1
|
Tamura T, Cheng C, Villaseñor-Altamirano AB, Yamada K, Ikeda K, Hayashida K, Menon JA, Chen XD, Chung H, Varon J, Chen J, Choi J, Cullen AM, Guo J, Lin X, Olenchock BA, Pinilla-Vera MA, Manandhar R, Sheikh MDA, Hou PC, Lawler PR, Oldham WM, Seethala RR, Baron RM, Bohula EA, Morrow DA, Blumberg RS, Chen F, Merriam LT, Weissman AJ, Brenner MB, Chen X, Ichinose F, Kim EY. Diverse NKT cells regulate early inflammation and neurological outcomes after cardiac arrest and resuscitation. Sci Transl Med 2024; 16:eadq5796. [PMID: 39630883 DOI: 10.1126/scitranslmed.adq5796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 09/30/2024] [Indexed: 12/07/2024]
Abstract
Neurological injury drives most deaths and morbidity among patients hospitalized for out-of-hospital cardiac arrest (OHCA). Despite its clinical importance, there are no effective pharmacological therapies targeting post-cardiac arrest (CA) neurological injury. Here, we analyzed circulating immune cells from a large cohort of patients with OHCA, finding that lymphopenia independently associated with poor neurological outcomes. Single-cell RNA sequencing of immune cells showed that T cells with features of both innate T cells and natural killer (NK) cells were increased in patients with favorable neurological outcomes. We more specifically identified an early increase in circulating diverse NKT (dNKT) cells in a separate cohort of patients with OHCA who had good neurological outcomes. These cells harbored a diverse T cell receptor repertoire but were consistently specific for sulfatide antigen. In mice, we found that sulfatide-specific dNKT cells trafficked to the brain after CA and resuscitation. In the brains of mice lacking NKT cells (Cd1d-/-), we observed increased inflammatory chemokine and cytokine expression and accumulation of macrophages when compared with wild-type mice. Cd1d-/- mice also had increased neuronal injury, neurological dysfunction, and worse mortality after CA. To therapeutically enhance dNKT cell activity, we treated mice with sulfatide lipid after CA, showing that it improved neurological function. Together, these data show that sulfatide-specific dNKT cells are associated with good neurological outcomes after clinical OHCA and are neuroprotective in mice after CA. Strategies to enhance the number or function of dNKT cells may thus represent a treatment approach for CA.
Collapse
Affiliation(s)
- Tomoyoshi Tamura
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Changde Cheng
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Stem Cell Biology Program, Division of Hematology and Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Ana B Villaseñor-Altamirano
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Kohei Yamada
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Kohei Ikeda
- Harvard Medical School, Boston, MA 02115, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Kei Hayashida
- Harvard Medical School, Boston, MA 02115, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jaivardhan A Menon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Xi Dawn Chen
- Broad Institute of MIT and Harvard, Cambridge, MA 02138, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Hattie Chung
- Broad Institute of MIT and Harvard, Cambridge, MA 02138, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Jack Varon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Jiani Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jiyoung Choi
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Aidan M Cullen
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Jingyu Guo
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Xi Lin
- Harvard Medical School, Boston, MA 02115, USA
- Division of Gastroenterology, Hepatology, and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02142, USA
| | - Benjamin A Olenchock
- Harvard Medical School, Boston, MA 02115, USA
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Mayra A Pinilla-Vera
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Reshmi Manandhar
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Muhammad Dawood Amir Sheikh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Peter C Hou
- Harvard Medical School, Boston, MA 02115, USA
- Division of Emergency and Critical Care Medicine, Department of Emergency Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Patrick R Lawler
- McGill University Health Centre, Montreal, Quebec H3A 2B4, Canada
- University of Toronto, Toronto, Ontario M5R 0A3, Canada
| | - William M Oldham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Raghu R Seethala
- Harvard Medical School, Boston, MA 02115, USA
- Division of Emergency and Critical Care Medicine, Department of Emergency Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Rebecca M Baron
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Erin A Bohula
- Harvard Medical School, Boston, MA 02115, USA
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - David A Morrow
- Harvard Medical School, Boston, MA 02115, USA
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Richard S Blumberg
- Harvard Medical School, Boston, MA 02115, USA
- Division of Gastroenterology, Hepatology, and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02142, USA
| | - Fei Chen
- Broad Institute of MIT and Harvard, Cambridge, MA 02138, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Louis T Merriam
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Alexandra J Weissman
- Department of Emergency Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Michael B Brenner
- Harvard Medical School, Boston, MA 02115, USA
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Xiang Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Fumito Ichinose
- Harvard Medical School, Boston, MA 02115, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Edy Y Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
2
|
Skrifvars MB, Abella BS. Does targeted temperature management at 33 °C improve outcome after cardiac arrest? Curr Opin Crit Care 2024; 30:618-623. [PMID: 39445488 PMCID: PMC11540270 DOI: 10.1097/mcc.0000000000001214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
PURPOSE OF REVIEW Following successful resuscitation from cardiac arrest, a complex set of pathophysiologic processes are acutely triggered, leading to substantial morbidity and mortality. Postarrest management remains a major challenge to critical care providers, with few proven therapeutic strategies to improve outcomes. One therapy that has received substantial focus is the intentional lowering of core body temperature for a discrete period of time following resuscitation. In this review, we will discuss the key trials and other evidence surrounding TTM and present opposing arguments, one 'against' the use of postarrest TTM and another 'for' the use of this therapeutic approach. RECENT FINDINGS Targeted temperature management, has been a topic of enormous controversy, as recently a number of clinical trials show conflicting results on the effect of TTM. Fundamental questions, about the dosing of TTM (e.g. use at 33 °C versus higher temperatures), or the use of TTM at all (as opposed to passive fever avoidance), remain active topics of global discussion. Systematic reviews on this topic also show variable results. SUMMARY There are several arguments for and against the use of TTM targeting 33 °C for alleviating brain injury after cardiac arrest. More studies are on the way that will hopefully provide more robust evidence and hopefully allow for consensus on this important topic.
Collapse
Affiliation(s)
- Markus B. Skrifvars
- Department of Emergency Care and Services, University of Helsinki, Helsinki University Hospital, Finland
| | - Benjamin S. Abella
- Mount Sinai Professor and System Chair, Department of Emergency Medicine, Icahn School of Medicine at Mount Sinai
| |
Collapse
|
3
|
Tamura T, Narumiya H, Homma K, Suzuki M. Combination of Hydrogen Inhalation and Hypothermic Temperature Control After Out-of-Hospital Cardiac Arrest: A Post hoc Analysis of the Efficacy of Inhaled Hydrogen on Neurologic Outcome Following Brain Ischemia During PostCardiac Arrest Care II Trial. Crit Care Med 2024; 52:1567-1576. [PMID: 39133068 PMCID: PMC11392137 DOI: 10.1097/ccm.0000000000006395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
OBJECTIVE The Efficacy of Inhaled Hydrogen on Neurologic Outcome Following Brain Ischemia During Post-Cardiac Arrest Care (HYBRID) II trial (jRCTs031180352) suggested that hydrogen inhalation may reduce post-cardiac arrest brain injury (PCABI). However, the combination of hypothermic target temperature management (TTM) and hydrogen inhalation on outcomes is unclear. The aim of this study was to investigate the combined effect of hydrogen inhalation and hypothermic TTM on outcomes after out-of-hospital cardiac arrest (OHCA). DESIGN Post hoc analysis of a multicenter, randomized, controlled trial. SETTING Fifteen Japanese ICUs. PATIENTS Cardiogenic OHCA enrolled in the HYBRID II trial. INTERVENTIONS Hydrogen mixed oxygen (hydrogen group) versus oxygen alone (control group). MEASUREMENTS AND MAIN RESULTS TTM was performed at a target temperature of 32-34°C (TTM32-TTM34) or 35-36°C (TTM35-TTM36) per the institutional protocol. The association between hydrogen + TTM32-TTM34 and 90-day good neurologic outcomes was analyzed using generalized estimating equations. The 90-day survival was compared between the hydrogen and control groups under TTM32-TTM34 and TTM35-TTM36, respectively. The analysis included 72 patients (hydrogen [ n = 39] and control [ n = 33] groups) with outcome data. TTM32-TTM34 was implemented in 25 (64%) and 24 (73%) patients in the hydrogen and control groups, respectively ( p = 0.46). Under TTM32-TTM34, 17 (68%) and 9 (38%) patients achieved good neurologic outcomes in the hydrogen and control groups, respectively (relative risk: 1.81 [95% CI, 1.05-3.66], p < 0.05). Hydrogen + TTM32-TTM34 was independently associated with good neurologic outcomes (adjusted odds ratio 16.10 [95% CI, 1.88-138.17], p = 0.01). However, hydrogen + TTM32-TTM34 did not improve survival compared with TTM32-TTM34 alone (adjusted hazard ratio: 0.22 [95% CI, 0.05-1.06], p = 0.06). CONCLUSIONS Hydrogen + TTM32-TTM34 was associated with improved neurologic outcomes after cardiogenic OHCA compared with TTM32-TTM34 monotherapy. Hydrogen inhalation is a promising treatment option for reducing PCABI when combined with TTM32-TTM34.
Collapse
Affiliation(s)
- Tomoyoshi Tamura
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Shinjuku, Tokyo, Japan
- Center for Molecular Hydrogen Medicine, Keio University, Minato City, Tokyo, Japan
| | - Hiromichi Narumiya
- Department of Emergency and Critical Care Medicine, Japanese Red Cross Kyoto Daini Hospital, Kamigyo Ward, Kyoto, Japan
| | - Koichiro Homma
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Shinjuku, Tokyo, Japan
- Center for Molecular Hydrogen Medicine, Keio University, Minato City, Tokyo, Japan
| | - Masaru Suzuki
- Department of Emergency Medicine, Tokyo Dental College Ichikawa General Hospital, Ichikawa, Chiba, Japan
| |
Collapse
|
4
|
Knapp J, Steffen R, Huber M, Heilman S, Rauch S, Bernhard M, Fischer M. Mild therapeutic hypothermia after cardiac arrest - effect on survival with good neurological outcome outside of randomised controlled trials: A registry-based analysis. Eur J Anaesthesiol 2024; 41:779-786. [PMID: 39228239 PMCID: PMC11377051 DOI: 10.1097/eja.0000000000002016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
BACKGROUND For nearly 20 years, in international guidelines, mild therapeutic hypothermia (MTH) was an important component of postresuscitation care. However, recent randomised controlled trials have questioned its benefits. At present, international guidelines only recommend actively preventing fever, but there are ongoing discussions about whether the majority of cardiac arrest patients could benefit from MTH treatment. OBJECTIVE The aim of this study was to compare the outcome of adult patients treated with and without MTH after cardiac arrest. DESIGN Observational cohort study. SETTING German Resuscitation Registry covering more than 31 million inhabitants of Germany and Austria. PATIENTS All adult patients between 2006 and 2022 with out-of-hospital or in-hospital cardiac arrest and comatose on admission. MAIN OUTCOME MEASURES Primary endpoint: hospital discharge with good neurological outcome [cerebral performance categories (CPC) 1 or 2]. Secondary endpoint: hospital discharge. We used a multivariate binary logistic regression analysis to identify the effects on outcome of all known influencing variables. RESULTS We analysed 33 933 patients (10 034 treated with MTH, 23 899 without MTH). The multivariate regression model revealed that MTH was an independent predictor of CPC 1/2 survival and of hospital discharge with odds ratio (95% confidence intervals) of 1.60 (1.49 to 1.72), P < 0.001 and 1.89 (1.76 to 2.02), P < 0.001, respectively. CONCLUSION Our data indicate the existence of a positive association between MTH and a favourable neurological outcome after cardiac arrest. It therefore seems premature to refrain from giving MTH treatment for the entire spectrum of patients after cardiac arrest. Further prospective studies are needed.
Collapse
|
5
|
Yagi T, Tachibana E, Atsumi W, Kuronuma K, Iso K, Hayashida S, Sugai S, Sasa Y, Shoji Y, Kunimoto S, Tani S, Matsumoto N, Okumura Y. Optimal Targeted Temperature Management for Patients with Post-Cardiac Arrest Syndrome. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1575. [PMID: 39459362 PMCID: PMC11509509 DOI: 10.3390/medicina60101575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/03/2024] [Accepted: 09/19/2024] [Indexed: 10/28/2024]
Abstract
Background: To prevent hypoxic-ischemic brain damage in patients with post-cardiac arrest syndrome (PCAS), international guidelines have emphasized performing targeted temperature management (TTM). However, the most optimal targeted core temperature and cooling duration reached no consensus to date. This study aimed to clarify the optimal targeted core temperature and cooling duration, selected according to the time interval from collapse to return of spontaneous circulation (ROSC) in patients with PCAS due to cardiac etiology. Methods: Between 2014 and 2020, the targeted core temperature was 34 °C or 35 °C, and the cooling duration was 24 h. If the time interval from collapse to ROSC was within 20 min, we performed the 35 °C targeted core temperature (Group A), and, if not, we performed the 34 °C targeted core temperature (Group B). Between 2009 and 2013, the targeted core temperature was 34 °C, and the cooling duration was 24 or 48 h. If the interval was within 20 min, we performed the 24 h cooling duration (Group C), and, if not, we performed the 48 h cooling duration (Group D). Results: The favorable neurological outcome rates at 30 days following cardiac arrest were 45.7% and 45.5% in Groups A + B and C + D, respectively (p = 0.977). In patients with ROSC within 20 min, the favorable neurological outcome rates at 30 days following cardiac arrest were 75.6% and 86.4% in Groups A and C, respectively (p = 0.315). In patients with ROSC ≥ 21 min, the favorable neurological outcome rates at 30 days following cardiac arrest were 29.3% and 18.2% in Groups B and D, respectively (p = 0.233). Conclusions: Selecting the optimal target core temperature and the cooling duration for TTM, according to the time interval from collapse to ROSC, may be helpful in patients with PCAS due to cardiac etiology.
Collapse
Affiliation(s)
- Tsukasa Yagi
- Department of Cardiology, Kawaguchi Municipal Medical Center, Kawaguchi 333-0833, Japan
- Department of Cardiology, Nihon University Hospital, Tokyo 101-8309, Japan
| | - Eizo Tachibana
- Department of Cardiology, Kawaguchi Municipal Medical Center, Kawaguchi 333-0833, Japan
| | - Wataru Atsumi
- Department of Cardiology, Kawaguchi Municipal Medical Center, Kawaguchi 333-0833, Japan
| | - Keiichiro Kuronuma
- Department of Cardiology, Kawaguchi Municipal Medical Center, Kawaguchi 333-0833, Japan
- Department of Cardiology, Nihon University Hospital, Tokyo 101-8309, Japan
| | - Kazuki Iso
- Department of Cardiology, Kawaguchi Municipal Medical Center, Kawaguchi 333-0833, Japan
- Department of Cardiology, Nihon University Hospital, Tokyo 101-8309, Japan
| | - Satoshi Hayashida
- Department of Cardiology, Kawaguchi Municipal Medical Center, Kawaguchi 333-0833, Japan
| | - Shonosuke Sugai
- Department of Cardiology, Kawaguchi Municipal Medical Center, Kawaguchi 333-0833, Japan
| | - Yusuke Sasa
- Department of Cardiology, Kawaguchi Municipal Medical Center, Kawaguchi 333-0833, Japan
| | - Yoshikuni Shoji
- Department of Cardiology, Kawaguchi Municipal Medical Center, Kawaguchi 333-0833, Japan
| | - Satoshi Kunimoto
- Department of Cardiology, Kawaguchi Municipal Medical Center, Kawaguchi 333-0833, Japan
| | - Shigemasa Tani
- Department of Cardiology, Nihon University Hospital, Tokyo 101-8309, Japan
| | - Naoya Matsumoto
- Department of Cardiology, Nihon University Hospital, Tokyo 101-8309, Japan
| | - Yasuo Okumura
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan
| |
Collapse
|
6
|
Beekman R, Khosla A, Buckley R, Honiden S, Gilmore EJ. Temperature Control in the Era of Personalized Medicine: Knowledge Gaps, Research Priorities, and Future Directions. J Intensive Care Med 2024; 39:611-622. [PMID: 37787185 DOI: 10.1177/08850666231203596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Hypoxic-ischemic brain injury (HIBI) is the leading cause of death and disability after cardiac arrest. To date, temperature control is the only intervention shown to improve neurologic outcomes in patients with HIBI. Despite robust preclinical evidence supporting hypothermia as neuroprotective therapy after cardiac arrest, there remains clinical equipoise regarding optimal core temperature, therapeutic window, and duration of therapy. Current guidelines recommend continuous temperature monitoring and active fever prevention for at least 72 h and additionally note insufficient evidence regarding temperature control targeting 32 °C-36 °C. However, population-based thresholds may be inadequate to support the metabolic demands of ischemic, reperfused, and dysregulated tissue. Promoting a more personalized approach with individualized targets has the potential to further improve outcomes. This review will analyze current knowledge and evidence, address research priorities, explore the components of high-quality temperature control, and define critical future steps that are needed to advance patient-centered care for cardiac arrest survivors.
Collapse
Affiliation(s)
- Rachel Beekman
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Akhil Khosla
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Ryan Buckley
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Shyoko Honiden
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Emily J Gilmore
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
7
|
Nishimura T, Hatakeyama T, Yoshida H, Yoshimura S, Kiguchi T, Irisawa T, Yamada T, Yoshiya K, Park C, Ishibe T, Yagi Y, Kishimoto M, Kim SH, Hayashi Y, Ito Y, Sogabe T, Morooka T, Sakamoto H, Suzuki K, Nakamura F, Matsuyama T, Okada Y, Nishioka N, Matsui S, Kimata S, Kawai S, Makino Y, Kitamura T, Iwami T, Mizobata Y. Non-linear association between the time required to reaching temperature targets and the neurological outcome in patients undergoing targeted temperature management after out-of-hospital cardiac arrest: Observational multicentre cohort study. Resusc Plus 2024; 18:100607. [PMID: 38586179 PMCID: PMC10995978 DOI: 10.1016/j.resplu.2024.100607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 04/09/2024] Open
Abstract
Purpose We evaluated associations between outcomes and time to achieving temperature targets during targeted temperature management of out-of-hospital cardiac arrest. Methods Using Comprehensive Registry of Intensive Care for out-of-hospital cardiac arrest Survival (CRITICAL) study, we enrolled all patients transported to participating hospitals from 1 July 2012 through 31 December 2017 aged ≥ 18 years with out-of-hospital cardiac arrest of cardiac aetiology and who received targeted temperature management in Osaka, Japan. Primary outcome was Cerebral Performance Category scale of 1 or 2 one month after cardiac arrest, designated as "one-month favourable neurological outcome". Non-linear multivariable logistic regression analyses assessed the primary outcome based on time to reaching temperature targets. In patients subdivided into quintiles based on time to achieving temperature targets, multivariable logistic regression calculated adjusted odds ratios and 95% confidence intervals. Results We analysed 473 patients. In non-linear multivariable logistic regression analysis, p value for non-linearity was < 0.01. In the first quintile (< 26.7 minutes), second quintile (26.8-89.9 minutes), third quintile (90.0-175.1 minutes), fourth quintile (175.2-352.1 minutes), and fifth quintile (≥ 352.2 minutes), one-month favourable neurological outcome was 32.6% (31/95), 40.0% (36/90), 53.5% (53/99), 57.4% (54/94), and 37.9% (36/95), respectively. Adjusted odds ratios with 95% confidence intervals for one-month favourable neurological outcome in the first, second, third, and fifth quintiles compared with the fourth quintile were 0.38 (0.20 to 0.72), 0.43 (0.23 to 0.81), 0.77 (0.41 to 1.44), and 0.46 (0.25 to 0.87), respectively. Conclusion Non-linear multivariable logistic regression analysis could clearly describe the association between neurological outcome in patients with out-of-hospital cardiac arrest and the time from the introduction of targeted temperature management to reaching the temperature targets.
Collapse
Affiliation(s)
- Tetsuro Nishimura
- Department of Traumatology and Critical Care Medicine, Osaka Metropolitan University, 1–4–3 Asahimachi, Abeno-ku, Osaka 545–8585, Japan
| | - Toshihiro Hatakeyama
- Department of Emergency and Critical Care Medicine, Dokkyo Medical University Saitama Medical Center, 2–1–50 Minami-Koshigaya, Koshigaya, Saitama 343–8555, Japan
- SimTiki Simulation Center, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Medical Education Building, Suite 212, Honolulu, HI 96813, United States
| | - Hisako Yoshida
- Department of Medical Statistics, Osaka Metropolitan University, 1–4–3 Asahimachi, Abeno-ku, Osaka 545–8585, Japan
| | - Satoshi Yoshimura
- Department of Preventive Services, School of Public Health, Graduate School of Medicine, Kyoto University, Yoshida-Konoemachi, Sakyo-ku, Kyoto 606–8501, Japan
| | - Takeyuki Kiguchi
- Department of Critical Care and Trauma Center, Osaka General Medical Center, 3–1–56 Bandai-Higashi, Sumiyoshi-ku, Osaka 558–8558, Japan
| | - Taro Irisawa
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, 2–2 Yamadaoka, Suita, Osaka 565–0871, Japan
| | - Tomoki Yamada
- Emergency and Critical Care Medical Center, Osaka Police Hospital, 10–31, Kitayamacho, Tennoji-ku, Osaka 543–0035, Japan
| | - Kazuhisa Yoshiya
- Department of Emergency and Critical Care Medicine, Kansai Medical University General Medical Center, 10–15 Fumizono-cho, Moriguchi, Osaka 570–8507, Japan
| | - Changhwi Park
- Department of Emergency Medicine, Tane General Hospital, 1–12–21, Kujyominami, Nishi-ku, Osaka 550–0025, Japan
| | - Takuya Ishibe
- Department of Emergency and Critical Care Medicine, Kindai University Faculty of Medicine, 377–2, Ohnohigashi, Osaka-Sayama, Osaka 589–8511, Japan
| | - Yoshiki Yagi
- Osaka Mishima Emergency and Critical Care Center, 11–1, Minamiakutagawa-cho, Takatsuki, Osaka 569–1124, Japan
| | - Masafumi Kishimoto
- Osaka Prefectural Nakakawachi Emergency and Critical Care Center, 3–4–13, Nishiiwata, Higashiosaka, Osaka 578–0947, Japan
| | - Sung-Ho Kim
- Senshu Trauma and Critical Care Center, 2–23, Rinkuoraikita, Izumisano, Osaka 598–8577, Japan
| | - Yasuyuki Hayashi
- Senri Critical Care Medical Center, Saiseikaisenri Hospital, 1–1–6, Tsukumodai, Suita, Osaka 565–0862, Japan
| | - Yusuke Ito
- Senri Critical Care Medical Center, Saiseikaisenri Hospital, 1–1–6, Tsukumodai, Suita, Osaka 565–0862, Japan
| | - Taku Sogabe
- Traumatology and Critical Care Medical Center, National Hospital Organization Osaka National Hospital, 1–1–6, Tsukumodai, Suita, Osaka 565–0862, Japan
| | - Takaya Morooka
- Emergency and Critical Care Medical Center, Osaka City General Hospital, 2–13–22, Miyakojima-hondori, Miyakojima-ku, Osaka 534–0021, Japan
| | - Haruko Sakamoto
- Department of Pediatrics, Osaka Red Cross Hospital, 5–30 Fudegasakicho, Tennoji-ku, Osaka 543–8555, Japan
| | - Keitaro Suzuki
- Emergency and Critical Care Medical Center, Kishiwada Tokushukai Hospital, 4–27–1 Kamoricho, Kishiwada, Osaka 596–8522, Japan
| | - Fumiko Nakamura
- Department of Emergency and Critical Care Medicine, Kansai Medical University General Medical Center, 10–15 Fumizono-cho, Moriguchi, Osaka 570–8507, Japan
| | - Tasuku Matsuyama
- Department of Emergency Medicine, Kyoto Prefectural University of Medicine, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602–8566, Japan
| | - Yohei Okada
- Department of Preventive Services, School of Public Health, Graduate School of Medicine, Kyoto University, Yoshida-Konoemachi, Sakyo-ku, Kyoto 606–8501, Japan
- Health Services and Systems Research, Duke-NUS Medical School, National University of Singapore, 8 College Road, Singapore 169857, Singapore
| | - Norihiro Nishioka
- Department of Preventive Services, School of Public Health, Graduate School of Medicine, Kyoto University, Yoshida-Konoemachi, Sakyo-ku, Kyoto 606–8501, Japan
| | - Satoshi Matsui
- Division of Environmental Medicine and Population Sciences, Department of Social and Environmental Medicine, Graduate School of Medicine, Osaka University, 2–2 Yamadaoka, Suita, Osaka 565–0871, Japan
| | - Shunsuke Kimata
- Department of Preventive Services, School of Public Health, Graduate School of Medicine, Kyoto University, Yoshida-Konoemachi, Sakyo-ku, Kyoto 606–8501, Japan
| | - Shunsuke Kawai
- Department of Preventive Services, School of Public Health, Graduate School of Medicine, Kyoto University, Yoshida-Konoemachi, Sakyo-ku, Kyoto 606–8501, Japan
| | - Yuto Makino
- Department of Preventive Services, School of Public Health, Graduate School of Medicine, Kyoto University, Yoshida-Konoemachi, Sakyo-ku, Kyoto 606–8501, Japan
| | - Tetsuhisa Kitamura
- Division of Environmental Medicine and Population Sciences, Department of Social and Environmental Medicine, Graduate School of Medicine, Osaka University, 2–2 Yamadaoka, Suita, Osaka 565–0871, Japan
| | - Taku Iwami
- Department of Preventive Services, School of Public Health, Graduate School of Medicine, Kyoto University, Yoshida-Konoemachi, Sakyo-ku, Kyoto 606–8501, Japan
| | - Yasumitsu Mizobata
- Department of Traumatology and Critical Care Medicine, Osaka Metropolitan University, 1–4–3 Asahimachi, Abeno-ku, Osaka 545–8585, Japan
| |
Collapse
|
8
|
Steinberg A. Emergent Management of Hypoxic-Ischemic Brain Injury. Continuum (Minneap Minn) 2024; 30:588-610. [PMID: 38830064 DOI: 10.1212/con.0000000000001426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
OBJECTIVE This article outlines interventions used to improve outcomes for patients with hypoxic-ischemic brain injury after cardiac arrest. LATEST DEVELOPMENTS Emergent management of patients after cardiac arrest requires prevention and treatment of primary and secondary brain injury. Primary brain injury is minimized by excellent initial resuscitative efforts. Secondary brain injury prevention requires the detection and correction of many pathophysiologic processes that may develop in the hours to days after the initial arrest. Key physiologic parameters important to secondary brain injury prevention include optimization of mean arterial pressure, cerebral perfusion, oxygenation and ventilation, intracranial pressure, temperature, and cortical hyperexcitability. This article outlines recent data regarding the treatment and prevention of secondary brain injury. Different patients likely benefit from different treatment strategies, so an individualized approach to treatment and prevention of secondary brain injury is advisable. Clinicians must use multimodal sources of data to prognosticate outcomes after cardiac arrest while recognizing that all prognostic tools have shortcomings. ESSENTIAL POINTS Neurologists should be involved in the postarrest care of patients with hypoxic-ischemic brain injury to improve their outcomes. Postarrest care requires nuanced and patient-centered approaches to the prevention and treatment of primary and secondary brain injury and neuroprognostication.
Collapse
|
9
|
Lin V, Tian C, Wahlster S, Castillo-Pinto C, Mainali S, Johnson NJ. Temperature Control in Acute Brain Injury: An Update. Semin Neurol 2024; 44:308-323. [PMID: 38593854 DOI: 10.1055/s-0044-1785647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Temperature control in severe acute brain injury (SABI) is a key component of acute management. This manuscript delves into the complex role of temperature management in SABI, encompassing conditions like traumatic brain injury (TBI), acute ischemic stroke (AIS), intracerebral hemorrhage (ICH), aneurysmal subarachnoid hemorrhage (aSAH), and hypoxemic/ischemic brain injury following cardiac arrest. Fever is a common complication in SABI and is linked to worse neurological outcomes due to increased inflammatory responses and intracranial pressure (ICP). Temperature management, particularly hypothermic temperature control (HTC), appears to mitigate these adverse effects primarily by reducing cerebral metabolic demand and dampening inflammatory pathways. However, the effectiveness of HTC varies across different SABI conditions. In the context of post-cardiac arrest, the impact of HTC on neurological outcomes has shown inconsistent results. In cases of TBI, HTC seems promising for reducing ICP, but its influence on long-term outcomes remains uncertain. For AIS, clinical trials have yet to conclusively demonstrate the benefits of HTC, despite encouraging preclinical evidence. This variability in efficacy is also observed in ICH, aSAH, bacterial meningitis, and status epilepticus. In pediatric and neonatal populations, while HTC shows significant benefits in hypoxic-ischemic encephalopathy, its effectiveness in other brain injuries is mixed. Although the theoretical basis for employing temperature control, especially HTC, is strong, the clinical outcomes differ among various SABI subtypes. The current consensus indicates that fever prevention is beneficial across the board, but the application and effectiveness of HTC are more nuanced, underscoring the need for further research to establish optimal temperature management strategies. Here we provide an overview of the clinical evidence surrounding the use of temperature control in various types of SABI.
Collapse
Affiliation(s)
- Victor Lin
- Department of Neurology, University of Washington, Seattle, Washington
| | - Cindy Tian
- Department of Emergency Medicine, University of Washington, Seattle, Washington
| | - Sarah Wahlster
- Department of Neurology, University of Washington, Seattle, Washington
- Department of Neurosurgery, University of Washington, Seattle, Washington
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington
| | | | - Shraddha Mainali
- Department of Neurology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Nicholas J Johnson
- Department of Emergency Medicine, University of Washington, Seattle, Washington
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
10
|
Tejerina Álvarez EE, Lorente Balanza JÁ. Temperature management in acute brain injury: A narrative review. Med Intensiva 2024; 48:341-355. [PMID: 38493062 DOI: 10.1016/j.medine.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/10/2024] [Indexed: 03/18/2024]
Abstract
Temperature management has been used in patients with acute brain injury resulting from different conditions, such as post-cardiac arrest hypoxic-ischaemic insult, acute ischaemic stroke, and severe traumatic brain injury. However, current evidence offers inconsistent and often contradictory results regarding the clinical benefit of this therapeutic strategy on mortality and functional outcomes. Current guidelines have focused mainly on active prevention and treatment of fever, while therapeutic hypothermia (TH) has fallen into disuse, although doubts persist as to its effectiveness according to the method of application and appropriate patient selection. This narrative review presents the most relevant clinical evidence on the effects of TH in patients with acute neurological damage, and the pathophysiological concepts supporting its use.
Collapse
Affiliation(s)
- Eva Esther Tejerina Álvarez
- Servicio de Medicina Intensiva. Hospital Universitario de Getafe, Getafe, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.
| | - José Ángel Lorente Balanza
- Servicio de Medicina Intensiva. Hospital Universitario de Getafe, Getafe, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain; Departamento de Bioingeniería, Universidad Carlos III de Madrid, Leganés, Madrid, Spain; Departamento de Medicina, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| |
Collapse
|
11
|
Nutma S, Beishuizen A, van den Bergh WM, Foudraine NA, le Feber J, Filius PMG, Cornet AD, van der Palen J, van Putten MJAM, Hofmeijer J. Ghrelin for Neuroprotection in Post-Cardiac Arrest Coma: A Randomized Clinical Trial. JAMA Neurol 2024; 81:603-610. [PMID: 38709502 PMCID: PMC11074931 DOI: 10.1001/jamaneurol.2024.1088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/08/2024] [Indexed: 05/07/2024]
Abstract
Importance Out-of-hospital cardiac arrest survival rates have markedly risen in the last decades, but neurological outcome only improved marginally. Despite research on more than 20 neuroprotective strategies involving patients in comas after cardiac arrest, none have demonstrated unequivocal evidence of efficacy; however, treatment with acyl-ghrelin has shown improved functional and histological brain recovery in experimental models of cardiac arrest and was safe in a wide variety of human study populations. Objective To determine safety and potential efficacy of intravenous acyl-ghrelin to improve neurological outcome in patients in a coma after cardiac arrest. Design, Setting, and Participants A phase 2, double-blind, placebo-controlled, multicenter, randomized clinical trial, Ghrelin Treatment of Comatose Patients After Cardiac Arrest: A Clinical Trial to Promote Cerebral Recovery (GRECO), was conducted between January 18, 2019, and October 17, 2022. Adult patients 18 years or older who were in a comatose state after cardiac arrest were assessed for eligibility; patients were from 3 intensive care units in the Netherlands. Expected death within 48 hours or unfeasibility of treatment initiation within 12 hours were exclusion criteria. Interventions Patients were randomized to receive intravenous acyl-ghrelin, 600 μg (intervention group), or placebo (control group) within 12 hours after cardiac arrest, continued for 7 days, twice daily, in addition to standard care. Main Outcomes and Measures Primary outcome was the score on the Cerebral Performance Categories (CPC) scale at 6 months. Safety outcomes included any serious adverse events. Secondary outcomes were mortality and neuron-specific enolase (NSE) levels on days 1 and 3. Results A total of 783 adult patients in a coma after cardiac arrest were assessed for eligibility, and 160 patients (median [IQR] age, 68 [57-75] years; 120 male [75%]) were enrolled. A total of 81 patients (51%) were assigned to the intervention group, and 79 (49%) were assigned to the control group. The common odds ratio (OR) for any CPC improvement in the intervention group was 1.78 (95% CI, 0.98-3.22; P = .06). This was consistent over all CPC categories. Mean (SD) NSE levels on day 1 after cardiac arrest were significantly lower in the intervention group (34 [6] μg/L vs 56 [13] μg/L; P = .04) and on day 3 (28 [6] μg/L vs 52 [14] μg/L; P = .08). Serious adverse events were comparable in incidence and type between the groups. Mortality was 37% (30 of 81) in the intervention group vs 51% (40 of 79) in the control group (absolute risk reduction, 14%; 95% CI, -2% to 29%; P = .08). Conclusions and Relevance In patients in a coma after cardiac arrest, intravenous treatment with acyl-ghrelin was safe and potentially effective to improve neurological outcome. Phase 3 trials are needed for conclusive evidence. Trial Registration Clinicaltrialsregister.eu: EUCTR2018-000005-23-NL.
Collapse
Affiliation(s)
- Sjoukje Nutma
- Department of Clinical Neurophysiology, Technical Medical Center, University of Twente, Enschede, the Netherlands
- Department of Neurology, Medisch Spectrum Twente, Enschede, the Netherlands
| | - Albertus Beishuizen
- Department of Critical Care, Medisch Spectrum Twente, Enschede, the Netherlands
| | - Walter M. van den Bergh
- Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | | | - Joost le Feber
- Department of Clinical Neurophysiology, Technical Medical Center, University of Twente, Enschede, the Netherlands
| | | | - Alexander D. Cornet
- Department of Critical Care, Medisch Spectrum Twente, Enschede, the Netherlands
| | - Job van der Palen
- Department of Epidemiology, Medisch Spectrum Twente, Enschede, the Netherlands
- Section of Cognition, Data and Education, Faculty of Behavioral, Management and Social Sciences, University of Twente, Enschede, the Netherlands
| | - Michel J. A. M. van Putten
- Department of Clinical Neurophysiology, Technical Medical Center, University of Twente, Enschede, the Netherlands
- Department of Neurology, Medisch Spectrum Twente, Enschede, the Netherlands
| | - Jeannette Hofmeijer
- Department of Clinical Neurophysiology, Technical Medical Center, University of Twente, Enschede, the Netherlands
- Department of Neurology, Rijnstate Hospital, Arnhem, the Netherlands
| |
Collapse
|
12
|
Miao B, Skaar JR, O'Hara M, Post A, Kelly T, Abella BS. A Systematic Literature Review to Assess Fever Management and the Quality of Targeted Temperature Management in Critically Ill Patients. Ther Hypothermia Temp Manag 2024; 14:68-79. [PMID: 37219898 DOI: 10.1089/ther.2023.0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023] Open
Abstract
Targeted temperature management (TTM) has been proposed to reduce mortality and improve neurological outcomes in postcardiac arrest and other critically ill patients. TTM implementation may vary considerably among hospitals, and "high-quality TTM" definitions are inconsistent. This systematic literature review in relevant critical care conditions evaluated the approaches to and definitions of TTM quality with respect to fever prevention and the maintenance of precise temperature control. Current evidence on the quality of fever management associated with TTM in cardiac arrest, traumatic brain injury, stroke, sepsis, and critical care more generally was examined. Searches were conducted in Embase and PubMed (2016 to 2021) following PRISMA guidelines. In total, 37 studies were identified and included, with 35 focusing on postarrest care. Frequently-reported TTM quality outcomes included the number of patients with rebound hyperthermia, deviation from target temperature, post-TTM body temperatures, and number of patients achieving target temperature. Surface and intravascular cooling were used in 13 studies, while one study used surface and extracorporeal cooling and one study used surface cooling and antipyretics. Surface and intravascular methods had comparable rates of achieving target temperature and maintaining temperature. A single study showed that patients with surface cooling had a lower incidence of rebound hyperthermia. This systematic literature review largely identified cardiac arrest literature demonstrating fever prevention with multiple TTM approaches. There was substantial heterogeneity in the definitions and delivery of quality TTM. Further research is required to define quality TTM across multiple elements, including achieving target temperature, maintaining target temperature, and preventing rebound hyperthermia.
Collapse
Affiliation(s)
| | | | | | - Andrew Post
- Trinity Life Sciences, Waltham, Massachusetts, USA
| | - Tim Kelly
- Becton Dickinson, Franklin Lakes, New Jersey, USA
| | - Benjamin S Abella
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
13
|
You Y, Park JS, Min JH, Jeong W, Ahn HJ, In YN, Jeon SY, Lee JK, Kang C. Blood-brain barrier permeability for the first 24 hours in hypoxic-ischemic brain injury following cardiac arrest. Resuscitation 2024; 198:110150. [PMID: 38401708 DOI: 10.1016/j.resuscitation.2024.110150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND This study aimed to explore the changes in blood-brain barrier (BBB) permeability and intracranial pressure (ICP) for the first 24 h after the return of spontaneous circulation (ROSC) and their association with injury severity of cardiac arrest. METHODS This prospective study analysed the BBB permeability assessed using the albumin quotient (Qa) and ICP every 2 h for the first 24 h after ROSC. The injury severity of cardiac arrest was assessed using Pittsburgh Cardiac Arrest Category (PCAC) scores. The primary outcome was the time course of changes in the BBB permeability and ICP for the first 24 h after ROSC and their association with injury severity (PCAC scores of 1-4). RESULTS Qa and ICP were measured 274 and 197 times, respectively, in 32 enrolled patients. Overall, the BBB permeability increased progressively over time after ROSC, and then it increased significantly at 18 h after ROSC compared with the baseline. In contrast, the ICP revealed non-significant changes for the first 24 h after ROSC. The Qa in the PCAC 2 group was < 0.01, indicating normal or mild BBB disruption at all time points, whereas the PCAC 3 and 4 groups showed a significant increase in BBB permeability at 14 and 22 h, and 12 and 14 h after ROSC, respectively. CONCLUSION BBB permeability increased progressively over time for the first 24 h after ROSC despite post-resuscitation care, whereas ICP did not change over time. BBB permeability has an individual pattern when stratified by injury severity.
Collapse
Affiliation(s)
- Yeonho You
- Department of Emergency Medicine, Chungnam National University Hospital, 282 Munhwa-ro, Jung-gu, Daejeon, Republic of Korea; Department of Emergency Medicine, College of Medicine, Chungnam National University, 282 Mokdong-ro, Jung-gu, Daejeon, Republic of Korea
| | - Jung Soo Park
- Department of Emergency Medicine, Chungnam National University Hospital, 282 Munhwa-ro, Jung-gu, Daejeon, Republic of Korea; Department of Emergency Medicine, College of Medicine, Chungnam National University, 282 Mokdong-ro, Jung-gu, Daejeon, Republic of Korea
| | - Jin Hong Min
- Department of Emergency Medicine, College of Medicine, Chungnam National University, 282 Mokdong-ro, Jung-gu, Daejeon, Republic of Korea; Department of Emergency Medicine, Chungnam National University Sejong Hospital, 20, Bodeum 7-ro, Sejong, Republic of Korea
| | - Wonjoon Jeong
- Department of Emergency Medicine, Chungnam National University Hospital, 282 Munhwa-ro, Jung-gu, Daejeon, Republic of Korea; Department of Emergency Medicine, College of Medicine, Chungnam National University, 282 Mokdong-ro, Jung-gu, Daejeon, Republic of Korea
| | - Hong Joon Ahn
- Department of Emergency Medicine, Chungnam National University Hospital, 282 Munhwa-ro, Jung-gu, Daejeon, Republic of Korea; Department of Emergency Medicine, College of Medicine, Chungnam National University, 282 Mokdong-ro, Jung-gu, Daejeon, Republic of Korea
| | - Yong Nam In
- Department of Emergency Medicine, College of Medicine, Chungnam National University, 282 Mokdong-ro, Jung-gu, Daejeon, Republic of Korea; Department of Emergency Medicine, Chungnam National University Sejong Hospital, 20, Bodeum 7-ro, Sejong, Republic of Korea
| | - So Young Jeon
- Department of Emergency Medicine, Chungnam National University Hospital, 282 Munhwa-ro, Jung-gu, Daejeon, Republic of Korea; Department of Emergency Medicine, College of Medicine, Chungnam National University, 282 Mokdong-ro, Jung-gu, Daejeon, Republic of Korea
| | - Jae Kwang Lee
- Department of Emergency Medicine, Konyang University Hospital, College of Medicine, Daejeon 35365, Republic of Korea
| | - Changshin Kang
- Department of Emergency Medicine, Chungnam National University Hospital, 282 Munhwa-ro, Jung-gu, Daejeon, Republic of Korea; Department of Emergency Medicine, College of Medicine, Chungnam National University, 282 Mokdong-ro, Jung-gu, Daejeon, Republic of Korea.
| |
Collapse
|
14
|
Choi SY, Oh SH, Park KN, Youn CS, Kim HJ, Park SH, Lim JY, Kim HJ, Bang HJ. Association between early lactate-related variables and 6-month neurological outcome in out-of-hospital cardiac arrest patients. Am J Emerg Med 2024; 78:62-68. [PMID: 38217899 DOI: 10.1016/j.ajem.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/19/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024] Open
Abstract
INTRODUCTION The role of lactate measurement in out-of-hospital cardiac arrest (OHCA) survivors remains controversial. We assessed the association between early lactate-related variables, OHCA characteristics, and long-term neurological outcome. METHODS In OHCA patients who received targeted temperature management, lactate levels were measured at 0, 12, and 24 h after the return of spontaneous circulation. We calculated lactate clearance and time-weighted cumulative lactate (TWCL), which represent the area under the time-lactate curve. The area under the receiver operating characteristic curve (AUC) and the adjusted odds ratios (AORs) of lactate-related variables for predicting 6-month poor outcome (Cerebral Performance Category 3-5) were evaluated. Interactions between lactate variables and characteristics of OHCA were evaluated by a multivariable logistic model with interaction terms and subgroup analysis. RESULTS A total of 347 OHCA patients were included. After adjustment, higher lactate levels at the three time points were associated with a poor outcome (AOR 1.10 [95% CI, 1.03-1.18], AOR 1.15 [95% CI, 1.02-1.29], and AOR 1.36 [95% CI, 1.15-1.60], respectively), while TWCL was the only lactate kinetics variable associated with a poor outcome (AOR 1.29 [95% CI, 1.12-1.49]). We identified several interactions between lactate-related variables and OHCA characteristics. In particular, the AUC of TWCL was excellent in cases of noncardiac etiology (AUC 0.92 [95% CI, 0.86-0.96] but only moderate in cardiac etiology (AUC 0.69 [95% CI, 0.62-0.75]). CONCLUSIONS Early lactate levels, especially at 24 h, and TWCL were independent predictors of neurologic outcome in these patients, whereas lactate clearance was not. The prognostic ability of lactate-related variables varied depending on the OHCA characteristics.
Collapse
Affiliation(s)
- Se Young Choi
- Department of Emergency Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sang Hoon Oh
- Department of Emergency Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
| | - Kyu Nam Park
- Department of Emergency Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Chun Song Youn
- Department of Emergency Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Han Joon Kim
- Department of Emergency Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sang Hyun Park
- Department of Emergency Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jee Yong Lim
- Department of Emergency Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hyo Joon Kim
- Department of Emergency Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hyo Jin Bang
- Department of Emergency Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
15
|
Behringer W, Böttiger BW, Biasucci DG, Chalkias A, Connolly J, Dodt C, Khoury A, Laribi S, Leach R, Ristagno G. Temperature control after successful resuscitation from cardiac arrest in adults: a joint statement from the European Society for Emergency Medicine (EUSEM) and the European Society of Anaesthesiology and Intensive Care (ESAIC). Eur J Emerg Med 2024; 31:86-89. [PMID: 38126247 PMCID: PMC10901227 DOI: 10.1097/mej.0000000000001106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 12/23/2023]
Affiliation(s)
- Wilhelm Behringer
- Department of Emergency Medicine, Medical University Vienna, Vienna General Hospital, Vienna, Austria
| | - Bernd W. Böttiger
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Cologne, Cologne, Germany
| | - Daniele G. Biasucci
- Department of Clinical Science and Translational Medicine, ‘Tor Vergata’ University of Rome, Rome, Italy
| | - Athanasios Chalkias
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
- Outcomes Research Consortium, Cleveland, Ohio, USA
| | - Jim Connolly
- Accident and Emergency, Great North Trauma and Emergency Care, Newcastle-upon-Tyne, UK
| | - Christoph Dodt
- Department of Emergency Medicine, München Klinik, Munich, Germany
| | - Abdo Khoury
- Department of Emergency Medicine and Critical Care, Besançon University Hospital, Besançon
| | - Said Laribi
- Department of Emergency Medicine, Tours University Hospital, Tours, France
| | - Robert Leach
- Department of Emergency Medicine, Centre Hospitalier de Wallonie Picarde, Tournai, Belgium
| | - Giuseppe Ristagno
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
16
|
Behringer W, Böttiger BW, Biasucci DG, Chalkias A, Connolly J, Dodt C, Khoury A, Laribi S, Leach R, Ristagno G. Temperature control after successful resuscitation from cardiac arrest in adults: A joint statement from the European Society for Emergency Medicine and the European Society of Anaesthesiology and Intensive Care. Eur J Anaesthesiol 2024; 41:278-281. [PMID: 38126249 PMCID: PMC10906202 DOI: 10.1097/eja.0000000000001948] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
|
17
|
Utsumi S, Nishikmi M, Ohshimo S, Shime N. Differences in Pathophysiology and Treatment Efficacy Based on Heterogeneous Out-of-Hospital Cardiac Arrest. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:510. [PMID: 38541236 PMCID: PMC10972304 DOI: 10.3390/medicina60030510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/13/2024] [Accepted: 03/16/2024] [Indexed: 06/15/2024]
Abstract
Out-of-hospital cardiac arrest (OHCA) is heterogeneous in terms of etiology and severity. Owing to this heterogeneity, differences in outcome and treatment efficacy have been reported from case to case; however, few reviews have focused on the heterogeneity of OHCA. We conducted a literature review to identify differences in the prognosis and treatment efficacy in terms of CA-related waveforms (shockable or non-shockable), age (adult or pediatric), and post-CA syndrome severity and to determine the preferred treatment for patients with OHCA to improve outcomes.
Collapse
Affiliation(s)
| | - Mitsuaki Nishikmi
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (S.U.); (S.O.)
| | | | - Nobuaki Shime
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (S.U.); (S.O.)
| |
Collapse
|
18
|
Yamada K, Menon JA, Kim Y, Cheng C, Chen W, Shih JA, Villasenor-Altamirano AB, Chen X, Tamura T, Merriam LT, Kim EY, Weissman AJ. Protocol for immunophenotyping out-of-hospital cardiac arrest patients. STAR Protoc 2024; 5:102874. [PMID: 38310512 PMCID: PMC10850743 DOI: 10.1016/j.xpro.2024.102874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/28/2023] [Accepted: 01/19/2024] [Indexed: 02/06/2024] Open
Abstract
Immunophenotyping of out-of-hospital cardiac arrest (OHCA) patients is of increasing interest but has challenges. Here, we describe steps for the design of the clinical cohort, planning patient enrollment and sample collection, and ethical review of the study protocol. We detail procedures for blood sample collection and cryopreservation of peripheral blood mononuclear cells (PBMCs). We detail steps to modulate immune checkpoints in OHCA PBMC ex vivo. This protocol also has relevance for immunophenotyping other types of critical illness. For complete details on the use and execution of this protocol, please refer to Tamura et al. (2023).1.
Collapse
Affiliation(s)
- Kohei Yamada
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA.
| | - Jaivardhan A Menon
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Yaunghyun Kim
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Changde Cheng
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Wenan Chen
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jenny A Shih
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Ana B Villasenor-Altamirano
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Xiang Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Tomoyoshi Tamura
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA; Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Louis T Merriam
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Edy Y Kim
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA.
| | - Alexandra J Weissman
- Department of Emergency Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
19
|
Taira T, Inoue A, Kuroda Y, Oosuki G, Suga M, Nishimura T, Ijuin S, Ishihara S. The association between blood glucose levels on arrival at the hospital and patient outcomes after out-of-hospital cardiac arrest: A multicenter cohort study. Am J Emerg Med 2024; 77:46-52. [PMID: 38101226 DOI: 10.1016/j.ajem.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/09/2023] [Accepted: 12/02/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND This study aimed to investigate the association between blood glucose levels on arrival at the hospital and 1-month survival and favorable neurological outcomes in patients with OHCA using a large Japanese dataset. METHODS This study was a secondary analysis of data from the JAAM-OHCA Registry. Adult (≥18 years) patients with witnessed OHCA transported to emergency departments and registered in the database from June 2014 to December 2019 were included in the study. The primary and secondary endpoints were 1-month survival and 1-month favorable neurological outcomes (Glasgow-Pittsburgh Cerebral Performance Category score 1 or 2), respectively. Patients were categorized into the following four groups based on blood glucose levels on arrival at the hospital: <80 mg/dL, 80-179 mg/dL, 180-299 mg/dL, and ≥300 mg/dL. RESULTS This study included 11,387 patients. Survival rates were 1.3%, 3.1%, 7.0%, and 5.7% in the <80 mg/dL, 80-179 mg/dL, 180-299 mg/dL, and ≥ 300 mg/dL blood glucose groups, respectively. The rates of favorable neurological outcomes in each group were 0.4%, 1.5%, 3.3%, and 2.5%, respectively. Multivariable analysis showed that 180-299 mg/dL glucose was significantly associated with 1-month survival and favorable neurological outcomes compared with 80-179 mg/dL glucose (odds ratio [OR], 1.77; 95% confidence interval [CI], 1.34-2.31; p < 0.001 and OR, 1.52; 95 % Cl, 1.02-2.25; p = 0.035, respectively). In this study, blood glucose levels with the best outcomes likely ranged from 200 to 250 mg/dL based on the cubic spline regression model. CONCLUSIONS Blood glucose level of 180-299 mg/dL on arrival at the hospital was significantly associated with 1-month survival and favorable neurological outcomes compared to blood glucose level of 80-179 mg/dL in patients with OHCA.
Collapse
Affiliation(s)
- Takuya Taira
- Department of Emergency and Critical Care Medicine, Hyogo Emergency Medical Center, Kobe, Hyogo, Japan; Faculty of Medicine, Graduate School of Medicine, Kagawa University, Kagawa, Japan
| | - Akihiko Inoue
- Department of Emergency and Critical Care Medicine, Hyogo Emergency Medical Center, Kobe, Hyogo, Japan.
| | - Yasuhiro Kuroda
- Faculty of Medicine, Graduate School of Medicine, Kagawa University, Kagawa, Japan
| | - Gentoku Oosuki
- Department of Emergency and Critical Care Medicine, Hyogo Emergency Medical Center, Kobe, Hyogo, Japan
| | - Masafumi Suga
- Department of Emergency and Critical Care Medicine, Hyogo Emergency Medical Center, Kobe, Hyogo, Japan
| | - Takeshi Nishimura
- Department of Emergency and Critical Care Medicine, Hyogo Emergency Medical Center, Kobe, Hyogo, Japan
| | - Shinichi Ijuin
- Department of Emergency and Critical Care Medicine, Hyogo Emergency Medical Center, Kobe, Hyogo, Japan
| | - Satoshi Ishihara
- Department of Emergency and Critical Care Medicine, Hyogo Emergency Medical Center, Kobe, Hyogo, Japan
| |
Collapse
|
20
|
Ishii J, Nishikimi M, Kikutani K, Kyo M, Ohki S, Ota K, Fujino M, Sakuraya M, Ohshimo S, Shime N. External validation of the rCAST for patients after in-hospital cardiac arrest: a multicenter retrospective observational study. Sci Rep 2024; 14:4284. [PMID: 38383599 PMCID: PMC10882058 DOI: 10.1038/s41598-024-54851-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/17/2024] [Indexed: 02/23/2024] Open
Abstract
No established predictive or risk classification tool exists for the neurological outcomes of post-cardiac arrest syndrome (PCAS) in patients with in-hospital cardiac arrest (IHCA). This study aimed to investigate whether the revised post-cardiac arrest syndrome for therapeutic hypothermia score (rCAST), which was developed to estimate the prognosis of PCAS patients with out-of-hospital cardiac arrest (OHCA), was applicable to patients with IHCA. A retrospective, multicenter observational study of 140 consecutive adult IHCA patients admitted to three intensive care units. The area under the receiver operating characteristic curves (AUCs) of the rCAST for poor neurological outcome and mortality at 30 days were 0.88 (0.82-0.93) and 0.83 (0.76-0.89), respectively. The sensitivity and specificity of the risk classification according to rCAST for poor neurological outcomes were 0.90 (0.83-0.96) and 0.67 (0.55-0.79) for the low, 0.63 (0.54-0.74) and 0.67 (0.55-0.79) for the moderate, and 0.27 (0.17-0.37) and 1.00 (1.00-1.00) for the high-severity grades. All 22 patients classified with a high-severity grade showed poor neurological outcomes. The rCAST showed excellent predictive accuracy for neurological prognosis in patients with PCAS after IHCA. The rCAST may be useful as a risk classification tool for PCAS after IHCA.
Collapse
Affiliation(s)
- Junki Ishii
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Mitsuaki Nishikimi
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
- Department of Emergency and Critical Care Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumi-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Kazuya Kikutani
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Michihito Kyo
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Shingo Ohki
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Kohei Ota
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Mitsuhiro Fujino
- Department of Critical Care and Emergency Medicine, Otsu City Hospital, 2-9-9 Motomiya, Otsu, 520-0804, Japan
| | - Masaaki Sakuraya
- Department of Emergency and Intensive Care Medicine, JA Hiroshima General Hospital, 1-3-3 Jigozen, Hatsukaichi, Hiroshima, 738-8503, Japan
| | - Shinichiro Ohshimo
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Nobuaki Shime
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| |
Collapse
|
21
|
Taccone FS, Dankiewicz J, Cariou A, Lilja G, Asfar P, Belohlavek J, Boulain T, Colin G, Cronberg T, Frat JP, Friberg H, Grejs AM, Grillet G, Girardie P, Haenggi M, Hovdenes J, Jakobsen JC, Levin H, Merdji H, Njimi H, Pelosi P, Rylander C, Saxena M, Thomas M, Young PJ, Wise MP, Nielsen N, Lascarrou JB. Hypothermia vs Normothermia in Patients With Cardiac Arrest and Nonshockable Rhythm: A Meta-Analysis. JAMA Neurol 2024; 81:126-133. [PMID: 38109117 PMCID: PMC10728804 DOI: 10.1001/jamaneurol.2023.4820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 10/06/2023] [Indexed: 12/19/2023]
Abstract
Importance International guidelines recommend body temperature control below 37.8 °C in unconscious patients with out-of-hospital cardiac arrest (OHCA); however, a target temperature of 33 °C might lead to better outcomes when the initial rhythm is nonshockable. Objective To assess whether hypothermia at 33 °C increases survival and improves function when compared with controlled normothermia in unconscious adults resuscitated from OHCA with initial nonshockable rhythm. Data Sources Individual patient data meta-analysis of 2 multicenter, randomized clinical trials (Targeted Normothermia after Out-of-Hospital Cardiac Arrest [TTM2; NCT02908308] and HYPERION [NCT01994772]) with blinded outcome assessors. Unconscious patients with OHCA and an initial nonshockable rhythm were eligible for the final analysis. Study Selection The study cohorts had similar inclusion and exclusion criteria. Patients were randomized to hypothermia (target temperature 33 °C) or normothermia (target temperature 36.5 to 37.7 °C), according to different study protocols, for at least 24 hours. Additional analyses of mortality and unfavorable functional outcome were performed according to age, sex, initial rhythm, presence or absence of shock on admission, time to return of spontaneous circulation, lactate levels on admission, and the cardiac arrest hospital prognosis score. Data Extraction and Synthesis Only patients who experienced OHCA and had a nonshockable rhythm with all causes of cardiac arrest were included. Variables from the 2 studies were available from the original data sets and pooled into a unique database and analyzed. Clinical outcomes were harmonized into a single file, which was checked for accuracy of numbers, distributions, and categories. The last day of follow-up from arrest was recorded for each patient. Adjustment for primary outcome and functional outcome was performed using age, gender, time to return of spontaneous circulation, and bystander cardiopulmonary resuscitation. Main Outcomes and Measures The primary outcome was mortality at 3 months; secondary outcomes included unfavorable functional outcome at 3 to 6 months, defined as a Cerebral Performance Category score of 3 to 5. Results A total of 912 patients were included, 490 from the TTM2 trial and 422 from the HYPERION trial. Of those, 442 had been assigned to hypothermia (48.4%; mean age, 65.5 years; 287 males [64.9%]) and 470 to normothermia (51.6%; mean age, 65.6 years; 327 males [69.6%]); 571 patients had a first monitored rhythm of asystole (62.6%) and 503 a presumed noncardiac cause of arrest (55.2%). At 3 months, 354 of 442 patients in the hypothermia group (80.1%) and 386 of 470 patients in the normothermia group (82.1%) had died (relative risk [RR] with hypothermia, 1.04; 95% CI, 0.89-1.20; P = .63). On the last day of follow-up, 386 of 429 in the hypothermia group (90.0%) and 413 of 463 in the normothermia group (89.2%) had an unfavorable functional outcome (RR with hypothermia, 0.99; 95% CI, 0.87-1.15; P = .97). The association of hypothermia with death and functional outcome was consistent across the prespecified subgroups. Conclusions and Relevance In this individual patient data meta-analysis, including unconscious survivors from OHCA with an initial nonshockable rhythm, hypothermia at 33 °C did not significantly improve survival or functional outcome.
Collapse
Affiliation(s)
- Fabio Silvio Taccone
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Brussels, Belgium
- After ROSC Network
| | - Josef Dankiewicz
- Cardiology Department, Lund University, Skåne University Hospital Lund, Lund, Sweden
| | - Alain Cariou
- After ROSC Network
- Department of Intensive Care, Paris Cité University, Cochin Hospital (APHP), Paris, France
| | - Gisela Lilja
- Neurology Department of Clinical Sciences, Lund University, Lund, Sweden
- Neurology Department, Skåne University Hospital, Lund, Sweden
| | - Pierre Asfar
- Département de Médecine Intensive Réanimation, CHU Angers, Angers, France
| | - Jan Belohlavek
- 2nd Department of Medicine, Cardiovascular Medicine, 1st Faculty of Medicine, Charles University in Prague and General University Hospital, Prague, Czech Republic
| | - Thierry Boulain
- Medical Intensive Care Unit, Centre Hospitalier Régional, d’Orléans, Hôpital de la Source, Orléans, France
| | - Gwenhael Colin
- District Hospital Center, Medical-Surgical Intensive Care Unit, La Roche-sur-Yon, France
| | - Tobias Cronberg
- Neurology Department of Clinical Sciences, Lund University, Lund, Sweden
- Neurology Department, Skåne University Hospital, Lund, Sweden
| | - Jean-Pierre Frat
- INSERM CIC 1402, groupe IS-ALIVE, Université de Poitiers, Poitiers, France
| | - Hans Friberg
- Department of Clinical Sciences, Anesthesiology and Intensive Care, Lund University, Lund, Sweden
- Skåne University Hospital, Intensive and Perioperative Care, Malmö, Sweden
| | - Anders M. Grejs
- Department of Intensive Care Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Guillaume Grillet
- Medical-Surgical Intensive Care Unit, District Hospital Center, Lorient, France
| | - Patrick Girardie
- Médecine Intensive Réanimation, CHU Lille, Université de Lille, Faculté de Médicine, Lille, France
| | - Matthias Haenggi
- Department of Intensive Care Medicine, Bern University Hospital (Inselspital), University of Bern, Bern, Switzerland
| | - Jan Hovdenes
- Department of Anesthesia and Intensive Care, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Janus Christian Jakobsen
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, The Capital Region, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Regional Health Research, The Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Helena Levin
- Department of Research & Education, Lund University and Skåne University Hospital, Lund, Sweden
| | - Hamid Merdji
- Service de Médecine Intensive-Réanimation, Nouvel Hôpital Civil, Hôpitaux universitaires de Strasbourg, Strasbourg, France
- INSERM, UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg (UNISTRA), Strasbourg, France
| | - Hassane Njimi
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Paolo Pelosi
- Department of Anesthesiology and Critical Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Christian Rylander
- Anaesthesia and Intensive Care, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Manoj Saxena
- Critical Care and Trauma Division, George Institute for Global Health, Sydney, New South Wales, Australia
- Department of Intensive Care Medicine, St George Hospital, Kogarah, New South Wales, Australia
| | - Matt Thomas
- Department of Anaesthesia, Southmead Hospital, Bristol, United Kingdom
| | - Paul J. Young
- Department of Intensive Care, Wellington Regional Hospital, Capital and Coast District Health Board, Wellington, New Zealand
- Medical Research Institute of New Zealand, Wellington, New Zealand
- Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, Victoria, Australia
- Department of Critical Care, University of Melbourne, Melbourne, Victoria, Australia
| | - Matt P. Wise
- Adult Critical Care, University Hospital of Wales, Cardiff, United Kingdom
| | - Niklas Nielsen
- INSERM CIC 1402, groupe IS-ALIVE, Université de Poitiers, Poitiers, France
| | - Jean-Baptiste Lascarrou
- After ROSC Network
- Medecine Intensive Reanimation, CHU Nantes, Nantes, France
- Université Paris Cité, INSERM, PARCC, 75015 Paris, France
| |
Collapse
|
22
|
Nikolovski SS, Lazic AD, Fiser ZZ, Obradovic IA, Tijanic JZ, Raffay V. Recovery and Survival of Patients After Out-of-Hospital Cardiac Arrest: A Literature Review Showcasing the Big Picture of Intensive Care Unit-Related Factors. Cureus 2024; 16:e54827. [PMID: 38529434 PMCID: PMC10962929 DOI: 10.7759/cureus.54827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2024] [Indexed: 03/27/2024] Open
Abstract
As an important public health issue, out-of-hospital cardiac arrest (OHCA) requires several stages of high quality medical care, both on-field and after hospital admission. Post-cardiac arrest shock can lead to severe neurological injury, resulting in poor recovery outcome and increased risk of death. These characteristics make this condition one of the most important issues to deal with in post-OHCA patients hospitalized in intensive care units (ICUs). Also, the majority of initial post-resuscitation survivors have underlying coronary diseases making revascularization procedure another crucial step in early management of these patients. Besides keeping myocardial blood flow at a satisfactory level, other tissues must not be neglected as well, and maintaining mean arterial pressure within optimal range is also preferable. All these procedures can be simplified to a certain level along with using targeted temperature management methods in order to decrease metabolic demands in ICU-hospitalized post-OHCA patients. Additionally, withdrawal of life-sustaining therapy as a controversial ethical topic is under constant re-evaluation due to its possible influence on overall mortality rates in patients initially surviving OHCA. Focusing on all of these important points in process of managing ICU patients is an imperative towards better survival and complete recovery rates.
Collapse
Affiliation(s)
- Srdjan S Nikolovski
- Pathology and Laboratory Medicine, Cardiovascular Research Institute, Loyola University Chicago Health Science Campus, Maywood, USA
- Emergency Medicine, Serbian Resuscitation Council, Novi Sad, SRB
| | - Aleksandra D Lazic
- Emergency Center, Clinical Center of Vojvodina, Novi Sad, SRB
- Emergency Medicine, Serbian Resuscitation Council, Novi Sad, SRB
| | - Zoran Z Fiser
- Emergency Medicine, Department of Emergency Medicine, Novi Sad, SRB
| | - Ivana A Obradovic
- Anesthesiology, Resuscitation, and Intensive Care, Sveti Vračevi Hospital, Bijeljina, BIH
| | - Jelena Z Tijanic
- Emergency Medicine, Municipal Institute of Emergency Medicine, Kragujevac, SRB
| | - Violetta Raffay
- School of Medicine, European University Cyprus, Nicosia, CYP
- Emergency Medicine, Serbian Resuscitation Council, Novi Sad, SRB
| |
Collapse
|
23
|
Slovis JC, Bach A, Beaulieu F, Zuckerberg G, Topjian A, Kirschen MP. Neuromonitoring after Pediatric Cardiac Arrest: Cerebral Physiology and Injury Stratification. Neurocrit Care 2024; 40:99-115. [PMID: 37002474 PMCID: PMC10544744 DOI: 10.1007/s12028-023-01685-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 01/30/2023] [Indexed: 04/03/2023]
Abstract
BACKGROUND Significant long-term neurologic disability occurs in survivors of pediatric cardiac arrest, primarily due to hypoxic-ischemic brain injury. Postresuscitation care focuses on preventing secondary injury and the pathophysiologic cascade that leads to neuronal cell death. These injury processes include reperfusion injury, perturbations in cerebral blood flow, disturbed oxygen metabolism, impaired autoregulation, cerebral edema, and hyperthermia. Postresuscitation care also focuses on early injury stratification to allow clinicians to identify patients who could benefit from neuroprotective interventions in clinical trials and enable targeted therapeutics. METHODS In this review, we provide an overview of postcardiac arrest pathophysiology, explore the role of neuromonitoring in understanding postcardiac arrest cerebral physiology, and summarize the evidence supporting the use of neuromonitoring devices to guide pediatric postcardiac arrest care. We provide an in-depth review of the neuromonitoring modalities that measure cerebral perfusion, oxygenation, and function, as well as neuroimaging, serum biomarkers, and the implications of targeted temperature management. RESULTS For each modality, we provide an in-depth review of its impact on treatment, its ability to stratify hypoxic-ischemic brain injury severity, and its role in neuroprognostication. CONCLUSION Potential therapeutic targets and future directions are discussed, with the hope that multimodality monitoring can shift postarrest care from a one-size-fits-all model to an individualized model that uses cerebrovascular physiology to reduce secondary brain injury, increase accuracy of neuroprognostication, and improve outcomes.
Collapse
Affiliation(s)
- Julia C Slovis
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, 6 Wood - 6105, Philadelphia, PA, 19104, USA.
| | - Ashley Bach
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, 6 Wood - 6105, Philadelphia, PA, 19104, USA
| | - Forrest Beaulieu
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, 6 Wood - 6105, Philadelphia, PA, 19104, USA
| | - Gabe Zuckerberg
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, 6 Wood - 6105, Philadelphia, PA, 19104, USA
| | - Alexis Topjian
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, 6 Wood - 6105, Philadelphia, PA, 19104, USA
| | - Matthew P Kirschen
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, 6 Wood - 6105, Philadelphia, PA, 19104, USA
| |
Collapse
|
24
|
Smith D, Kenigsberg BB. Management of Patients After Cardiac Arrest. Crit Care Clin 2024; 40:57-72. [PMID: 37973357 DOI: 10.1016/j.ccc.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Cardiac arrest remains a significant cause of morbidity and mortality, although contemporary care now enables potential survival with good neurologic outcome. The core acute management goals for survivors of cardiac arrest are to provide organ support, sustain adequate hemodynamics, and evaluate the underlying cause of the cardiac arrest. In this article, the authors review the current state of knowledge and clinical intensive care unit practice recommendations for patients after cardiac arrest, particularly focusing on important areas of uncertainty, such as targeted temperature management, neuroprognostication, coronary evaluation, and hemodynamic targets.
Collapse
Affiliation(s)
- Damien Smith
- Department of Medicine, MedStar Washington Hospital Center, 110 Irving Street Northwest, Washington, DC 20010, USA
| | - Benjamin B Kenigsberg
- Department of Critical Care, MedStar Washington Hospital Center, 110 Irving Street Northwest, Washington, DC 20010, USA; Division of Cardiology, MedStar Washington Hospital Center, 110 Irving Street Northwest, Washington, DC 20010, USA.
| |
Collapse
|
25
|
Kikutani K, Nishikimi M, Matsui K, Sakurai A, Hayashida K, Kitamura N, Tagami T, Nakada TA, Matsui S, Ohshimo S, Shime N. Prediction of the neurological outcomes post-cardiac arrest: A prospective validation of the CAST and rCAST. Am J Emerg Med 2024; 75:46-52. [PMID: 38149972 DOI: 10.1016/j.ajem.2023.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 12/28/2023] Open
Abstract
INTRODUCTION The neurologic prognosis of out-of-hospital cardiac arrest (OHCA) patients in whom return of spontaneous circulation (ROSC) is achieved remains poor. The aim of this study was to externally and prospectively validate two scoring systems developed by us: the CAST score, a scoring system to predict the neurological prognosis of OHCA patients undergoing targeted temperature management (TTM), and a simplified version of the same score developed for improved ease of use in clinical settings, the revised CAST (rCAST) score. METHODS This study was a prospective, multicenter, observational study conducted using the SOS KANTO 2017 registry, an OHCA registry involving hospitals in the Kanto region (including Tokyo) of Japan. The primary outcome was favorable neurological outcome (defined as Cerebral Performance Category score of 1 or 2) at 30 days and the secondary outcomes were favorable neurological outcome at 90 days and survival at 30 and 90 days. The predictive accuracies of the original CAST (oCAST) and rCAST scores were evaluated by using area under the receiver operating characteristic curve (AUC). RESULTS Of 9909 OHCA patients, 565 showed ROSC and received TTM. Of these, we analyzed the data of 259 patients in this study. The areas under the receiver operating characteristic curve (AUCs) of the oCAST and rCAST scores for predicting a favorable neurological outcome at 30 days were 0.86 and 0.87, respectively, and those for predicting a favorable neurological outcome at 90 days were 0.87 and 0.88, respectively. The rCAST showed a higher predictive accuracy for the neurological outcome as compared with the NULL-PLEASE score. The patients with a favorable neurological outcome who had been classified into the high severity group based on the rCAST tended to have hypothermia at hospital arrival and to not show any signs of loss of gray-white matter differentiation on brain CT. Neurological function at 90 days was correlated with the rCAST (r = 0.63, p < 0.001). CONCLUSIONS rCAST showed high predictive accuracy for the neurological prognosis of OHCA patients managed by TTM, comparable to that of the oCAST score. The scores on the rCAST were strongly correlated with the neurological functions at 90 days, implying that the rCAST is a useful scale for assessing the severity of brain injury after cardiac arrest.
Collapse
Affiliation(s)
- Kazuya Kikutani
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Mitsuaki Nishikimi
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; Department of Emergency and Critical Care Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Kota Matsui
- Department of Biostatistics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Atsushi Sakurai
- Division of Emergency and Critical Care Medicine, Department of Acute Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Kei Hayashida
- Department of Emergency Medicine, South Shore University Hospital, Northwell Health System, Bay Shore, NY, USA; Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Nobuya Kitamura
- Department of Emergency and Critical Care Medicine, Kimitsu Chuo Hospital, Chiba, Japan
| | - Takashi Tagami
- Department of Emergency and Critical Care Medicine, Nippon Medical School Musashikosugi Hospital, Kanagawa, Japan
| | - Taka-Aki Nakada
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Shigeyuki Matsui
- Department of Biostatistics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinichiro Ohshimo
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Nobuaki Shime
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
26
|
Chung SP, Sohn Y, Lee J, Cho Y, Cha KC, Heo JS, Kim ARE, Kim JG, Kim HS, Shin H, Ahn C, Woo HG, Lee BK, Jang YS, Choi YH, Hwang SO. Expert opinion on evidence after the 2020 Korean Cardiopulmonary Resuscitation Guidelines: a secondary publication. Clin Exp Emerg Med 2023; 10:382-392. [PMID: 37620035 PMCID: PMC10790069 DOI: 10.15441/ceem.23.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 08/26/2023] Open
Abstract
Considerable evidence has been published since the 2020 Korean Cardiopulmonary Resuscitation Guidelines were reported. The International Liaison Committee on Resuscitation (ILCOR) also publishes the Consensus on CPR and Emergency Cardiovascular Care Science with Treatment Recommendations (CoSTR) summary annually. This review provides expert opinions by reviewing the recent evidence on CPR and ILCOR treatment recommendations. The authors reviewed the CoSTR summary published by ILCOR in 2021 and 2022. PICO (patient, intervention, comparison, outcome) questions for each topic were reviewed using a systemic or scoping review methodology. Two experts were appointed for each question and reviewed the topic independently. Topics suggested by the reviewers for revision or additional description of the guidelines were discussed at a consensus conference. Forty-three questions were reviewed, including 15 on basic life support, seven on advanced life support, two on pediatric life support, 11 on neonatal life support, six on education and teams, one on first aid, and one related to COVID-19. Finally, the current Korean CPR Guideline was maintained for 28 questions, and expert opinions were suggested for 15 questions.
Collapse
Affiliation(s)
- Sung Phil Chung
- Department of Emergency Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Youdong Sohn
- Department of Emergency Medicine, Hallym University Kangdong Sacred Heart Hospital, Seoul, Korea
| | - Jisook Lee
- Department of Emergency Medicine, Ajou University School of Medicine, Suwon, Korea
| | - Youngsuk Cho
- Department of Emergency Medicine, Hallym University Kangdong Sacred Heart Hospital, Seoul, Korea
| | - Kyoung-Chul Cha
- Department of Emergency Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Ju Sun Heo
- Department of Pediatrics, Korea University College of Medicine, Seoul, Korea
- Institute of Nano, Regeneration, Reconstruction, Korea University, Seoul, Korea
| | - Ai-Rhan Ellen Kim
- Department of Pediatrics, CHA University Ilsan Medical Center, Goyang, Korea
| | - Jae Guk Kim
- Department of Emergency Medicine, Hallym University Kangnam Sacred Heart Hospital, Seoul, Korea
| | - Han-Suk Kim
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Hyungoo Shin
- Department of Emergency Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Chiwon Ahn
- Department of Emergency Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Ho Geol Woo
- Department of Neurology, Kyung Hee University College of Medicine, Seoul, Korea
| | - Byung Kook Lee
- Department of Emergency Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Yong Soo Jang
- Department of Emergency Medicine, Hallym University Kangnam Sacred Heart Hospital, Seoul, Korea
| | - Yu Hyeon Choi
- Department of Pediatrics, Seoul Medical Center, Seoul, Korea
| | - Sung Oh Hwang
- Department of Emergency Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - on behalf of the Guideline Committee of the Korean Association of Cardiopulmonary Resuscitation (KACPR)
- Department of Emergency Medicine, Yonsei University College of Medicine, Seoul, Korea
- Department of Emergency Medicine, Hallym University Kangdong Sacred Heart Hospital, Seoul, Korea
- Department of Emergency Medicine, Ajou University School of Medicine, Suwon, Korea
- Department of Emergency Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
- Department of Pediatrics, Korea University College of Medicine, Seoul, Korea
- Institute of Nano, Regeneration, Reconstruction, Korea University, Seoul, Korea
- Department of Pediatrics, CHA University Ilsan Medical Center, Goyang, Korea
- Department of Emergency Medicine, Hallym University Kangnam Sacred Heart Hospital, Seoul, Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
- Department of Emergency Medicine, Hanyang University College of Medicine, Seoul, Korea
- Department of Emergency Medicine, Chung-Ang University College of Medicine, Seoul, Korea
- Department of Neurology, Kyung Hee University College of Medicine, Seoul, Korea
- Department of Emergency Medicine, Chonnam National University Medical School, Gwangju, Korea
- Department of Pediatrics, Seoul Medical Center, Seoul, Korea
| |
Collapse
|
27
|
Behringer W, Skrifvars MB, Taccone FS. Postresuscitation management. Curr Opin Crit Care 2023; 29:640-647. [PMID: 37909369 DOI: 10.1097/mcc.0000000000001116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
PURPOSE OF REVIEW To describe the most recent scientific evidence on ventilation/oxygenation, circulation, temperature control, general intensive care, and prognostication after successful resuscitation from adult cardiac arrest. RECENT FINDINGS Targeting a lower oxygen target (90-94%) is associated with adverse outcome. Targeting mild hypercapnia is not associated with improved functional outcomes or survival. There is no compelling evidence supporting improved outcomes associated with a higher mean arterial pressure target compared to a target of >65 mmHg. Noradrenalin seems to be the preferred vasopressor. A low cardiac index is common over the first 24 h but aggressive fluid loading and the use of inotropes are not associated with improved outcome. Several meta-analyses of randomized clinical trials show conflicting results whether hypothermia in the 32-34°C range as compared to normothermia or no temperature control improves functional outcome. The role of sedation is currently under evaluation. Observational studies suggest that the use of neuromuscular blockade may be associated with improved survival and functional outcome. Prophylactic antibiotic does not impact on outcome. No single predictor is entirely accurate to determine neurological prognosis. The presence of at least two predictors of severe neurological injury indicates that an unfavorable neurological outcome is very likely. SUMMARY Postresuscitation care aims for normoxemia, normocapnia, and normotension. The optimal target core temperature remains a matter of debate, whether to implement temperature management within the 32-34°C range or focus on fever prevention, as recommended in the latest European Resuscitation Council/European Society of Intensive Care Medicine guidelines Prognostication of neurological outcome demands a multimodal approach.
Collapse
Affiliation(s)
- Wilhelm Behringer
- Department of Emergency Medicine, Medical University of Vienna, Austria
| | - Markus B Skrifvars
- Department of Emergency Care and Services, Helsinki University Hospital and University of Helsinki, Finland
| | - Fabio Silvio Taccone
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), Brussels, Belgium
| |
Collapse
|
28
|
Shen H, Zaitseva D, Yang Z, Forsythe L, Joergensen S, Zone AI, Shehu J, Maghraoui S, Ghorbani A, Davila A, Issadore D, Abella BS. Brain-derived extracellular vesicles as serologic markers of brain injury following cardiac arrest: A pilot feasibility study. Resuscitation 2023; 191:109937. [PMID: 37591443 PMCID: PMC10528050 DOI: 10.1016/j.resuscitation.2023.109937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023]
Abstract
AIM Assessment of neurologic injury within the immediate hours following out-of-hospital cardiac arrest (OHCA) resuscitation remains a major clinical challenge. Extracellular vesicles (EVs), small bodies derived from cytosolic contents during injury, may provide the opportunity for "liquid biopsy" within hours following resuscitation, as they contain proteins and RNA linked to cell type of origin. We evaluated whether micro-RNA (miRNA) from serologic EVs were associated with post-arrest neurologic outcome. METHODS We obtained serial blood samples in an OHCA cohort. Using novel microfluidic techniques to isolate EVs based on EV surface marker GluR2 (present on excitatory neuronal dendrites enriched in hippocampal tissue), we employed reverse transcription quantitative polymerase chain reaction (RT-qPCR) methods to measure a panel of miRNAs and tested association with dichotomized modified Rankin Score (mRS) at discharge. RESULTS EVs were assessed in 27 post-arrest patients between 7/3/2019 and 7/21/2022; 9 patients experienced good outcomes. Several miRNA species including miR-124 were statistically associated with mRS at discharge when measured within 6 hours of resuscitation (AUC = 0.84 for miR-124, p < 0.05). In a Kendall ranked correlation analysis, miRNA associations with outcome were not strongly correlated with standard serologic marker measurements, or amongst themselves, suggesting that miRNA provide distinct information from common protein biomarkers. CONCLUSIONS This study explores the associations between miRNAs from neuron-derived EVs (NDEs) and circulating protein biomarkers within 6 hours with neurologic outcome, suggesting a panel of very early biomarker may be useful during clinical care. Future work will be required to test larger cohorts with a broader panel of miRNA species.
Collapse
Affiliation(s)
- Hanfei Shen
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Daria Zaitseva
- Penn Acute Research Collaboration, Department of Emergency Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zijian Yang
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Liam Forsythe
- Penn Acute Research Collaboration, Department of Emergency Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarah Joergensen
- Penn Acute Research Collaboration, Department of Emergency Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alea I Zone
- Penn Acute Research Collaboration, Department of Emergency Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joana Shehu
- Penn Acute Research Collaboration, Department of Emergency Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarah Maghraoui
- Penn Acute Research Collaboration, Department of Emergency Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anahita Ghorbani
- Penn Acute Research Collaboration, Department of Emergency Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Antonio Davila
- Penn Acute Research Collaboration, Department of Emergency Medicine, University of Pennsylvania, Philadelphia, PA, USA; School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
| | - David Issadore
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin S Abella
- Penn Acute Research Collaboration, Department of Emergency Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center for Resuscitation Science, Department of Emergency Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
29
|
Liu C, Elmer J, Arefan D, Pease M, Wu S. Interpretable machine learning model for imaging-based outcome prediction after cardiac arrest. Resuscitation 2023; 191:109894. [PMID: 37414243 DOI: 10.1016/j.resuscitation.2023.109894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/17/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023]
Abstract
INTRODUCTION Early identification of brain injury patterns in computerized tomography (CT) imaging is crucial for post-cardiac arrest prognostication. Lack of interpretability of machine learning prediction reduces trustworthiness by clinicians and prevents translation to clinical practice. We aimed to identify CT imaging patterns associated with prognosis with interpretable machine learning. METHODS In this IRB-approved retrospective study, we included consecutive comatose adult patients hospitalized at a single academic medical center after resuscitation from in- and out-of-hospital cardiac arrest between August 2011 and August 2019 who underwent unenhanced CT imaging of the brain within 24 hours of their arrest. We decomposed the CT images into subspaces to identify interpretable and informative patterns of injury, and developed machine learning models to predict patient outcomes (i.e., survival and awakening status) using the identified imaging patterns. Practicing physicians visually examined the imaging patterns to assess clinical relevance. We evaluated machine learning models using 80%-20% random data split and reported AUC values to measure the model performance. RESULTS We included 1284 subjects of whom 35% awakened from coma and 34% survived hospital discharge. Our expert physicians were able to visualize decomposed image patterns and identify those believed to be clinically relevant on multiple brain locations. For machine learning models, the AUC was 0.710 ± 0.012 for predicting survival and 0.702 ± 0.053 for predicting awakening, respectively. DISCUSSION We developed an interpretable method to identify patterns of early post-cardiac arrest brain injury on CT imaging and showed these imaging patterns are predictive of patient outcomes (i.e., survival and awakening status).
Collapse
Affiliation(s)
- Chang Liu
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jonathan Elmer
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Emergency Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Dooman Arefan
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Matthew Pease
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Shandong Wu
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA; Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, USA; Intelligent Systems Program, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
30
|
Perman SM, Bartos JA, Del Rios M, Donnino MW, Hirsch KG, Jentzer JC, Kudenchuk PJ, Kurz MC, Maciel CB, Menon V, Panchal AR, Rittenberger JC, Berg KM. Temperature Management for Comatose Adult Survivors of Cardiac Arrest: A Science Advisory From the American Heart Association. Circulation 2023; 148:982-988. [PMID: 37584195 DOI: 10.1161/cir.0000000000001164] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Targeted temperature management has been a cornerstone of post-cardiac arrest care for patients remaining unresponsive after return of spontaneous circulation since the initial trials in 2002 found that mild therapeutic hypothermia improves neurological outcome. The suggested temperature range expanded in 2015 in response to a large trial finding that outcomes were not better with treatment at 33° C compared with 36° C. In 2021, another large trial was published in which outcomes with temperature control at 33° C were not better than those of patients treated with a strategy of strict normothermia. On the basis of these new data, the International Liaison Committee on Resuscitation and other organizations have altered their treatment recommendations for temperature management after cardiac arrest. The new American Heart Association guidelines on this topic will be introduced in a 2023 focused update. To provide guidance to clinicians while this focused update is forthcoming, the American Heart Association's Emergency Cardiovascular Care Committee convened a writing group to review the TTM2 trial (Hypothermia Versus Normothermia After Out-of-Hospital Cardiac Arrest) in the context of other recent evidence and to present an opinion on how this trial may influence clinical practice. This science advisory was informed by review of the TTM2 trial, consideration of other recent influential studies, and discussion between cardiac arrest experts in the fields of cardiology, critical care, emergency medicine, and neurology. Conclusions presented in this advisory statement do not replace current guidelines but are intended to provide an expert opinion on novel literature that will be incorporated into future guidelines and suggest the opportunity for reassessment of current clinical practice.
Collapse
|
31
|
Okada Y, Mertens M, Liu N, Lam SSW, Ong MEH. AI and machine learning in resuscitation: Ongoing research, new concepts, and key challenges. Resusc Plus 2023; 15:100435. [PMID: 37547540 PMCID: PMC10400904 DOI: 10.1016/j.resplu.2023.100435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023] Open
Abstract
Aim Artificial intelligence (AI) and machine learning (ML) are important areas of computer science that have recently attracted attention for their application to medicine. However, as techniques continue to advance and become more complex, it is increasingly challenging for clinicians to stay abreast of the latest research. This overview aims to translate research concepts and potential concerns to healthcare professionals interested in applying AI and ML to resuscitation research but who are not experts in the field. Main text We present various research including prediction models using structured and unstructured data, exploring treatment heterogeneity, reinforcement learning, language processing, and large-scale language models. These studies potentially offer valuable insights for optimizing treatment strategies and clinical workflows. However, implementing AI and ML in clinical settings presents its own set of challenges. The availability of high-quality and reliable data is crucial for developing accurate ML models. A rigorous validation process and the integration of ML into clinical practice is essential for practical implementation. We furthermore highlight the potential risks associated with self-fulfilling prophecies and feedback loops, emphasizing the importance of transparency, interpretability, and trustworthiness in AI and ML models. These issues need to be addressed in order to establish reliable and trustworthy AI and ML models. Conclusion In this article, we overview concepts and examples of AI and ML research in the resuscitation field. Moving forward, appropriate understanding of ML and collaboration with relevant experts will be essential for researchers and clinicians to overcome the challenges and harness the full potential of AI and ML in resuscitation.
Collapse
Affiliation(s)
- Yohei Okada
- Duke-NUS Medical School, National University of Singapore, Singapore
- Preventive Services, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mayli Mertens
- Antwerp Center for Responsible AI, Antwerp University, Belgium
- Centre for Ethics, Department of Philosophy, Antwerp University, Belgium
| | - Nan Liu
- Duke-NUS Medical School, National University of Singapore, Singapore
| | - Sean Shao Wei Lam
- Duke-NUS Medical School, National University of Singapore, Singapore
| | - Marcus Eng Hock Ong
- Duke-NUS Medical School, National University of Singapore, Singapore
- Department of Emergency Medicine, Singapore General Hospital
| |
Collapse
|
32
|
Elmer J, Callaway CW. Temperature control after cardiac arrest. Resuscitation 2023; 189:109882. [PMID: 37355091 PMCID: PMC10530429 DOI: 10.1016/j.resuscitation.2023.109882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/26/2023]
Abstract
Managing temperature is an important part of post-cardiac arrest care. Fever or hyperthermia during the first few days after cardiac arrest is associated with worse outcomes in many studies. Clinical data have not determined any target temperature or duration of temperature management that clearly improves patient outcomes. Current guidelines and recent reviews recommend controlling temperature to prevent hyperthermia. Higher temperatures can lead to secondary brain injury by increasing seizures, brain edema and metabolic demand. Some data suggest that targeting temperature below normal could benefit select patients where this pathology is common. Clinical temperature management should address the physiology of heat balance. Core temperature reflects the heat content of the head and torso, and changes in core temperature result from changes in the balance of heat production and heat loss. Clinical management of patients after cardiac arrest should include measurement of core temperature at accurate sites and monitoring signs of heat production including shivering. Multiple methods can increase or decrease heat loss, including external and internal devices. Heat loss can trigger compensatory reflexes that increase stress and metabolic demand. Therefore, any active temperature management should include specific pharmacotherapy or other interventions to control thermogenesis, especially shivering. More research is required to determine whether individualized temperature management can improve outcomes.
Collapse
Affiliation(s)
- Jonathan Elmer
- Department of Emergency Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Clifton W Callaway
- Department of Emergency Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
33
|
Penketh J, Nolan JP. Post-Cardiac Arrest Syndrome. J Neurosurg Anesthesiol 2023; 35:260-264. [PMID: 37192474 DOI: 10.1097/ana.0000000000000921] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 04/06/2023] [Indexed: 05/18/2023]
Abstract
Post-cardiac arrest syndrome (PCAS) is a multicomponent entity affecting many who survive an initial period of resuscitation following cardiac arrest. This focussed review explores some of the strategies for mitigating the effects of PCAS following the return of spontaneous circulation. We consider the current evidence for controlled oxygenation, strategies for blood-pressure targets, the timing of coronary reperfusion, and the evidence for temperature control and treatment of seizures. Despite several large trials investigating specific strategies to improve outcomes after cardiac arrest, many questions remain unanswered. Results of some studies suggest that interventions may benefit specific subgroups of cardiac arrest patients, but the optimal timing and duration of many interventions remain unknown. The role of intracranial pressure monitoring has been the subject of only a few studies, and its benefits remain unclear. Research aimed at improving the management of PCAS is ongoing.
Collapse
Affiliation(s)
| | - Jerry P Nolan
- Intensive care unit, Royal United Hospital, Bath
- Warwick Clinical Trials Unit, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
34
|
Nielsen N, Friberg H. Changes in Practice of Controlled Hypothermia after Cardiac Arrest in the Past 20 Years: A Critical Care Perspective. Am J Respir Crit Care Med 2023; 207:1558-1564. [PMID: 37104654 DOI: 10.1164/rccm.202211-2142cp] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/26/2023] [Indexed: 04/29/2023] Open
Abstract
For 20 years, induced hypothermia and targeted temperature management have been recommended to mitigate brain injury and increase survival after cardiac arrest. On the basis of animal research and small clinical trials, the International Liaison Committee on Resuscitation strongly advocated hypothermia at 32-34 °C for 12-24 hours for comatose patients with out-of-hospital cardiac arrest with initial rhythm of ventricular fibrillation or nonperfusing ventricular tachycardia. The intervention was implemented worldwide. In the past decade, hypothermia and targeted temperature management have been investigated in larger clinical randomized trials focusing on target temperature depth, target temperature duration, prehospital versus in-hospital initiation, nonshockable rhythms, and in-hospital cardiac arrest. Systematic reviews suggest little or no effect of delivering the intervention on the basis of the summary of evidence, and the International Liaison Committee on Resuscitation today recommends only to treat fever and keep body temperature below 37.5 °C (weak recommendation, low-certainty evidence). Here we describe the evolution of temperature management for patients with cardiac arrest during the past 20 years and how the accrued evidence has influenced not only the recommendations but also the guideline process. We also discuss possible paths forward in this field, bringing up both whether fever management is at all beneficial for patients with cardiac arrest and which knowledge gaps future clinical trials in temperature management should address.
Collapse
Affiliation(s)
- Niklas Nielsen
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Anesthesiology and Intensive Care, Helsingborg Hospital, Helsingborg, Sweden; and
| | - Hans Friberg
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Anesthesiology and Intensive Care, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
35
|
Morris NA, Sarwal A. Neurologic Complications of Critical Medical Illness. Continuum (Minneap Minn) 2023; 29:848-886. [PMID: 37341333 DOI: 10.1212/con.0000000000001278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
OBJECTIVE This article reviews the neurologic complications encountered in patients admitted to non-neurologic intensive care units, outlines various scenarios in which a neurologic consultation can add to the diagnosis or management of a critically ill patient, and provides advice on the best diagnostic approach in the evaluation of these patients. LATEST DEVELOPMENTS Increasing recognition of neurologic complications and their adverse impact on long-term outcomes has led to increased neurology involvement in non-neurologic intensive care units. The COVID-19 pandemic has highlighted the importance of having a structured clinical approach to neurologic complications of critical illness as well as the critical care management of patients with chronic neurologic disabilities. ESSENTIAL POINTS Critical illness is often accompanied by neurologic complications. Neurologists need to be aware of the unique needs of critically ill patients, especially the nuances of the neurologic examination, challenges in diagnostic testing, and neuropharmacologic aspects of commonly used medications.
Collapse
|
36
|
Coppler PJ. Implementing a strict fever control protocol for resuscitated cardiac arrest patients. Resuscitation 2023; 188:109841. [PMID: 37196805 DOI: 10.1016/j.resuscitation.2023.109841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/19/2023]
Affiliation(s)
- Patrick J Coppler
- Department of Emergency Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
37
|
Kim N, Kitlen E, Garcia G, Khosla A, Elliott Miller P, Johnson J, Wira C, Greer DM, Gilmore EJ, Beekman R. Validation of the rCAST Score and Comparison to the PCAC and FOUR Scores for Prognostication after Out-of-Hospital Cardiac Arrest. Resuscitation 2023; 188:109832. [PMID: 37178901 DOI: 10.1016/j.resuscitation.2023.109832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/02/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023]
Abstract
AIM Early, accurate outcome prediction after out-of-hospital cardiac arrest (OHCA) is critical for clinical decision-making and resource allocation. We sought to validate the revised post-Cardiac Arrest Syndrome for Therapeutic hypothermia (rCAST) score in a United States cohort and compare its prognostic performance to the Pittsburgh Cardiac Arrest Category (PCAC) and Full Outline of UnResponsiveness (FOUR) scores. METHODS This is a single-center, retrospective study of OHCA patients admitted between January 2014-August 2022. Area under the receiver operating curve (AUC) was computed for each score for predicting poor neurologic outcome at discharge and in-hospital mortality. We compared the scores' predictive abilities via Delong's test. RESULTS Of 505 OHCA patients with all scores available, the medians [IQR] for rCAST, PCAC, and FOUR scores were 9.5 [6.0, 11.5], 4 [3,4], and 2 [0, 5], respectively. The AUC [95% confidence interval] of the rCAST, PCAC, and FOUR scores for predicting poor neurologic outcome were 0.815 [0.763 - 0.867], 0.753 [0.697 - 0.809], and 0.841 [0.796 - 0.886], respectively. The AUC [95% confidence interval] of the rCAST, PCAC, and FOUR scores for predicting mortality were 0.799 [0.751 - 0.847], 0.723 [0.673 - 0.773], and 0.813 [0.770 - 0.855], respectively. The rCAST score was superior to the PCAC score for predicting mortality (p=0.017). The FOUR score was superior to the PCAC score for predicting poor neurological outcome (p<0.001) and mortality (p<0.001). CONCLUSION The rCAST score can reliably predict poor outcome in a United States cohort of OHCA patients regardless of TTM status and outperforms the PCAC score.
Collapse
Affiliation(s)
- Noah Kim
- Department of Neurology, Yale School of Medicine, New Haven, CT, United States
| | - Eva Kitlen
- Department of Neurology, Yale School of Medicine, New Haven, CT, United States
| | - Gabriella Garcia
- Department of Neurology, Yale School of Medicine, New Haven, CT, United States
| | - Akhil Khosla
- Department of Pulmonary Critical Care, Yale School of Medicine, New Haven, CT, United States
| | - P Elliott Miller
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| | | | - Charles Wira
- Department of Emergency Medicine, Yale School of Medicine, New Haven, CT, United States
| | - David M Greer
- Department of Neurology, Boston University Medical Center, Boston, MA, United States
| | - Emily J Gilmore
- Department of Neurology, Yale School of Medicine, New Haven, CT, United States
| | - Rachel Beekman
- Department of Neurology, Yale School of Medicine, New Haven, CT, United States.
| |
Collapse
|
38
|
Coppler PJ, Elmer J, Doshi A, Guyette FX, Okubo M, Ratay C, Frisch AN, Steinberg A, Weissman A, Arias V, Drumheller BC, Flickinger KL, Faro J, Schmidhofer M, Rhinehart ZJ, Hansra BS, Fong-Isariyawongse J, Barot N, Baldwin ME, Murat Kaynar A, Darby JM, Shutter LA, Mettenburg J, Callaway CW. Duration of cardiopulmonary resuscitation and phenotype of post-cardiac arrest brain injury. Resuscitation 2023; 188:109823. [PMID: 37164175 DOI: 10.1016/j.resuscitation.2023.109823] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/17/2023] [Accepted: 05/01/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND Patients resuscitated from cardiac arrest have variable severity of primary hypoxic ischemic brain injury (HIBI). Signatures of primary HIBI on brain imaging and electroencephalography (EEG) include diffuse cerebral edema and burst suppression with identical bursts (BSIB). We hypothesize distinct phenotypes of primary HIBI are associated with increasing cardiopulmonary resuscitation (CPR) duration. METHODS We identified from our prospective registry of both in-and out-of-hospital CA patients treated between January 2010 to January 2020 for this cohort study. We abstracted CPR duration, neurological examination, initial brain computed tomography gray to white ratio (GWR), and initial EEG pattern. We considered four phenotypes on presentation: awake; comatose with neither BSIB nor cerebral edema (non-malignant coma); BSIB; and cerebral edema (GWR ≤ 1.20). BSIB and cerebral edema were considered as non-mutually exclusive outcomes. We generated predicted probabilities of brain injury phenotype using localized regression. RESULTS We included 2,440 patients, of whom 545 (23%) were awake, 1,065 (44%) had non-malignant coma, 548 (23%) had BSIB and 438 (18%) had cerebral edema. Only 92 (4%) had both BSIB and edema. Median CPR duration was 16 [IQR 8-28] minutes. Median CPR duration increased in a stepwise manner across groups: awake 6 [3-13] minutes; non-malignant coma 15 [8-25] minutes; BSIB 21 [13-31] minutes; cerebral edema 32 [22-46] minutes. Predicted probability of phenotype changes over time. CONCLUSIONS Brain injury phenotype is related to CPR duration, which is a surrogate for severity of HIBI. The sequence of most likely primary HIBI phenotype with progressively longer CPR duration is awake, coma without BSIB or edema, BSIB, and finally cerebral edema.
Collapse
Affiliation(s)
- Patrick J Coppler
- Department of Emergency Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jonathan Elmer
- Department of Emergency Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ankur Doshi
- Department of Emergency Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Francis X Guyette
- Department of Emergency Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Masashi Okubo
- Department of Emergency Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cecelia Ratay
- Department of Emergency Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adam N Frisch
- Department of Emergency Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alexis Steinberg
- Department of Emergency Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alexandra Weissman
- Department of Emergency Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Valerie Arias
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Byron C Drumheller
- Department of Emergency Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - John Faro
- Department of Medicine, Soin Medical Center - Kettering Health, Beavercreek, OH, USA
| | - Mark Schmidhofer
- Department of Medicine, Division of Cardiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zachary J Rhinehart
- Department of Emergency Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Barinder S Hansra
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Medicine, Division of Cardiology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Niravkumar Barot
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Maria E Baldwin
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - A Murat Kaynar
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joseph M Darby
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lori A Shutter
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joseph Mettenburg
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Clifton W Callaway
- Department of Emergency Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
39
|
Fernandez Hernandez S, Barlow B, Pertsovskaya V, Maciel CB. Temperature Control After Cardiac Arrest: A Narrative Review. Adv Ther 2023; 40:2097-2115. [PMID: 36964887 PMCID: PMC10129937 DOI: 10.1007/s12325-023-02494-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/08/2023] [Indexed: 03/26/2023]
Abstract
Cardiac arrest (CA) is a critical public health issue affecting more than half a million Americans annually. The main determinant of outcome post-CA is hypoxic-ischemic brain injury (HIBI), and temperature control is currently the only evidence-based, guideline-recommended intervention targeting secondary brain injury. Temperature control is a key component of a post-CA care bundle; however, conflicting evidence challenges its wide implementation across the vastly heterogeneous population of CA survivors. Here, we critically appraise the available literature on temperature control in HIBI, detail how the evidence has been integrated into clinical practice, and highlight the complications associated with its use and the timing of neuroprognostication after CA. Future clinical trials evaluating different temperature targets, rates of rewarming, duration of cooling, and identifying which patient phenotype benefits from different temperature control methods are needed to address these prevailing knowledge gaps.
Collapse
Affiliation(s)
| | - Brooke Barlow
- Department of Pharmacy, Memorial Hermann the Woodlands Medical Center, The Woodlands, TX, USA
| | - Vera Pertsovskaya
- The George Washington University School of Medicine and Health Sciences, Washington, DC, 20037, USA
| | - Carolina B Maciel
- Department of Neurology, University of Florida College of Medicine, Gainesville, FL, 32611, USA
- Department of Neurosurgery, University of Florida College of Medicine, Gainesville, FL, 32611, USA
- Comprehensive Epilepsy Center, Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurology, University of Utah, Salt Lake City, UT, 84132, USA
| |
Collapse
|
40
|
Bang HJ, Oh SH, Jeong WJ, Cha K, Park KN, Youn CS, Kim HJ, Lim JY, Kim HJ, Song H. A novel cardiac arrest severity score for the early prediction of hypoxic-ischemic brain injury and in-hospital death. Am J Emerg Med 2023; 66:22-30. [PMID: 36669440 DOI: 10.1016/j.ajem.2023.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/27/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023] Open
Abstract
INTRODUCTION Out-of-hospital cardiac arrest (OHCA) outcomes are unsatisfactory despite postcardiac arrest care. Early prediction of prognoses might help stratify patients and provide tailored therapy. In this study, we derived and validated a novel scoring system to predict hypoxic-ischemic brain injury (HIBI) and in-hospital death (IHD). METHODS We retrospectively analyzed Korean Hypothermia Network prospective registry data collected from in Korea between 2015 and 2018. Patients without neuroprognostication data were excluded, and the remaining patients were randomly divided into derivation and validation cohorts. HIBI was defined when at least one prognostication predicted a poor outcome. IHD meant all deaths regardless of cause. In the derivation cohort, stepwise multivariate logistic regression was conducted for the HIBI and IHD scores, and model performance was assessed. We then classified the patients into four categories and analyzed the associations between the categories and cerebral performance categories (CPCs) at hospital discharge. Finally, we validated our models in an internal validation cohort. RESULTS Among 1373 patients, 240 were excluded, and 1133 were randomized into the derivation (n = 754) and validation cohorts (n = 379). In the derivation cohort, 7 and 8 predictors were selected for HIBI (0-8) and IHD scores (0-11), respectively, and the area under the curves (AUC) were 0.85 (95% CI 0.82-0.87) and 0.80 (95% CI 0.77-0.82), respectively. Applying optimum cutoff values of ≥6 points for HIBI and ≥7 points for IHD, the patients were classified as follows: HIBI (-)/IHD (-), Category 1 (n = 424); HIBI (-)/IHD (+), Category 2 (n = 100); HIBI (+)/IHD (-), Category 3 (n = 21); and HIBI (+)/IHD (+), Category 4 (n = 209). The CPCs at discharge were significantly different in each category (p < 0.001). In the validation cohort, the model showed moderate discrimination (AUC 0.83, 95% CI 0.79-0.87 for HIBI and AUC 0.77, 95% CI 0.72-0.81 for IHD) with good calibration. Each category of the validation cohort showed a significant difference in discharge outcomes (p < 0.001) and a similar trend to the derivation cohort. CONCLUSIONS We presented a novel approach for assessing illness severity after OHCA. Although external prospective studies are warranted, risk stratification for HIBI and IHD could help provide OHCA patients with appropriate treatment.
Collapse
Affiliation(s)
- Hyo Jin Bang
- Department of Emergency Medicine, Seoul St. Mary Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.
| | - Sang Hoon Oh
- Department of Emergency Medicine, Seoul St. Mary Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.
| | - Won Jung Jeong
- Department of Emergency Medicine, Suwon St. Vincent Hospital, College of Medicine, The Catholic University of Korea, Suwon 16247, Republic of Korea.
| | - Kyungman Cha
- Department of Emergency Medicine, Suwon St. Vincent Hospital, College of Medicine, The Catholic University of Korea, Suwon 16247, Republic of Korea.
| | - Kyu Nam Park
- Department of Emergency Medicine, Seoul St. Mary Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.
| | - Chun Song Youn
- Department of Emergency Medicine, Seoul St. Mary Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.
| | - Han Joon Kim
- Department of Emergency Medicine, Seoul St. Mary Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.
| | - Jee Yong Lim
- Department of Emergency Medicine, Seoul St. Mary Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.
| | - Hyo Joon Kim
- Department of Emergency Medicine, Seoul St. Mary Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hwan Song
- Department of Emergency Medicine, Suwon St. Vincent Hospital, College of Medicine, The Catholic University of Korea, Suwon 16247, Republic of Korea
| | | |
Collapse
|
41
|
Lin JJ, Huang CH, Chien YS, Hsu CH, Chiu WT, Wu CH, Wang CH, Tsai MS. TIMECARD score: An easily operated prediction model of unfavorable neurological outcomes in out-of-hospital cardiac arrest patients with targeted temperature management. J Formos Med Assoc 2023; 122:317-327. [PMID: 36470683 DOI: 10.1016/j.jfma.2022.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/08/2022] [Accepted: 11/20/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Targeted temperature management (TTM) is recommended for comatose out-of-hospital cardiac arrest (OHCA) survivors. Several prediction models have been proposed; however, most of these tools require data conversion and complex calculations. Early and easy predictive model of neurological prognosis in OHCA survivors with TTM warrant investigation. MATERIALS AND METHODS This multicenter retrospective cohort study enrolled 408 non-traumatic adult OHCA survivors with TTM from the TaIwan network of targeted temperature ManagEment for CARDiac arrest (TIMECARD) registry during January 2014 to June 2019. The primary outcome was unfavorable neurological outcome at discharge. The clinical variables associated with unfavorable neurological outcomes were identified and a risk prediction score-TIMECARD score was developed. The model was validated with data from National Taiwan University Hospital. RESULTS There were 319 (78.2%) patients presented unfavorable neurological outcomes at hospital discharge. Eight independent variables, including malignancy, no bystander cardiopulmonary resuscitation (CPR), non-shockable rhythm, call-to-start CPR duration >5 min, CPR duration >20 min, sodium bicarbonate use during resuscitation, Glasgow Coma Scale motor score of 1 at return of spontaneous circulation, and no emergent coronary angiography, revealed a significant correlation with unfavorable neurological prognosis in TTM-treated OHCA survivors. The TIMECARD score was established and demonstrated good discriminatory performance in the development cohort (area under the receiver operating characteristic curve [AUC] = 0.855) and validation cohorts (AUC = 0.918 and 0.877, respectively). CONCLUSION In emergency settings, the TIMECARD score is a practical and simple-to-calculate tool for predicting neurological prognosis in OHCA survivors, and may help determine whether to initiate TTM in indicated patients.
Collapse
Affiliation(s)
- Jr-Jiun Lin
- Department of Emergency Medicine, National Taiwan University Medical College and Hospital, Taipei, Taiwan
| | - Chien-Hua Huang
- Department of Emergency Medicine, National Taiwan University Medical College and Hospital, Taipei, Taiwan
| | - Yu-San Chien
- Department of Critical Care, Mackay Memorial Hospital, Taipei, Taiwan
| | - Chih-Hsin Hsu
- Medical Intensive Care Unit, Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Wei-Ting Chiu
- Department of Neurology, Taipei Medical University-Shuang Ho Hospital, Ministry of Health and Welfare, New Taipei City, Taiwan
| | - Cheng-Hsueh Wu
- Division of Internal Medicine, Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chen-Hsu Wang
- Coronary Care Unit and General Cardiology, Cardiovascular Center, Cathay General Hospital, Taipei, Taiwan
| | - Min-Shan Tsai
- Department of Emergency Medicine, National Taiwan University Medical College and Hospital, Taipei, Taiwan.
| |
Collapse
|
42
|
Penna A, Magliocca A, Merigo G, Stirparo G, Silvestri I, Fumagalli F, Ristagno G. One-Year Review in Cardiac Arrest: The 2022 Randomized Controlled Trials. J Clin Med 2023; 12:2235. [PMID: 36983236 PMCID: PMC10054058 DOI: 10.3390/jcm12062235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/08/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
Cardiac arrest, one of the leading causes of death, accounts for numerous clinical studies published each year. This review summarizes the findings of all the randomized controlled clinical trials (RCT) on cardiac arrest published in the year 2022. The RCTs are presented according to the following categories: out-of- and in-hospital cardiac arrest (OHCA, IHCA) and post-cardiac arrest care. Interestingly, more than 80% of the RCTs encompassed advanced life support and post-cardiac arrest care, while no studies focused on the treatment of IHCA, except for one that, however, explored the temperature control after resuscitation in this population. Surprisingly, 9 out of 11 RCTs led to neutral results demonstrating equivalency between the newly tested interventions compared to current practice. One trial was negative, showing that oxygen titration in the immediate pre-hospital post-resuscitation period decreased survival compared to a more liberal approach. One RCT was positive and introduced new defibrillation strategies for refractory cardiac arrest. Overall, data from the 2022 RCTs discussed here provide a solid basis to generate new hypotheses to be tested in future clinical studies.
Collapse
Affiliation(s)
- Alessio Penna
- Department of Pathophysiology and Transplantation, University of Milan, Via Festa del Perdono 1, 20122 Milan, Italy
- Department of Anesthesiology, Intensive Care and Emergency, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Aurora Magliocca
- Department of Pathophysiology and Transplantation, University of Milan, Via Festa del Perdono 1, 20122 Milan, Italy
- Mario Negri Institute for Pharmacological Researches IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Giulia Merigo
- Department of Anesthesiology, Intensive Care and Emergency, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Giuseppe Stirparo
- Agenzia Regionale Emergenza Urgenza (AREU), Via Campanini 6, 20124 Milan, Italy
| | - Ivan Silvestri
- Department of Pathophysiology and Transplantation, University of Milan, Via Festa del Perdono 1, 20122 Milan, Italy
- Department of Anesthesiology, Intensive Care and Emergency, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Francesca Fumagalli
- Mario Negri Institute for Pharmacological Researches IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Giuseppe Ristagno
- Department of Pathophysiology and Transplantation, University of Milan, Via Festa del Perdono 1, 20122 Milan, Italy
- Department of Anesthesiology, Intensive Care and Emergency, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy
| |
Collapse
|
43
|
Belur AD, Sedhai YR, Truesdell AG, Khanna AK, Mishkin JD, Belford PM, Zhao DX, Vallabhajosyula S. Targeted Temperature Management in Cardiac Arrest: An Updated Narrative Review. Cardiol Ther 2023; 12:65-84. [PMID: 36527676 PMCID: PMC9986171 DOI: 10.1007/s40119-022-00292-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
The established benefits of cooling along with development of sophisticated methods to safely and precisely induce, maintain, monitor, and reverse hypothermia have led to the development of targeted temperature management (TTM). Early trials in human subjects showed that hypothermia conferred better neurological outcomes when compared to normothermia among survivors of cardiac arrest, leading to guidelines recommending targeted hypothermia in this patient population. Multiple studies have sought to explore and compare the benefit of hypothermia in various subgroups of patients, such as survivors of out-of-hospital cardiac arrest versus in-hospital cardiac arrest, and survivors of an initial shockable versus non-shockable rhythm. Larger and more recent trials have shown no statistically significant difference in neurological outcomes between patients with targeted hypothermia and targeted normothermia; further, aggressive cooling is associated with a higher incidence of multiple systemic complications. Based on this data, temporal trends have leaned towards using a lenient temperature target in more recent times. Current guidelines recommend selecting and maintaining a constant target temperature between 32 and 36 °C for those patients in whom TTM is used (strong recommendation, moderate-quality evidence), as soon as possible after return of spontaneous circulation is achieved and airway, breathing (including mechanical ventilation), and circulation are stabilized. The comparative benefit of lower (32-34 °C) versus higher (36 °C) temperatures remains unknown, and further research may help elucidate this. Any survivor of cardiac arrest who is comatose (defined as unarousable unresponsiveness to external stimuli) should be considered as a candidate for TTM regardless of the initial presenting rhythm, and the decision to opt for targeted hypothermia versus targeted normothermia should be made on a case-by-case basis.
Collapse
Affiliation(s)
- Agastya D Belur
- Division of Cardiology, Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Yub Raj Sedhai
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Kentucky College of Medicine, Bowling Green, KY, USA
| | | | - Ashish K Khanna
- Section of Critical Care Medicine, Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Outcomes Research Consortium, Cleveland, OH, USA.,Perioperative Outcomes and Informatics Collaborative (POIC), Winston-Salem, NC, USA
| | - Joseph D Mishkin
- Section of Advanced Heart Failure and Transplant Cardiology, Atrium Health Sanger Heart and Vascular Institute, Charlotte, NC, USA
| | - P Matthew Belford
- Section of Cardiovascular Medicine, Department of Medicine, Wake Forest School of Medicine, 306 Westwood Avenue, Suite 401, High Point, Winston-Salem, NC, 27262, USA
| | - David X Zhao
- Section of Cardiovascular Medicine, Department of Medicine, Wake Forest School of Medicine, 306 Westwood Avenue, Suite 401, High Point, Winston-Salem, NC, 27262, USA
| | - Saraschandra Vallabhajosyula
- Perioperative Outcomes and Informatics Collaborative (POIC), Winston-Salem, NC, USA. .,Section of Cardiovascular Medicine, Department of Medicine, Wake Forest School of Medicine, 306 Westwood Avenue, Suite 401, High Point, Winston-Salem, NC, 27262, USA. .,Department of Implementation Science, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
44
|
Callaway CW. Targeted temperature management with hypothermia for comatose patients after cardiac arrest. Clin Exp Emerg Med 2023; 10:5-17. [PMID: 36796779 PMCID: PMC10090724 DOI: 10.15441/ceem.23.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/11/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023] Open
Abstract
Targeted temperature management with mild hypothermia (TTM-hypothermia; 32-34 °C) is a treatment strategy for adult patients who are comatose after cardiac arrest. Robust preclinical data support the beneficial effects of hypothermia beginning within 4 hours of reperfusion and maintained during the several days of postreperfusion brain dysregulation. TTM-hypothermia increased survival and functional recovery after adult cardiac arrest in several trials and in realworld implementation studies. TTM-hypothermia also benefits neonates with hypoxic-ischemic brain injury. However, larger and methodologically more rigorous adult trials do not detect benefit. Reasons for inconsistency of adult trials include the difficulty delivering differential treatment between randomized groups within 4 hours and the use of shorter durations of treatment. Furthermore, adult trials enrolled populations that vary in illness severity and brain injury, with individual trials enriched for higher or lower illness severity. There are interactions between illness severity and treatment effect. Current data indicate that TTM-hypothermia implemented quickly for adult patients after cardiac arrest, may benefit select patients at risk of severe brain injury but not benefit other patients. More data are needed on how to identify treatment-responsive patients and on how to titrate the timing and duration of TTM-hypothermia.
Collapse
Affiliation(s)
- Clifton W. Callaway
- Department of Emergency Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
45
|
Geocadin RG, Agarwal S, Goss AL, Callaway CW, Richie M. Cardiac Arrest and Neurologic Recovery: Insights from the Case of Mr. Damar Hamlin. Ann Neurol 2023; 93:871-876. [PMID: 36843142 DOI: 10.1002/ana.26619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 02/28/2023]
Abstract
The association between brain injury after cardiac arrest and poor survival outcomes has led to longstanding pessimism. However, the publicly witnessed cardiac arrest, resuscitation, and acute management of Mr. Damar Hamlin and his favorable neurologic recovery provides some optimism. Mr. Hamlin's case highlights the neurologic advances of the last 2 decades and presents the opportunity to improve outcomes for all cardiac arrest patients in key areas: (1) effectively implementing the American Heart Association "Chain of Survival" to prevent initial brain injury and promote neuroprotection; (2) revisiting the process of neurologic prognostication and re-defining the brain recovery during the early periods, and (3) incorporating neurorehabilitation into existing cardiac rehabilitation models to support holistic recovery. ANN NEUROL 2023.
Collapse
Affiliation(s)
- Romergryko G Geocadin
- Departments of Neurology, Anesthesiology-Critical Care Medicine and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sachin Agarwal
- Department of Neurology (Neurocritical Care), Columbia University Irving Medical Center, New York, NY, United States
| | - Adeline L Goss
- Department of Internal Medicine, Highland Hospital, Oakland, CA, United States
| | - Clifton W Callaway
- Department of Emergency Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Megan Richie
- Department of Neurology, University of California - San Francisco School of Medicine, San Francisco, CA, United States
| |
Collapse
|
46
|
Targeted Temperature Management After Out-of-Hospital Cardiac Arrest: Integrating Evidence Into Real World Practice. Can J Cardiol 2023; 39:385-393. [PMID: 36610519 DOI: 10.1016/j.cjca.2022.12.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/27/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023] Open
Abstract
Targeted temperature management (TTM) after out-of-hospital cardiac arrest (OHCA) has been a focus of debate in an attempt to improve post-arrest outcomes. Contemporary trials examining the role of TTM after cardiac arrest suggest that targeting normothermia should be the standard of care for initially comatose survivors of cardiac arrest. Differences in patient populations have been demonstrated across trials, and important subgroups may be under-represented in clinical trials compared with real-world registries. In this review, we aimed to describe the populations represented in international OHCA registries and to propose a pathway to integrate clinical trial evidence into practice. The patient case mix among registries including survivors to hospital admission was similar to the pivotal trials (shockable rhythm, witnessed arrest), suggesting reasonable external validity. Therefore, for the majority of OHCA, targeted normothermia should be the strategy of choice. There remains conflicting evidence for patients with a nonshockable rhythm, with no clear evidence-based justification for mild hypothermia over targeted normothermia.
Collapse
|
47
|
Abdulmajeed F, Hamandi M, Malaiyandi D, Shutter L. Neurocritical Care in the General Intensive Care Unit. Crit Care Clin 2023; 39:153-169. [DOI: 10.1016/j.ccc.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
48
|
Does One Size Fit All? External Validation of the rCAST Score to Predict the Hospital Outcomes of Post-Cardiac Arrest Patients Receiving Targeted Temperature Management. J Clin Med 2022; 12:jcm12010242. [PMID: 36615040 PMCID: PMC9821639 DOI: 10.3390/jcm12010242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/19/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
The revised post-Cardiac Arrest Syndrome for Therapeutic hypothermia (rCAST) score was proposed to predict neurologic outcomes and mortality among out-of-hospital cardiac arrest (OHCA) patients. However, it has rarely been validated outside Japan. Therefore, this study aimed to investigate this issue. All adult patients admitted to our medical intensive care unit for targeted temperature management (TTM) between July 2015 and July 2021 were enrolled. Their medical records were retrieved, and rCAST scores were calculated. A total of 108 post-cardiac arrest syndrome (PCAS) patients who received TTM were analyzed. According to the rCAST score, 49.1%, 50.0%, and 0.9% of the patients were classified as low, moderate, and high severity, respectively. The areas under the curves for the rCAST score were 0.806 (95% confidence interval [CI]: 0.719-0.876) and 0.794 (95% CI: 0.706-0.866) to predict poor neurologic outcomes and mortality at day 28, respectively. In contrast to the original report, only low-severity patients had favorable neurologic outcomes. The rCAST score showed moderate accuracy in our OHCA patients with PCAS who received TTM to predict poor neurologic outcomes and mortality at day 28.
Collapse
|
49
|
Hinduja A, Gokun Y, Ibekwe E, Senay B, Elmer J. Risk factors for development of cerebral edema following cardiac arrest. Resuscitation 2022; 181:297-303. [PMID: 36280215 DOI: 10.1016/j.resuscitation.2022.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Cerebral edema following cardiac arrest is a well-known complication of resuscitation and portends a poor outcome. We identified predictors of post-cardiac arrest cerebral edema and tested the association of cerebral edema with discharge outcome. METHODS We performed a retrospective chart review including patients admitted at a single center between January 2015-March 2020 following resuscitation from in-hospital and out-of-hospital cardiac arrest who had head computed tomography imaging. Our primary outcome was moderate-to-severe cerebral edema, which we defined as loss of grey-white differentiation with effacement of the basal and ambient cisterns and radiographic evidence of uncal herniation. We used logistic regression to test associations of demographic information, clinical predictors and comorbidities with moderate-severe cerebral edema. RESULTS We identified 727 patients who met the inclusion criteria, of whom 102 had moderate-to-severe cerebral edema. We identified six independent predictors of moderate-to-severe cerebral edema: younger age, prolonged arrest duration, pulseless electrical activity/asystole as initial rhythm, unwitnessed cardiac arrest, hyperglycemia on admission, and lower Glasgow coma score on presentation. Of patients with moderate-to-severe cerebral edema, 2% survived to discharge, 56% had withdrawal of life-sustaining therapies and 42% progressed to death by neurological criteria. CONCLUSIONS Our study identified several risk factors associated with the development of cerebral edema following cardiac arrest. Further studies are needed to determine the benefits of early interventions in these high-risk patients.
Collapse
Affiliation(s)
- Archana Hinduja
- Department of Neurology, The Ohio State University, Columbus, OH, United States.
| | - Yevgeniya Gokun
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University, Columbus, OH, United States
| | - Elochukwu Ibekwe
- Department of Neurology, The Ohio State University, Columbus, OH, United States
| | - Blake Senay
- Department of Neurology, The Ohio State University, Columbus, OH, United States
| | - Jonathan Elmer
- Department of Emergency Medicine, Critical Care Medicine and Neurology, University of Pittsburgh, PA, United States
| |
Collapse
|
50
|
Düring J, Annborn M, Cariou A, Chew MS, Dankiewicz J, Friberg H, Haenggi M, Haxhija Z, Jakobsen JC, Langeland H, Taccone FS, Thomas M, Ullén S, Wise MP, Nielsen N. Influence of temperature management at 33 °C versus normothermia on survival in patients with vasopressor support after out-of-hospital cardiac arrest: a post hoc analysis of the TTM-2 trial. Crit Care 2022; 26:231. [PMID: 35909163 PMCID: PMC9339193 DOI: 10.1186/s13054-022-04107-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/25/2022] [Indexed: 12/24/2022] Open
Abstract
Background Targeted temperature management at 33 °C (TTM33) has been employed in effort to mitigate brain injury in unconscious survivors of out-of-hospital cardiac arrest (OHCA). Current guidelines recommend prevention of fever, not excluding TTM33. The main objective of this study was to investigate if TTM33 is associated with mortality in patients with vasopressor support on admission after OHCA. Methods We performed a post hoc analysis of patients included in the TTM-2 trial, an international, multicenter trial, investigating outcomes in unconscious adult OHCA patients randomized to TTM33 versus normothermia. Patients were grouped according to level of circulatory support on admission: (1) no-vasopressor support, mean arterial blood pressure (MAP) ≥ 70 mmHg; (2) moderate-vasopressor support MAP < 70 mmHg or any dose of dopamine/dobutamine or noradrenaline/adrenaline dose ≤ 0.25 µg/kg/min; and (3) high-vasopressor support, noradrenaline/adrenaline dose > 0.25 µg/kg/min. Hazard ratios with TTM33 were calculated for all-cause 180-day mortality in these groups. Results The TTM-2 trial enrolled 1900 patients. Data on primary outcome were available for 1850 patients, with 662, 896, and 292 patients in the, no-, moderate-, or high-vasopressor support groups, respectively. Hazard ratio for 180-day mortality was 1.04 [98.3% CI 0.78–1.39] in the no-, 1.22 [98.3% CI 0.97–1.53] in the moderate-, and 0.97 [98.3% CI 0.68–1.38] in the high-vasopressor support groups with regard to TTM33. Results were consistent in an imputed, adjusted sensitivity analysis. Conclusions In this exploratory analysis, temperature control at 33 °C after OHCA, compared to normothermia, was not associated with higher incidence of death in patients stratified according to vasopressor support on admission. Trial registration Clinical trials identifier NCT02908308, registered September 20, 2016. Supplementary Information The online version contains supplementary material available at 10.1186/s13054-022-04107-9.
Collapse
|