1
|
Liu Y, Zhang T, Pan K, Wei H. Mechanisms and therapeutic research progress in intestinal fibrosis. Front Med (Lausanne) 2024; 11:1368977. [PMID: 38947241 PMCID: PMC11211380 DOI: 10.3389/fmed.2024.1368977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/05/2024] [Indexed: 07/02/2024] Open
Abstract
Intestinal fibrosis is a common complication of chronic intestinal diseases with the characteristics of fibroblast proliferation and extracellular matrix deposition after chronic inflammation, leading to lumen narrowing, structural and functional damage to the intestines, and life inconvenience for the patients. However, anti-inflammatory drugs are currently generally not effective in overcoming intestinal fibrosis making surgery the main treatment method. The development of intestinal fibrosis is a slow process and its onset may be the result of the combined action of inflammatory cells, local cytokines, and intestinal stromal cells. The aim of this study is to elucidate the pathogenesis [e.g., extracellular matrix (ECM), cytokines and chemokines, epithelial-mesenchymal transition (EMT), differentiation of fibroblast to myofibroblast and intestinal microbiota] underlying the development of intestinal fibrosis and to explore therapeutic advances (such as regulating ECM, cytokines, chemokines, EMT, differentiation of fibroblast to myofibroblast and targeting TGF-β) based on the pathogenesis in order to gain new insights into the prevention and treatment of intestinal fibrosis.
Collapse
Affiliation(s)
- Yanjiang Liu
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Tao Zhang
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - Kejian Pan
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - He Wei
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| |
Collapse
|
2
|
Puig-Casadevall M, Álvarez-Bravo G, Varela AQ, Robles-Cedeño R, Sànchez Cirera L, Miguela A, Laguillo G, Montalban X, Hauser SL, Ramió-Torrentà L. Progressive multifocal leukoencephalopathy in a patient with relapsing multiple sclerosis treated with ocrelizumab: A case report. Eur J Neurol 2023; 30:3357-3361. [PMID: 37485841 DOI: 10.1111/ene.15988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/03/2023] [Accepted: 07/14/2023] [Indexed: 07/25/2023]
Abstract
INTRODUCTION Progressive multifocal leukoencephalopathy is a rare but often fatal complication of some multiple sclerosis treatments. Although it has mainly been associated with natalizumab treatment, its appearance with other immunosuppressive therapies has also been reported. AIMS The aim of this case report is to describe the development of progressive multifocal encephalopathy in a patient with relapsing-remitting multiple sclerosis treated with ocrelizumab without previous use of natalizumab. CONCLUSIONS A summary of the presentation and disease course is provided, presented in the context of the current literature and likely pathophysiology.
Collapse
Affiliation(s)
- Marc Puig-Casadevall
- Girona Neuroimmunology and Multiple Sclerosis Unit, Neurology Department, Dr. Josep Trueta University Hospital and Santa Caterina Hospital, Salt, Spain
| | - Gary Álvarez-Bravo
- Girona Neuroimmunology and Multiple Sclerosis Unit, Neurology Department, Dr. Josep Trueta University Hospital and Santa Caterina Hospital, Salt, Spain
- Neurodegeneration and Neuroinflammation Research Group, Girona Biomedical Research Institute (IDIBGI), Salt, Spain
| | - Ana Quiroga Varela
- Neurodegeneration and Neuroinflammation Research Group, Girona Biomedical Research Institute (IDIBGI), Salt, Spain
- Instituto de Salud Carlos III, Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Enfermedades inflamatorias (RD21/0002/0063), Madrid, Spain
| | - René Robles-Cedeño
- Girona Neuroimmunology and Multiple Sclerosis Unit, Neurology Department, Dr. Josep Trueta University Hospital and Santa Caterina Hospital, Salt, Spain
- Instituto de Salud Carlos III, Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Enfermedades inflamatorias (RD21/0002/0063), Madrid, Spain
- Medical Sciences Department, University of Girona, Girona, Spain
| | | | - Albert Miguela
- Neurodegeneration and Neuroinflammation Research Group, Girona Biomedical Research Institute (IDIBGI), Salt, Spain
- Instituto de Salud Carlos III, Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Enfermedades inflamatorias (RD21/0002/0063), Madrid, Spain
| | - Gemma Laguillo
- Radiology Department, Dr. Josep Trueta University Hospital, Girona, Spain
| | - Xavier Montalban
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Institut de Recerca, Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Stephen L Hauser
- Department of Neurology, University of California, San Francisco, California, USA
| | - Lluis Ramió-Torrentà
- Girona Neuroimmunology and Multiple Sclerosis Unit, Neurology Department, Dr. Josep Trueta University Hospital and Santa Caterina Hospital, Salt, Spain
- Neurodegeneration and Neuroinflammation Research Group, Girona Biomedical Research Institute (IDIBGI), Salt, Spain
- Instituto de Salud Carlos III, Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Enfermedades inflamatorias (RD21/0002/0063), Madrid, Spain
- Medical Sciences Department, University of Girona, Girona, Spain
- Neurology Department, Dr. Josep Trueta University Hospital, Girona, Spain
| |
Collapse
|
3
|
L'Honneur AS, Pipoli Da Fonseca J, Cokelaer T, Rozenberg F. JC Polyomavirus whole genome sequencing at the single molecule level reveals emerging neurotropic populations in Progressive Multifocal Leucoencephalopathy. J Infect Dis 2022; 226:1151-1161. [PMID: 34979561 DOI: 10.1093/infdis/jiab639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/30/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND JC polyomavirus (JCV) mostly causes asymptomatic persistent renal infections but may give rise in immunosuppressed patients to neurotropic variants which replicate in the brain causing progressive multifocal leukoencephalopathy (PML). Rearrangements in the JCV genome regulator non-coding control region (NCCR) and missense mutations in the viral capsid VP1 gene differentiate neurotropic variants from virus excreted in urine. METHODS To investigate intra-host emergence of JCV neurotropic populations in PML, we deep sequenced JCV whole genome recovered from cerebrospinal fluid (CSF) and urine samples from 32 HIV- and non HIV-infected PML patients at the single-molecule level. RESULTS JCV strains distributed among 6 out of 7 known genotypes. Common patterns of NCCR rearrangements included an initial deletion mostly located in a short 10-nucleotide sequence, followed by duplications/insertions. Multiple NCCR variants present in individual CSF samples shared at least one rearrangement suggesting they stemmed from a unique viral population. NCCR variants independently acquired single or double PML-specific adaptive VP1 mutations. NCCR variants recovered from urine and CSF displayed opposite deletion or duplication patterns in binding sites for transcription factors. DISCUSSION Long read deep sequencing shed light on emergence of neurotropic JCV populations in PML.
Collapse
Affiliation(s)
- Anne-Sophie L'Honneur
- Université de Paris , INSERM Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Cochin, Service de Virologie , Paris, France
| | - Juliana Pipoli Da Fonseca
- Plate-forme Technologique Biomics - Centre de Ressources et Recherches Technologique (C2RT), Institut Pasteur, Paris, France
| | - Thomas Cokelaer
- Plate-forme Technologique Biomics - Centre de Ressources et Recherches Technologique (C2RT), Institut Pasteur, Paris, France.,Hub de Bioinformatique et de Biostatistique, Département Biologie Computationnelle, Institut Pasteur Paris, France
| | - Flore Rozenberg
- Université de Paris , INSERM Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Cochin, Service de Virologie , Paris, France
| |
Collapse
|
4
|
Lauver MD, Lukacher AE. JCPyV VP1 Mutations in Progressive MultifocalLeukoencephalopathy: Altering Tropismor Mediating Immune Evasion? Viruses 2020; 12:v12101156. [PMID: 33053912 PMCID: PMC7600905 DOI: 10.3390/v12101156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/15/2022] Open
Abstract
Polyomaviruses are ubiquitous human pathogens that cause lifelong, asymptomatic infections in healthy individuals. Although these viruses are restrained by an intact immune system, immunocompromised individuals are at risk for developing severe diseases driven by resurgent viral replication. In particular, loss of immune control over JC polyomavirus can lead to the development of the demyelinating brain disease progressive multifocal leukoencephalopathy (PML). Viral isolates from PML patients frequently carry point mutations in the major capsid protein, VP1, which mediates virion binding to cellular glycan receptors. Because polyomaviruses are non-enveloped, VP1 is also the target of the host's neutralizing antibody response. Thus, VP1 mutations could affect tropism and/or recognition by polyomavirus-specific antibodies. How these mutations predispose susceptible individuals to PML and other JCPyV-associated CNS diseases remains to be fully elucidated. Here, we review the current understanding of polyomavirus capsid mutations and their effects on viral tropism, immune evasion, and virulence.
Collapse
|
5
|
Lauver MD, Goetschius DJ, Netherby-Winslow CS, Ayers KN, Jin G, Haas DG, Frost EL, Cho SH, Bator CM, Bywaters SM, Christensen ND, Hafenstein SL, Lukacher AE. Antibody escape by polyomavirus capsid mutation facilitates neurovirulence. eLife 2020; 9:e61056. [PMID: 32940605 PMCID: PMC7541085 DOI: 10.7554/elife.61056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/17/2020] [Indexed: 12/27/2022] Open
Abstract
JCPyV polyomavirus, a member of the human virome, causes progressive multifocal leukoencephalopathy (PML), an oft-fatal demyelinating brain disease in individuals receiving immunomodulatory therapies. Mutations in the major viral capsid protein, VP1, are common in JCPyV from PML patients (JCPyV-PML) but whether they confer neurovirulence or escape from virus-neutralizing antibody (nAb) in vivo is unknown. A mouse polyomavirus (MuPyV) with a sequence-equivalent JCPyV-PML VP1 mutation replicated poorly in the kidney, a major reservoir for JCPyV persistence, but retained the CNS infectivity, cell tropism, and neuropathology of the parental virus. This mutation rendered MuPyV resistant to a monoclonal Ab (mAb), whose specificity overlapped the endogenous anti-VP1 response. Using cryo-EM and a custom sub-particle refinement approach, we resolved an MuPyV:Fab complex map to 3.2 Å resolution. The structure revealed the mechanism of mAb evasion. Our findings demonstrate convergence between nAb evasion and CNS neurovirulence in vivo by a frequent JCPyV-PML VP1 mutation.
Collapse
Affiliation(s)
- Matthew D Lauver
- Department of Microbiology and Immunology, Penn State College of MedicineHersheyUnited States
| | - Daniel J Goetschius
- Department of Biochemistry and Molecular Biology, Pennsylvania State UniversityUniversity ParkUnited States
| | | | - Katelyn N Ayers
- Department of Microbiology and Immunology, Penn State College of MedicineHersheyUnited States
| | - Ge Jin
- Department of Microbiology and Immunology, Penn State College of MedicineHersheyUnited States
| | - Daniel G Haas
- Department of Microbiology and Immunology, Penn State College of MedicineHersheyUnited States
| | - Elizabeth L Frost
- Department of Microbiology and Immunology, Penn State College of MedicineHersheyUnited States
| | - Sung Hyun Cho
- Huck Institutes of the Life Sciences, Pennsylvania State UniversityUniversity ParkUnited States
| | - Carol M Bator
- Huck Institutes of the Life Sciences, Pennsylvania State UniversityUniversity ParkUnited States
| | - Stephanie M Bywaters
- Department of Pathology, Penn State College of MedicineHersheyUnited States
- The Jake Gittlen Laboratories for Cancer Research, Penn State College of MedicineHersheyUnited States
| | - Neil D Christensen
- Department of Pathology, Penn State College of MedicineHersheyUnited States
- The Jake Gittlen Laboratories for Cancer Research, Penn State College of MedicineHersheyUnited States
| | - Susan L Hafenstein
- Department of Biochemistry and Molecular Biology, Pennsylvania State UniversityUniversity ParkUnited States
- Huck Institutes of the Life Sciences, Pennsylvania State UniversityUniversity ParkUnited States
- Department of Medicine, Penn State College of MedicineHersheyUnited States
| | - Aron E Lukacher
- Department of Microbiology and Immunology, Penn State College of MedicineHersheyUnited States
| |
Collapse
|
6
|
Watanabe M, Nakamura Y, Isobe N, Tanaka M, Sakoda A, Hayashi F, Kawano Y, Yamasaki R, Matsushita T, Kira JI. Two susceptible HLA-DRB1 alleles for multiple sclerosis differentially regulate anti-JC virus antibody serostatus along with fingolimod. J Neuroinflammation 2020; 17:206. [PMID: 32646493 PMCID: PMC7350631 DOI: 10.1186/s12974-020-01865-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 06/04/2020] [Indexed: 11/21/2022] Open
Abstract
Background Progressive multifocal leukoencephalopathy (PML) caused by JC virus (JCV) is a rare but serious complication of some disease-modifying drugs used to treat multiple sclerosis (MS). Japanese MS patients treated with fingolimod were reported to be 10 times more likely to develop PML than equivalent patients in other countries. The strongest susceptibility human leukocyte antigen (HLA) class II alleles for MS are distinct between races (DRB1*15:01 for Caucasians and DRB1*04:05 and DRB1*15:01 for Japanese); therefore, we investigated whether HLA class II alleles modulate anti-JCV antibody serostatus in Japanese MS patients with and without fingolimod. Methods We enrolled 128 Japanese patients with MS, in whom 64 (50%) were under fingolimod treatment at sampling, and examined the relationship between HLA class II alleles and anti-JCV antibody serostatus. Serum anti-JCV antibody positivity and index were measured using a second-generation two-step assay and HLA-DRB1 and -DPB1 alleles were genotyped. Results HLA-DRB1*15 carriers had a lower frequency of anti-JCV antibody positivity (57% vs 78%, p = 0.015), and lower antibody index (median 0.42 vs 1.97, p = 0.037) than non-carriers. Among patients without HLA-DRB1*15, DRB1*04 carriers had a higher seropositivity rate than non-carriers (84% vs 54%, p = 0.030), and DPB1*04:02 carriers had a higher anti-JCV antibody index than non-carriers (3.20 vs 1.34, p = 0.008) although anti-JCV antibody-positivity rates did not differ. Patients treated with fingolimod had a higher antibody index than other patients (1.46 vs 0.64, p = 0.039) and treatment period had a positive correlation with antibody index (p = 0.018). Multivariate logistic regression analysis revealed that age was positively associated, and HLA-DRB1*15 was negatively associated with anti-JCV antibody positivity (odds ratio [OR] = 1.06, p = 0.006, and OR = 0.37, p = 0.028, respectively). Excluding HLA-DRB1*15-carriers, DRB1*04 was an independent risk factor for the presence of anti-JCV antibody (OR = 5.50, p = 0.023). Conclusions HLA-DRB1*15 is associated with low anti-JCV antibody positive rate and low JCV antibody index, and in the absence of DRB1*15, DRB1*04 carriers are associated with a high antibody positive rate in Japanese, suggesting the effects of two susceptible HLA-DRB1 alleles on anti-JCV antibody serostatus differ.
Collapse
Affiliation(s)
- Mitsuru Watanabe
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yuri Nakamura
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.,Department of Neurology, Brain and Nerve Center, Fukuoka Central Hospital, International University of Health and Welfare, 2-6-11 Yakuin, Chuo-ku, Fukuoka, 810-0022, Japan.,School of Pharmacy at Fukuoka, International University of Health and Welfare, 137-1 Enokizu, Okawa, 831-8501, Japan
| | - Noriko Isobe
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.,Department of Neurological Therapeutics, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Masami Tanaka
- Kyoto MS Center, Kyoto Min-Iren-Chuo Hospital, 2-1 Uzumasatsuchimoto-cho, Ukyo-ku, Kyoto, 616-8147, Japan.,Department of Neurology, Kaikoukai Jyousai Hospital, 1-4 Kitabatake, Nakamura-ku, Nagoya, 453-0815, Japan
| | - Ayako Sakoda
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.,Department of Neurology, Brain and Nerve Center, Fukuoka Central Hospital, International University of Health and Welfare, 2-6-11 Yakuin, Chuo-ku, Fukuoka, 810-0022, Japan
| | - Fumie Hayashi
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yuji Kawano
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.,Department of Neurology, National Hospital Organization Omuta National Hospital, 1044-1 Oaza, Tachibana, Omuta, 837-0911, Japan
| | - Ryo Yamasaki
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takuya Matsushita
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Jun-Ichi Kira
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan. .,Department of Neurology, Brain and Nerve Center, Fukuoka Central Hospital, International University of Health and Welfare, 2-6-11 Yakuin, Chuo-ku, Fukuoka, 810-0022, Japan. .,Translational Neuroscience Center, Graduate School of Medicine, and School of Pharmacy at Fukuoka, International University of Health and Welfare, 137-1 Enokizu, Okawa, 831-8501, Japan.
| |
Collapse
|
7
|
Lippa AM, Ocwieja KE, Iglesias J, Fawaz R, Elisofon S, Lee C, Sharma TS. Progressive multifocal leukoencephalopathy presenting with acute sensorineural hearing loss in an intestinal transplant recipient. Transpl Infect Dis 2020; 22:e13304. [PMID: 32367644 DOI: 10.1111/tid.13304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/12/2020] [Accepted: 04/25/2020] [Indexed: 02/06/2023]
Abstract
A 20-year-old male presented 3.5 years after intestinal transplantation with rapidly progressive sensorineural hearing loss. Initial brain imaging was consistent with inflammation and/or demyelination. Lumbar puncture was initially non-diagnostic and a broad infectious workup was unrevealing. Three months after presentation, a repeat LP detected JC virus for which tests had not earlier been conducted. He continued to deteriorate despite withdrawal of prior immunosuppression and addition of mirtazapine, maraviroc, and steroids. He died of progressive neurologic decompensation 5 months after his initial presentation. This case highlights progressive multifocal leukoencephalopathy (PML) as a rare complication after solid organ transplantation and acute sensorineural hearing loss as an unusual first presenting symptom of PML. JC virus should be considered in the differential diagnosis of acute sensorineural hearing loss in any immunocompromised patient.
Collapse
Affiliation(s)
- Andrew M Lippa
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Karen E Ocwieja
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Julie Iglesias
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, USA
| | - Rima Fawaz
- Division of Gastroenterology and Hepatology, Yale New Haven Children's Hospital, New Haven, CT, USA
| | - Scott Elisofon
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, USA
| | - Christine Lee
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, USA
| | - Tanvi S Sharma
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| |
Collapse
|
8
|
Dynamic expression of JC virus in urine and its relationship to serostatus. Mult Scler Relat Disord 2020; 41:101972. [PMID: 32135498 DOI: 10.1016/j.msard.2020.101972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 11/24/2022]
Abstract
BACKGROUND There is limited information regarding the daily shedding of JC virus (JCV) in urine and its correlation with serum JCV antibody levels. METHODS The dynamic expression of JCV in urine and its correlation with JCV antibody status in patients receiving disease modifying therapy for multiple sclerosis were examined in a longitudinal case-control study. JCV antibody index levels were determined using a two-step ELISA (Stratify). JCV shedding in urine samples was determined by quantitative PCR during two 30-day study periods separated by intervals of at least 6 months. RESULTS Of 42 study subjects (57% female; ages 22-56, average age 39.6 years), 27 (64.3%) were JCV antibody positive (index >0.40) at initial urine collection. Twelve seropositive subjects (44.4%) had detectable JCV in their urine with values ranging from 290 to 5.08 × 108 copies/mL. Daily viral shedding in these patients remained fairly constant throughout the study. Urinary JCV shedding was not detected in any JCV antibody index negative or indeterminate subject. In JCV urinary shedders, the average JCV antibody index was 2.69 (range 1.67-3.57). The average anti-JCV antibody index for the remaining JCV seropositive individuals without viral urinary shedding was 1.35 (range 0.46-3.91). CONCLUSION MS patients displayed a consistent pattern of JCV shedding over days and months in which higher levels of viruria appeared to have driven higher levels of JCV antibody index. The findings provide additional insights into the dynamic expression of JCV and host response; however, studies in larger populations and of longer duration will be needed to determine their significance to the development of progressive multifocal leukoencephalopathy (PML).
Collapse
|
9
|
Cho KB. Diagnostic Method for the Detection of JC PolyomavirusUsing Loop-mediated Isothermal Amplification. KOREAN JOURNAL OF CLINICAL LABORATORY SCIENCE 2019. [DOI: 10.15324/kjcls.2019.51.4.414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Kyu Bong Cho
- Department of Biomedical Laboratory Science, Shinhan University, Uijeongbu, Korea
| |
Collapse
|
10
|
Kamminga S, van der Meijden E, de Brouwer C, Feltkamp M, Zaaijer H. Prevalence of DNA of fourteen human polyomaviruses determined in blood donors. Transfusion 2019; 59:3689-3697. [PMID: 31633816 PMCID: PMC6916541 DOI: 10.1111/trf.15557] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/24/2019] [Accepted: 09/24/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Human polyomaviruses (HPyVs), like herpesviruses, cause persistent infection in a large part of the population. In immunocompromised and elderly patients, PyVs cause severe diseases such as nephropathy (BK polyomavirus [BKPyV]), progressive multifocal leukoencephalopathy (JC polyomavirus [JCPyV]), and skin cancer (Merkel cell polyomavirus [MCPyV]). Like cytomegalovirus, donor‐derived PyV can cause disease in kidney transplant recipients. Possibly blood components transmit PyVs as well. To study this possibility, as a first step we determined the presence of PyV DNA in Dutch blood donations. STUDY DESIGN AND METHODS Blood donor serum samples (n = 1016) were analyzed for the presence of DNA of 14 HPyVs using HPyV species‐specific quantitative polymerase chain reaction (PCR) procedures. PCR‐positive samples were subjected to confirmation by sequencing. Individual PCR findings were compared with the previously reported PyV serostatus. RESULTS MC polyomavirus DNA was detected in 39 donors (3.8%), JCPyV and TS polyomavirus (TSPyV) DNA in five donors (both 0.5%), and HPyV9 DNA in four donors (0.4%). BKPyV, WU polyomavirus (WUPyV), HPyV6, MW polyomavirus (MWPyV), and LI polyomavirus (LIPyV) DNA was detected in one or two donors. Amplicon sequencing confirmed the expected product for BKPyV, JCPyV, WUPyV, MCPyV, HPyV6, TSPyV, MWPyV, HPyV9, and LIPyV. For JCPyV a significant association was observed between detection of viral DNA and the level of specific IgG antibodies. CONCLUSION In 5.4% of Dutch blood donors PyV DNA was detected, including DNA from pathogenic PyVs such as JCPyV. As a next step, the infectivity of PyV in donor blood and transmission via blood components to immunocompromised recipients should be investigated.
Collapse
Affiliation(s)
- Sergio Kamminga
- Department of Blood-borne Infections, Sanquin Research, Amsterdam, Netherlands.,Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Els van der Meijden
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Caroline de Brouwer
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Mariet Feltkamp
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Hans Zaaijer
- Department of Blood-borne Infections, Sanquin Research, Amsterdam, Netherlands
| |
Collapse
|
11
|
|
12
|
Pathogenesis of progressive multifocal leukoencephalopathy and risks associated with treatments for multiple sclerosis: a decade of lessons learned. Lancet Neurol 2018; 17:467-480. [DOI: 10.1016/s1474-4422(18)30040-1] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 11/30/2017] [Accepted: 01/25/2018] [Indexed: 12/12/2022]
|
13
|
Williamson EML, Berger JR. Diagnosis and Treatment of Progressive Multifocal Leukoencephalopathy Associated with Multiple Sclerosis Therapies. Neurotherapeutics 2017; 14:961-973. [PMID: 28913726 PMCID: PMC5722774 DOI: 10.1007/s13311-017-0570-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Progressive multifocal leukoencephalopathy (PML) is a rare, but serious, complication encountered in patients treated with a select number of disease-modifying therapies (DMTs) utilized in treating multiple sclerosis (MS). PML results from a viral infection in the brain for which the only demonstrated effective therapy is restoring the perturbed immune system-typically achieved in the patient with MS by removing the offending therapeutic agent or, in the case of HIV-associated PML, treatment with highly active antiretroviral therapies. Other therapies for PML remain either ineffective or experimental. Significant work to understand the virus and host interaction has been undertaken, but lack of an animal model for the disorder has significantly hindered progress, especially with respect to development of treatments. Strategies to limit risk of PML with natalizumab, a drug that carries a uniquely high risk for the development of the disorder, have been developed. Identifying factors such as positive JC virus antibody status that increase PML risk, at least in theory, should decrease the incidence rate of the disease. Whether other risk factors for PML can be identified and validated or unique strategies should be employed in association with other DMTs that predispose to PML and whether this has a salutary effect on outcome remains to be demonstrated. Identifying PML early, then promptly eliminating drug in the case of natalizumab-associated PML has demonstrated better outcomes, but the complication of PML continues to carry significant morbidity and mortality. While the scientific community has yet to identify targeted therapy with proven efficacy against JCV or PML there are several candidates being studied.
Collapse
Affiliation(s)
- Eric M L Williamson
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| | - Joseph R Berger
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|