1
|
Tomoto T, Zhang R. Arterial Aging and Cerebrovascular Function: Impact of Aerobic Exercise Training in Older Adults. Aging Dis 2024; 15:1672-1687. [PMID: 38270114 PMCID: PMC11272215 DOI: 10.14336/ad.2023.1109-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/09/2023] [Indexed: 01/26/2024] Open
Abstract
Advanced age is the major risk factor for dementia including Alzheimer's disease. The clinical effects of recently developed anti-amyloid therapy for Alzheimer's disease were modest and the long-term outcome is unknown. Thus, an in-depth understanding of the mechanisms of brain aging is essential to develop preventive interventions to maintain cognitive health in late life. Mounting evidence suggests that arterial aging manifested as increases in central arterial stiffness is associated closely with cerebrovascular dysfunction and brain aging while improvement of cerebrovascular function with aerobic exercise training contributes to brain health in older adults. We summarized evidence in this brief review that 1) increases in central arterial stiffness and arterial pulsation with age are associated with increases in cerebrovascular resistance, reduction in cerebral blood flow, and cerebrovascular dysfunction, 2) aerobic exercise training improves cerebral blood flow by modifying arterial aging as indicated by reductions in cerebrovascular resistance, central arterial stiffness, arterial pulsation, and improvement in cerebrovascular function, and 3) improvement in cerebral blood flow and cerebrovascular function with aerobic exercise training may lead to improvement in cognitive function. These findings highlight the associations between arterial aging and cerebrovascular function and the importance of aerobic exercise in maintaining brain health in older adults.
Collapse
Affiliation(s)
- Tsubasa Tomoto
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan.
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, USA.
- Departments of Neurology,
| | - Rong Zhang
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, USA.
- Departments of Neurology,
- Internal Medicine, and
- Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
2
|
Lohman T, Shenasa F, Sible I, Kapoor A, Engstrom AC, Dutt S, Head E, Sordo L, M Alitin JP, Gaubert A, Nguyen A, Nation DA. The interactive effect of intra-beat and inter-beat blood pressure variability on neurodegeneration in older adults. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.01.24306724. [PMID: 38746307 PMCID: PMC11092712 DOI: 10.1101/2024.05.01.24306724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Blood pressure variability (BPV) and arterial stiffness are age-related hemodynamic risk factors for neurodegenerative disease, but it remains unclear whether they exert independent or interactive effects on brain health. When combined with high inter-beat BPV, increased intra-beat BPV indicative of arterial stiffness could convey greater pressure wave fluctuations deeper into the cerebrovasculature, exacerbating neurodegeneration. This interactive effect was studied in older adults using multiple markers of neurodegeneration, including medial temporal lobe (MTL) volume, plasma neurofilament light (NfL) and glial fibrillary acidic protein (GFAP). Older adults (N=105) without major neurological or systemic disease were recruited and underwent brain MRI and continuous BP monitoring to quantify inter-beat BPV through systolic average real variability (ARV) and intra-beat variability through arterial stiffness index (ASI). Plasma NfL and GFAP were assessed. The interactive effect of ARV and ASI on MTL atrophy, plasma NfL, and GFAP was studied using hierarchical linear regression. Voxel-based morphometry (VBM) was used to confirm region-of-interest analysis findings. The interaction between higher ARV and higher ASI was significantly associated with left-sided MTL atrophy in both the region-of-interest and false discovery rate-corrected VBM analysis. The interactive effect was also significantly associated with increased plasma NfL, but not GFAP. The interaction between higher ARV and higher ASI is independently associated with increased neurodegenerative markers, including MTL atrophy and plasma NfL, in independently living older adults. Findings could suggest the increased risk for neurodegeneration associated with higher inter-beat BPV may be compounded by increased intra-beat variability due to arterial stiffness.
Collapse
|
3
|
Aghilinejad A, Gharib M. Assessing pressure wave components for aortic stiffness monitoring through spectral regression learning. EUROPEAN HEART JOURNAL OPEN 2024; 4:oeae040. [PMID: 38863521 PMCID: PMC11165314 DOI: 10.1093/ehjopen/oeae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 06/13/2024]
Abstract
Aims The ageing process notably induces structural changes in the arterial system, primarily manifesting as increased aortic stiffness, a precursor to cardiovascular events. While wave separation analysis is a robust tool for decomposing the components of blood pressure waveform, its relationship with cardiovascular events, such as aortic stiffening, is incompletely understood. Furthermore, its applicability has been limited due to the need for concurrent measurements of pressure and flow. Our aim in this study addresses this gap by introducing a spectral regression learning method for pressure-only wave separation analysis. Methods and results Leveraging data from the Framingham Heart Study (2640 individuals, 55% women), we evaluate the accuracy of pressure-only estimates, their interchangeability with a reference method based on ultrasound-derived flow waves, and their association with carotid-femoral pulse wave velocity (PWV). Method-derived estimates are strongly correlated with the reference ones for forward wave amplitude ( R 2 = 0.91 ), backward wave amplitude ( R 2 = 0.88 ), and reflection index ( R 2 = 0.87 ) and moderately correlated with a time delay between forward and backward waves ( R 2 = 0.38 ). The proposed pressure-only method shows interchangeability with the reference method through covariate analysis. Adjusting for age, sex, body size, mean blood pressure, and heart rate, the results suggest that both pressure-only and pressure-flow evaluations of wave separation parameters yield similar model performances for predicting carotid-femoral PWV, with forward wave amplitude being the only significant factor (P < 0.001; 95% confidence interval, 0.056-0.097). Conclusion We propose an interchangeable pressure-only wave separation analysis method and demonstrate its clinical applicability in capturing aortic stiffening. The proposed method provides a valuable non-invasive tool for assessing cardiovascular health.
Collapse
Affiliation(s)
- Arian Aghilinejad
- Division of Engineering and Applied Science, California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125, USA
| | - Morteza Gharib
- Division of Engineering and Applied Science, California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125, USA
| |
Collapse
|
4
|
Pacholko A, Iadecola C. Hypertension, Neurodegeneration, and Cognitive Decline. Hypertension 2024; 81:991-1007. [PMID: 38426329 PMCID: PMC11023809 DOI: 10.1161/hypertensionaha.123.21356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Elevated blood pressure is a well-established risk factor for age-related cognitive decline. Long linked to cognitive impairment on vascular bases, increasing evidence suggests a potential association of hypertension with the neurodegenerative pathology underlying Alzheimer disease. Hypertension is well known to disrupt the structural and functional integrity of the cerebral vasculature. However, the mechanisms by which these alterations lead to brain damage, enhance Alzheimer pathology, and promote cognitive impairment remain to be established. Furthermore, critical questions concerning whether lowering blood pressure by antihypertensive medications prevents cognitive impairment have not been answered. Recent developments in neurovascular biology, brain imaging, and epidemiology, as well as new clinical trials, have provided insights into these critical issues. In particular, clinical and basic findings on the link between neurovascular dysfunction and the pathobiology of neurodegeneration have shed new light on the overlap between vascular and Alzheimer pathology. In this review, we will examine the progress made in the relationship between hypertension and cognitive impairment and, after a critical evaluation of the evidence, attempt to identify remaining knowledge gaps and future research directions that may advance our understanding of one of the leading health challenges of our time.
Collapse
Affiliation(s)
- Anthony Pacholko
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| |
Collapse
|
5
|
Young CB, Smith V, Karjadi C, Grogan S, Ang TFA, Insel PS, Henderson VW, Sumner M, Poston KL, Au R, Mormino EC. Speech patterns during memory recall relates to early tau burden across adulthood. Alzheimers Dement 2024; 20:2552-2563. [PMID: 38348772 PMCID: PMC11032578 DOI: 10.1002/alz.13731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 04/22/2024]
Abstract
INTRODUCTION Early cognitive decline may manifest in subtle differences in speech. METHODS We examined 238 cognitively unimpaired adults from the Framingham Heart Study (32-75 years) who completed amyloid and tau PET imaging. Speech patterns during delayed recall of a story memory task were quantified via five speech markers, and their associations with global amyloid status and regional tau signal were examined. RESULTS Total utterance time, number of between-utterance pauses, speech rate, and percentage of unique words significantly correlated with delayed recall score although the shared variance was low (2%-15%). Delayed recall score was not significantly different between β-amyoid-positive (Aβ+) and -negative (Aβ-) groups and was not associated with regional tau signal. However, longer and more between-utterance pauses, and slower speech rate were associated with increased tau signal across medial temporal and early neocortical regions. DISCUSSION Subtle speech changes during memory recall may reflect cognitive impairment associated with early Alzheimer's disease pathology. HIGHLIGHTS Speech during delayed memory recall relates to tau PET signal across adulthood. Delayed memory recall score was not associated with tau PET signal. Speech shows greater sensitivity to detecting subtle cognitive changes associated with early tau accumulation. Our cohort spans adulthood, while most PET imaging studies focus on older adults.
Collapse
Affiliation(s)
- Christina B. Young
- Department of Neurology and Neurological SciencesStanford University School of MedicineStanfordCaliforniaUSA
| | - Viktorija Smith
- Department of Neurology and Neurological SciencesStanford University School of MedicineStanfordCaliforniaUSA
| | - Cody Karjadi
- Department of Anatomy & Neurobiology and Framingham Heart StudyBoston University Chobanian and Avedisian School of MedicineBostonMassachusettsUSA
| | - Selah‐Marie Grogan
- Department of Neurology and Neurological SciencesStanford University School of MedicineStanfordCaliforniaUSA
| | - Ting Fang Alvin Ang
- Department of Anatomy & Neurobiology and Framingham Heart StudyBoston University Chobanian and Avedisian School of MedicineBostonMassachusettsUSA
| | - Philip S. Insel
- Department of PsychiatryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Victor W. Henderson
- Department of Neurology and Neurological SciencesStanford University School of MedicineStanfordCaliforniaUSA
- Department of Epidemiology and Population HealthStanford UniversityStanfordCaliforniaUSA
| | - Meghan Sumner
- Department of LinguisticsStanford UniversityStanfordCaliforniaUSA
| | - Kathleen L. Poston
- Department of Neurology and Neurological SciencesStanford University School of MedicineStanfordCaliforniaUSA
- Wu Tsai Neuroscience InstituteStanford UniversityStanfordCaliforniaUSA
| | - Rhoda Au
- Department of Anatomy & Neurobiology and Framingham Heart StudyBoston University Chobanian and Avedisian School of MedicineBostonMassachusettsUSA
| | - Elizabeth C. Mormino
- Department of Neurology and Neurological SciencesStanford University School of MedicineStanfordCaliforniaUSA
- Wu Tsai Neuroscience InstituteStanford UniversityStanfordCaliforniaUSA
| |
Collapse
|
6
|
Coomans EM, van Westen D, Binette AP, Strandberg O, Spotorno N, Serrano GE, Beach TG, Palmqvist S, Stomrud E, Ossenkoppele R, Hansson O. Interactions between vascular burden and amyloid-β pathology on trajectories of tau accumulation. Brain 2024; 147:949-960. [PMID: 37721482 PMCID: PMC10907085 DOI: 10.1093/brain/awad317] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/02/2023] [Accepted: 09/07/2023] [Indexed: 09/19/2023] Open
Abstract
Cerebrovascular pathology often co-exists with Alzheimer's disease pathology and can contribute to Alzheimer's disease-related clinical progression. However, the degree to which vascular burden contributes to Alzheimer's disease pathological progression is still unclear. This study aimed to investigate interactions between vascular burden and amyloid-β pathology on both baseline tau tangle load and longitudinal tau accumulation. We included 1229 participants from the Swedish BioFINDER-2 Study, including cognitively unimpaired and impaired participants with and without biomarker-confirmed amyloid-β pathology. All underwent baseline tau-PET (18F-RO948), and a subset (n = 677) underwent longitudinal tau-PET after 2.5 ± 1.0 years. Tau-PET uptake was computed for a temporal meta-region-of-interest. We focused on four main vascular imaging features and risk factors: microbleeds; white matter lesion volume; stroke-related events (infarcts, lacunes and haemorrhages); and the Framingham Heart Study Cardiovascular Disease risk score. To validate our in vivo results, we examined 1610 autopsy cases from an Arizona-based neuropathology cohort on three main vascular pathological features: cerebral amyloid angiopathy; white matter rarefaction; and infarcts. For the in vivo cohort, primary analyses included age-, sex- and APOE ɛ4-corrected linear mixed models between tau-PET (outcome) and interactions between time, amyloid-β and each vascular feature (predictors). For the neuropathology cohort, age-, sex- and APOE ɛ4-corrected linear models between tau tangle density (outcome) and an interaction between plaque density and each vascular feature (predictors) were performed. In cognitively unimpaired individuals, we observed a significant interaction between microbleeds and amyloid-β pathology on greater baseline tau load (β = 0.68, P < 0.001) and longitudinal tau accumulation (β = 0.11, P < 0.001). For white matter lesion volume, we did not observe a significant independent interaction effect with amyloid-β on tau after accounting for microbleeds. In cognitively unimpaired individuals, we further found that stroke-related events showed a significant negative interaction with amyloid-β on longitudinal tau (β = -0.08, P < 0.001). In cognitively impaired individuals, there were no significant interaction effects between cerebrovascular and amyloid-β pathology at all. In the neuropathology dataset, the in vivo observed interaction effects between cerebral amyloid angiopathy and plaque density (β = 0.38, P < 0.001) and between infarcts and plaque density (β = -0.11, P = 0.005) on tau tangle density were replicated. To conclude, we demonstrated that cerebrovascular pathology-in the presence of amyloid-β pathology-modifies tau accumulation in early stages of Alzheimer's disease. More specifically, the co-occurrence of microbleeds and amyloid-β pathology was associated with greater accumulation of tau aggregates during early disease stages. This opens the possibility that interventions targeting microbleeds may attenuate the rate of tau accumulation in Alzheimer's disease.
Collapse
Affiliation(s)
- Emma M Coomans
- Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, 1081HV Amsterdam, The Netherlands
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, SE-222 42 Lund, Sweden
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081HV Amsterdam, The Netherlands
| | - Danielle van Westen
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, SE-222 42 Lund, Sweden
| | - Alexa Pichet Binette
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, SE-222 42 Lund, Sweden
| | - Olof Strandberg
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, SE-222 42 Lund, Sweden
| | - Nicola Spotorno
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, SE-222 42 Lund, Sweden
| | - Geidy E Serrano
- Banner Sun Health Research Institute, Sun City, AZ 85351, USA
| | - Thomas G Beach
- Banner Sun Health Research Institute, Sun City, AZ 85351, USA
| | - Sebastian Palmqvist
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, SE-222 42 Lund, Sweden
- Memory Clinic, Skåne University Hospital, SE-205 02 Malmö, Sweden
| | - Erik Stomrud
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, SE-222 42 Lund, Sweden
- Memory Clinic, Skåne University Hospital, SE-205 02 Malmö, Sweden
| | - Rik Ossenkoppele
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081HV Amsterdam, The Netherlands
- Memory Clinic, Skåne University Hospital, SE-205 02 Malmö, Sweden
- Amsterdam Neuroscience, Neurodegeneration, 1071HV Amsterdam, The Netherlands
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, SE-222 42 Lund, Sweden
- Memory Clinic, Skåne University Hospital, SE-205 02 Malmö, Sweden
| |
Collapse
|
7
|
Lu Y, Kiechl SJ, Wang J, Xu Q, Kiechl S, Pechlaner R. Global distributions of age- and sex-related arterial stiffness: systematic review and meta-analysis of 167 studies with 509,743 participants. EBioMedicine 2023; 92:104619. [PMID: 37229905 PMCID: PMC10327869 DOI: 10.1016/j.ebiom.2023.104619] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Arterial stiffening is central to the vascular ageing process and a powerful predictor and cause of diverse vascular pathologies and mortality. We investigated age and sex trajectories, regional differences, and global reference values of arterial stiffness as assessed by pulse wave velocity (PWV). METHODS Measurements of brachial-ankle or carotid-femoral PWV (baPWV or cfPWV) in generally healthy participants published in three electronic databases between database inception and August 24th, 2020 were included, either as individual participant-level or summary data received from collaborators (n = 248,196) or by extraction from published reports (n = 274,629). Quality was appraised using the Joanna Briggs Instrument. Variation in PWV was estimated using mixed-effects meta-regression and Generalized Additive Models for Location, Scale, and Shape. FINDINGS The search yielded 8920 studies, and 167 studies with 509,743 participants from 34 countries were included. PWV depended on age, sex, and country. Global age-standardised means were 12.5 m/s (95% confidence interval: 12.1-12.8 m/s) for baPWV and 7.45 m/s (95% CI: 7.11-7.79 m/s) for cfPWV. Males had higher global levels than females of 0.77 m/s for baPWV (95% CI: 0.75-0.78 m/s) and 0.35 m/s for cfPWV (95% CI: 0.33-0.37 m/s), but sex differences in baPWV diminished with advancing age. Compared to Europe, baPWV was substantially higher in the Asian region (+1.83 m/s, P = 0.0014), whereas cfPWV was higher in the African region (+0.41 m/s, P < 0.0001) and differed more by country (highest in Poland, Russia, Iceland, France, and China; lowest in Spain, Belgium, Canada, Finland, and Argentina). High vs. other country income was associated with lower baPWV (-0.55 m/s, P = 0.048) and cfPWV (-0.41 m/s, P < 0.0001). INTERPRETATION China and other Asian countries featured high PWV, which by known associations with central blood pressure and pulse pressure may partly explain higher Asian risk for intracerebral haemorrhage and small vessel stroke. Reference values provided may facilitate use of PWV as a marker of vascular ageing, for prediction of vascular risk and death, and for designing future therapeutic interventions. FUNDING This study was supported by the excellence initiative VASCage funded by the Austrian Research Promotion Agency, by the National Science Foundation of China, and the Science and Technology Planning Project of Hunan Province. Detailed funding information is provided as part of the Acknowledgments after the main text.
Collapse
Affiliation(s)
- Yao Lu
- Clinical Research Center, The Third Xiangya Hospital, Central South University, Changsha, China; School of Life Course Sciences, King's College London, London, United Kingdom.
| | - Sophia J Kiechl
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria; Department of Neurology, Hochzirl Hospital, Zirl, Austria; Research Centre on Vascular Ageing and Stroke, Innsbruck, Austria
| | - Jie Wang
- Clinical Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qingbo Xu
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Stefan Kiechl
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria; Research Centre on Vascular Ageing and Stroke, Innsbruck, Austria.
| | - Raimund Pechlaner
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
8
|
Castelli R, Gidaro A, Casu G, Merella P, Profili NI, Donadoni M, Maioli M, Delitala AP. Aging of the Arterial System. Int J Mol Sci 2023; 24:6910. [PMID: 37108072 PMCID: PMC10139087 DOI: 10.3390/ijms24086910] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Aging of the vascular system is associated with deep changes of the structural proprieties of the arterial wall. Arterial hypertension, diabetes mellitus, and chronic kidney disease are the major determinants for the loss of elasticity and reduced compliance of vascular wall. Arterial stiffness is a key parameter for assessing the elasticity of the arterial wall and can be easily evaluated with non-invasive methods, such as pulse wave velocity. Early assessment of vessel stiffness is critical because its alteration can precede clinical manifestation of cardiovascular disease. Although there is no specific pharmacological target for arterial stiffness, the treatment of its risk factors helps to improve the elasticity of the arterial wall.
Collapse
Affiliation(s)
- Roberto Castelli
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Antonio Gidaro
- Department of Biomedical and Clinical Sciences Luigi Sacco, Luigi Sacco Hospital, University of Milan, 20157 Milan, Italy
| | - Gavino Casu
- Cardiology Unit, Azienda Ospedaliero, Universitaria di Sassari, 07100 Sassari, Italy
| | - Pierluigi Merella
- Cardiology Unit, Azienda Ospedaliero, Universitaria di Sassari, 07100 Sassari, Italy
| | - Nicia I. Profili
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Mattia Donadoni
- Department of Biomedical and Clinical Sciences Luigi Sacco, Luigi Sacco Hospital, University of Milan, 20157 Milan, Italy
| | - Margherita Maioli
- Department of Biochemical Science, University of Sassari, 07100 Sassari, Italy
| | - Alessandro P. Delitala
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
9
|
Cheng ZZ, Gao F, Lv XY, Wang Q, Wu Y, Sun BL, Shen Y. Features of Cerebral Small Vessel Disease Contributes to the Differential Diagnosis of Alzheimer's Disease. J Alzheimers Dis 2023; 91:795-804. [PMID: 36502328 DOI: 10.3233/jad-220872] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Cerebral small vessel disease (CSVD), which comprises the typical features of white matter hyperintensity (WMH) and Vichor-Robin spaces (VRSs) in the brain, is one of the leading causes of aging-related cognitive decline and, ultimately, contributes to the occurrence of dementia, including Alzheimer's disease (AD). OBJECTIVE To investigate whether CSVD imaging markers modify the pathological processes of AD and whether these markers improve AD diagnosis. METHODS 208 participants were enrolled in the China Aging and Neurodegenerative Initiative (CANDI). Fluid AD biomarkers were detected using a single-molecule array, and cerebral small vessel dysfunction was determined using magnetic resonance imaging. RESULTS WMH contributed to AD pathology only within the NC and MCI groups (CDR ≤0.5), whereas VRSs had no effect on AD pathology. The associations between AD biomarkers and cognitive mental status were consistent with the presence of CSVD pathology. That is, within individuals without CSVD pathology, the MMSE scores were correlated with AD fluid biomarkers, except for plasma Aβ42 and Aβ40. Increased plasma p-Tau levels were associated with worse cognitive performance in individuals with WMH (β= -0.465, p = 0.0016) or VRSs (β= -0.352, p = 0.0257) pathology. Plasma AD biomarkers combined with CSVD markers showed high accuracy in diagnosing dementia. CONCLUSION Findings from this cross-sectional cohort study support the notion that CSVD is a risk factor for dementia and highlights that vascular pathology can promote AD biomarker levels, especially in the early course of the disease. Moreover, our results suggest that adding a vascular category to the ATN framework improves the diagnostic accuracy of AD.
Collapse
Affiliation(s)
- Zhao-Zhao Cheng
- Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Neurology, Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Feng Gao
- Department of Neurology, Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xin-Yi Lv
- Department of Neurology, Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qiong Wang
- Department of Neurology, Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yan Wu
- Department of Neurology, Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Bao-Liang Sun
- The Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Yong Shen
- Department of Neurology, Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
10
|
Abstract
Hypertension affects a significant proportion of the adult and aging population and represents an important risk factor for vascular cognitive impairment and late-life dementia. Chronic high blood pressure continuously challenges the structural and functional integrity of the cerebral vasculature, leading to microvascular rarefaction and dysfunction, and neurovascular uncoupling that typically impairs cerebral blood supply. Hypertension disrupts blood-brain barrier integrity, promotes neuroinflammation, and may contribute to amyloid deposition and Alzheimer pathology. The mechanisms underlying these harmful effects are still a focus of investigation, but studies in animal models have provided significant molecular and cellular mechanistic insights. Remaining questions relate to whether adequate treatment of hypertension may prevent deterioration of cognitive function, the threshold for blood pressure treatment, and the most effective antihypertensive drugs. Recent advances in neurovascular biology, advanced brain imaging, and detection of subtle behavioral phenotypes have begun to provide insights into these critical issues. Importantly, a parallel analysis of these parameters in animal models and humans is feasible, making it possible to foster translational advancements. In this review, we provide a critical evaluation of the evidence available in experimental models and humans to examine the progress made and identify remaining gaps in knowledge.
Collapse
Affiliation(s)
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Daniela Carnevale
- Department of Molecular Medicine, “Sapienza” University of Rome, Italy
- Research Unit of Neuro and Cardiovascular Pathophysiology, IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
11
|
Wang WT, Chang WL, Cheng HM. The Relationship of Vascular Aging to Reduced Cognitive Function: Pulsatile and Steady State Arterial Hemodynamics. Pulse (Basel) 2022; 10:19-25. [PMID: 36704265 PMCID: PMC9872056 DOI: 10.1159/000528147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022] Open
Abstract
Aortic stiffness increases with age and is a robust predictor of cerebrovascular events and cognitive decline including Alzheimer's disease and other forms of dementia. Recent clinical studies have investigated the association between proximal aortic stiffness and pulsatile energy transmission that has deleterious effects on the cerebrovascular network in order to identify potential therapeutic targets. Aging causes disproportionate stiffening of the aorta compared with the carotid arteries, reducing protective impedance mismatches at their interface, increasing the transmission of destructive pulsatile pressure and energy to the cerebral circulation, and leading to cerebral small vessel disease. Thus, aortic stiffening and high-flow pulsatility are associated with alterations in the microvasculature of the brain, vascular endothelial dysfunction, and white matter damage, which contribute to impaired memory function with advancing age. Previous studies have also shown that silent lacunar infarcts and white matter hyperintensities are strongly associated with arterial stiffness. More and more evidence suggests that vascular etiologies, including aortic stiffness, impedance match, and microvascular damage, are associated with cognitive impairment and the pathogenesis of dementia. The measurement of arterial flow and pressure can help understand pulsatile hemodynamics and its impact on vital organs. Interventions that reduce aortic stiffness, such as improvement of the living environment, management of risk factors, and innovation and development of novel drugs, may reduce the risk for dementia.
Collapse
Affiliation(s)
- Wei-Ting Wang
- Division of Cardiology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan,Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Lun Chang
- Center for Evidence-based Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hao-Min Cheng
- Division of Cardiology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan,Devision of Faculty Development, Taipei Veterans General Hospital, Taipei, Taiwan,Institute of Public Health and Community Medicine Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan,Department of Medical Education, Taipei Veterans General Hospital, Taipei, Taiwan,*Hao-Min Cheng,
| |
Collapse
|