1
|
Li S, Zhang W, Liang P, Zhu M, Zheng B, Zhou W, Wang C, Zhao X. Novel variants in the CLCN4 gene associated with syndromic X-linked intellectual disability. Front Neurol 2023; 14:1096969. [PMID: 37789889 PMCID: PMC10542403 DOI: 10.3389/fneur.2023.1096969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 08/15/2023] [Indexed: 10/05/2023] Open
Abstract
Objective The dysfunction of the CLCN4 gene can lead to X-linked intellectual disability and Raynaud-Claes syndrome (MRXSRC), characterized by severe cognitive impairment and mental disorders. This study aimed to investigate the genetic defects and clinical features of Chinese children with CLCN4 variants and explore the effect of mutant ClC-4 on the protein expression level and subcellular localization through in vitro experiments. Methods A total of 401 children with intellectual disabilities were screened for genetic variability using whole-exome sequencing (WES). Clinical data, including age, sex, perinatal conditions, and environmental exposure, were collected. Cognitive, verbal, motor, and social behavioral abilities were evaluated. Candidate variants were verified using Sanger sequencing, and their pathogenicity and conservation were analyzed using in silico prediction tools. Protein expression and localization of mutant ClC-4 were measured using Western blotting (WB) and immunofluorescence microscopy. The impact of a splice site variant was assessed with a minigene assay. Results Exome analysis identified five rare CLCN4 variants in six unrelated patients with intellectual disabilities, including two recurrent heterozygous de novo missense variants (p.D89N and p.A555V) in three female patients, and two hemizygous missense variants (p.N141S and p.R694Q) and a splicing variant (c.1390-12T > G) that are maternally inherited in three male patients. The p.N141S variant and the splicing variant c.1390-12(T > G were novel, while p.R694Q was identified in two asymptomatic heterozygous female patients. The six children with CLCN4 variants exhibited a neurodevelopmental spectrum disease characterized by intellectual disability (ID), delayed speech, autism spectrum disorders (ASD), microcephaly, hypertonia, and abnormal imaging findings. The minigene splicing result indicated that the c.1390-12T > G did not affect the splicing of CLCN4 mRNA. In vitro experiments showed that the mutant protein level and localization of mutant protein are similar to the wild type. Conclusion The study identified six probands with CLCN4 gene variants associated with X-linked ID. It expanded the gene and phenotype spectrum of CLCN4 variants. The bioinformatic analysis supported the pathogenicity of CLCN4 variants. However, these CLCN4 gene variants did not affect the ClC-4 expression levels and protein location, consistent with previous studies. Further investigations are necessary to investigate the pathogenetic mechanism.
Collapse
Affiliation(s)
- Sinan Li
- Department of Rehabilitation, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Wenxin Zhang
- Department of Rehabilitation, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Piao Liang
- Department of Rehabilitation, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Min Zhu
- Department of Rehabilitation, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Bixia Zheng
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Zhou
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Chunli Wang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoke Zhao
- Department of Rehabilitation, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
2
|
Palmer EE, Pusch M, Picollo A, Forwood C, Nguyen MH, Suckow V, Gibbons J, Hoff A, Sigfrid L, Megarbane A, Nizon M, Cogné B, Beneteau C, Alkuraya FS, Chedrawi A, Hashem MO, Stamberger H, Weckhuysen S, Vanlander A, Ceulemans B, Rajagopalan S, Nunn K, Arpin S, Raynaud M, Motter CS, Ward-Melver C, Janssens K, Meuwissen M, Beysen D, Dikow N, Grimmel M, Haack TB, Clement E, McTague A, Hunt D, Townshend S, Ward M, Richards LJ, Simons C, Costain G, Dupuis L, Mendoza-Londono R, Dudding-Byth T, Boyle J, Saunders C, Fleming E, El Chehadeh S, Spitz MA, Piton A, Gerard B, Abi Warde MT, Rea G, McKenna C, Douzgou S, Banka S, Akman C, Bain JM, Sands TT, Wilson GN, Silvertooth EJ, Miller L, Lederer D, Sachdev R, Macintosh R, Monestier O, Karadurmus D, Collins F, Carter M, Rohena L, Willemsen MH, Ockeloen CW, Pfundt R, Kroft SD, Field M, Laranjeira FER, Fortuna AM, Soares AR, Michaud V, Naudion S, Golla S, Weaver DD, Bird LM, Friedman J, Clowes V, Joss S, Pölsler L, Campeau PM, Blazo M, Bijlsma EK, Rosenfeld JA, Beetz C, Powis Z, McWalter K, Brandt T, Torti E, Mathot M, Mohammad SS, Armstrong R, Kalscheuer VM. Functional and clinical studies reveal pathophysiological complexity of CLCN4-related neurodevelopmental condition. Mol Psychiatry 2023; 28:668-697. [PMID: 36385166 PMCID: PMC9908558 DOI: 10.1038/s41380-022-01852-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 10/10/2022] [Accepted: 10/21/2022] [Indexed: 11/17/2022]
Abstract
Missense and truncating variants in the X-chromosome-linked CLCN4 gene, resulting in reduced or complete loss-of-function (LOF) of the encoded chloride/proton exchanger ClC-4, were recently demonstrated to cause a neurocognitive phenotype in both males and females. Through international clinical matchmaking and interrogation of public variant databases we assembled a database of 90 rare CLCN4 missense variants in 90 families: 41 unique and 18 recurrent variants in 49 families. For 43 families, including 22 males and 33 females, we collated detailed clinical and segregation data. To confirm causality of variants and to obtain insight into disease mechanisms, we investigated the effect on electrophysiological properties of 59 of the variants in Xenopus oocytes using extended voltage and pH ranges. Detailed analyses revealed new pathophysiological mechanisms: 25% (15/59) of variants demonstrated LOF, characterized by a "shift" of the voltage-dependent activation to more positive voltages, and nine variants resulted in a toxic gain-of-function, associated with a disrupted gate allowing inward transport at negative voltages. Functional results were not always in line with in silico pathogenicity scores, highlighting the complexity of pathogenicity assessment for accurate genetic counselling. The complex neurocognitive and psychiatric manifestations of this condition, and hitherto under-recognized impacts on growth, gastrointestinal function, and motor control are discussed. Including published cases, we summarize features in 122 individuals from 67 families with CLCN4-related neurodevelopmental condition and suggest future research directions with the aim of improving the integrated care for individuals with this diagnosis.
Collapse
Affiliation(s)
- Elizabeth E Palmer
- Centre for Clinical Genetics, Sydney Children's Hospital Network, Randwick, NSW, Australia.
- Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, University of New South Wales, Randwick, NSW, Australia.
| | | | | | - Caitlin Forwood
- Centre for Clinical Genetics, Sydney Children's Hospital Network, Randwick, NSW, Australia
| | - Matthew H Nguyen
- Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, University of New South Wales, Randwick, NSW, Australia
- Department of Clinical Genetics, Liverpool Hospital, Liverpool, NSW, Australia
| | - Vanessa Suckow
- Max Planck Institute for Molecular Genetics, Group Development and Disease, Berlin, Germany
| | - Jessica Gibbons
- Max Planck Institute for Molecular Genetics, Group Development and Disease, Berlin, Germany
| | - Alva Hoff
- Istituto di Biofisica, CNR, Genova, Italy
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, 581 83, Sweden
| | - Lisa Sigfrid
- Istituto di Biofisica, CNR, Genova, Italy
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, 581 83, Sweden
| | - Andre Megarbane
- Department of Human Genetics, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
- Institut Jerome Lejeune, Paris, France
| | - Mathilde Nizon
- Service de Génétique Médicale, CHU de Nantes, Nantes Université, Nantes, France
- Nantes Université, CNRS, INSERM, l'Institut du Thorax, Nantes, France
| | - Benjamin Cogné
- Service de Génétique Médicale, CHU de Nantes, Nantes Université, Nantes, France
- Nantes Université, CNRS, INSERM, l'Institut du Thorax, Nantes, France
| | - Claire Beneteau
- Service de Génétique Médicale, CHU de Nantes, Nantes Université, Nantes, France
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Aziza Chedrawi
- Department of Neurosciences, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mais O Hashem
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Hannah Stamberger
- Applied and Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Neurology Department, Antwerp University Hospital, Antwerp, Belgium
| | - Sarah Weckhuysen
- Applied and Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Neurology Department, Antwerp University Hospital, Antwerp, Belgium
- Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
| | - Arnaud Vanlander
- Department of Child Neurology & Metabolism, Ghent University Hospital, Ghent, Belgium
| | - Berten Ceulemans
- Department of Pediatric Neurology, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| | - Sulekha Rajagopalan
- Department of Clinical Genetics, Liverpool Hospital, Liverpool, NSW, Australia
| | - Kenneth Nunn
- Children's Hospital at Westmead, Sydney Children's Hospitals Network, Sydney, Australia
| | - Stéphanie Arpin
- Service de Génétique Clinique, Centre Hospitalier Régional Universitaire de Tours, Tours, France
| | - Martine Raynaud
- Service de Génétique Clinique, Centre Hospitalier Régional Universitaire de Tours, Tours, France
| | | | | | - Katrien Janssens
- Center of Medical Genetics, University Hospital Antwerp/University of Antwerp, Edegem, Belgium
| | - Marije Meuwissen
- Center of Medical Genetics, University Hospital Antwerp/University of Antwerp, Edegem, Belgium
| | - Diane Beysen
- Department of Pediatric Neurology, University Hospital Antwerp/University of Antwerp, Edegem, Belgium
| | - Nicola Dikow
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Mona Grimmel
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Emma Clement
- Department of Clinical Genetics, Great Ormond Street Hospital for Children, London, UK
| | - Amy McTague
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Neurology, Great Ormond Street Hospital, London, UK
| | - David Hunt
- Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton, UK
| | - Sharron Townshend
- Genetic Services of WA, King Edward Memorial Hospital, Subiaco, WA, Australia
| | - Michelle Ward
- Genetic Services of WA, King Edward Memorial Hospital, Subiaco, WA, Australia
| | - Linda J Richards
- Department of Neuroscience, Washington University in St Louis School of Medicine, St Louis, MI, USA
- The University of Queensland, Queensland Brain Institute, St Lucia, QLD, Australia
| | - Cas Simons
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, Australia
- Garvan Institute of Medical Research, UNSW, Sydney, NSW, Australia
| | - Gregory Costain
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Lucie Dupuis
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Roberto Mendoza-Londono
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Tracy Dudding-Byth
- Genetics of Learning Disability Service, Newcastle, NSW, Australia
- University of Newcastle Grow Up Well Priority Research Centre, Newcastle, NSW, Australia
| | - Jackie Boyle
- Genetics of Learning Disability Service, Newcastle, NSW, Australia
| | - Carol Saunders
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital and Clinics, MI, Kansas City, USA
- Kansas City School of Medicine, University of Missouri, Kansas City, MI, USA
| | - Emily Fleming
- Division of Clinical Genetics, Children's Mercy Hospital and Clinics, Kansas City, MI, USA
| | - Salima El Chehadeh
- Service de Génétique Médicale, Institut de Génétique Médicale d'Alsace (IGMA), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Laboratoire de Génétique Médicale, UMRS_1112, Institut de Génétique Médicale d'Alsace (IGMA), Université de Strasbourg et INSERM, Strasbourg, France
| | - Marie-Aude Spitz
- Service de Pédiatrie, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Amelie Piton
- Laboratoires de Diagnostic Génétique, Institut de Génétique Médicale d'Alsace (IGMA), Hôpitaux Universitaires de Strasbourg, Nouvel Hôpital Civil, Strasbourg, France
| | - Bénédicte Gerard
- Laboratoires de Diagnostic Génétique, Institut de Génétique Médicale d'Alsace (IGMA), Hôpitaux Universitaires de Strasbourg, Nouvel Hôpital Civil, Strasbourg, France
| | - Marie-Thérèse Abi Warde
- Service de Pédiatrie, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Pediatric Neurology Department, CHU de Strasbourg, Strasbourg, France
| | - Gillian Rea
- Northern Ireland Regional Genetics Service, Belfast, Northern Ireland
| | - Caoimhe McKenna
- Northern Ireland Regional Genetics Service, Belfast, Northern Ireland
| | - Sofia Douzgou
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Siddharth Banka
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Cigdem Akman
- Department of Neurology, Division of Child Neurology, Columbia University Irving Medical Center, New York, USA
| | - Jennifer M Bain
- Department of Neurology, Division of Child Neurology, Columbia University Irving Medical Center, New York, USA
| | - Tristan T Sands
- Department of Neurology, Division of Child Neurology, Columbia University Irving Medical Center, New York, USA
| | - Golder N Wilson
- Texas Tech Health Sciences Center Lubbock and KinderGenome Medical Genetics, Dallas, TX, USA
| | | | | | - Damien Lederer
- Centre de Génétique Humaine, Institut de Pathologie et de Génétique ASBL, Gosselies, Belgium
| | - Rani Sachdev
- Centre for Clinical Genetics, Sydney Children's Hospital Network, Randwick, NSW, Australia
- Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, University of New South Wales, Randwick, NSW, Australia
| | - Rebecca Macintosh
- Centre for Clinical Genetics, Sydney Children's Hospital Network, Randwick, NSW, Australia
- Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, University of New South Wales, Randwick, NSW, Australia
| | - Olivier Monestier
- Centre de Génétique Humaine, Institut de Pathologie et de Génétique ASBL, Gosselies, Belgium
| | - Deniz Karadurmus
- Centre de Génétique Humaine, Institut de Pathologie et de Génétique ASBL, Gosselies, Belgium
| | - Felicity Collins
- Department of Medical Genomics/Clinical Genetics, Royal Prince Alfred Hospital, Camperdown, Sydney, NSW, Australia
| | - Melissa Carter
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Luis Rohena
- Division of Medical Genetics, Department of Pediatrics, San Antonio Military Medical Center, San Antonio, TX, USA
- Department of Pediatrics, Long School of Medicine-UT Health San Antonio, San Antonio, TX, USA
| | - Marjolein H Willemsen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Charlotte W Ockeloen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sanne D Kroft
- Pluryn, Residential Care Setting, Groesbeek, The Netherlands
| | - Michael Field
- Genetics of Learning Disability Service, Newcastle, NSW, Australia
| | - Francisco E R Laranjeira
- Centro de Genética Médica Jacinto Magalhães, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Ana M Fortuna
- Unit for Multidisciplinary Research in Biomedicine, School of Medicine and Biomedical Sciences, Porto University, Porto, Portugal
| | - Ana R Soares
- Unit for Multidisciplinary Research in Biomedicine, School of Medicine and Biomedical Sciences, Porto University, Porto, Portugal
| | - Vincent Michaud
- Service de Génétique Médicale, CHU Bordeaux, Bordeaux, France
- INSERM U1211, Laboratoire Maladies Rares: Génétique et Métabolisme, Bordeaux, Univ., Bordeaux, France
| | - Sophie Naudion
- Service de Génétique Médicale, CHU Bordeaux, Bordeaux, France
| | - Sailaja Golla
- Child Neurology and Neurodevelopmental Medicine Thompson Autism Center, CHOC Hospital, Orange County, CA, USA
| | - David D Weaver
- Indiana University School of Medicine, Indianapolis, USA
| | - Lynne M Bird
- University of California, San Diego, Rady Children's Hospital San Diego, San Diego, CA, USA
| | - Jennifer Friedman
- University of California, San Diego, Rady Children's Hospital San Diego, San Diego, CA, USA
| | - Virginia Clowes
- North West Thames Regional Genetics Service, London North West University Healthcare NHS Trust, Harrow, London, UK
- Imperial College London, London, UK
| | - Shelagh Joss
- West of Scotland Centre for Genomic Medicine, Queen Elizabeth University Hospital, Glasgow, UK
| | - Laura Pölsler
- Centrum Medische Genetica, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Philippe M Campeau
- CHU Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
| | - Maria Blazo
- Division Clinical Genetics Texas A&M University Health Science Center, College Station, TX, USA
| | - Emilia K Bijlsma
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Jill A Rosenfeld
- Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor Genetics Laboratories, Houston, TX, USA
| | | | - Zöe Powis
- Clinical Genomics, Ambry Genetics, Aliso Viejo, CA, USA
| | | | | | | | | | - Shekeeb S Mohammad
- Children's Hospital at Westmead, Sydney Children's Hospitals Network, Sydney, Australia
- Children's Hospital at Westmead, Sydney Children's Hospitals Network, Sydney, NSW, Australia
| | - Ruth Armstrong
- East Anglian Medical Genetics Service, Clinical Genetics, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, UK
| | - Vera M Kalscheuer
- Max Planck Institute for Molecular Genetics, Group Development and Disease, Berlin, Germany.
| |
Collapse
|
3
|
Sobering AK, Bryant LM, Li D, McGaughran J, Maystadt I, Moortgat S, Graham JM, van Haeringen A, Ruivenkamp C, Cuperus R, Vogt J, Morton J, Brasch-Andersen C, Steenhof M, Hansen LK, Adler É, Lyonnet S, Pingault V, Sandrine M, Ziegler A, Donald T, Nelson B, Holt B, Petryna O, Firth H, McWalter K, Zyskind J, Telegrafi A, Juusola J, Person R, Bamshad MJ, Earl D, Tsai ACH, Yearwood KR, Marco E, Nowak C, Douglas J, Hakonarson H, Bhoj EJ. Variants in PHF8 cause a spectrum of X-linked neurodevelopmental disorders and facial dysmorphology. HGG ADVANCES 2022; 3:100102. [PMID: 35469323 PMCID: PMC9034099 DOI: 10.1016/j.xhgg.2022.100102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/18/2022] [Indexed: 01/25/2023] Open
Abstract
Loss-of-function variants in PHD Finger Protein 8 (PHF8) cause Siderius X-linked intellectual disability (ID) syndrome, hereafter called PHF8-XLID. PHF8 is a histone demethylase that is important for epigenetic regulation of gene expression. PHF8-XLID is an under-characterized disorder with only five previous reports describing different PHF8 predicted loss-of-function variants in eight individuals. Features of PHF8-XLID include ID and craniofacial dysmorphology. In this report we present 16 additional individuals with PHF8-XLID from 11 different families of diverse ancestry. We also present five individuals from four different families who have ID and a variant of unknown significance in PHF8 with no other explanatory variant in another gene. All affected individuals exhibited developmental delay and all but two had borderline to severe ID. Of the two who did not have ID, one had dyscalculia and the other had mild learning difficulties. Craniofacial findings such as hypertelorism, microcephaly, elongated face, ptosis, and mild facial asymmetry were found in some affected individuals. Orofacial clefting was seen in three individuals from our cohort, suggesting that this feature is less common than previously reported. Autism spectrum disorder and attention deficit hyperactivity disorder, which were not previously emphasized in PHF8-XLID, were frequently observed in affected individuals. This series expands the clinical phenotype of this rare ID syndrome caused by loss of PHF8 function.
Collapse
Affiliation(s)
- Andrew K. Sobering
- AU/UGA Medical Partnership, Department of Basic Sciences, University of Georgia Health Sciences Campus, Athens, GA 30602, USA
- St. George’s University, Department of Biochemistry, St. George’s, Grenada, West Indies
- Windward Islands Research and Education Foundation, True Blue, St. George’s, Grenada, West Indies
- Corresponding author
| | - Laura M. Bryant
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Dong Li
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Julie McGaughran
- Genetic Health Queensland, RBWH, Brisbane and The University of Queensland School of Medicine, Brisbane, QLD 4029, Australia
| | - Isabelle Maystadt
- Centre de Génétique Humaine, Institut de Pathologie et de Génétique, 6041 Gosselies, Belgium
| | - Stephanie Moortgat
- Centre de Génétique Humaine, Institut de Pathologie et de Génétique, 6041 Gosselies, Belgium
| | - John M. Graham
- Medical Genetics, Department of Pediatrics, Cedars-Sinai Medical Center, UCLA School of Medicine, Los Angeles, CA 90048, USA
| | | | | | - Roos Cuperus
- Juliana Children’s Hospital, HAGA Medical Center, The Hague, the Netherlands
| | - Julie Vogt
- Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham Women’s Hospital, Birmingham B15 2TG, UK
| | - Jenny Morton
- West Midlands Regional Clinical Genetics Service and Birmingham Health Partners, Birmingham Women’s Hospital NHS Foundation Trust, Birmingham B15 2TG, UK
| | - Charlotte Brasch-Andersen
- Department of Clinical Genetics, Odense University Hospital, Odense 5000, Denmark
- Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense 5000, Denmark
| | - Maria Steenhof
- Department of Clinical Genetics, Odense University Hospital, Odense 5000, Denmark
| | | | - Élodie Adler
- Fédération de Médecine Génomique and Imagine Institute, Université de Paris, Hôpital Necker-Enfants Malades, APHP, 75015 Paris, France
| | - Stanislas Lyonnet
- Fédération de Médecine Génomique and Imagine Institute, Université de Paris, Hôpital Necker-Enfants Malades, APHP, 75015 Paris, France
| | - Veronique Pingault
- Fédération de Médecine Génomique and Imagine Institute, Université de Paris, Hôpital Necker-Enfants Malades, APHP, 75015 Paris, France
| | - Marlin Sandrine
- Reference Center for Genetic Deafness, Fédération de Médecine Génomique and Imagine Institute, Université de Paris, Hôpital Necker-Enfants Malades, APHP, 75015 Paris, France
| | - Alban Ziegler
- Reference Center for Genetic Deafness, Fédération de Médecine Génomique and Imagine Institute, Université de Paris, Hôpital Necker-Enfants Malades, APHP, 75015 Paris, France
| | - Tyhiesia Donald
- Clinical Teaching Unit, St. George’s University School of Medicine, St. George’s, Grenada, West Indies
| | - Beverly Nelson
- Clinical Teaching Unit, St. George’s University School of Medicine, St. George’s, Grenada, West Indies
| | - Brandon Holt
- Department of Anatomical Sciences, St. George’s University, Grenada, West Indies
| | - Oleksandra Petryna
- Hackensack University Ocean Medical Center, Department of Psychiatry, Hackensack, NJ 08724, USA
| | - Helen Firth
- Department of Clinical Genetics, Cambridge University Hospitals, Box 134, Cambridge CB2 0QQ, UK
| | | | - Jacob Zyskind
- Clinical Genomics, GeneDx, Gaithersburg, MD 20877, USA
| | | | - Jane Juusola
- Clinical Genomics, GeneDx, Gaithersburg, MD 20877, USA
| | | | - Michael J. Bamshad
- Seattle Children’s Hospital, Seattle, WA 98105, USA
- Departments of Pediatrics and Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Brotman-Baty Institute, Seattle, WA 98195, USA
| | - Dawn Earl
- Seattle Children’s Hospital, Seattle, WA 98105, USA
| | | | - Anne Chun-Hui Tsai
- University of Oklahoma, Section of Genetics, 800 Stanton L Young Boulevard, Oklahoma City, OK 73117, USA
| | | | - Elysa Marco
- Cortica Healthcare, Marin Center, 4000 Civic Center Dr, Ste 100, San Rafael, CA 94903, USA
| | - Catherine Nowak
- Boston Children’s Hospital, Division of Genetics and Genomics, 60 Temple Place, 2nd Floor, Boston, MA 02111, USA
| | - Jessica Douglas
- Boston Children’s Hospital, Division of Genetics and Genomics, 60 Temple Place, 2nd Floor, Boston, MA 02111, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Elizabeth J. Bhoj
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Corresponding author
| |
Collapse
|
4
|
De novo and inherited mutations in the X-linked gene CLCN4 are associated with syndromic intellectual disability and behavior and seizure disorders in males and females. Mol Psychiatry 2018; 23:222-230. [PMID: 27550844 PMCID: PMC5794876 DOI: 10.1038/mp.2016.135] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 05/14/2016] [Accepted: 06/20/2016] [Indexed: 12/21/2022]
Abstract
Variants in CLCN4, which encodes the chloride/hydrogen ion exchanger CIC-4 prominently expressed in brain, were recently described to cause X-linked intellectual disability and epilepsy. We present detailed phenotypic information on 52 individuals from 16 families with CLCN4-related disorder: 5 affected females and 2 affected males with a de novo variant in CLCN4 (6 individuals previously unreported) and 27 affected males, 3 affected females and 15 asymptomatic female carriers from 9 families with inherited CLCN4 variants (4 families previously unreported). Intellectual disability ranged from borderline to profound. Behavioral and psychiatric disorders were common in both child- and adulthood, and included autistic features, mood disorders, obsessive-compulsive behaviors and hetero- and autoaggression. Epilepsy was common, with severity ranging from epileptic encephalopathy to well-controlled seizures. Several affected individuals showed white matter changes on cerebral neuroimaging and progressive neurological symptoms, including movement disorders and spasticity. Heterozygous females can be as severely affected as males. The variability of symptoms in females is not correlated with the X inactivation pattern studied in their blood. The mutation spectrum includes frameshift, missense and splice site variants and one single-exon deletion. All missense variants were predicted to affect CLCN4's function based on in silico tools and either segregated with the phenotype in the family or were de novo. Pathogenicity of all previously unreported missense variants was further supported by electrophysiological studies in Xenopus laevis oocytes. We compare CLCN4-related disorder with conditions related to dysfunction of other members of the CLC family.
Collapse
|
5
|
Hu H, Haas SA, Chelly J, Van Esch H, Raynaud M, de Brouwer APM, Weinert S, Froyen G, Frints SGM, Laumonnier F, Zemojtel T, Love MI, Richard H, Emde AK, Bienek M, Jensen C, Hambrock M, Fischer U, Langnick C, Feldkamp M, Wissink-Lindhout W, Lebrun N, Castelnau L, Rucci J, Montjean R, Dorseuil O, Billuart P, Stuhlmann T, Shaw M, Corbett MA, Gardner A, Willis-Owen S, Tan C, Friend KL, Belet S, van Roozendaal KEP, Jimenez-Pocquet M, Moizard MP, Ronce N, Sun R, O'Keeffe S, Chenna R, van Bömmel A, Göke J, Hackett A, Field M, Christie L, Boyle J, Haan E, Nelson J, Turner G, Baynam G, Gillessen-Kaesbach G, Müller U, Steinberger D, Budny B, Badura-Stronka M, Latos-Bieleńska A, Ousager LB, Wieacker P, Rodríguez Criado G, Bondeson ML, Annerén G, Dufke A, Cohen M, Van Maldergem L, Vincent-Delorme C, Echenne B, Simon-Bouy B, Kleefstra T, Willemsen M, Fryns JP, Devriendt K, Ullmann R, Vingron M, Wrogemann K, Wienker TF, Tzschach A, van Bokhoven H, Gecz J, Jentsch TJ, Chen W, Ropers HH, Kalscheuer VM. X-exome sequencing of 405 unresolved families identifies seven novel intellectual disability genes. Mol Psychiatry 2016; 21:133-48. [PMID: 25644381 PMCID: PMC5414091 DOI: 10.1038/mp.2014.193] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 11/17/2014] [Accepted: 12/08/2014] [Indexed: 12/27/2022]
Abstract
X-linked intellectual disability (XLID) is a clinically and genetically heterogeneous disorder. During the past two decades in excess of 100 X-chromosome ID genes have been identified. Yet, a large number of families mapping to the X-chromosome remained unresolved suggesting that more XLID genes or loci are yet to be identified. Here, we have investigated 405 unresolved families with XLID. We employed massively parallel sequencing of all X-chromosome exons in the index males. The majority of these males were previously tested negative for copy number variations and for mutations in a subset of known XLID genes by Sanger sequencing. In total, 745 X-chromosomal genes were screened. After stringent filtering, a total of 1297 non-recurrent exonic variants remained for prioritization. Co-segregation analysis of potential clinically relevant changes revealed that 80 families (20%) carried pathogenic variants in established XLID genes. In 19 families, we detected likely causative protein truncating and missense variants in 7 novel and validated XLID genes (CLCN4, CNKSR2, FRMPD4, KLHL15, LAS1L, RLIM and USP27X) and potentially deleterious variants in 2 novel candidate XLID genes (CDK16 and TAF1). We show that the CLCN4 and CNKSR2 variants impair protein functions as indicated by electrophysiological studies and altered differentiation of cultured primary neurons from Clcn4(-/-) mice or after mRNA knock-down. The newly identified and candidate XLID proteins belong to pathways and networks with established roles in cognitive function and intellectual disability in particular. We suggest that systematic sequencing of all X-chromosomal genes in a cohort of patients with genetic evidence for X-chromosome locus involvement may resolve up to 58% of Fragile X-negative cases.
Collapse
Affiliation(s)
- H Hu
- Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - S A Haas
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - J Chelly
- University Paris Descartes, Paris, France,Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104, Institut National de la Santé et de la Recherche Médicale Unité 1016, Institut Cochin, Paris, France
| | - H Van Esch
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - M Raynaud
- Inserm U930 ‘Imaging and Brain', Tours, France,University François-Rabelais, Tours, France,Centre Hospitalier Régional Universitaire, Service de Génétique, Tours, France
| | - A P M de Brouwer
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - S Weinert
- Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany,Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany
| | - G Froyen
- Human Genome Laboratory, VIB Center for the Biology of Disease, Leuven, Belgium,Human Genome Laboratory, Department of Human Genetics, K.U. Leuven, Leuven, Belgium
| | - S G M Frints
- Department of Clinical Genetics, Maastricht University Medical Center, azM, Maastricht, The Netherlands,School for Oncology and Developmental Biology, GROW, Maastricht University, Maastricht, The Netherlands
| | - F Laumonnier
- Inserm U930 ‘Imaging and Brain', Tours, France,University François-Rabelais, Tours, France
| | - T Zemojtel
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - M I Love
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - H Richard
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - A-K Emde
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - M Bienek
- Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - C Jensen
- Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - M Hambrock
- Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - U Fischer
- Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - C Langnick
- Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | - M Feldkamp
- Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | - W Wissink-Lindhout
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - N Lebrun
- University Paris Descartes, Paris, France,Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104, Institut National de la Santé et de la Recherche Médicale Unité 1016, Institut Cochin, Paris, France
| | - L Castelnau
- University Paris Descartes, Paris, France,Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104, Institut National de la Santé et de la Recherche Médicale Unité 1016, Institut Cochin, Paris, France
| | - J Rucci
- University Paris Descartes, Paris, France,Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104, Institut National de la Santé et de la Recherche Médicale Unité 1016, Institut Cochin, Paris, France
| | - R Montjean
- University Paris Descartes, Paris, France,Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104, Institut National de la Santé et de la Recherche Médicale Unité 1016, Institut Cochin, Paris, France
| | - O Dorseuil
- University Paris Descartes, Paris, France,Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104, Institut National de la Santé et de la Recherche Médicale Unité 1016, Institut Cochin, Paris, France
| | - P Billuart
- University Paris Descartes, Paris, France,Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104, Institut National de la Santé et de la Recherche Médicale Unité 1016, Institut Cochin, Paris, France
| | - T Stuhlmann
- Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany,Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany
| | - M Shaw
- School of Paediatrics and Reproductive Health, The University of Adelaide, Adelaide, SA, Australia,Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - M A Corbett
- School of Paediatrics and Reproductive Health, The University of Adelaide, Adelaide, SA, Australia,Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - A Gardner
- School of Paediatrics and Reproductive Health, The University of Adelaide, Adelaide, SA, Australia,Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - S Willis-Owen
- School of Paediatrics and Reproductive Health, The University of Adelaide, Adelaide, SA, Australia,National Heart and Lung Institute, Imperial College London, London, UK
| | - C Tan
- School of Paediatrics and Reproductive Health, The University of Adelaide, Adelaide, SA, Australia
| | - K L Friend
- SA Pathology, Women's and Children's Hospital, Adelaide, SA, Australia
| | - S Belet
- Human Genome Laboratory, VIB Center for the Biology of Disease, Leuven, Belgium,Human Genome Laboratory, Department of Human Genetics, K.U. Leuven, Leuven, Belgium
| | - K E P van Roozendaal
- Department of Clinical Genetics, Maastricht University Medical Center, azM, Maastricht, The Netherlands,School for Oncology and Developmental Biology, GROW, Maastricht University, Maastricht, The Netherlands
| | - M Jimenez-Pocquet
- Centre Hospitalier Régional Universitaire, Service de Génétique, Tours, France
| | - M-P Moizard
- Inserm U930 ‘Imaging and Brain', Tours, France,University François-Rabelais, Tours, France,Centre Hospitalier Régional Universitaire, Service de Génétique, Tours, France
| | - N Ronce
- Inserm U930 ‘Imaging and Brain', Tours, France,University François-Rabelais, Tours, France,Centre Hospitalier Régional Universitaire, Service de Génétique, Tours, France
| | - R Sun
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - S O'Keeffe
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - R Chenna
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - A van Bömmel
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - J Göke
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - A Hackett
- Genetics of Learning and Disability Service, Hunter Genetics, Waratah, NSW, Australia
| | - M Field
- Genetics of Learning and Disability Service, Hunter Genetics, Waratah, NSW, Australia
| | - L Christie
- Genetics of Learning and Disability Service, Hunter Genetics, Waratah, NSW, Australia
| | - J Boyle
- Genetics of Learning and Disability Service, Hunter Genetics, Waratah, NSW, Australia
| | - E Haan
- School of Paediatrics and Reproductive Health, The University of Adelaide, Adelaide, SA, Australia,SA Pathology, Women's and Children's Hospital, Adelaide, SA, Australia
| | - J Nelson
- Genetic Services of Western Australia, King Edward Memorial Hospital, Perth, WA, Australia
| | - G Turner
- Genetics of Learning and Disability Service, Hunter Genetics, Waratah, NSW, Australia
| | - G Baynam
- Genetic Services of Western Australia, King Edward Memorial Hospital, Perth, WA, Australia,School of Paediatrics and Child Health, University of Western Australia, Perth, WA, Australia,Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA, Australia,Telethon Kids Institute, Perth, WA, Australia
| | | | - U Müller
- Institut für Humangenetik, Justus-Liebig-Universität Giessen, Giessen, Germany,bio.logis Center for Human Genetics, Frankfurt a. M., Germany
| | - D Steinberger
- Institut für Humangenetik, Justus-Liebig-Universität Giessen, Giessen, Germany,bio.logis Center for Human Genetics, Frankfurt a. M., Germany
| | - B Budny
- Chair and Department of Endocrinology, Metabolism and Internal Diseases, Ponzan University of Medical Sciences, Poznan, Poland
| | - M Badura-Stronka
- Chair and Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - A Latos-Bieleńska
- Chair and Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - L B Ousager
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - P Wieacker
- Institut für Humangenetik, Universitätsklinikum Münster, Muenster, Germany
| | | | - M-L Bondeson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - G Annerén
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - A Dufke
- Institut für Medizinische Genetik und Angewandte Genomik, Tübingen, Germany
| | - M Cohen
- Kinderzentrum München, München, Germany
| | - L Van Maldergem
- Centre de Génétique Humaine, Université de Franche-Comté, Besançon, France
| | - C Vincent-Delorme
- Service de Génétique, Hôpital Jeanne de Flandre CHRU de Lilles, Lille, France
| | - B Echenne
- Service de Neuro-Pédiatrie, CHU Montpellier, Montpellier, France
| | - B Simon-Bouy
- Laboratoire SESEP, Centre hospitalier de Versailles, Le Chesnay, France
| | - T Kleefstra
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - M Willemsen
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - J-P Fryns
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - K Devriendt
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - R Ullmann
- Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - M Vingron
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - K Wrogemann
- Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany,Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
| | - T F Wienker
- Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - A Tzschach
- Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - H van Bokhoven
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - J Gecz
- School of Paediatrics and Reproductive Health, The University of Adelaide, Adelaide, SA, Australia,Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - T J Jentsch
- Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany,Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany
| | - W Chen
- Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany,Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | - H-H Ropers
- Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - V M Kalscheuer
- Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany,Max Planck Institute for Molecular Genetics, Ihnestrasse 73, Berlin 14195, Germany. E-mail:
| |
Collapse
|
6
|
Armanet N, Metay C, Brisset S, Deschenes G, Pineau D, Petit FM, Di Rocco F, Goossens M, Tachdjian G, Labrune P, Tosca L. Double Xp11.22 deletion including SHROOM4 and CLCN5 associated with severe psychomotor retardation and Dent disease. Mol Cytogenet 2015; 8:8. [PMID: 25670966 PMCID: PMC4322561 DOI: 10.1186/s13039-015-0107-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 01/08/2015] [Indexed: 11/23/2022] Open
Abstract
Background Here we report the clinical and molecular characterization of two Xp11.22 deletions including SHROOM4 and CLCN5 genes. These deletions appeared in the same X chromosome of the same patient. Results The patient is a six-year-old boy who presented hydrocephalus, severe psychomotor and growth retardation, facial dysmorphism and renal proximal tubulopathy associated with low-molecular-weight proteinuria, hypercalciuria, hyperaminoaciduria, hypophosphatemia and hyperuricemia. Standard and high resolution karyotypes showed a 46,XY formula. Array-CGH revealed two consecutive cryptic deletions in the region Xp11.22, measuring respectively 148 Kb and 2.6 Mb. The two deletions were inherited from the asymptomatic mother. Conclusions Array-CGH allowed us to determine candidate genes in the deleted region. The disruption and partial loss of CLCN5 confirmed the diagnostic of Dent disease for this patient. Moreover, the previously described involvement of SHROOM4 in neuronal development is discussed.
Collapse
Affiliation(s)
- Narjes Armanet
- Service d'Histologie, Embryologie et Cytogénétique, Hôpitaux Universitaires Paris-Sud. Hôpital Antoine Béclère, 157 rue de la Porte de Trivaux, 92141, Clamart, F-92140 France.,Université Paris-Sud, Le Kremlin-Bicêtre, F-94276 France
| | - Corinne Metay
- Plateforme de Génomique IMRB 955, Hôpital Henri Mondor, Créteil, F-94010 France
| | - Sophie Brisset
- Service d'Histologie, Embryologie et Cytogénétique, Hôpitaux Universitaires Paris-Sud. Hôpital Antoine Béclère, 157 rue de la Porte de Trivaux, 92141, Clamart, F-92140 France.,Université Paris-Sud, Le Kremlin-Bicêtre, F-94276 France
| | - Georges Deschenes
- Service de Néphrologie pédiatrique, Hôpital Robert Debré, Paris, F-75935 France
| | - Dominique Pineau
- Service d'Histologie, Embryologie et Cytogénétique, Hôpitaux Universitaires Paris-Sud. Hôpital Antoine Béclère, 157 rue de la Porte de Trivaux, 92141, Clamart, F-92140 France
| | - François M Petit
- Laboratoire de Génétique Moléculaire, Hôpitaux Universitaires Paris-Sud. Hôpital Antoine Béclère, Clamart, F-92140 France
| | - Federico Di Rocco
- Service de Neurochirurgie pédiatrique, Hôpital Necker Enfants Malades, Clamart, F-75015 France
| | - Michel Goossens
- Plateforme de Génomique IMRB 955, Hôpital Henri Mondor, Créteil, F-94010 France.,Université Paris Est, Créteil, F-94010 France
| | - Gérard Tachdjian
- Service d'Histologie, Embryologie et Cytogénétique, Hôpitaux Universitaires Paris-Sud. Hôpital Antoine Béclère, 157 rue de la Porte de Trivaux, 92141, Clamart, F-92140 France.,Université Paris-Sud, Le Kremlin-Bicêtre, F-94276 France
| | - Philippe Labrune
- Université Paris-Sud, Le Kremlin-Bicêtre, F-94276 France.,Service de Pédiatrie, Hôpitaux Universitaires Paris-Sud. Hôpital Antoine Béclère, Clamart, F-92140 France
| | - Lucie Tosca
- Service d'Histologie, Embryologie et Cytogénétique, Hôpitaux Universitaires Paris-Sud. Hôpital Antoine Béclère, 157 rue de la Porte de Trivaux, 92141, Clamart, F-92140 France.,Université Paris-Sud, Le Kremlin-Bicêtre, F-94276 France
| |
Collapse
|
7
|
Qiao Y, Liu X, Harvard C, Hildebrand MJ, Rajcan-Separovic E, Holden JJA, Lewis MES. Autism-associated familial microdeletion of Xp11.22. Clin Genet 2008; 74:134-44. [PMID: 18498374 DOI: 10.1111/j.1399-0004.2008.01028.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We describe two brothers with autistic disorder, intellectual disability (ID) and cleft lip/palate with a microdeletion of Xp11.22 detected through screening individuals with autism spectrum disorders (ASDs) for microdeletions and duplications using 1-Mb resolution array comparative genomic hybridization. The deletion was confirmed by fluorescence in situ hybridization/real-time quantitative polymerase chain reaction (RT-qPCR) and shown to be inherited from their unaffected mother who had skewed (100%) X inactivation of the aberrant chromosome. RT-qPCR characterization of the del(X)(p11.22) region ( approximately 53,887,000-54,359,000 bp) revealed complete deletion of the plant homeodomain finger protein 8 (PHF8) gene as well as deletions of the FAM120C and WNK lysine-deficient protein kinase 3 (WNK3) genes, for which a definitive phenotype has not been previously characterized. Xp11.2 is a gene-rich region within the critical linkage interval for several neurodevelopmental disorders. Rare interstitial microdeletions of Xp11.22 have been recognized with ID, craniofacial dysmorphism and/or cleft lip/palate and truncating mutations of the PHF8 gene within this region. Despite evidence implicating genes within Xp11.22 with language and cognitive development that could contribute to an ASD phenotype, their involvement with autism has not been systematically evaluated. Population screening of 481 (319 males/81 females) and 282 X chromosomes (90 males/96 females) in respective ASD and control cohorts did not identify additional subjects carrying this deletion. Our findings show that in addition to point mutations, a complete deletion of the PHF8 gene is associated with the X-linked mental retardation Siderius-Hamel syndrome (OMIM 300263) and further suggest that the larger size of the Xp11.22 deletion including genes FAM120C and WNK3 may be involved in the pathogenesis of autism.
Collapse
Affiliation(s)
- Y Qiao
- Department of Medical Genetics, and Department of Pathology, Child and Family Research Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | |
Collapse
|
8
|
Jensen LR, Lenzner S, Moser B, Freude K, Tzschach A, Wei C, Fryns JP, Chelly J, Turner G, Moraine C, Hamel B, Ropers HH, Kuss AW. X-linked mental retardation: a comprehensive molecular screen of 47 candidate genes from a 7.4 Mb interval in Xp11. Eur J Hum Genet 2006; 15:68-75. [PMID: 16969374 DOI: 10.1038/sj.ejhg.5201714] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
About 30% of the mutations causing nonsyndromic X-linked mental retardation (MRX) are thought to be located in Xp11 and in the pericentromeric region, with a particular clustering of gene defects in a 7.4 Mb interval flanked by the genes ELK1 and ALAS2. To search for these mutations, 47 brain-expressed candidate genes located in this interval have been screened for mutations in up to 22 mental retardation (MR) families linked to this region. In total, we have identified 57 sequence variants in exons and splice sites of 27 genes. Based on these data, four novel MR genes were identified, but most of the sequence variants observed during this study have not yet been described. The purpose of this article is to present a comprehensive overview of this work and its outcome. It describes all sequence variants detected in 548 exons and their flanking sequences, including disease-causing mutations as well as possibly relevant polymorphic and silent sequence changes. We show that many of the studied genes are unlikely to play a major role in MRX. This information will help to avoid duplication of efforts in the ongoing endeavor to unravel the molecular causes of MRX.
Collapse
Affiliation(s)
- Lars Riff Jensen
- Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Lugtenberg D, de Brouwer APM, Kleefstra T, Oudakker AR, Frints SGM, Schrander-Stumpel CTRM, Fryns JP, Jensen LR, Chelly J, Moraine C, Turner G, Veltman JA, Hamel BCJ, de Vries BBA, van Bokhoven H, Yntema HG. Chromosomal copy number changes in patients with non-syndromic X linked mental retardation detected by array CGH. J Med Genet 2005; 43:362-70. [PMID: 16169931 PMCID: PMC2563232 DOI: 10.1136/jmg.2005.036178] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Several studies have shown that array based comparative genomic hybridisation (CGH) is a powerful tool for the detection of copy number changes in the genome of individuals with a congenital disorder. In this study, 40 patients with non-specific X linked mental retardation were analysed with full coverage, X chromosomal, bacterial artificial chromosome arrays. Copy number changes were validated by multiplex ligation dependent probe amplification as a fast method to detect duplications and deletions in patient and control DNA. This approach has the capacity to detect copy number changes as small as 100 kb. We identified three causative duplications: one family with a 7 Mb duplication in Xp22.2 and two families with a 500 kb duplication in Xq28 encompassing the MECP2 gene. In addition, we detected four regions with copy number changes that were frequently identified in our group of patients and therefore most likely represent genomic polymorphisms. These results confirm the power of array CGH as a diagnostic tool, but also emphasise the necessity to perform proper validation experiments by an independent technique.
Collapse
Affiliation(s)
- D Lugtenberg
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
des Portes V, Beldjord C, Chelly J, Hamel B, Kremer H, Smits A, van Bokhoven H, Ropers HH, Claes S, Fryns JP, Ronce N, Gendrot C, Toutain A, Raynaud M, Moraine C. X-linked nonspecific mental retardation (MRX) linkage studies in 25 unrelated families: the European XLMR consortium. AMERICAN JOURNAL OF MEDICAL GENETICS 1999; 85:263-5. [PMID: 10398240 DOI: 10.1002/(sici)1096-8628(19990730)85:3<263::aid-ajmg15>3.0.co;2-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
|
12
|
Jones KJ, North KN. Developmental delay, expressive aphasia, hypotonia and dysmorphism in two brothers: an X-linked mental retardation syndrome? Clin Genet 1998; 54:443-5. [PMID: 9843001 DOI: 10.1111/j.1399-0004.1998.tb03762.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Raynaud M, Ronce N, Ayrault AD, Francannet C, Malpuech G, Moraine C. X-linked mental retardation with isolated growth hormone deficiency is mapped to Xq22-Xq27.2 in one family. ACTA ACUST UNITED AC 1998. [DOI: 10.1002/(sici)1096-8628(19980319)76:3<255::aid-ajmg10>3.0.co;2-g] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Abstract
A current list of all known forms of X-linked mental retardation (XLMR) and a slightly revised classification are presented. The number of known disorders has not increased because 6 disorders have been combined based on new molecular data or on clinical grounds and only 6 newly described XLMR disorders have been reported. Of the current 105 XLMR disorders, 34 have been mapped, and 18 disorders and 1 nonspecific XLMR (FRAXE) have been cloned. The number of families with nonspecific XLMR with a LOD score of > or = 2.0 has more than doubled, with 42 (including FRAXE) now being known. a summary of the localization of presumed nonspecific mental retardation (MR) genes from well-studied X-chromosomal translocations and deletions is also included. Only 10-12 nonoverlapping loci are required to explain all localizations of nonspecific MR from both approaches. These new trends mark the beginning of a significantly improved understanding of the role of genes on the X chromosome in producing MR. Continued close collaboration between clinical and molecular investigators will be required to complete the process.
Collapse
Affiliation(s)
- H A Lubs
- Department of Medical Genetics, University Hospital of Tromsø, Norway
| | | | | | | | | | | |
Collapse
|