that Pon1 depletion significantly downregulated Phf8 and upregulated H4K20me1; mTOR, phospho-mTOR, and App were upregulated while autophagy markers Bcln1, Atg5, and Atg7 were downregulated at the protein and mRNA levels in the brains of Pon1─/─5xFAD vs. Pon1+/+5xFAD mice. Pon1 depletion in N2a-APPswe cells by RNA interference led to downregulation of Phf8 and upregulation of mTOR due to increased H4K20me1-mTOR promoter binding. This led to autophagy downregulation and significantly increased APP and Aβ levels. Phf8 depletion by RNA interference or treatments with Hcy-thiolactone or N-Hcy-protein metabolites similarly increased Aβ levels in N2a-APPswe cells. Taken together, our findings define a neuroprotective mechanism by which Pon1 prevents Aβ generation.
Collapse
Affiliation(s)
- Łukasz Witucki
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, 60-637 Poznań, Poland
- Department of Microbiology, Biochemistry and Molecular Genetics, International Center for Public Health, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Hieronim Jakubowski
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, 60-637 Poznań, Poland
- Department of Microbiology, Biochemistry and Molecular Genetics, International Center for Public Health, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| |
Collapse
|
22
|
Watanabe J, Kotani K, Gugliucci A. Paraoxonase 1 and Chronic Kidney Disease: A Meta-Analysis. J Clin Med 2023; 12:jcm12031199. [PMID: 36769846 PMCID: PMC9917420 DOI: 10.3390/jcm12031199] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Oxidative stress is known to be associated with the pathophysiology of chronic kidney disease (CKD). Paraoxonase 1 (PON1) is an antioxidant enzyme that has been proposed as a biomarker for CKD. While several studies have reported an association between serum PON1 activity and CKD, consensus based on systematically analyzed data remains necessary. We set out to conduct a meta-analysis of literature on PON1 in CKD. Electronic databases, such as MEDLINE, Embase and CENTRAL, were searched for available studies on PON1 activity in patients with CKD (without dialysis) as published before December 2022. A random-effects meta-analysis was performed. In total, 24 studies (22 studies on paraoxonase and 11 on arylesterase activity) were eligibly identified. Patients with CKD showed a lower activity of paraoxonase (standard mean difference [SMD], -1.72; 95% confidence interval [CI], -2.15 to -1.29) and arylesterase (SMD, -2.60; 95%CI, -3.96 to -1.24) than healthy controls. In the subgroup analyses, paraoxonase activity was lower in chronic kidney failure (CKF), an advanced stage of CKD, than in non-CKF. In summary, PON1 activity is low in patients with CKD, suggesting that the antioxidant defense by PON1 is impaired in CKD. The decrease in enzyme activity is pronounced in advanced CKD showing some variability depending on the substrate employed to measure PON1 activity. Further studies are warranted.
Collapse
Affiliation(s)
- Jun Watanabe
- Division of Community and Family Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-City 329-0498, Japan
| | - Kazuhiko Kotani
- Division of Community and Family Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-City 329-0498, Japan
- Correspondence: ; Tel.: +81285-58-7394; Fax: +81285-44-0628
| | - Alejandro Gugliucci
- Glycation, Oxidation and Disease Laboratory, Touro University-California, Vallejo, CA 94592, USA
| |
Collapse
|
23
|
HDL Functions-Current Status and Future Perspectives. Biomolecules 2023; 13:biom13010105. [PMID: 36671490 PMCID: PMC9855960 DOI: 10.3390/biom13010105] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death in Western countries. A low HDL-C is associated with the development of CVD. However, recent epidemiology studies have shown U-shaped curves between HDL-C and CVD mortality, with paradoxically increased CVD mortality in patients with extremely high HDL-C levels. Furthermore, HDL-C raising therapy using nicotinic acids or CETP inhibitors mostly failed to reduce CVD events. Based on this background, HDL functions rather than HDL-C could be a novel biomarker; research on the clinical utility of HDL functionality is ongoing. In this review, we summarize the current status of HDL functions and their future perspectives from the findings of basic research and clinical trials.
Collapse
|
24
|
Durrington PN, Bashir B, Soran H. Paraoxonase 1 and atherosclerosis. Front Cardiovasc Med 2023; 10:1065967. [PMID: 36873390 PMCID: PMC9977831 DOI: 10.3389/fcvm.2023.1065967] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Paraoxonase 1 (PON1), residing almost exclusively on HDL, was discovered because of its hydrolytic activity towards organophosphates. Subsequently, it was also found to hydrolyse a wide range of substrates, including lactones and lipid hydroperoxides. PON1 is critical for the capacity of HDL to protect LDL and outer cell membranes against harmful oxidative modification, but this activity depends on its location within the hydrophobic lipid domains of HDL. It does not prevent conjugated diene formation, but directs lipid peroxidation products derived from these to become harmless carboxylic acids rather than aldehydes which might adduct to apolipoprotein B. Serum PON1 is inversely related to the incidence of new atherosclerotic cardiovascular disease (ASCVD) events, particularly in diabetes and established ASCVD. Its serum activity is frequently discordant with that of HDL cholesterol. PON1 activity is diminished in dyslipidaemia, diabetes, and inflammatory disease. Polymorphisms, most notably Q192R, can affect activity towards some substrates, but not towards phenyl acetate. Gene ablation or over-expression of human PON1 in rodent models is associated with increased and decreased atherosclerosis susceptibility respectively. PON1 antioxidant activity is enhanced by apolipoprotein AI and lecithin:cholesterol acyl transferase and diminished by apolipoprotein AII, serum amyloid A, and myeloperoxidase. PON1 loses this activity when separated from its lipid environment. Information about its structure has been obtained from water soluble mutants created by directed evolution. Such recombinant PON1 may, however, lose the capacity to hydrolyse non-polar substrates. Whilst nutrition and pre-existing lipid modifying drugs can influence PON1 activity there is a cogent need for more specific PON1-raising medication to be developed.
Collapse
Affiliation(s)
- Paul N Durrington
- Cardiovascular Research Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Bilal Bashir
- Cardiovascular Research Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.,Department of Diabetes, Endocrinology and Metabolism, Peter Mount Building, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Handrean Soran
- Cardiovascular Research Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.,Department of Diabetes, Endocrinology and Metabolism, Peter Mount Building, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
25
|
Stadler JT, van Poppel MNM, Christoffersen C, Hill D, Wadsack C, Simmons D, Desoye G, Marsche G. Gestational Hypertension and High-Density Lipoprotein Function: An Explorative Study in Overweight/Obese Women of the DALI Cohort. Antioxidants (Basel) 2022; 12:68. [PMID: 36670930 PMCID: PMC9854490 DOI: 10.3390/antiox12010068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 12/30/2022] Open
Abstract
Gestational hypertension (GHTN) is associated with an increased cardiovascular risk for mothers and their offspring later in life. High-density lipoproteins (HDL) are anti-atherogenic by promoting efflux of cholesterol from macrophages and suppression of endothelial cell activation. Functional impairment of HDL in GHTN-complicated pregnancies may affect long-term health of both mothers and offspring. We studied functional parameters of maternal and neonatal HDL in 192 obese women (pre-pregnancy BMI ≥ 29), who were at high risk for GHTN. Maternal blood samples were collected longitudinally at <20 weeks, at 24−28 and 35−37 weeks of gestation. Venous cord blood was collected immediately after birth. Maternal and cord blood were used to determine functional parameters of HDL, such as HDL cholesterol efflux capacity, activity of the vaso-protective HDL-associated enzyme paraoxonase-1, and levels of the HDL-associated anti-inflammatory apolipoprotein (apo)M. In addition, we determined serum anti-oxidative capacity. Thirteen percent of the women were diagnosed with GHTN. While we found no changes in measures of HDL function in mothers with GHTN, we observed impaired HDL cholesterol efflux capacity and paraoxonase-1 activity in cord blood, while serum antioxidant capacity was increased. Of particular interest, increased maternal paraoxonase-1 activity and apoM levels in early pregnancy were associated with the risk of developing GHTN. GHTN significantly impairs HDL cholesterol efflux capacity as well as HDL PON1 activity in cord blood and could affect vascular health in offspring. Maternal paraoxonase-1 activity and apoM levels in early pregnancy associate with the risk of developing GHTN.
Collapse
Affiliation(s)
- Julia T. Stadler
- Division of Pharmacology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| | - M. N. M. van Poppel
- Institute of Human Movement Science, Sport and Health, University of Graz, 8010 Graz, Austria
| | - Christina Christoffersen
- Department of Biomedical Science, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Biochemistry, Rigshospitalet, University Hospital of Copenhagen, 2200 Copenhagen, Denmark
| | - David Hill
- Lawson Health Research Institute, London, ON N6C 2R5, Canada
| | - Christian Wadsack
- Research Unit, Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| | - David Simmons
- Macarthur Clinical School, Western Sydney University, Sydney, NSW 2560, Australia
| | - Gernot Desoye
- Research Unit, Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria
| | - Gunther Marsche
- Division of Pharmacology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| | | |
Collapse
|
26
|
Erre GL, Bassu S, Giordo R, Mangoni AA, Carru C, Pintus G, Zinellu A. Association between Paraoxonase/Arylesterase Activity of Serum PON-1 Enzyme and Rheumatoid Arthritis: A Systematic Review and Meta-Analysis. Antioxidants (Basel) 2022; 11:antiox11122317. [PMID: 36552525 PMCID: PMC9774899 DOI: 10.3390/antiox11122317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/14/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022] Open
Abstract
Background: A decrease in serum paraoxonase (PON-1) and arylesterase (ARE) activity has been reported in rheumatoid arthritis (RA) patients and linked to chronic inflammation and impaired antioxidant defense. Methods: A systematic review and meta-analysis were performed to critically appraise the current evidence on plasma/serum concentrations of PON-1 and ARE activity in RA patients and healthy controls. The Web of Science, PubMed, Scopus, and Google Scholar databases were searched from inception to November 2021. We used random-effects meta-analysis. The risk of bias was estimated using the Joanna Briggs Institute Critical Appraisal Checklist tool. The certainty of the evidence was assessed with GRADE. The study complied with the PRISMA statements and was registered in PROSPERO (CRD42022345380). Results: Seventeen studies reported PON-1 activity (1144 RA patients, 797 controls) and ten reported ARE activity (1367 RA patients, 1037 controls). RA patients had significantly lower PON-1 (SMD = −1.32, 95% CI −1.94 to −0.70; p < 0.001) and ARE activity (SMD = −0.91, 95% CI −1.37 to −0.46; p < 0.001). There was substantial heterogeneity (PON, I2 97%; ARE, 95.7%, p < 0.001 for both). There was no publication bias. The pooled SMD values did not significantly change after sensitivity analysis. The certainty of the evidence was very low due to the observational nature of the studies and the large heterogeneity. Conclusion: Our meta-analysis has shown that both serum PON-1 and ARE activity are significantly lower in RA patients, suggesting a deficit in antioxidant defense mechanisms in this disease.
Collapse
Affiliation(s)
- Gian Luca Erre
- Dipartimento di Medicina, Chirurgia e Farmacia, Università degli Studi di Sassari, Viale San Pietro, 8, 07100 Sassari, Italy
- Correspondence: ; Tel.: +39-079228317; Fax: +39-079216282
| | - Stefania Bassu
- Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, 07100 Sassari, Italy
| | - Roberta Giordo
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| | - Arduino A. Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Sturt Road, Bedford Park, SA 5042, Australia
- Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Flinders Drive, Bedford Park, SA 5042, Australia
| | - Ciriaco Carru
- Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, 07100 Sassari, Italy
| | - Gianfranco Pintus
- Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, 07100 Sassari, Italy
| | - Angelo Zinellu
- Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, 07100 Sassari, Italy
| |
Collapse
|
27
|
Bassu S, Mangoni AA, Argiolas D, Carru C, Pirina P, Fois AG, Zinellu A. A systematic review and meta-analysis of paraoxonase-1 activity in asthma. Clin Exp Med 2022:10.1007/s10238-022-00930-0. [PMID: 36344783 PMCID: PMC10390600 DOI: 10.1007/s10238-022-00930-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/15/2022] [Indexed: 11/09/2022]
Abstract
AbstractHuman serum paraoxonase-1 (PON-1) is a critical antioxidant defence system against lipid oxidation. Decreased PON-1 activity has been associated with systemic oxidative stress in several disease states. We conducted a systematic review and meta-analysis of plasma/serum concentrations of PON-1 in asthma, a chronic inflammatory airway disease. The electronic databases PubMed, Web of Science, Scopus and Google Scholar were searched from inception to February 2022. In total, 8 studies in 355 asthmatic patients and 289 healthy controls were included in the meta-analysis. Serum PON-1 concentrations were significantly lower in asthmatic patients (SMD = −1.58, 95% CI −2.53 to −0.63; p = 0.001). The pooled SMD values were not substantially altered in sensitivity analysis. There was no publication bias. There were non-significant differences in PON-1 concentrations in patients with severe vs. mild-to-moderate asthma (SMD = − 0.39, 95% CI − 1.00 to 0.22, p = 0.21). Our meta-analysis has shown that serum PON-1 concentrations are significantly lower in patients with asthma, suggesting the presence of an impaired antioxidant defense in this group.
Collapse
|
28
|
Holzer M, Ljubojevic-Holzer S, Souza Junior DR, Stadler JT, Rani A, Scharnagl H, Ronsein GE, Marsche G. HDL Isolated by Immunoaffinity, Ultracentrifugation, or Precipitation is Compositionally and Functionally Distinct. J Lipid Res 2022; 63:100307. [PMID: 36511335 PMCID: PMC9720336 DOI: 10.1016/j.jlr.2022.100307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
The HDL proteome has been widely recognized as an important mediator of HDL function. While a variety of HDL isolation methods exist, their impact on the HDL proteome and its associated function remain largely unknown. Here, we compared three of the most common methods for HDL isolation, namely immunoaffinity (IA), density gradient ultracentrifugation (UC), and dextran-sulfate precipitation (DS), in terms of their effects on the HDL proteome and associated functionalities. We used state-of-the-art mass spectrometry to identify 171 proteins across all three isolation methods. IA-HDL contained higher levels of paraoxonase 1, apoB, clusterin, vitronectin, and fibronectin, while UC-HDL had higher levels of apoA2, apoC3, and α-1-antytrypsin. DS-HDL was enriched with apoA4 and complement proteins, while the apoA2 content was very low. Importantly, size-exclusion chromatography analysis showed that IA-HDL isolates contained subspecies in the size range above 12 nm, which were entirely absent in UC-HDL and DS-HDL isolates. Analysis of these subspecies indicated that they primarily consisted of apoA1, IGκC, apoC1, and clusterin. Functional analysis revealed that paraoxonase 1 activity was almost completely lost in IA-HDL, despite high paraoxonase content. We observed that the elution conditions, using 3M thiocyanate, during IA resulted in an almost complete loss of paraoxonase 1 activity. Notably, the cholesterol efflux capacity of UC-HDL and DS-HDL was significantly higher compared to IA-HDL. Together, our data clearly demonstrate that the isolation procedure has a substantial impact on the composition, subclass distribution, and functionality of HDL. In summary, our data show that the isolation procedure has a significant impact on the composition, subclass distribution and functionality of HDL. Our data can be helpful in the comparison, replication and analysis of proteomic datasets of HDL.
Collapse
Affiliation(s)
- Michael Holzer
- Division of Pharmacology, Otto-Loewi Research Centre, Medical University of Graz, Graz, Austria,BioTechMed Graz, Graz, Austria,For correspondence: Michael Holzer
| | - Senka Ljubojevic-Holzer
- BioTechMed Graz, Graz, Austria,Department of Cardiology, Medical University of Graz, Graz, Austria,Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | | | - Julia T. Stadler
- Division of Pharmacology, Otto-Loewi Research Centre, Medical University of Graz, Graz, Austria
| | - Alankrita Rani
- Division of Pharmacology, Otto-Loewi Research Centre, Medical University of Graz, Graz, Austria
| | - Hubert Scharnagl
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Graziella Eliza Ronsein
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Gunther Marsche
- Division of Pharmacology, Otto-Loewi Research Centre, Medical University of Graz, Graz, Austria,BioTechMed Graz, Graz, Austria
| |
Collapse
|
29
|
Soflaei SS, Baktashian M, Moghaddam KH, Saberi-Karimian M, Kosari N, Hashemi SM, Mouhebati M, Amini M, Dehghani M, Esmaily H, Ebrahimi M, Falsoleiman H, Nosrati-Tirkani A, Sadabadi F, Ferns GA, Salehi M, Pasdar A, Ghayour-Mobarhan M. Associação do Genótipo e Fenótipo da Paraoxonase-1 com Angiografia Positiva para Doença Arterial Coronariana. Arq Bras Cardiol 2022; 119:593-601. [PMID: 36074479 PMCID: PMC9563872 DOI: 10.36660/abc.20210422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 04/06/2022] [Indexed: 11/21/2022] Open
Abstract
Fundamento Tem sido demonstrado que um aumento dos níveis séricos de PON1 é protetor contra vários distúrbios. Foi relatado que vários polimorfismos de nucleotídeo único (SNPs,
single nucleotide polymorphisms
) do gene PON1 estão associados a níveis e atividade de proteínas enzimáticas séricas. Objetivos Investigar a associação de SNPs do PON1 e atividade da paraoxonase sérica com a doença arterial coronariana (DAC). Métodos Foram estudados 601 pacientes não relacionados submetidos à angiografia coronária, incluindo aqueles com estenose >50% (N=266) e aqueles com estenose <30% (N=335). Os SNPs rs662 e rs840560 do gene da paraoxonase foram determinados utilizando o método ARMS-PCR e o SNP rs705379 foi genotipado utilizando análise de PCR-RFLP. A atividade da paraoxonase sérica foi medida utilizando paraoxon como substrato. O valor de p<0,05 foi considerado significante. Resultados A atividade da paraoxonase sérica não foi significativamente diferente entre os grupos de estudo. Após ajuste para idade, sexo, hipertensão, diabetes mellitus e dislipidemia, o genótipo GG e o modelo codominante de rs662 foram positivamente associados a uma angiografia positiva (respectivamente, OR = 2,424, IC 95% [1,123-5,233], p <0,05, OR = 1,663, IC 95% [1,086-2,547]). A atividade da paraoxonase sérica foi significativamente maior no alelo G e variante GG do polimorfismo rs662, alelo A e variante AA de rs854560 e alelo C e variante CC de rs705379. A análise de haplótipos mostrou que o haplótipo ATC foi significativamente mais prevalente no grupo com angiografia negativa. A análise entre os grupos indicou que o alelo A de rs662 foi significativamente associado à menor atividade da paraoxonase no grupo com angiografia positiva (p=0,019). Conclusões A presença do alelo G do polimorfismo de nucleotídeo único rs662 está independentemente associada ao aumento do risco de DAC.
Collapse
|
30
|
Effect of N-3 Polyunsaturated Fatty Acids on Lipid Composition in Familial Hypercholesterolemia: A Randomized Crossover Trial. Biomedicines 2022; 10:biomedicines10081809. [PMID: 36009356 PMCID: PMC9405021 DOI: 10.3390/biomedicines10081809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
Individuals with familial hypercholesterolemia (FH) have an increased risk of cardiovascular disease. Treatment is mainly low-density lipoprotein cholesterol (LDL-C) reduction. How omega-3 polyunsaturated fatty acids (n-3 PUFAs) supplements affect lipoproteins in FH subjects is unknown. We hypothesized that a high-dose n-3 PUFA supplement would reduce atherogenic lipoproteins and influence the high-density lipoprotein cholesterol (HDL-C) function. We performed a randomized, double-blinded crossover study with 34 genetically verified FH individuals (18−75 years, clinically stable, statin treatment > 12 months). Treatment was 4 g n-3 PUFAs (1840 mg eicosapentaenoic acid and 1520 mg docosahexaenoic acid daily) or four capsules of olive oil for three months in a crossover design with a washout period of three months. The defined outcomes were changes in triglycerides, lipoproteins, lipoprotein subfractions, apolipoproteins, and HDL-C function. After treatment with n-3 PUFAs, total cholesterol, LDL-C, and triglycerides were reduced compared to placebo (p ≤ 0.01 for all). Total HDL-C levels were unchanged, but the subfraction of large HDL-C was higher (p ≤ 0.0001) after n-3 PUFAs than after placebo, and intermediate HDL-C and small HDL-C were reduced after n-3 PUFAs compared to placebo (p = 0.02 and p ≤ 0.001, respectively). No changes were found in apolipoproteins and HDL-C function. N-3 PUFAs supplements reduced atherogenic lipoproteins in FH subjects, leaving HDL-C function unaffected.
Collapse
|
31
|
Otocka-Kmiecik A. Effect of Carotenoids on Paraoxonase-1 Activity and Gene Expression. Nutrients 2022; 14:nu14142842. [PMID: 35889799 PMCID: PMC9318174 DOI: 10.3390/nu14142842] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 12/27/2022] Open
Abstract
Paraoxonase 1 (PON1) is an antioxidant enzyme attached to HDL with an anti-atherogenic potential. It protects LDL and HDL from lipid peroxidation. The enzyme is sensitive to various modulating factors, such as genetic polymorphisms as well as pharmacological, dietary (including carotenoids), and lifestyle interventions. Carotenoids are nutritional pigments with antioxidant activity. The aim of this review was to gather evidence on their effect on the modulation of PON1 activity and gene expression. Carotenoids administered as naturally occurring nutritional mixtures may present a synergistic beneficial effect on PON1 status. The effect of carotenoids on the enzyme depends on age, ethnicity, gender, diet, and PON1 genetic variation. Carotenoids, especially astaxanthin, β-carotene, and lycopene, increase PON1 activity. This effect may be explained by their ability to quench singlet oxygen and scavenge free radicals. β-carotene and lycopene were additionally shown to upregulate PON1 gene expression. The putative mechanisms of such regulation involve PON1 CpG-rich region methylation, Ca(2+)/calmodulin-dependent kinase II (CaMKKII) pathway induction, and upregulation via steroid regulatory element-binding protein-2 (SREBP-2). More detailed and extensive research on the mechanisms of PON1 modulation by carotenoids may lead to the development of new targeted therapies for cardiovascular diseases.
Collapse
Affiliation(s)
- Aneta Otocka-Kmiecik
- Department of Experimental Physiology, Medical University of Lodz, 6/8 Mazowiecka St., 92-215 Lodz, Poland
| |
Collapse
|
32
|
Karabacak M, Uysal BA, Turkdogan AK. Alteration in serum oxidative stress balance in patients with different circulating high-density lipoprotein cholesterol levels. Rev Port Cardiol 2022; 41:833-839. [DOI: 10.1016/j.repc.2021.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 06/11/2021] [Accepted: 06/17/2021] [Indexed: 11/29/2022] Open
|
33
|
Hu D, Li Y, Zhang D, Ding J, Song Z, Min J, Zeng Y, Nie C. Genetic trade-offs between complex diseases and longevity. Aging Cell 2022; 21:e13654. [PMID: 35754110 PMCID: PMC9282840 DOI: 10.1111/acel.13654] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/28/2022] [Accepted: 05/26/2022] [Indexed: 11/30/2022] Open
Abstract
Longevity was influenced by many complex diseases and traits. However, the relationships between human longevity and genetic risks of complex diseases were not broadly studied. Here, we constructed polygenic risk scores (PRSs) for 225 complex diseases/traits and evaluated their relationships with human longevity in a cohort with 2178 centenarians and 2299 middle‐aged individuals. Lower genetic risks of stroke and hypotension were observed in centenarians, while higher genetic risks of schizophrenia (SCZ) and type 2 diabetes (T2D) were detected in long‐lived individuals. We further stratified PRSs into cell‐type groups and significance‐level groups. The results showed that the immune component of SCZ genetic risk was positively linked to longevity, and the renal component of T2D genetic risk was the most deleterious. Additionally, SNPs with very small p‐values (p ≤ 1x10‐5) for SCZ and T2D were negatively correlated with longevity. While for the less significant SNPs (1x10‐5 < p ≤ 0.05), their effects on disease and longevity were positively correlated. Overall, we identified genetically informed positive and negative factors for human longevity, gained more insights on the accumulation of disease risk alleles during evolution, and provided evidence for the theory of genetic trade‐offs between complex diseases and longevity.
Collapse
Affiliation(s)
- Dingxue Hu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,BGI-Shenzhen, Shenzhen, China
| | - Yan Li
- BGI-Shenzhen, Shenzhen, China
| | | | | | - Zijun Song
- The First Affiliated Hospital, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yi Zeng
- Center for Healthy Aging and Development Studies, National School of Development, Peking University, Beijing, China.,Center for the Study of Aging and Human Development and Geriatrics Division, Medical School of Duke University, Durham, North Carolina, USA
| | | |
Collapse
|
34
|
Arida A, Nezos A, Papadaki I, Sfikakis PP, Mavragani CP. Osteoprotegerin and MTHFR gene variations in rheumatoid arthritis: association with disease susceptibility and markers of subclinical atherosclerosis. Sci Rep 2022; 12:9534. [PMID: 35680906 PMCID: PMC9184606 DOI: 10.1038/s41598-022-13265-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 05/23/2022] [Indexed: 02/07/2023] Open
Abstract
We aimed to explore whether the rs2073618 variant (G1181C) of the osteoprotegerin (OPG) gene and the methylenetetrahydrofolate reductase (MTHFR) rs1801131 (A1298AC) and rs1801133 (C677T) gene polymorphisms contribute to rheumatoid arthritis (RA) susceptibility and RA related subclinical atherosclerosis. Overall 283 RA patients and 595 healthy controls (HC) were genotyped for common variants of the OPG and MTHFR genes using PCR based assays. Clinical and laboratory parameters were recorded following thorough chart review. Surrogate markers of subclinical atherosclerosis (Carotid/Femoral intima media thickness/plaque formation) along with traditional risk factors for atherosclerosis were assessed in all RA patients and 280HC. Increased prevalence of the CC genotype of the rs2073618 variant was detected in RA patients vs HC (42.4% vs. 33%, p-value: 0.04). RA patients with high serum titers of rheumatoid factor (RF) or anti-cyclic citrullinated peptide (CCP) antibodies displayed increased prevalence of the CC genotype of the rs2073618 variant of the OPG gene compared to HC (48.6% and 47.5 vs 33.3%, p-values: 0.0029and 0.0077 respectively). Of interest, this genotype turned to be associated with higher carotid IMT scores (0.872 ± 0.264 vs 0.816 ± 0.284, p-value: 0.01) and marginally with higher rates of carotid plaque formation (66% vs 54.1%, p = 0.06). The MTHFR 1298CC genotype was more prevalent only in the anti-CCP positive group compared to HC, with no associations detected with markers of subclinical atherosclerosis, following adjustment for traditional cardiovascular (CVD) risk factors. Reduced rates of carotid/femoral plaque formation were detected among RA patients harboring the MTHFR TT genotype (52.4 vs 72.7, p-value: 0.009, respectively). This association remained significant following adjustment for classical CVD risk factors (OR [95% CI 0.364 [0.173-0.765], p-value: 0.008). Genetic variations of the osteoprotegerin and MTHFR genes seem to increase susceptibility for seropositive RA and potentially contribute to subclinical atherosclerosis linked to RA. Larger studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Aikaterini Arida
- First Department of Propaedeutic Internal Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
- Joint Academic Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Adrianos Nezos
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Ioanna Papadaki
- Department of Rheumatology, General Hospital of Athens "G. Gennimatas", Athens, Greece
| | - Petros P Sfikakis
- First Department of Propaedeutic Internal Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
- Joint Academic Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Clio P Mavragani
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece.
- Joint Academic Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece.
- Rheumatology and Clinical Immunology Unit, Fourth Department of Internal Medicine, School of Medicine, University Hospital Attikon, NKUA, 12462, Haidari, Greece.
| |
Collapse
|
35
|
Paraoxonase-1 Facilitates PRRSV Replication by Interacting with Viral Nonstructural Protein-9 and Inhibiting Type I Interferon Pathway. Viruses 2022; 14:v14061203. [PMID: 35746674 PMCID: PMC9230610 DOI: 10.3390/v14061203] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/29/2022] [Accepted: 05/29/2022] [Indexed: 02/04/2023] Open
Abstract
Paraoxonase-1 (PON1), an esterase with specifically paraoxonase activity, has been proven to be involved in inflammation and infection. Porcine reproductive and respiratory syndrome virus (PRRSV) is still a major concern in pigs and causes severe economic losses to the swine industry worldwide. In this study, the role of PON1 was investigated in porcine alveolar macrophages (PAMs) during PRRSV infection. The results showed that PRRSV replication downregulated PON1, and the knockdown of PON1 significantly decreased PRRSV replication. Similarly, PON1 overexpression could enhance PRRSV replication. Interestingly, we observed that PON1 interacted with PRRSV nonstructural protein 9 (Nsp9), the RNA-dependent RNA polymerase, and the knockdown of PON1 lowered the RNA binding ability of Nsp9, suggesting that PON1 can facilitate Nsp9 function in viral replication. In addition, the knockdown of PON1 expression led to the amplification of type I interferon (IFN) genes and vice versa. In summary, our data demonstrate that PON1 facilitates PRRSV replication by interacting with Nsp9 and inhibiting the type I IFN signaling pathway. Hence, PON1 may be an additional component of the anti-PRRSV defenses.
Collapse
|
36
|
Bae SS, Shahbazian A, Wang J, Golub I, Oganesian B, Dowd T, Vayngortin B, Wang R, Elashoff D, Reddy ST, Charles-Schoeman C. Abnormal paraoxonase-1 (PON1) enzyme activity in idiopathic inflammatory myopathies. Rheumatology (Oxford) 2022; 61:2512-2523. [PMID: 34698804 PMCID: PMC9308379 DOI: 10.1093/rheumatology/keab795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/21/2021] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Patients with idiopathic inflammatory myopathies (IIM) have severe vascular involvement, which contributes to disease morbidity and mortality. Paraoxonase-1 (PON1) is a high-density lipoprotein (HDL) associated protein that protects the vascular endothelium from oxidative injury and damage. The current work assessed the functional and genetic determinants of PON1 activity in IIM patients. METHODS A total of 184 IIM patients and 112 healthy controls (HC) were included. PON1 enzyme activity was assessed by paraoxonase, arylesterase and lactonase assays, and the Q192R PON1 single nucleotide polymorphism (SNP) was analysed. Multivariate regression models examined associations of PON1 activity with IIM diagnosis and myositis disease outcomes. RESULTS The arylesterase and lactonase activities of PON1 were significantly lower in IIM patients compared with HC. Higher myositis disease activity, the presence of severe IIM-associated interstitial lung disease (ILD), and the presence of MDA5 or anti-synthetase antibodies were significantly associated with lower PON1 activity. The PON1 Q192R polymorphism was strongly linked to the paraoxonase activity of PON1 in IIM, and patients with the PON1 QQ genotype had better IIM disease outcomes compared with patients with the QR or RR genotypes. CONCLUSIONS The arylesterase and lactonase activities of PON1 are significantly impaired in IIM patients compared with HC, and inversely associate with IIM disease activity and the presence of severe ILD. The PON1 QQ genotype associates with more favourable disease outcomes in IIM patients. Large prospective studies are needed to further evaluate the role of PON1 and PON1 genetic polymorphisms in the development and propagation of IIM and IIM-ILD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Srinivasa T Reddy
- Health Services Research and Cardiology, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | | |
Collapse
|
37
|
Zhang Q, Jiang Z, Xu Y. HDL and Oxidation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1377:63-77. [PMID: 35575921 DOI: 10.1007/978-981-19-1592-5_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this chapter, we will focus on HDLs' activity of inhibiting LDL oxidation and neutralizing some other oxidants. ApoA-I was known as the main antioxidant component in HDLs. The regulation of antioxidant capacity of HDL is mainly exhibited in regulation of apoA-I and alterations at the level of the HDL lipidome and the modifications of the proteome, especially MPO and PON1. HDL oxidation will influence the processes of inflammation and cholesterol transport, which are important processes in atherosclerosis, metabolic diseases, and many other diseases. In a word, HDL oxidation might be an effective antioxidant target in treatment of many diseases.
Collapse
Affiliation(s)
- Qi Zhang
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, Beijing, China
| | - Zongzhe Jiang
- Department of Endocrinology and Metabolism, Metabolic Vascular Disease Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yong Xu
- Department of Endocrinology and Metabolism, Metabolic Vascular Disease Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
38
|
Karam ZM, Baba Salari M, Anjom Shoaa A, Dehghan Kouhestani S, Bahram Nejad A, Ashourzadeh S, Zangouyee MR, Bazrafshani MR. Impact of oxidative stress SNPs on sperm DNA damage and male infertility in a south-east Iranian population. Reprod Fertil Dev 2022; 34:633-643. [PMID: 35361312 DOI: 10.1071/rd21305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/04/2022] [Indexed: 12/20/2022] Open
Abstract
AIM We examined four single nucleotide polymorphisms in four antioxidant genes (PON1 , CAT , GPx1 and SOD2 ) in 100 infertility cases and 100 controls from an Iranian population-based case-control study to confirm the assumption that polymorphisms in oxidative stress genes increase the risk of sperm DNA damage and idiopathic male infertility. METHODS Restriction fragment length polymorphism and tetra-primer amplification refractory mutation system PCR were used to identify genotypes. Sperm DNA damage was assessed using the Sperm Chromatin Dispersion test (Halo Sperm), and the total antioxidant capacity of seminal fluid was determined using the FRAP assay. KEY RESULTS Our findings demonstrated that alleles Arg-PON1 (rs662) and Ala-MnSOD (rs4880) variant genotypes were considerably linked with a higher risk of male infertility. CONCLUSIONS Linear regression analysis revealed that those with the PON1 Gln192Arg or SOD2 Val16Ala variants have significantly higher levels of sperm DNA fragmentation and lower levels of the total antioxidant capacity in seminal fluid. IMPLICATIONS These findings suggest that genetic differences in antioxidant genes may be linked to oxidative stress, sperm DNA damage, and idiopathic male infertility.
Collapse
Affiliation(s)
- Zahra Miri Karam
- Department of Medical Genetics, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran; and Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Milad Baba Salari
- Department of Medical Genetics, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Ahmad Anjom Shoaa
- Department of Medical Genetics, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Somaye Dehghan Kouhestani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Moddares University, Tehran, Iran; and Dr. Bazrafshani's Medical Genetic Laboratory, Kerman, Iran
| | | | - Sareh Ashourzadeh
- Afzalipour Clinical Center for Infertility, Kerman University of Medical Sciences, Kerman, Iran
| | - Moahammad Reza Zangouyee
- Department of Medical Genetics, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Reza Bazrafshani
- Department of Medical Genetics, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran; and Centre for Integrated Genomic Medical Research (CIGMR), University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
39
|
Filippova YE, Malishevskaya TN, Petrov SA, Gubin DG, Vlasova AS. [Enzymatic activity of paraoxonase depending on polymorphism Q192R of the PON1 gene in patients with primary open-angle glaucoma]. Vestn Oftalmol 2022; 138:58-64. [PMID: 35488563 DOI: 10.17116/oftalma202213802158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
It is believed that one of the main blood enzymes that hydrolyzes oxidized lipids incorporated in lipoproteins is the calcium-dependent hydrolase of paraoxonase 1, which has a significant antioxidant effect depending on the polymorphism of the PON1 gene. PURPOSE To genotype patients with primary open-angle glaucoma (POAG) by the Q192R polymorphism of the PON1 gene in order to identify their genetic predisposition to dyslipidemia and atherosclerosis, as well as to determe the possibility of correcting the reduced activity of the PON1 enzyme in the examined individuals by the complex drug Cytoflavin. MATERIAL AND METHODS The study included 25 men with advanced POAG, IOP compensated by hypotonic agents, and 20 volunteers without POAG (mean age 63.0±5.4 years). All subjects underwent genotyping by the Q192R polymorphism of the PON1 gene using an analyzer. PON1 activity was assessed by the rate of nitrophenol formation when paraoxone diluted in acetone was added to the blood plasma. At the second stage, patients (of different phenotypes) were prescribed the complex drug Cytoflavin. RESULTS Homozygous carriers of the 192R allele were found to have significantly lower levels of PON1 activity than homozygous carriers of the Q192 allele. Carriage of the 192R allele may determine an increased risk of atherosclerotic injury in patients with POAG, especially in cases with high levels of atherogenic blood lipoproteins, low levels of high-density lipoproteins, or high levels of peroxidized lipids in the blood. The drug Cytoflavin showed a positive therapeutic effect on oxidative stress and hypercholesterinemia in POAG patients. CONCLUSION These findings can be used to determine the atherogenicity of lipoproteins and the progression of glaucomatous optic neuropathy and to optimize the therapy of PAHO.
Collapse
Affiliation(s)
- Yu E Filippova
- Federal Research Center Tyumen Scientific Center of the Siberian Branch of the Russian Academy of Sciences, Tyumen, Russia
| | - T N Malishevskaya
- Helmholtz National Medical Research Center of Eye Diseases, Moscow, Russia
| | - S A Petrov
- Federal Research Center Tyumen Scientific Center of the Siberian Branch of the Russian Academy of Sciences, Tyumen, Russia
| | - D G Gubin
- Tyumen State Medical University, Tyumen, Russia.,Tyumen Cardiological Research Center - branch of the Tomsk National Research Medical Center of the Russian Academy of Sciences, Tyumen, Russia
| | - A S Vlasova
- Federal Research Center Tyumen Scientific Center of the Siberian Branch of the Russian Academy of Sciences, Tyumen, Russia.,Regional Ophthalmology Clinic, Tyumen, Russia
| |
Collapse
|
40
|
Bajic Z, Sobot T, Skrbic R, Stojiljkovic MP, Ponorac N, Matavulj A, Djuric DM. Homocysteine, Vitamins B6 and Folic Acid in Experimental Models of Myocardial Infarction and Heart Failure—How Strong Is That Link? Biomolecules 2022; 12:biom12040536. [PMID: 35454125 PMCID: PMC9027107 DOI: 10.3390/biom12040536] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 12/29/2022] Open
Abstract
Cardiovascular diseases are the leading cause of death and the main cause of disability. In the last decade, homocysteine has been found to be a risk factor or a marker for cardiovascular diseases, including myocardial infarction (MI) and heart failure (HF). There are indications that vitamin B6 plays a significant role in the process of transsulfuration in homocysteine metabolism, specifically, in a part of the reaction in which homocysteine transfers a sulfhydryl group to serine to form α-ketobutyrate and cysteine. Therefore, an elevated homocysteine concentration (hyperhomocysteinemia) could be a consequence of vitamin B6 and/or folate deficiency. Hyperhomocysteinemia in turn could damage the endothelium and the blood vessel wall and induce worsening of atherosclerotic process, having a negative impact on the mechanisms underlying MI and HF, such as oxidative stress, inflammation, and altered function of gasotransmitters. Given the importance of the vitamin B6 in homocysteine metabolism, in this paper, we review its role in reducing oxidative stress and inflammation, influencing the functions of gasotransmitters, and improving vasodilatation and coronary flow in animal models of MI and HF.
Collapse
Affiliation(s)
- Zorislava Bajic
- Department of Physiology, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina; (Z.B.); (T.S.); (N.P.); (A.M.)
| | - Tanja Sobot
- Department of Physiology, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina; (Z.B.); (T.S.); (N.P.); (A.M.)
| | - Ranko Skrbic
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina; (R.S.); (M.P.S.)
| | - Milos P. Stojiljkovic
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina; (R.S.); (M.P.S.)
| | - Nenad Ponorac
- Department of Physiology, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina; (Z.B.); (T.S.); (N.P.); (A.M.)
| | - Amela Matavulj
- Department of Physiology, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina; (Z.B.); (T.S.); (N.P.); (A.M.)
| | - Dragan M. Djuric
- Faculty of Medicine, Institute of Medical Physiology “Richard Burian”, University of Belgrade, 11000 Belgrade, Serbia
- Correspondence:
| |
Collapse
|
41
|
Medina-Díaz IM, Ponce-Ruíz N, Rojas-García AE, Zambrano-Zargoza JF, Bernal-Hernández YY, González-Arias CA, Barrón-Vivanco BS, Herrera-Moreno JF. The Relationship between Cancer and Paraoxonase 1. Antioxidants (Basel) 2022; 11:antiox11040697. [PMID: 35453382 PMCID: PMC9028432 DOI: 10.3390/antiox11040697] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/13/2022] Open
Abstract
Extensive research has been carried out to understand and elucidate the mechanisms of paraoxonase 1 (PON1) in the development of diseases including cancer, cardiovascular diseases, neurological diseases, and inflammatory diseases. This review focuses on the relationship between PON1 and cancer. The data suggest that PON1, oxidative stress, chronic inflammation, and cancer are closely linked. Certainly, the gene expression of PON1 will remain challenging to study. Therefore, targeting PON1, redox-sensitive pathways, and transcription factors promise prevention and therapy in the development of several diseases, including cancer.
Collapse
Affiliation(s)
- Irma Martha Medina-Díaz
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepict 63000, Mexico; (N.P.-R.); (A.E.R.-G.); (Y.Y.B.-H.); (C.A.G.-A.); (B.S.B.-V.); (J.F.H.-M.)
- Correspondence:
| | - Néstor Ponce-Ruíz
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepict 63000, Mexico; (N.P.-R.); (A.E.R.-G.); (Y.Y.B.-H.); (C.A.G.-A.); (B.S.B.-V.); (J.F.H.-M.)
| | - Aurora Elizabeth Rojas-García
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepict 63000, Mexico; (N.P.-R.); (A.E.R.-G.); (Y.Y.B.-H.); (C.A.G.-A.); (B.S.B.-V.); (J.F.H.-M.)
| | | | - Yael Y. Bernal-Hernández
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepict 63000, Mexico; (N.P.-R.); (A.E.R.-G.); (Y.Y.B.-H.); (C.A.G.-A.); (B.S.B.-V.); (J.F.H.-M.)
| | - Cyndia Azucena González-Arias
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepict 63000, Mexico; (N.P.-R.); (A.E.R.-G.); (Y.Y.B.-H.); (C.A.G.-A.); (B.S.B.-V.); (J.F.H.-M.)
| | - Briscia S. Barrón-Vivanco
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepict 63000, Mexico; (N.P.-R.); (A.E.R.-G.); (Y.Y.B.-H.); (C.A.G.-A.); (B.S.B.-V.); (J.F.H.-M.)
| | - José Francisco Herrera-Moreno
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepict 63000, Mexico; (N.P.-R.); (A.E.R.-G.); (Y.Y.B.-H.); (C.A.G.-A.); (B.S.B.-V.); (J.F.H.-M.)
| |
Collapse
|
42
|
Bassu S, Mangoni AA, Satta R, Argiolas D, Carru C, Zinellu A. Paraoxonase and arylesterase activity of serum PON-1 enzyme in psoriatic patients: a systematic review and meta-analysis. Clin Exp Med 2022; 23:301-311. [PMID: 35313365 DOI: 10.1007/s10238-022-00818-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/28/2022] [Indexed: 11/30/2022]
Abstract
Human serum paraoxonase-1 (PON-1) is a critical antioxidant defense system against lipid oxidation. Decreased PON-1 activity has been associated with systemic oxidative stress in several disease states. We conducted a systematic review and meta-analysis of plasma/serum concentrations of PON-1 paraoxonase and arylesterase activity in psoriasis, a chronic immune-mediated and inflammatory skin disease. The electronic databases PubMed, Web of Science, and Scopus were searched from inception to November 2021. In total, 14 studies in 691 psoriatic patients and 724 healthy controls were included in the meta-analysis. Serum paraoxonase activity was significantly lower in psoriatic patients (SMD = - 2.30, 95% CI - 3.17 to - 1.42; p < 0.001); however, no significant between-group differences were observed in serum arylesterase activity (SMD = - 0.34, 95% CI - 0.11 to 0.80; p = 0.14). The pooled SMD values were not substantially altered in sensitivity analysis. There was no publication bias. In conclusion, our meta-analysis has shown that serum paraoxonase, but not arylesterase, activity is significantly lower in psoriasis, suggesting an impaired antioxidant defense in these patients.
Collapse
Affiliation(s)
- Stefania Bassu
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43, 07100, Sassari, Italy.
| | - Arduino A Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, Australia.,Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Adelaide, Australia
| | - Rosanna Satta
- Department of Clinical, Surgical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Dario Argiolas
- Department of Clinical, Surgical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43, 07100, Sassari, Italy
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43, 07100, Sassari, Italy
| |
Collapse
|
43
|
Çınar E, Akgöllü E, Yücebilgiç G, Bilgin R, Paydaş S. The effect of Paraoxonase gene polymorphisms and paraoxonase enzyme activity on Non-Hodgkin lymphoma. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2022; 41:489-502. [PMID: 35306973 DOI: 10.1080/15257770.2022.2052315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Non-Hodgkin Lymphoma (NHL) is a malignant lymphoproliferative disease. Antioxidant paraoxonase enzyme (PON1) has a vital role in the elimination of potential carcinogenic organophosphate molecules. The polymorphisms in the PON1 gene, especially Q192R and L55M, may affect negatively the activity and synthesis of PON1 enzyme. The aim of this study was to evaluate the effect of these polymorphisms together with PON1 enzyme activity on NHL. We surveyed these polymorphisms together with PON1 enzyme activity in 93 patients with NHL and in 93 healthy individuals by real-time polymerase chain reaction (RT-PCR) and spectrophotometer. Although carrying the M and R alleles of L55M and Q192R polymorphisms increases the risk of NHL, they were not significant. Furthermore, the NHL patients carrying 192 R allele had significantly lower enzyme activity than controls having same allele (P = 0.025). This research is the first study worldwide investigating the effect of Q192R and L55M polymorphisms on PON1 enzyme activity in NHL disease. The risk of developing NHL may be further increased in individuals with low enzyme activity having R risk allele of the Q192R polymorphism. The present study suggests that these polymorphisms in NHL disease should be analyzed together with PON1 enzyme activity in larger populations.Supplemental data for this article is available online at https://doi.org/10.1080/15257770.2022.2052315 .
Collapse
Affiliation(s)
- Ercan Çınar
- School of Health Sciences, Department of Nursing, Batman University, Batman, Turkey
| | - Ersin Akgöllü
- Patnos Vocational School, Department of Pharmacy, Ağrı İbrahim Çeçen University, Ağrı, Turkey
| | - Güzide Yücebilgiç
- Faculty of Medicine, Department of Chemistry, Çukurova University, Adana, Turkey
| | - Ramazan Bilgin
- Faculty of Medicine, Department of Chemistry, Çukurova University, Adana, Turkey
| | - Semra Paydaş
- Faculty of Medicine, Department of Oncology, Çukurova University, Adana, Turkey
| |
Collapse
|
44
|
Mohammed CJ, Lamichhane S, Connolly JA, Soehnlen SM, Khalaf FK, Malhotra D, Haller ST, Isailovic D, Kennedy DJ. A PON for All Seasons: Comparing Paraoxonase Enzyme Substrates, Activity and Action including the Role of PON3 in Health and Disease. Antioxidants (Basel) 2022; 11:antiox11030590. [PMID: 35326240 PMCID: PMC8945423 DOI: 10.3390/antiox11030590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 12/17/2022] Open
Abstract
Paraoxonases (PONs) are a family of hydrolytic enzymes consisting of three members, PON1, PON2, and PON3, located on human chromosome 7. Identifying the physiological substrates of these enzymes is necessary for the elucidation of their biological roles and to establish their applications in the biomedical field. PON substrates are classified as organophosphates, aryl esters, and lactones based on their structure. While the established native physiological activity of PONs is its lactonase activity, the enzymes’ exact physiological substrates continue to be elucidated. All three PONs have antioxidant potential and play an important anti-atherosclerotic role in several diseases including cardiovascular diseases. PON3 is the last member of the family to be discovered and is also the least studied of the three genes. Unlike the other isoforms that have been reviewed extensively, there is a paucity of knowledge regarding PON3. Thus, the current review focuses on PON3 and summarizes the PON substrates, specific activities, kinetic parameters, and their association with cardiovascular as well as other diseases such as HIV and cancer.
Collapse
Affiliation(s)
- Chrysan J. Mohammed
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (C.J.M.); (J.A.C.); (S.M.S.); (F.K.K.); (D.M.); (S.T.H.)
| | - Sabitri Lamichhane
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA; (S.L.); (D.I.)
| | - Jacob A. Connolly
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (C.J.M.); (J.A.C.); (S.M.S.); (F.K.K.); (D.M.); (S.T.H.)
| | - Sophia M. Soehnlen
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (C.J.M.); (J.A.C.); (S.M.S.); (F.K.K.); (D.M.); (S.T.H.)
| | - Fatimah K. Khalaf
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (C.J.M.); (J.A.C.); (S.M.S.); (F.K.K.); (D.M.); (S.T.H.)
- Department of Clinical Pharmacy, College of Pharmacy, University of Alkafeel, Najaf 61001, Iraq
| | - Deepak Malhotra
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (C.J.M.); (J.A.C.); (S.M.S.); (F.K.K.); (D.M.); (S.T.H.)
| | - Steven T. Haller
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (C.J.M.); (J.A.C.); (S.M.S.); (F.K.K.); (D.M.); (S.T.H.)
| | - Dragan Isailovic
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA; (S.L.); (D.I.)
| | - David J. Kennedy
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (C.J.M.); (J.A.C.); (S.M.S.); (F.K.K.); (D.M.); (S.T.H.)
- Correspondence: ; Tel.: +1-419-383-6822
| |
Collapse
|
45
|
Soyut H. An in vitro Study: Inhibitory Effect of Carfilzomib on Human Serum Paraoxonase-1 (hPON1). INT J PHARMACOL 2022. [DOI: 10.3923/ijp.2022.522.526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
46
|
Understanding Myeloperoxidase-Induced Damage to HDL Structure and Function in the Vessel Wall: Implications for HDL-Based Therapies. Antioxidants (Basel) 2022; 11:antiox11030556. [PMID: 35326206 PMCID: PMC8944857 DOI: 10.3390/antiox11030556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 12/23/2022] Open
Abstract
Atherosclerosis is a disease of increased oxidative stress characterized by protein and lipid modifications in the vessel wall. One important oxidative pathway involves reactive intermediates generated by myeloperoxidase (MPO), an enzyme present mainly in neutrophils and monocytes. Tandem MS analysis identified MPO as a component of lesion derived high-density lipoprotein (HDL), showing that the two interact in the arterial wall. MPO modifies apolipoprotein A1 (apoA-I), paraoxonase 1 and certain HDL-associated phospholipids in human atheroma. HDL isolated from atherosclerotic plaques depicts extensive MPO mediated posttranslational modifications, including oxidation of tryptophan, tyrosine and methionine residues, and carbamylation of lysine residues. In addition, HDL associated plasmalogens are targeted by MPO, generating 2-chlorohexadecanal, a pro-inflammatory and endothelial barrier disrupting lipid that suppresses endothelial nitric oxide formation. Lesion derived HDL is predominantly lipid-depleted and cross-linked and exhibits a nearly 90% reduction in lecithin-cholesterol acyltransferase activity and cholesterol efflux capacity. Here we provide a current update of the pathophysiological consequences of MPO-induced changes in the structure and function of HDL and discuss possible therapeutic implications and options. Preclinical studies with a fully functional apoA-I variant with pronounced resistance to oxidative inactivation by MPO-generated oxidants are currently ongoing. Understanding the relationships between pathophysiological processes that affect the molecular composition and function of HDL and associated diseases is central to the future use of HDL in diagnostics, therapy, and ultimately disease management.
Collapse
|
47
|
Adeshara KA, Bangar N, Diwan AG, Tupe RS. Plasma glycation adducts and various RAGE isoforms are intricately associated with oxidative stress and inflammatory markers in type 2 diabetes patients with vascular complications. Diabetes Metab Syndr 2022; 16:102441. [PMID: 35247657 DOI: 10.1016/j.dsx.2022.102441] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND The secondary vascular complications in diabetes mellitus (DM) are contributed by acute as well as inflammatory responses which get activated due to interaction between glycation adducts and respective receptors. AIM The present work was performed to understand the relationship between Advanced glycation end products (AGEs)-receptor for advanced glycation end products (RAGE) interaction with oxidative stress and inflammation in vascular complications. METHODS For the present work we recruited 103 controls, 200 patients with type 2 DM, and 200 patients with Diabetic complications. Different Plasma glycation adducts (fructosamine, carbonyls, AGEs, β-amyloid content, free amino groups, and free thiol groups); RAGE isoforms, level of antioxidant such as glutathione, catalase activity, nitric oxide level, total antioxidant capacity, and superoxide dismutase activity, as well as oxidative markers, and expression of Nε-carboxymethyl-lysine (CML), different isoforms of RAGE, NF-κB, and inflammatory markers were analyzed. RESULTS Glycation adducts were higher in DM patients and more elevated in nephropathy patients where free amino groups and thiol groups lowered as compared to controls. sRAGE levels and expression were increased mainly in nephropathy. CML expression was higher in nephropathy patients. The antioxidant profile indicates a reduced level of different antioxidants while increased lipid peroxidation and intracellular ROS generation in DM and much higher in nephropathy patients. Expression of membrane RAGE, NF-κB, and inflammatory markers showed a remarkably increased level in DM patients with nephropathy. CONCLUSION This work provides the first evidence of four different RAGE isoforms in diabetes and in complications. The glycation via the activation of RAGE, oxidative stress, and resultant inflammation plays a crucial role in the development of diabetic complications.
Collapse
Affiliation(s)
- Krishna A Adeshara
- Biochemical Sciences Division, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth (Deemed to be University), Pune, Maharashtra State, India; Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland; Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Nilima Bangar
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India; Biochemical Sciences Division, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth (Deemed to be University), Pune, Maharashtra State, India
| | - Arundhati G Diwan
- Department of Medicine, Bharati Vidyapeeth's Medical College and Bharati Hospital, Bharati Vidyapeeth (Deemed to be University), Pune, Maharashtra State, India
| | - Rashmi S Tupe
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India; Biochemical Sciences Division, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth (Deemed to be University), Pune, Maharashtra State, India.
| |
Collapse
|
48
|
Malicek D, Wittig I, Luger S, Foerch C. Proteomics-Based Approach to Identify Novel Blood Biomarker Candidates for Differentiating Intracerebral Hemorrhage From Ischemic Stroke-A Pilot Study. Front Neurol 2022; 12:713124. [PMID: 34975707 PMCID: PMC8719589 DOI: 10.3389/fneur.2021.713124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Background: A reliable distinction between ischemic stroke (IS) and intracerebral hemorrhage (ICH) is required for diagnosis-specific treatment and effective secondary prevention in patients with stroke. However, in resource-limited settings brain imaging, which is the current diagnostic gold standard for this purpose, is not always available in time. Hence, an easily accessible and broadly applicable blood biomarker-based diagnostic test differing stroke subtypes would be desirable. Using an explorative proteomics approach, this pilot study aimed to identify novel blood biomarker candidates for distinguishing IS from ICH. Material and Methods: Plasma samples from patients with IS and ICH were drawn during hospitalization and were analyzed by using liquid chromatography/mass spectrometry. Proteins were identified using the human reference proteome database UniProtKB, and label-free quantification (LFQ) data were further analyzed using bioinformatic tools. Results: Plasma specimens of three patients with IS and four patients with ICH with a median National Institute of Health Stroke Scale (NIHSS) of 12 [interquartile range (IQR) 10.5–18.5] as well as serum samples from two healthy volunteers were analyzed. Among 495 identified protein groups, a total of 368 protein groups exhibited enough data points to be entered into quantitative analysis. Of the remaining 22 top-listed proteins, a significant difference between IS and ICH was found for Carboxypeptidase N subunit 2 (CPN2), Coagulation factor XII (FXII), Plasminogen, Mannan-binding lectin serine protease 1, Serum amyloid P-component, Paraoxonase 1, Carbonic anhydrase 1, Fibulin-1, and Granulins. Discussion: In this exploratory proteomics-based pilot study, nine candidate biomarkers for differentiation of IS and ICH were identified. The proteins belong to the immune system, the coagulation cascade, and the apoptosis system, respectively. Further investigations in larger cohorts of patients with stroke using additional biochemical analysis methods, such as ELISA or Western Blotting are now necessary to validate these markers, and to characterize diagnostic accuracy with regard to the development of a point-of-care-system for use in resource-limited areas.
Collapse
Affiliation(s)
- David Malicek
- Department of Neurology, Goethe University/University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Ilka Wittig
- Functional Proteomics, Institute of Cardiovascular Physiology, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
| | - Sebastian Luger
- Department of Neurology, Goethe University/University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Christian Foerch
- Department of Neurology, Goethe University/University Hospital Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
49
|
HDL and Endothelial Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1377:27-47. [DOI: 10.1007/978-981-19-1592-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
50
|
Connelly PW, Yan AT, Nash MM, Wald RM, Lok C, Gunaratnam L, Kirpalani A, Prasad GVR. The Increase in Paraoxonase 1 Is Associated With Decrease in Left Ventricular Volume in Kidney Transplant Recipients. Front Cardiovasc Med 2021; 8:763389. [PMID: 34926614 PMCID: PMC8674585 DOI: 10.3389/fcvm.2021.763389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/20/2021] [Indexed: 11/26/2022] Open
Abstract
Background: Patients on dialysis have impaired cardiac function, in part due to increased fluid volume and ventricular stress. Restored kidney function through transplantation reduces left ventricular volume in both systole and diastole. We previously reported that the decrease in NT-proB-type natriuretic peptide (NT-proBNP) was associated with a decrease in adiponectin. Paraoxonase 1 (PON1) has been inversely associated with cardiovascular outcomes. We now report the association of changes in PON1 with changes in left ventricular volume and left ventricular mass after kidney transplantation. Design: Patients on dialysis were assessed at baseline and 12 months after kidney transplantation (n = 38). A comparison group of patients on dialysis who were not expected to receive a transplant in the next 24 months were studied (n = 43) to determine if the change of PON1 with kidney transplantation achieved a significance greater than that due to biologic variation. Left ventricular volume and mass were determined by cardiac magnetic resonance imaging. PON1 was measured by arylesterase activity and by mass. Results: PON1 mass and activity were not different between the groups at baseline. Both PON1 mass and activity were increased post-kidney transplantation (p < 0.0001 for change). The change in PON1 mass (p = 0.0062) and PON1 arylesterase activity (p = 0.0254) were inversely correlated with the change in NT-proBNP for patients receiving a kidney transplant. However, only the change in the PON1 mass, and not the change in PON1 arylesterase, was inversely correlated with the change in left ventricular volume (ml/m2.7) (p = 0.0146 and 0.0114 for diastolic and systolic, respectively) and with the change in hemoglobin (p = 0.0042). Conclusion: Both PON1 mass and arylesterase activity are increased by kidney transplantation. The increase in PON1 mass is consistent with a novel relationship to the increase in hemoglobin and decrease in left ventricular volume and NT-proBNP seen when kidney function is restored.
Collapse
Affiliation(s)
- Philip W Connelly
- Division of Endocrinology and Metabolism, Department of Medicine, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, Canada
| | - Andrew T Yan
- Division of Cardiology, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Michelle M Nash
- Kidney Transplant Program, St. Michael's Hospital, Toronto, ON, Canada
| | - Rachel M Wald
- Division of Cardiology, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
| | - Charmaine Lok
- Division of Nephrology, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
| | - Lakshman Gunaratnam
- Division of Nephrology, London Health Sciences Centre, Western University, London, ON, Canada
| | - Anish Kirpalani
- Department of Medical Imaging, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - G V Ramesh Prasad
- Kidney Transplant Program, St. Michael's Hospital, Toronto, ON, Canada
| |
Collapse
|