1
|
Huang YH, Chen YC, Ho WM, Lee RG, Chung RH, Liu YL, Chang PY, Chang SC, Wang CW, Chung WH, Tsai SJ, Kuo PH, Lee YS, Hsiao CC. Classifying Alzheimer's disease and normal subjects using machine learning techniques and genetic-environmental features. J Formos Med Assoc 2024; 123:701-709. [PMID: 38044212 DOI: 10.1016/j.jfma.2023.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/24/2023] [Accepted: 10/23/2023] [Indexed: 12/05/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is complicated by multiple environmental and polygenetic factors. The accuracy of artificial neural networks (ANNs) incorporating the common factors for identifying AD has not been evaluated. METHODS A total of 184 probable AD patients and 3773 healthy individuals aged 65 and over were enrolled. AD-related genes (51 SNPs) and 8 environmental factors were selected as features for multilayer ANN modeling. Random Forest (RF) and Support Vector Machine with RBF kernel (SVM) were also employed for comparison. Model results were verified using traditional statistics. RESULTS The ANN achieved high accuracy (0.98), sensitivity (0.95), and specificity (0.96) in the intrinsic test for AD classification. Excluding age and genetic data still yielded favorable results (accuracy: 0.97, sensitivity: 0.94, specificity: 0.96). The assigned weights to ANN features highlighted the importance of mental evaluation, years of education, and specific genetic variations (CASS4 rs7274581, PICALM rs3851179, and TOMM40 rs2075650) for AD classification. Receiver operating characteristic analysis revealed AUC values of 0.99 (intrinsic test), 0.60 (TWB-GWA), and 0.72 (CG-WGS), with slightly lower AUC values (0.96, 0.80, 0.52) when excluding age in ANN. The performance of the ANN model in AD classification was comparable to RF, SVM (linear kernel), and SVM (RBF kernel). CONCLUSION The ANN model demonstrated good sensitivity, specificity, and accuracy in AD classification. The top-weighted SNPs for AD prediction were CASS4 rs7274581, PICALM rs3851179, and TOMM40 rs2075650. The ANN model performed similarly to RF and SVM, indicating its capability to handle the complexity of AD as a disease entity.
Collapse
Affiliation(s)
- Yu-Hua Huang
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Yi-Chun Chen
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Wei-Min Ho
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Ren-Guey Lee
- Department of Electronics Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Ren-Hua Chung
- Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Yu-Li Liu
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| | - Pi-Yueh Chang
- Department of Laboratory Medicine, Chang Gung Memorial Hospital Linkou Medical Center, Taoyuan, Taiwan; Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan
| | - Shih-Cheng Chang
- Department of Laboratory Medicine, Chang Gung Memorial Hospital Linkou Medical Center, Taoyuan, Taiwan; Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan
| | - Chaung-Wei Wang
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taipei and Keelung, Taiwan; Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan; Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Wen-Hung Chung
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taipei and Keelung, Taiwan; Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan; Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Psychiatry, National Yang-Ming University, Taipei, Taiwan
| | - Po-Hsiu Kuo
- Department of Public Health, Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Yun-Shien Lee
- Department of Biotechnology, Ming Chuan University, Taoyuan, Taiwan; Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| | - Chun-Chieh Hsiao
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan; Department of Computer Information and Network Engineering, Lunghwa University of Science and Technology, Taoyuan, Taiwan.
| |
Collapse
|
2
|
Lee S, Hecker J, Hahn G, Mullin K, Lutz SM, Tanzi RE, Lange C, Prokopenko D. On the effect heterogeneity of established disease susceptibility loci for Alzheimer's disease across different genetic ancestries. Alzheimers Dement 2024; 20:3397-3405. [PMID: 38563508 PMCID: PMC11095441 DOI: 10.1002/alz.13796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/14/2024] [Accepted: 02/23/2024] [Indexed: 04/04/2024]
Abstract
INTRODUCTION Genome-wide association studies have identified numerous disease susceptibility loci (DSLs) for Alzheimer's disease (AD). However, only a limited number of studies have investigated the dependence of the genetic effect size of established DSLs on genetic ancestry. METHODS We utilized the whole genome sequencing data from the Alzheimer's Disease Sequencing Project (ADSP) including 35,569 participants. A total of 25,459 subjects in four distinct populations (African ancestry, non-Hispanic White, admixed Hispanic, and Asian) were analyzed. RESULTS We found that nine DSLs showed significant heterogeneity across populations. Single nucleotide polymorphism (SNP) rs2075650 in translocase of outer mitochondrial membrane 40 (TOMM40) showed the largest heterogeneity (Cochran's Q = 0.00, I2 = 90.08), followed by other SNPs in apolipoprotein C1 (APOC1) and apolipoprotein E (APOE). Two additional loci, signal-induced proliferation-associated 1 like 2 (SIPA1L2) and solute carrier 24 member 4 (SLC24A4), showed significant heterogeneity across populations. DISCUSSION We observed substantial heterogeneity for the APOE-harboring 19q13.32 region with TOMM40/APOE/APOC1 genes. The largest risk effect was seen among African Americans, while Asians showed a surprisingly small risk effect.
Collapse
Affiliation(s)
- Sanghun Lee
- Department of Medical ConsilienceDivision of MedicineGraduate schoolDankook UniversityYongin‐siGyeonggi‐doSouth Korea
- Channing Division of Network MedicineBrigham and Women's HospitalBostonMassachusettsUSA
- Department of BiostatisticsHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
| | - Julian Hecker
- Channing Division of Network MedicineBrigham and Women's HospitalBostonMassachusettsUSA
| | - Georg Hahn
- Department of BiostatisticsHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
| | - Kristina Mullin
- Genetics and Aging Unit and McCance Center for Brain HealthDepartment of NeurologyMassachusetts General HospitalCharlestownMassachusettsUSA
| | | | - Sharon M. Lutz
- Department of BiostatisticsHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
- Department of Population MedicineHarvard Medical School and Harvard Pilgrim Healthcare InstituteBostonMassachusettsUSA
| | - Rudolph E. Tanzi
- Genetics and Aging Unit and McCance Center for Brain HealthDepartment of NeurologyMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Christoph Lange
- Channing Division of Network MedicineBrigham and Women's HospitalBostonMassachusettsUSA
- Department of BiostatisticsHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
| | - Dmitry Prokopenko
- Genetics and Aging Unit and McCance Center for Brain HealthDepartment of NeurologyMassachusetts General HospitalCharlestownMassachusettsUSA
| |
Collapse
|
3
|
Vogrinc D, Gregorič Kramberger M, Emeršič A, Čučnik S, Goričar K, Dolžan V. The Association of Selected GWAS Reported AD Risk Loci with CSF Biomarker Levels and Cognitive Decline in Slovenian Patients. Int J Mol Sci 2023; 24:12966. [PMID: 37629144 PMCID: PMC10455613 DOI: 10.3390/ijms241612966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/07/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, with a complex genetic background. Apart from rare, familial cases, a combination of multiple risk loci contributes to the susceptibility of the disease. Genome-wide association studies (GWAS) have identified numerous AD risk loci. Changes in cerebrospinal fluid (CSF) biomarkers and imaging techniques can detect AD-related brain changes before the onset of clinical symptoms, even in the presence of preclinical mild cognitive impairment. In this study, we aimed to assess the associations between SNPs in well-established GWAS AD risk loci and CSF biomarker levels or cognitive test results in Slovenian patients with cognitive decline. The study included 82 AD patients, 28 MCI patients with pathological CSF biomarker levels and 35 MCI patients with normal CSF biomarker levels. Carriers of at least one polymorphic TOMM40 rs157581 C allele had lower Aβ42 (p = 0.033) and higher total tau (p = 0.032) and p-tau181 levels (p = 0.034). Carriers of at least one polymorphic T allele in SORCS1 rs1358030 had lower total tau (p = 0.019), while polymorphic SORCS1 rs1416406 allele was associated with lower total tau (p = 0.013) and p-tau181 (p = 0.036). In addition, carriers of at least one polymorphic T allele in BCHE rs1803274 had lower cognitive test scores (p = 0.029). The study findings may contribute to the identification of genetic markers associated with AD and MCI and provide insights into early disease diagnostics.
Collapse
Affiliation(s)
- David Vogrinc
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (D.V.); (K.G.)
| | - Milica Gregorič Kramberger
- Department of Neurology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (M.G.K.); (A.E.); (S.Č.)
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska Institutet, 14152 Huddinge, Sweden
| | - Andreja Emeršič
- Department of Neurology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (M.G.K.); (A.E.); (S.Č.)
| | - Saša Čučnik
- Department of Neurology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (M.G.K.); (A.E.); (S.Č.)
- Department of Rheumatology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Katja Goričar
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (D.V.); (K.G.)
| | - Vita Dolžan
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (D.V.); (K.G.)
| |
Collapse
|
4
|
Bykova M, Hou Y, Eng C, Cheng F. Quantitative trait locus (xQTL) approaches identify risk genes and drug targets from human non-coding genomes. Hum Mol Genet 2022; 31:R105-R113. [PMID: 36018824 PMCID: PMC9989738 DOI: 10.1093/hmg/ddac208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Advances and reduction of costs in various sequencing technologies allow for a closer look at variations present in the non-coding regions of the human genome. Correlating non-coding variants with large-scale multi-omic data holds the promise not only of a better understanding of likely causal connections between non-coding DNA and expression of traits but also identifying potential disease-modifying medicines. Genome-phenome association studies have created large datasets of DNA variants that are associated with multiple traits or diseases, such as Alzheimer's disease; yet, the functional consequences of variants, in particular of non-coding variants, remain largely unknown. Recent advances in functional genomics and computational approaches have led to the identification of potential roles of DNA variants, such as various quantitative trait locus (xQTL) techniques. Multi-omic assays and analytic approaches toward xQTL have identified links between genetic loci and human transcriptomic, epigenomic, proteomic and metabolomic data. In this review, we first discuss the recent development of xQTL from multi-omic findings. We then highlight multimodal analysis of xQTL and genetic data for identification of risk genes and drug targets using Alzheimer's disease as an example. We finally discuss challenges and future research directions (e.g. artificial intelligence) for annotation of non-coding variants in complex diseases.
Collapse
Affiliation(s)
- Marina Bykova
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Yuan Hou
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| |
Collapse
|
5
|
Belloy ME, Eger SJ, Le Guen Y, Damotte V, Ahmad S, Ikram MA, Ramirez A, Tsolaki AC, Rossi G, Jansen IE, de Rojas I, Parveen K, Sleegers K, Ingelsson M, Hiltunen M, Amin N, Andreassen O, Sánchez-Juan P, Kehoe P, Amouyel P, Sims R, Frikke-Schmidt R, van der Flier WM, Lambert JC, He Z, Han SS, Napolioni V, Greicius MD. Challenges at the APOE locus: a robust quality control approach for accurate APOE genotyping. Alzheimers Res Ther 2022; 14:22. [PMID: 35120553 PMCID: PMC8815198 DOI: 10.1186/s13195-022-00962-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/12/2022] [Indexed: 04/22/2023]
Abstract
BACKGROUND Genetic variants within the APOE locus may modulate Alzheimer's disease (AD) risk independently or in conjunction with APOE*2/3/4 genotypes. Identifying such variants and mechanisms would importantly advance our understanding of APOE pathophysiology and provide critical guidance for AD therapies aimed at APOE. The APOE locus however remains relatively poorly understood in AD, owing to multiple challenges that include its complex linkage structure and uncertainty in APOE*2/3/4 genotype quality. Here, we present a novel APOE*2/3/4 filtering approach and showcase its relevance on AD risk association analyses for the rs439401 variant, which is located 1801 base pairs downstream of APOE and has been associated with a potential regulatory effect on APOE. METHODS We used thirty-two AD-related cohorts, with genetic data from various high-density single-nucleotide polymorphism microarrays, whole-genome sequencing, and whole-exome sequencing. Study participants were filtered to be ages 60 and older, non-Hispanic, of European ancestry, and diagnosed as cognitively normal or AD (n = 65,701). Primary analyses investigated AD risk in APOE*4/4 carriers. Additional supporting analyses were performed in APOE*3/4 and 3/3 strata. Outcomes were compared under two different APOE*2/3/4 filtering approaches. RESULTS Using more conventional APOE*2/3/4 filtering criteria (approach 1), we showed that, when in-phase with APOE*4, rs439401 was variably associated with protective effects on AD case-control status. However, when applying a novel filter that increases the certainty of the APOE*2/3/4 genotypes by applying more stringent criteria for concordance between the provided APOE genotype and imputed APOE genotype (approach 2), we observed that all significant effects were lost. CONCLUSIONS We showed that careful consideration of APOE genotype and appropriate sample filtering were crucial to robustly interrogate the role of the APOE locus on AD risk. Our study presents a novel APOE filtering approach and provides important guidelines for research into the APOE locus, as well as for elucidating genetic interaction effects with APOE*2/3/4.
Collapse
Affiliation(s)
- Michael E Belloy
- Department of Neurology and Neurological Sciences - Greicius lab, Stanford University, 290 Jane Stanford Way, Stanford, CA, 94304, USA.
| | - Sarah J Eger
- Department of Neurology and Neurological Sciences - Greicius lab, Stanford University, 290 Jane Stanford Way, Stanford, CA, 94304, USA
| | - Yann Le Guen
- Department of Neurology and Neurological Sciences - Greicius lab, Stanford University, 290 Jane Stanford Way, Stanford, CA, 94304, USA
| | - Vincent Damotte
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille, France
| | - Shahzad Ahmad
- Department of Epidemiology, ErasmusMC, Rotterdam, The Netherlands
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, ErasmusMC, Rotterdam, The Netherlands
| | - Alfredo Ramirez
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Neurodegenerative diseases and Geriatric Psychiatry, Medical Faculty, University Hospital Bonn, Bonn, Germany
- Department of Psychiatry & Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, San Antonio, TX, USA
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Anthoula C Tsolaki
- 1st Department of Neurology, AHEPA Hospital, Aristotle University of Thessaloniki, Athens, Greece
| | - Giacomina Rossi
- Unit of Neurology V and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Iris E Jansen
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije University, Amsterdam, The Netherlands
| | - Itziar de Rojas
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Kayenat Parveen
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Neurodegenerative diseases and Geriatric Psychiatry, Medical Faculty, University Hospital Bonn, Bonn, Germany
| | - Kristel Sleegers
- Complex Genetics of Alzheimer's Disease Group, Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Martin Ingelsson
- Department of Public Health and Carins Sciences/Geriatrics, Uppsala University, Uppsala, Sweden
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, Yliopistonranta 1E, 70211, Kuopio, Finland
| | - Najaf Amin
- Department of Epidemiology, ErasmusMC, Rotterdam, The Netherlands
- Nuffield Department of Population Health Oxford University, Oxford, UK
| | - Ole Andreassen
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Pascual Sánchez-Juan
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Neurology Service, Marqués de Valdecilla University Hospital (University of Cantabria and IDIVAL), Santander, Spain
| | - Patrick Kehoe
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Philippe Amouyel
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille, France
| | - Rebecca Sims
- Division of Psychological Medicine and Clinical Neuroscience, School of Medicine, Cardiff University, Wales, UK
| | - Ruth Frikke-Schmidt
- Department of Clinical Biochemistry, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Jean-Charles Lambert
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille, France
| | - Zihuai He
- Department of Neurology and Neurological Sciences - Greicius lab, Stanford University, 290 Jane Stanford Way, Stanford, CA, 94304, USA
- Quantitative Sciences Unit, Department of Medicine, Stanford University, Stanford, CA, 94304, USA
| | - Summer S Han
- Quantitative Sciences Unit, Department of Medicine, Stanford University, Stanford, CA, 94304, USA
- Department of Neurosurgery, Stanford University, Stanford, CA, 94304, USA
| | - Valerio Napolioni
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, Italy
| | - Michael D Greicius
- Department of Neurology and Neurological Sciences - Greicius lab, Stanford University, 290 Jane Stanford Way, Stanford, CA, 94304, USA
| |
Collapse
|
6
|
Abstract
Alzheimer's disease (AD) is a complex and multifactorial neurodegenerative disease. Due to its long clinical course and lack of an effective treatment, AD has become a major public health problem in the USA and worldwide. Due to variation in age-at-onset, AD is classified into early-onset (< 60 years) and late-onset (≥ 60 years) forms with early-onset accounting for only 5-10% of all cases. With the exception of a small number of early-onset cases that are afflicted because of high penetrant single gene mutations in APP, PSEN1, and PSEN2 genes, AD is genetically heterogeneous, especially the late-onset form having a polygenic or oligogenic risk inheritance. Since the identification of APOE as the most significant risk factor for late-onset AD in 1993, the path to the discovery of additional AD risk genes had been arduous until 2009 when the use of large genome-wide association studies opened up the discovery gateways that led the identification of ~ 95 additional risk loci from 2009 to early 2022. This article reviews the history of AD genetics followed by the potential molecular pathways and recent application of functional genomics methods to identify the causal AD gene(s) among the many genes that reside within a single locus. The ultimate goal of integrating genomics and functional genomics is to discover novel pathways underlying the AD pathobiology in order to identify drug targets for the therapeutic treatment of this heterogeneous disorder.
Collapse
Affiliation(s)
- M Ilyas Kamboh
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
7
|
Ma S, Dalgleish J, Lee J, Wang C, Liu L, Gill R, Buxbaum JD, Chung WK, Aschard H, Silverman EK, Cho MH, He Z, Ionita-Laza I. Powerful gene-based testing by integrating long-range chromatin interactions and knockoff genotypes. Proc Natl Acad Sci U S A 2021; 118:e2105191118. [PMID: 34799441 PMCID: PMC8617518 DOI: 10.1073/pnas.2105191118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2021] [Indexed: 02/03/2023] Open
Abstract
Gene-based tests are valuable techniques for identifying genetic factors in complex traits. Here, we propose a gene-based testing framework that incorporates data on long-range chromatin interactions, several recent technical advances for region-based tests, and leverages the knockoff framework for synthetic genotype generation for improved gene discovery. Through simulations and applications to genome-wide association studies (GWAS) and whole-genome sequencing data for multiple diseases and traits, we show that the proposed test increases the power over state-of-the-art gene-based tests in the literature, identifies genes that replicate in larger studies, and can provide a more narrow focus on the possible causal genes at a locus by reducing the confounding effect of linkage disequilibrium. Furthermore, our results show that incorporating genetic variation in distal regulatory elements tends to improve power over conventional tests. Results for UK Biobank and BioBank Japan traits are also available in a publicly accessible database that allows researchers to query gene-based results in an easy fashion.
Collapse
Affiliation(s)
- Shiyang Ma
- Department of Biostatistics, Columbia University, New York, NY 10032
| | - James Dalgleish
- Department of Biostatistics, Columbia University, New York, NY 10032
| | - Justin Lee
- Quantitative Sciences Unit, Department of Medicine, Stanford University, Stanford, CA 94305
| | - Chen Wang
- Department of Biostatistics, Columbia University, New York, NY 10032
| | - Linxi Liu
- Department of Statistics, University of Pittsburgh, Pittsburgh, PA 15260
| | - Richard Gill
- Department of Human Genetics, Genentech, South San Francisco, CA 94080
- Department of Epidemiology, Columbia University, New York, NY 10032
| | - Joseph D Buxbaum
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Wendy K Chung
- Department of Pediatrics, Columbia University, New York, NY 10032
- Department of Medicine, Columbia University, New York, NY 10032
| | - Hugues Aschard
- Department of Computational Biology, Institut Pasteur, 75015 Paris, France
| | - Edwin K Silverman
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Michael H Cho
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Zihuai He
- Quantitative Sciences Unit, Department of Medicine, Stanford University, Stanford, CA 94305
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305
| | | |
Collapse
|
8
|
Si S, Li J, Tewara MA, Xue F. Genetically Determined Chronic Low-Grade Inflammation and Hundreds of Health Outcomes in the UK Biobank and the FinnGen Population: A Phenome-Wide Mendelian Randomization Study. Front Immunol 2021; 12:720876. [PMID: 34386016 PMCID: PMC8353321 DOI: 10.3389/fimmu.2021.720876] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 07/12/2021] [Indexed: 12/17/2022] Open
Abstract
Background C-reactive protein (CRP) has been used as a biomarker of chronic low-grade inflammation in observational studies. We aimed to determine whether genetically determined CRP was associated with hundreds of human phenotypes to guide anti-inflammatory interventions. Methods We used individual data from the UK Biobank to perform a phenome-wide two-stage least squares (2SLS) Mendelian randomization (MR) analysis for CRP with 879 diseases. Summary-level data from the FinnGen consortium were utilized to perform phenome-wide two-sample MR analysis on 821 phenotypes. Systematic two-sample MR methods included MR-IVW, MR-WME, MR-Mod, and MR-PRESSO as sensitivity analyses combined with multivariable MR to identify robust associations. Genetic correlation analysis was applied to identify shared genetic risks. Results We found genetically determined CRP was robustly associated with 15 diseases in the UK Biobank and 11 diseases in the FinnGen population (P < 0.05 for all MR analyses). CRP was positively associated with tongue cancer, bronchitis, hydronephrosis, and acute pancreatitis and negatively associated with colorectal cancer, colon cancer, cerebral ischemia, electrolyte imbalance, Parkinson's disease, epilepsy, anemia of chronic disease, encephalitis, psychophysical visual disturbances, and aseptic necrosis of bone in the UK Biobank. There were positive associations with impetigo, vascular dementia, bipolar disorders, hypercholesterolemia, vertigo, and neurological diseases, and negative correlations with degenerative macular diseases, metatarsalgia, interstitial lung disease, and idiopathic pulmonary fibrosis, and others. in the FinnGen population. The electrolyte imbalance and anemia of chronic disease in UK Biobank and hypercholesterolemia and neurological diseases in FinnGen pass the FDR corrections. Neurological diseases and bipolar disorders also presented positive genetic correlations with CRP. We found no overlapping causal associations between the populations. Previous causal evidence also failed to support these associations (except for bipolar disorders). Conclusions Genetically determined CRP was robustly associated with several diseases in the UK Biobank and the FinnGen population, but could not be replicated, suggesting heterogeneous and non-repeatable effects of CRP across populations. This implies that interventions at CRP are unlikely to result in decreased risk for most human diseases in the general population but may benefit specific high-risk populations. The limited causal evidence and potential double-sided effects remind us to be cautious about CRP interventions.
Collapse
Affiliation(s)
- Shucheng Si
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Institute for Medical Dataology, Shandong University, Jinan, China
- National Institute of Health Data Science of China, Shandong University, Jinan, China
| | - Jiqing Li
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Institute for Medical Dataology, Shandong University, Jinan, China
- National Institute of Health Data Science of China, Shandong University, Jinan, China
| | - Marlvin Anemey Tewara
- Center for Health Promotion and Research (Former Tuberculosis Reference Laboratory), Bamenda, Cameroon
| | - Fuzhong Xue
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Institute for Medical Dataology, Shandong University, Jinan, China
- National Institute of Health Data Science of China, Shandong University, Jinan, China
| |
Collapse
|
9
|
TOMM40 RNA Transcription in Alzheimer's Disease Brain and Its Implication in Mitochondrial Dysfunction. Genes (Basel) 2021; 12:genes12060871. [PMID: 34204109 PMCID: PMC8226536 DOI: 10.3390/genes12060871] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 11/24/2022] Open
Abstract
Increasing evidence suggests that the Translocase of Outer Mitochondria Membrane 40 (TOMM40) gene may contribute to the risk of Alzheimer’s disease (AD). Currently, there is no consensus as to whether TOMM40 expression is up- or down-regulated in AD brains, hindering a clear interpretation of TOMM40’s role in this disease. The aim of this study was to determine if TOMM40 RNA levels differ between AD and control brains. We applied RT-qPCR to study TOMM40 transcription in human postmortem brain (PMB) and assessed associations of these RNA levels with genetic variants in APOE and TOMM40. We also compared TOMM40 RNA levels with mitochondrial functions in human cell lines. Initially, we found that the human genome carries multiple TOMM40 pseudogenes capable of producing highly homologous RNAs that can obscure precise TOMM40 RNA measurements. To circumvent this obstacle, we developed a novel RNA expression assay targeting the primary transcript of TOMM40. Using this assay, we showed that TOMM40 RNA was upregulated in AD PMB. Additionally, elevated TOMM40 RNA levels were associated with decreases in mitochondrial DNA copy number and mitochondrial membrane potential in oxidative stress-challenged cells. Overall, differential transcription of TOMM40 RNA in the brain is associated with AD and could be an indicator of mitochondrial dysfunction.
Collapse
|
10
|
Gui W, Qiu C, Shao Q, Li J. Associations of Vascular Risk Factors, APOE and TOMM40 Polymorphisms With Cognitive Function in Dementia-Free Chinese Older Adults: A Community-Based Study. Front Psychiatry 2021; 12:617773. [PMID: 33790814 PMCID: PMC8005534 DOI: 10.3389/fpsyt.2021.617773] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/01/2021] [Indexed: 12/14/2022] Open
Abstract
Objective: The associations of vascular risk factors (VRFs), apolipoprotein E (APOE), and translocase of outer mitochondrial membrane 40 (TOMM40) with cognitive function have been investigated mostly in western societies. In the present study, we sought to examine the associations of VRFs [i.e., current smoking, current drinking, physical inactivity, obesity, total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), diabetes, and hypertension] and variants located in APOE (ε2/3/4) and TOMM40 (rs2075650) with global cognitive function in Chinese older adults, with a focus on their potential interactions. Methods: This is a cross-sectional study that included 422 permanent residents (mean age 69.2 years, 54.3% female) living in Beijing, who were free of dementia. Data were collected through interviews, clinical examinations, and laboratory tests. The two genetic polymorphisms were genotyped, and participants were dichotomized as carriers vs. non-carriers of APOE ε4 or TOMM40 G. Global cognitive function was assessed with the Mini-Mental State Examination (MMSE). Data were analyzed with multivariable linear regression models. Results: Physical inactivity and diabetes were independently associated with a lower MMSE score (all p < 0.05). When four putative VRFs (i.e., current smoking, physical inactivity, high LDL-C, and diabetes) were aggregated, an increasing number of having these factors was associated with a decreasing MMSE score in a dose-response manner (p = 0.001). TOMM40 polymorphisms, independent of the APOE ε4 allele, interacted with aggregated VRFs to influence cognitive performance, such that having one or more of these VRFs was particularly detrimental to the cognition of TOMM40 carriers. Further analyses revealed interactions of the TOMM40 polymorphism with (i) physical inactivity and (ii) diabetes, such that having either physical inactivity or diabetes in combination with carrying a TOMM40 G allele, compared to having neither, was significantly associated with a markedly lower MMSE score (all p < 0.05). Conclusion: This study provides some evidence supporting the association of vascular risk factors with poor cognitive performance among dementia-free Chinese older adults and further revealed their interactions with the TOMM40 polymorphism. The results underscore the vulnerability of global cognitive function to VRFs, which could be reinforced by carrying the TOMM40 rs2075650 G allele. These findings have potential implications for developing tailored intervention programs to maintain cognitive function.
Collapse
Affiliation(s)
- Wenjun Gui
- CAS Key Laboratory of Mental Health, Center on Aging Psychology, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Chengxuan Qiu
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,Aging Research Center and Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Qi Shao
- CAS Key Laboratory of Mental Health, Center on Aging Psychology, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Juan Li
- CAS Key Laboratory of Mental Health, Center on Aging Psychology, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|