1
|
Uchiyama H, Matsutani S, Ohno H, Yamaoka S, Mizokami T, Sugimoto S, Hirashima Y. Bipolar cells containing protein kinase Cα mediate attentional facilitation of the avian retinal ganglion cells by the retinopetal signal. J Comp Neurol 2023. [PMID: 37130818 DOI: 10.1002/cne.25491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 03/27/2023] [Accepted: 04/05/2023] [Indexed: 05/04/2023]
Abstract
Birds have a well-developed retinopetal system projecting from the midbrain to the contralateral retina. The signal sent to the retina through the retinopetal system facilitates visual responses of the retinal ganglion cells (RGCs), and the retinopetal signals function as attentional signals during visual search. Thus, the retinopetal signal somehow reaches and facilitates visual responses of the RGCs. However, the tertiary neuron of the retinopetal system, the isthmo-optic target cell (IOTC), is unlikely to contact most RGCs directly, because the IOTCs form axon terminals localized in the outermost sublayer (lamina 1) of the inner plexiform layer (IPL) where few RGC dendrites terminate. Therefore, some other intrinsic retinal neurons must be involved in the centrifugal attentional enhancement of visual responses of the RGCs. We investigated connections of the target cells of the IOTCs in chicken and quail, using light and electron microscopic immunohistochemistry. We show that axon terminals of the IOTC make synaptic contacts with protein kinase Cα (PKCα)-immunoreactive (ir) bipolar cells (PKCα-BCs) in lamina 1 of the IPL. Furthermore, with prolonged electrical stimulation of the isthmo-optic nucleus (ION) on one side, whose neurons send their axons to the contralateral retina and make synaptic contacts there with IOTCs, phosphorylation of cAMP response element-binding protein was observed in the PKCα-BCs in the contralateral retina, but not in the ipsilateral retina. This suggests that electrical stimulation of ION activated PKCα-BCs through synapses from IOTCs to PKCα-BCs, thus stimulating transcription in PKCα-BCs. Thus, centrifugal attentional signals may facilitate visual responses of RGCs via the PKCα-BCs.
Collapse
Affiliation(s)
- Hiroyuki Uchiyama
- Department of Information Science and Biomedical Engineering, Graduate School of Science and Engineering, Kagoshima University, Kagoshima, Japan
| | - Shinji Matsutani
- Department of Functional Morphology, School of Nursing, Kitasato University, Sagamihara, Japan
| | - Hiroshi Ohno
- Department of Information Science and Biomedical Engineering, Graduate School of Science and Engineering, Kagoshima University, Kagoshima, Japan
| | - Seiya Yamaoka
- Department of Information Science and Biomedical Engineering, Graduate School of Science and Engineering, Kagoshima University, Kagoshima, Japan
| | - Takuya Mizokami
- Department of Information Science and Biomedical Engineering, Graduate School of Science and Engineering, Kagoshima University, Kagoshima, Japan
| | - Shiho Sugimoto
- Department of Information Science and Biomedical Engineering, Graduate School of Science and Engineering, Kagoshima University, Kagoshima, Japan
| | - Yasuhiro Hirashima
- Department of Information Science and Biomedical Engineering, Graduate School of Science and Engineering, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
2
|
Electrophysiology of ionotropic GABA receptors. Cell Mol Life Sci 2021; 78:5341-5370. [PMID: 34061215 PMCID: PMC8257536 DOI: 10.1007/s00018-021-03846-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/02/2021] [Accepted: 04/23/2021] [Indexed: 10/30/2022]
Abstract
GABAA receptors are ligand-gated chloride channels and ionotropic receptors of GABA, the main inhibitory neurotransmitter in vertebrates. In this review, we discuss the major and diverse roles GABAA receptors play in the regulation of neuronal communication and the functioning of the brain. GABAA receptors have complex electrophysiological properties that enable them to mediate different types of currents such as phasic and tonic inhibitory currents. Their activity is finely regulated by membrane voltage, phosphorylation and several ions. GABAA receptors are pentameric and are assembled from a diverse set of subunits. They are subdivided into numerous subtypes, which differ widely in expression patterns, distribution and electrical activity. Substantial variations in macroscopic neural behavior can emerge from minor differences in structure and molecular activity between subtypes. Therefore, the diversity of GABAA receptors widens the neuronal repertoire of responses to external signals and contributes to shaping the electrical activity of neurons and other cell types.
Collapse
|
3
|
Popova E. GABAergic neurotransmission and retinal ganglion cell function. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015; 201:261-83. [PMID: 25656810 DOI: 10.1007/s00359-015-0981-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 01/19/2015] [Accepted: 01/21/2015] [Indexed: 01/13/2023]
Abstract
Ganglion cells are the output retinal neurons that convey visual information to the brain. There are ~20 different types of ganglion cells, each encoding a specific aspect of the visual scene as spatial and temporal contrast, orientation, direction of movement, presence of looming stimuli; etc. Ganglion cell functioning depends on the intrinsic properties of ganglion cell's membrane as well as on the excitatory and inhibitory inputs that these cells receive from other retinal neurons. GABA is one of the most abundant inhibitory neurotransmitters in the retina. How it modulates the activity of different types of ganglion cells and what is its significance in extracting the basic features from visual scene are questions with fundamental importance in visual neuroscience. The present review summarizes current data concerning the types of membrane receptors that mediate GABA action in proximal retina; the effects of GABA and its antagonists on the ganglion cell light-evoked postsynaptic potentials and spike discharges; the action of GABAergic agents on centre-surround organization of the receptive fields and feature related ganglion cell activity. Special emphasis is put on the GABA action regarding the ON-OFF and sustained-transient ganglion cell dichotomy in both nonmammalian and mammalian retina.
Collapse
Affiliation(s)
- E Popova
- Department of Physiology, Medical Faculty, Medical University, 1431, Sofia, Bulgaria,
| |
Collapse
|
4
|
Sha F, Ye X, Zhao W, Xu CL, Wang L, Ding MH, Bi AL, Wu JF, Jiang WJ, Guo DD, Guo JG, Bi HS. Effects of electroacupuncture on the levels of retinal gamma-aminobutyric acid and its receptors in a guinea pig model of lens-induced myopia. Neuroscience 2014; 287:164-74. [PMID: 25542423 DOI: 10.1016/j.neuroscience.2014.12.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 12/05/2014] [Indexed: 12/01/2022]
Abstract
Gamma-aminobutyric acid (GABA) is a major inhibitory neurotransmitter of the retina and affects myopic development. Electroacupuncture (EA) is widely utilized to treat myopia in clinical settings. However, there are few reports on whether EA affects the level of retinal GABA during myopic development. To study this issue, in the present study, we explored the changes of retinal GABA content and the expression of its receptor subtypes, and the effects of EA stimulation on them in a guinea pig model with lens-induced myopia (LIM). Our results showed that the content of GABA and the expression of GABAA and GABAC receptors of retina were up-regulated during the development of myopia, and this up-regulation was inhibited by applying EA to Hegu (LI4) and Taiyang (EX-HN5) acupoints. Moreover, these effects of EA show a positional specificity. While applying EA at a sham acupoint, no apparent change of myopic retinal GABA and its receptor subtypes was observed. Taken together, our findings suggest that LIM is effective to up-regulate the level of retinal GABA, GABAA and GABAC receptors in guinea pigs and the effect may be inhibited by EA stimulation at LI4 and EX-HN5 acupoints.
Collapse
Affiliation(s)
- F Sha
- Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - X Ye
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, No. 48#, Yingxiongshan Road, Jinan 250002, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases in Universities of Shandong, No. 48#, Yingxiongshan Road, Jinan 250002, China; Eye Institute of Shandong University of Traditional Chinese Medicine, No. 48#, Yingxiongshan Road, Jinan 250002, China
| | - W Zhao
- Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - C-L Xu
- Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - L Wang
- Shandong University of Traditional Chinese Medicine, Jinan 250002, China; Jining Medical University, Jining, Shandong Province 272000, China
| | - M-H Ding
- Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - A-L Bi
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, No. 48#, Yingxiongshan Road, Jinan 250002, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases in Universities of Shandong, No. 48#, Yingxiongshan Road, Jinan 250002, China; Eye Institute of Shandong University of Traditional Chinese Medicine, No. 48#, Yingxiongshan Road, Jinan 250002, China
| | - J-F Wu
- Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - W-J Jiang
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, No. 48#, Yingxiongshan Road, Jinan 250002, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases in Universities of Shandong, No. 48#, Yingxiongshan Road, Jinan 250002, China; Eye Institute of Shandong University of Traditional Chinese Medicine, No. 48#, Yingxiongshan Road, Jinan 250002, China
| | - D-D Guo
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, No. 48#, Yingxiongshan Road, Jinan 250002, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases in Universities of Shandong, No. 48#, Yingxiongshan Road, Jinan 250002, China; Eye Institute of Shandong University of Traditional Chinese Medicine, No. 48#, Yingxiongshan Road, Jinan 250002, China
| | - J-G Guo
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, No. 48#, Yingxiongshan Road, Jinan 250002, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases in Universities of Shandong, No. 48#, Yingxiongshan Road, Jinan 250002, China; Eye Institute of Shandong University of Traditional Chinese Medicine, No. 48#, Yingxiongshan Road, Jinan 250002, China
| | - H-S Bi
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, No. 48#, Yingxiongshan Road, Jinan 250002, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases in Universities of Shandong, No. 48#, Yingxiongshan Road, Jinan 250002, China; Eye Institute of Shandong University of Traditional Chinese Medicine, No. 48#, Yingxiongshan Road, Jinan 250002, China; Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, No. 48#, Yingxiongshan Road, Jinan 250002, China.
| |
Collapse
|
5
|
Popova E. Ionotropic GABA Receptors and Distal Retinal ON and OFF Responses. SCIENTIFICA 2014; 2014:149187. [PMID: 25143858 PMCID: PMC4131092 DOI: 10.1155/2014/149187] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/24/2014] [Accepted: 05/27/2014] [Indexed: 05/27/2023]
Abstract
In the vertebrate retina, visual signals are segregated into parallel ON and OFF pathways, which provide information for light increments and decrements. The segregation is first evident at the level of the ON and OFF bipolar cells in distal retina. The activity of large populations of ON and OFF bipolar cells is reflected in the b- and d-waves of the diffuse electroretinogram (ERG). The role of gamma-aminobutyric acid (GABA), acting through ionotropic GABA receptors in shaping the ON and OFF responses in distal retina, is a matter of debate. This review summarized current knowledge about the types of the GABAergic neurons and ionotropic GABA receptors in the retina as well as the effects of GABA and specific GABAA and GABAC receptor antagonists on the activity of the ON and OFF bipolar cells in both nonmammalian and mammalian retina. Special emphasis is put on the effects on b- and d-waves of the ERG as a useful tool for assessment of the overall function of distal retinal ON and OFF channels. The role of GABAergic system in establishing the ON-OFF asymmetry concerning the time course and absolute and relative sensitivity of the ERG responses under different conditions of light adaptation in amphibian retina is also discussed.
Collapse
Affiliation(s)
- E. Popova
- Department of Physiology, Medical Faculty, Medical University, 1431 Sofia, Bulgaria
| |
Collapse
|
6
|
Schubert T, Hoon M, Euler T, Lukasiewicz PD, Wong ROL. Developmental regulation and activity-dependent maintenance of GABAergic presynaptic inhibition onto rod bipolar cell axonal terminals. Neuron 2013; 78:124-37. [PMID: 23583111 DOI: 10.1016/j.neuron.2013.01.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2013] [Indexed: 01/12/2023]
Abstract
Presynaptic inhibition onto axons regulates neuronal output, but how such inhibitory synapses develop and are maintained in vivo remains unclear. Axon terminals of glutamatergic retinal rod bipolar cells (RBCs) receive GABAA and GABAC receptor-mediated synaptic inhibition. We found that perturbing GABAergic or glutamatergic neurotransmission does not prevent GABAergic synaptogenesis onto RBC axons. But, GABA release is necessary for maintaining axonal GABA receptors. This activity-dependent process is receptor subtype specific: GABAC receptors are maintained, whereas GABAA receptors containing α1, but not α3, subunits decrease over time in mice with deficient GABA synthesis. GABAA receptor distribution on RBC axons is unaffected in GABAC receptor knockout mice. Thus, GABAA and GABAC receptor maintenance are regulated separately. Although immature RBCs elevate their glutamate release when GABA synthesis is impaired, homeostatic mechanisms ensure that the RBC output operates within its normal range after eye opening, perhaps to regain proper visual processing within the scotopic pathway.
Collapse
Affiliation(s)
- Timm Schubert
- Department of Biological Structure, University of Washington, School of Medicine, 1959 Northeast Pacific Street, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
7
|
Nitric oxide production and the expression of two nitric oxide synthases in the avian retina. Vis Neurosci 2013; 30:91-103. [PMID: 23721886 DOI: 10.1017/s0952523813000126] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nitric oxide (NO) is known to exert multiple effects on the function of many retinal neurons and their synapses. Therefore, it is equally important to understand the potential sources of NO within the retina. To explore this, we employ a combination of 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate (DAF-FM) based NO detection and immunohistochemistry for the NO synthetic enzymes, neuronal and endothelial nitric oxide synthase (nNOS and eNOS). We find DAF signals in photoreceptors, horizontal cells, amacrine cells, efferent synapses, Müller cells, and cells in the ganglion cell layer (GCL). nNOS immunoreactivity was consistent with the DAF signal with the exception that horizontal cells and Müller cells were not clearly labeled. eNOS-like immunoreactivity (eNOS-LI) was more widespread with photoreceptors, horizontal cells, occasional bipolar cells, amacrine cells, Müller cells, and cells in the GCL all showing labeling. Double labeling with antibodies raised against calretinin, syntaxin, and glutamine synthetase confirmed that horizontal cells, amacrine cells, and Müller cells (respectively) were expressing eNOS-LI. Although little or no nNOS labeling is observed in horizontal cells or Müller cells, the expression of eNOS-LI is consistent with the ability of these cells to produce NO. Together these results suggest that the capability to produce NO is widespread in the chicken retina. We propose that multiple forms of regulation for nNOS and eNOS play a role in the patterning of NO production in the chicken retina.
Collapse
|
8
|
Machuca-Parra AI, Miledi R, Martínez-Torres A. Identification of the minimal promoter for specific expression of the GABAρ1 receptor in retinal bipolar cells. J Neurochem 2013; 124:175-88. [PMID: 23106649 DOI: 10.1111/jnc.12067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 09/26/2012] [Accepted: 10/23/2012] [Indexed: 11/29/2022]
Abstract
γ-aminobutyric acid (GABA)ρ receptors regulate rapid synaptic ion currents in the axon end of retinal ON bipolar neurons, acting as a point of control along the visual pathway. In the GABAρ1 subunit knock out mouse, inhibition mediated by this receptor is totally eliminated, showing its role in neural transmission in retina. GABAρ1 mRNA is expressed in mouse retina after post-natal day 7, but little is known about its transcriptional regulation. To identify the GABAρ1 promoter, in silico analyses were performed and indicated that a 0.290-kb fragment, flanking the 5'-end of the GABAρ1 gene, includes putative transcription factor-binding sites, two Inr elements, and lacks a TATA-box. A rapid amplification of cDNA ends (RACE) assay showed three transcription start sites (TSS) clustered in the first exon. Luciferase reporter assays indicated that a 0.232-kb fragment upstream from the ATG is the minimal promoter in transfected cell lines and in vitro electroporated retinae. The second Inr and AP1 site are important to activate transcription in secretin tumor cells (STC-1) and retina. Finally, the 0.232-kb fragment drives green fluorescent protein (GFP) expression to the inner nuclear layer, where bipolar cells are present. This first work paves the way for further studies of molecular elements that control GABAρ1 transcription and regulate its expression during retinal development.
Collapse
Affiliation(s)
- Arturo Israel Machuca-Parra
- Departamento de Neurobiología Celular y Molecular, Universidad Nacional Autónoma de México, Instituto de Neurobiología, Querétaro, Mexico
| | | | | |
Collapse
|
9
|
Rosas-Arellano A, Machuca-Parra AI, Reyes-Haro D, Miledi R, Martínez-Torres A. Expression of GABAρ receptors in the neostriatum: localization in aspiny, medium spiny neurons and GFAP-positive cells. J Neurochem 2012; 122:900-10. [PMID: 22168837 DOI: 10.1111/j.1471-4159.2011.07621.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
GABAergic transmission in the neostriatum plays a central role in motor coordination, in which a plethora of GABA-A receptor subunits combine to modulate neural inhibition. GABAρ receptors were originally described in the mammalian retina. These receptors possess special electrophysiological and pharmacological properties, forming a characteristic class of ionotropic receptors. In previous studies, we suggested that GABAρ receptors are expressed in the neostriatum, and in this report we show that they are indeed present in all the calretinin-positive interneurons of the neostriatum. In addition, they are located in calbindin-positive interneurons and projection neurons that express the dopamine D(2) receptor. GABAρ receptors were also located in 30% of the glial fibrillary acidic protein-positive cells, and may therefore also contribute to gliotransmission. Quantitative reverse transcription-PCR suggested that the mRNAs of this receptor do not express as much as in the retina, and that GABAρ2 is more abundant than GABAρ1. Electrophysiological recordings in brain slices provided evidence of neurons expressing a cis-4-aminocrotonic acid-activated, 1,2,5,6-tetrahydropyridine-4-yl methylphosphinic acid-sensitive ionotropic GABA receptor, indicating the presence of functional GABAρ receptors in the neostriatum. Finally, electron-microscopy and immunogold located the receptors mainly in perisynaptic as well as in extrasynaptic sites. All these observations reinforce the importance of GABAρ receptors in the neostriatum and contribute to the diversity of inhibitory regulation in this area.
Collapse
Affiliation(s)
- Abraham Rosas-Arellano
- Departamento de Neurobiología Celular y Molecular, Universidad Nacional Autónoma de México, Instituto de Neurobiología, Campus Juriquilla, Querétaro, Mexico
| | | | | | | | | |
Collapse
|
10
|
Jones SM, Palmer MJ. Pharmacological analysis of the activation and receptor properties of the tonic GABA(C)R current in retinal bipolar cell terminals. PLoS One 2011; 6:e24892. [PMID: 21949779 PMCID: PMC3174224 DOI: 10.1371/journal.pone.0024892] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 08/22/2011] [Indexed: 11/29/2022] Open
Abstract
GABAergic inhibition in the central nervous system (CNS) can occur via rapid, transient postsynaptic currents and via a tonic increase in membrane conductance, mediated by synaptic and extrasynaptic GABAA receptors (GABAARs) respectively. Retinal bipolar cells (BCs) exhibit a tonic current mediated by GABACRs in their axon terminal, in addition to synaptic GABAAR and GABACR currents, which strongly regulate BC output. The tonic GABACR current in BC terminals (BCTs) is not dependent on vesicular GABA release, but properties such as the alternative source of GABA and the identity of the GABACRs remain unknown. Following a recent report that tonic GABA release from cerebellar glial cells is mediated by Bestrophin 1 anion channels, we have investigated their role in non-vesicular GABA release in the retina. Using patch-clamp recordings from BCTs in goldfish retinal slices, we find that the tonic GABACR current is not reduced by the anion channel inhibitors NPPB or flufenamic acid but is reduced by DIDS, which decreases the tonic current without directly affecting GABACRs. All three drugs also exhibit non-specific effects including inhibition of GABA transporters. GABACR ρ subunits can form homomeric and heteromeric receptors that differ in their properties, but BC GABACRs are thought to be ρ1-ρ2 heteromers. To investigate whether GABACRs mediating tonic and synaptic currents may differ in their subunit composition, as is the case for GABAARs, we have examined the effects of two antagonists that show partial ρ subunit selectivity: picrotoxin and cyclothiazide. Tonic and synaptic GABACR currents were differentially affected by both drugs, suggesting that a population of homomeric ρ1 receptors contributes to the tonic current. These results extend our understanding of the multiple forms of GABAergic inhibition that exist in the CNS and contribute to visual signal processing in the retina.
Collapse
Affiliation(s)
- Stefanie M. Jones
- Neuroscience Group, Institute for Science and Technology in Medicine, Keele University, Keele, United Kingdom
| | - Mary J. Palmer
- Neuroscience Group, Institute for Science and Technology in Medicine, Keele University, Keele, United Kingdom
- * E-mail:
| |
Collapse
|
11
|
Martínez-Delgado G, Estrada-Mondragón A, Miledi R, Martínez-Torres A. An Update on GABAρ Receptors. Curr Neuropharmacol 2011; 8:422-33. [PMID: 21629448 PMCID: PMC3080597 DOI: 10.2174/157015910793358141] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 04/08/2010] [Accepted: 06/21/2010] [Indexed: 01/29/2023] Open
Abstract
The present review discusses the functional and molecular diversity of GABAρ receptors. These receptors were originally described in the mammalian retina, and their functional role in the visual pathway has been recently elucidated; however new studies on their distribution in the brain and spinal cord have revealed that they are more spread than originally thought, and thus it will be important to determine their physiological contribution to the GABAergic transmission in other areas of the central nervous system. In addition, molecular modeling has revealed peculiar traits of these receptors that have impacted on the interpretations of the latest pharmacolgical and biophysical findings. Finally, sequencing of several vertebrate genomes has permitted a comparative analysis of the organization of the GABAρ genes.
Collapse
Affiliation(s)
- Gustavo Martínez-Delgado
- Instituto de Neurbiología, Departamento de Neurobiología Celular y Molecular, Laboratorio D15, Campus UNAM Juriquilla. Querétaro 76230, México
| | | | | | | |
Collapse
|
12
|
Cheng ZY, Chebib M, Schmid KL. rho1 GABAC receptors are expressed in fibrous and cartilaginous layers of chick sclera and located on sclera fibroblasts and chondrocytes. J Neurochem 2011; 118:281-7. [DOI: 10.1111/j.1471-4159.2011.07300.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
McMains E, Krishnan V, Prasad S, Gleason E. Expression and localization of CLC chloride transport proteins in the avian retina. PLoS One 2011; 6:e17647. [PMID: 21408174 PMCID: PMC3049779 DOI: 10.1371/journal.pone.0017647] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 02/06/2011] [Indexed: 11/19/2022] Open
Abstract
Members of the ubiquitously expressed CLC protein family of chloride channels and transporters play important roles in regulating cellular chloride and pH. The CLCs that function as Cl−/H+ antiporters, ClCs 3–7, are essential in particular for the acidification of endosomal compartments and protein degradation. These proteins are broadly expressed in the nervous system, and mutations that disrupt their expression are responsible for several human genetic diseases. Furthermore, knock-out of ClC3 and ClC7 in the mouse result in the degeneration of the hippocampus and the retina. Despite this evidence of their importance in retinal function, the expression patterns of different CLC transporters in different retinal cell types are as yet undescribed. Previous work in our lab has shown that in chicken amacrine cells, internal Cl− can be dynamic. To determine whether CLCs have the potential to participate, we used PCR and immunohistochemical techniques to examine CLC transporter expression in the chicken retina. We observed a high level of variation in the retinal expression levels and patterns among the different CLC proteins examined. These findings, which represent the first systematic investigation of CLC transporter expression in the retina, support diverse functions for the different CLCs in this tissue.
Collapse
Affiliation(s)
- Emily McMains
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Vijai Krishnan
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Sujitha Prasad
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Evanna Gleason
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
14
|
Song Y, Slaughter MM. GABA(B) receptor feedback regulation of bipolar cell transmitter release. J Physiol 2010; 588:4937-49. [PMID: 20974680 DOI: 10.1113/jphysiol.2010.194233] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
GABAergic amacrine cell feedback to bipolar cells in retina has been described, activating both GABA(A) and GABA(C) receptors. We explored whether metabotropic GABA(B) receptors also participate in this feedback pathway. CGP55845, a potent GABA(B) receptor antagonist, was employed to determine the endogenous role of these receptors. Ganglion cell EPSCs and IPSCs were monitored to measure the output of bipolar and amacrine cells. Using the tiger salamander slice preparation, we found that GABA(B) receptor pathways regulate bipolar cell release directly and indirectly. In the direct pathway, the GABA(B) receptor antagonist reduces EPSC amplitude, indicating that GABA(B) receptors cause enhanced glutamate release from bipolar cells to one set of ganglion cells. In the indirect pathway, the GABA(B) receptor antagonist reduces EPSC amplitude in another set of ganglion cells. The indirect pathway is only evident when GABA(A) receptors are inhibited, and is blocked by a glycine receptor antagonist. Thus, this second feedback pathway involves direct glycine feedback to the bipolar cell and this glycinergic amacrine cell is suppressed by GABAergic amacrine cells, through both GABA(A) and GABA(B) but not GABA(C) receptors. Overall, GABA(B) receptors do contribute to feedback regulation of bipolar cell transmitter release. However, unlike the ionotropic GABA receptor pathways, the metabotropic GABA receptor pathways act to enhance bipolar cell transmitter release. Furthermore, there are three discrete subsets of bipolar cell output regulated by GABA(B) receptor feedback (direct, indirect and null), implying three distinct, non-overlapping bipolar cell to ganglion cell circuits.
Collapse
Affiliation(s)
- Yunbo Song
- Department of Physiology & Biophysics, Center for Neuroscience, 124 Sherman Hall, 3435 Main Street, Buffalo, NY 14214, USA.
| | | |
Collapse
|
15
|
Guo C, Hirano AA, Stella SL, Bitzer M, Brecha NC. Guinea pig horizontal cells express GABA, the GABA-synthesizing enzyme GAD 65, and the GABA vesicular transporter. J Comp Neurol 2010; 518:1647-69. [PMID: 20235161 DOI: 10.1002/cne.22294] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gamma-aminobutyric acid (GABA) is likely expressed in horizontal cells of all species, although conflicting physiological findings have led to considerable controversy regarding its role as a transmitter in the outer retina. This study has evaluated key components of the GABA system in the outer retina of guinea pig, an emerging retinal model system. The presence of GABA, its rate-limiting synthetic enzyme glutamic acid decarboxylase (GAD(65) and GAD(67) isoforms), the plasma membrane GABA transporters (GAT-1 and GAT-3), and the vesicular GABA transporter (VGAT) was evaluated by using immunohistochemistry with well-characterized antibodies. The presence of GAD(65) mRNA was also evaluated by using laser capture microdissection and reverse transcriptase-polymerase chain reaction. Specific GABA, GAD(65), and VGAT immunostaining was localized to horizontal cell bodies, as well as to their processes and tips in the outer plexiform layer. Furthermore, immunostaining of retinal whole mounts and acutely dissociated retinas showed GAD(65) and VGAT immunoreactivity in both A-type and B-type horizontal cells. However, these cells did not contain GAD(67), GAT-1, or GAT-3 immunoreactivity. GAD(65) mRNA was detected in horizontal cells, and sequencing of the amplified GAD(65) fragment showed approximately 85% identity with other mammalian GAD(65) mRNAs. These studies demonstrate the presence of GABA, GAD(65), and VGAT in horizontal cells of the guinea pig retina, and support the idea that GABA is synthesized from GAD(65), taken up into synaptic vesicles by VGAT, and likely released by a vesicular mechanism from horizontal cells.
Collapse
Affiliation(s)
- Chenying Guo
- Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California 90095, USA
| | | | | | | | | |
Collapse
|
16
|
Zheng W, Zhao X, Wang J, Lu L. Retinal vascular leakage occurring in GABA Rho-1 subunit deficient mice. Exp Eye Res 2010; 90:634-40. [PMID: 20193681 DOI: 10.1016/j.exer.2010.02.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 02/11/2010] [Accepted: 02/22/2010] [Indexed: 11/18/2022]
Abstract
Recent studies demonstrate that GABAergic activity elicits relaxation of retinal arterioles leading to an increase in blood flow. It has also been found that GABAnergic activity in the retina of mice with diabetic retinopathy is suppressed. In this study, we provide further evidence that lack of GABAergic activity significantly alters vasculature development as well as the hypoxia-induced angiogenic response. Using GABA(C) receptor rho(1) subunit-knockout mice (rho-1(-/-)), our results demonstrate that in hypoxia-induced retinas a severe vascular leakage occurred in 2 week-old rho-1(-/-) mice compared with their wildtype counterparts. In addition, our results also showed that all of the rho-1(-/-) mice developed significant retinal vascular leakages by 48 weeks-of-age. Microarray and real-time PCR experiments revealed a unique angiogenesis-related gene expression pattern. This suggests that retinal vascular disorders of rho-1(-/-) mice results from significant up-regulation of angiogenic genes and concomitant down-regulation of anti-angiogenic genes. The study results are consistent with the pathological changes of the retinal vascular leakage seen in diabetic retinopathy. Our data indicate that the GABA(C) rho(1) subunit plays a role in maintaining both homeostasis and balance of retinal neurotransmitter function. Knockout of the retinal GABA(C) rho(1)-subunit leads to changes in vascular permeability similar to the pathological changes induced by retinal hypoxic conditions.
Collapse
Affiliation(s)
- Wei Zheng
- Division of Molecular Medicine, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Torrance, CA 90502, USA
| | | | | | | |
Collapse
|
17
|
Cell differentiation in the retina of an epibenthonic teleost, the Tench (Tinca tinca, Linneo 1758). Exp Eye Res 2009; 89:398-415. [DOI: 10.1016/j.exer.2009.04.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2009] [Accepted: 04/13/2009] [Indexed: 11/17/2022]
|
18
|
Rod bipolar cells in the retina of the capuchin monkey (Cebus apella): Characterization and distribution. Vis Neurosci 2009; 26:389-96. [DOI: 10.1017/s0952523809990186] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractRod bipolar cells in Cebus apella monkey retina were identified by an antibody against the alpha isoform of protein kinase C (PKCα), which has been shown to selectively identify rod bipolars in two other primates and various mammals. Vertical sections were used to confirm the identity of these cells by their characteristic morphology of dendrites and axons. Their topographic distribution was assessed in horizontal sections; counts taken along the dorsal, ventral, nasal, and temporal quadrants. The density of rod bipolar cells increased from 500 to 2900 cells/mm2 at 1 mm from the fovea to reach a peak of 10,000–12,000 cells/mm2 at 4 mm, approximately 5 deg of eccentricity, and then gradually decreased toward retinal periphery to values of 5000 cells/mm2 or less. Rod to rod bipolar density ratio remained between 10 and 20 across most of the retinal extension. The number of rod bipolar cells per retina was 6,360,000 ± 387,433 (mean ± s.d., n = 6). The anti-PKCα antibody has shown to be a good marker of rod bipolar cells of Cebus, and the cell distribution is similar to that described for other primates. In spite of the difference in the central retina, the density variation of rod bipolar cells in the Cebus and Macaca as well as the convergence from rod to rod bipolar cells are generally similar, suggesting that both retinae stabilize similar sensitivity (as measured by rod density) and convergence.
Collapse
|
19
|
Delgado LM, Vielma AH, Kähne T, Palacios AG, Schmachtenberg O. The GABAergic system in the retina of neonate and adult Octodon degus, studied by immunohistochemistry and electroretinography. J Comp Neurol 2009; 514:459-72. [PMID: 19350652 DOI: 10.1002/cne.22023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
UNLABELLED In the vertebrate retina, gamma-aminobutyric acid (GABA) mediates inhibitory processes that shape the visual response and is also thought to have neurotrophic functions during retinal development. To investigate the role of GABAergic signaling at the beginning of visual experience, we used immunohistochemistry to compare the distribution of GABA, the two isoforms of glutamic acid decarboxylase GAD65/67, and the GABA receptor types A, B, and C, in neonate versus adult Octodon degus, a native South American rodent with diurnal-crepuscular activity and a high cone-to-rod ratio. In parallel, we used electroretinography to evaluate retinal functionality and to test the contribution of fast GABAergic transmission to light responses at both developmental stages. Neonate O. degus opened their eyes on postnatal day (P)0 and displayed an adult-like retinal morphology at this time. GABA, its biosynthetic sources, and receptors had a similar cellular distribution in neonates and adults, but labeling of the outer plexiform layer and of certain amacrine and ganglion cells was more conspicuous at P0. In neonates, retinal sensitivity was 10 times lower than in adults, responses to ultraviolet light could not be detected, and oscillatory potentials were reduced or absent. Blockade of GABA(A/C) receptors by bicuculline and TPMPA had no noticeable effect in neonates, while it significantly altered the electroretinogram response in adults. CONCLUSION In spite of modest differences regarding retinal morphology and GABAergic expression, overall light response properties and GABAergic signaling are undeveloped in neonate O. degus compared to adults, suggesting that full retinal functionality requires a period of neural refinement under visual experience.
Collapse
Affiliation(s)
- Luz M Delgado
- Centro de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Chile
| | | | | | | | | |
Collapse
|
20
|
Nelson SM, Park L, Stenkamp DL. Retinal homeobox 1 is required for retinal neurogenesis and photoreceptor differentiation in embryonic zebrafish. Dev Biol 2009; 328:24-39. [PMID: 19210961 DOI: 10.1016/j.ydbio.2008.12.040] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 11/19/2008] [Accepted: 12/31/2008] [Indexed: 12/22/2022]
Abstract
Retinal homeobox (Rx/Rax) genes are essential for the organogenesis of the vertebrate eye. These genes are dynamically expressed in a tissue-specific manner during eye development, suggesting pleiotropic roles. We use a temporally-selective gene knockdown approach to identify endogenous functions for the zebrafish rx genes, rx1 and rx2. Depletion of rx1 over the period of eye organogenesis resulted in severely reduced proliferation of retinal progenitors, the loss of expression of the transcription factor pax6, delayed retinal neurogenesis, and extensive retinal cell death. In contrast, depletion of rx2 over the same developmental time resulted in reduced expression of pax6 in the eye anlage, but only modest effects on retinal cell survival. Knockdown of rx1 specifically during photoreceptor development inhibited the expression of multiple photoreceptor-specific genes, while knockdown of rx2 over this time selectively inhibited the expression of a subset of these genes. Our findings support a function for rx2 in regulating pax6 within the optic primordia, a function for rx1 in maintaining the pluripotent, retinal progenitor cell state during retinal development, as well as selective functions for rx1 and rx2 in regulating photoreceptor differentiation.
Collapse
Affiliation(s)
- Steve M Nelson
- Department of Biological Sciences, Moscow, Idaho 83844-3051, USA
| | | | | |
Collapse
|
21
|
Nelson SM, Frey RA, Wardwell SL, Stenkamp DL. The developmental sequence of gene expression within the rod photoreceptor lineage in embryonic zebrafish. Dev Dyn 2008; 237:2903-17. [PMID: 18816851 DOI: 10.1002/dvdy.21721] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In postembryonic zebrafish, rod photoreceptors are continuously generated from progenitors in the inner nuclear layer, which are derived from radial Müller glia that express the transcription factor pax6. We used BrdU incorporation, in combination with in situ hybridization for cell-specific transcription factors, to establish the patterns of gene expression during rod lineage maturation in the embryonic zebrafish. Downregulation of pax6 expression was accompanied by sporadic upregulation of expression of the transcription factors NeuroD/nrd, rx1, crx, and Nr2e3/pnr. As cells of the rod lineage entered the outer nuclear layer, they became homogeneous, coordinately expressing NeuroD, rx1, crx, and Nr2e3. Postmitotic, maturing rods also expressed nrl, rod opsin, and rod transducin/gnat1. The presence of rx1 within the rod lineage and in maturing rods indicates that rx1 is not cone-specific, as previously reported, and suggests a high degree of molecular similarity between rod and cone progenitor populations in the zebrafish.
Collapse
Affiliation(s)
- Steve M Nelson
- Department of Biological Sciences, University of Idaho, Moscow, Idaho 83844-3051, USA
| | | | | | | |
Collapse
|
22
|
Zimov S, Yazulla S. Novel processes invaginate the pre-synaptic terminal of retinal bipolar cells. Cell Tissue Res 2008; 333:1-16. [PMID: 18449566 DOI: 10.1007/s00441-008-0611-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Accepted: 02/28/2008] [Indexed: 10/22/2022]
Abstract
Mixed-rod cone bipolar (Mb) cells of goldfish retina have large synaptic terminals (10 microm in diameter) that make 60-90 ribbon synapses mostly onto amacrine cells and rarely onto ganglion cells and, in return, receive 300-400 synapses from gamma-aminobutyric acid (GABA)-ergic amacrine cells. Tissue viewed by electron microscopy revealed the presence of double-membrane-bound processes deep within Mb terminals. No membrane specializations were apparent on these invaginating processes, although rare vesicular fusion was observed. These invaginating dendrites were termed "InDents". Mb bipolar cells were identified by their immunoreactivity for protein kinase C. Double-label immunofluorescence with other cell-type-specific labels eliminated Müller cells, efferent fibers, other Mb bipolar cells, dopaminergic interplexiform cells, and somatostatin amacrine cells as a source of the InDents. Confocal analysis of double-labeled tissue clearly showed dendrites of GABA amacrine cells, backfilled ganglion cells, and dendrites containing PanNa immunoreactivity extending into and passing through Mb terminals. Nearly all Mb terminals showed evidence for the presence of InDents, indicating their common presence in goldfish retina. No PanNa immunoreactivity was found on GABA or ganglion cell InDents, suggesting that a subtype of glycine amacrine cell contained voltage-gated Na channels. Thus, potassium and calcium voltage-gated channels might be present on the InDents and on the Mb terminal membrane opposed to the InDents. In addition to synaptic signaling at ribbon and conventional synapses, Mb bipolar cells may exchange information with InDents by an alternative signaling mechanism.
Collapse
Affiliation(s)
- Sarah Zimov
- Graduate Program in Neuroscience, Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794-5230, USA
| | | |
Collapse
|
23
|
Abstract
The expression of GABA(C) receptors has long been regarded as a specific property of bipolar cells in the inner retina where they control the information transfer from bipolar to retinal ganglion cells. A number of recent anatomical and physiological studies, however, have provided evidence that GABA(C) receptors are also expressed in many brain structures apart from the retina. The presence of GABA(C) receptors in many GABAergic neurons suggests that this receptor type may be involved in the regulation of local inhibition. This chapter focuses on the distribution of GABA(C) receptors and their possible function in various brain areas.
Collapse
Affiliation(s)
- Matthias Schmidt
- Allgemeine Zoologie and Neurobiologie, Ruhr-Universität Bochum, 44780 Bochum, Germany.
| |
Collapse
|
24
|
Temporal resolution and temporal transfer properties: Gabaergic and cholinergic mechanisms. Vis Neurosci 2007; 24:787-97. [DOI: 10.1017/s0952523807070691] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Accepted: 08/20/2007] [Indexed: 11/06/2022]
Abstract
Temporal resolution is a basic property of the visual system and critically depends upon retinal temporal coding properties which are also of importance for directional coding. Whether the temporal coding properties for directional coding derive form inherent properties or critically depend upon the temporal coding mechanisms is unclear. Here, the influence of acetylcholine and GABA upon photopic temporal coding was investigated in goldfish, using flicker stimuli, in a behavioral and an electrophysiological (ERG) approach. The goldfish temporal resolution ability decreased from more than 90% correct choices at 20 Hz flicker frequency to about 65% at 45 Hz flicker frequency with a flicker fusion frequency of approximately 39 Hz. Blockade of GABAa-receptors reduced the flicker fusion frequency to about 23 Hz, not affecting temporal resolution below 20 Hz flicker frequency. Partial blockade of nicotinic acetylcholine receptors reduced the flicker fusion frequency slightly and lowered the temporal resolution ability in the 25–30 Hz range. Blockade of muscarinic acetylcholine receptors had a smaller effect than the partial blockade of nicotinic acetylcholine receptors. In ERG-recordings, blocking GABAa-receptors increased the a- and b-wave amplitude, induced a delay, an increase and a slow fall-off of the d-wave. Blocking GABAc-receptors had little effect. Blocking GABAa- or GABAa/c-receptors changed the temporal resolution, when expressed as a linear filter, from a 3rd degree filter with resonance to a low order low-pass filter with a low upper limit frequency. The temporal transfer properties were barely changed by blocking either nicotinic or muscarinic acteylcholine receptors, although ERG-components increased in amplitude to varying degrees. The behavioral and electrophysiological data indicate the important role of GABA for temporal processing but little involvement of the cholinergic system. It is proposed that the interaction of the GABAergic amacrine cell network and bipolar cells determines the gain of the retinal temporal coding in the upper frequency range.
Collapse
|
25
|
Study on olfactory function in GABAC receptor/channel ρ1 subunit knockout mice. Neurosci Lett 2007; 427:10-5. [DOI: 10.1016/j.neulet.2007.06.059] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Revised: 06/25/2007] [Accepted: 06/28/2007] [Indexed: 11/19/2022]
|
26
|
Martyniuk CJ, Aris-Brosou S, Drouin G, Cahn J, Trudeau VL. Early evolution of ionotropic GABA receptors and selective regimes acting on the mammalian-specific theta and epsilon subunits. PLoS One 2007; 2:e894. [PMID: 17878929 PMCID: PMC1975676 DOI: 10.1371/journal.pone.0000894] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Accepted: 08/14/2007] [Indexed: 11/26/2022] Open
Abstract
Background The amino acid neurotransmitter GABA is abundant in the central nervous system (CNS) of both invertebrates and vertebrates. Receptors of this neurotransmitter play a key role in important processes such as learning and memory. Yet, little is known about the mode and tempo of evolution of the receptors of this neurotransmitter. Here, we investigate the phylogenetic relationships of GABA receptor subunits across the chordates and detail their mode of evolution among mammals. Principal Findings Our analyses support two major monophyletic clades: one clade containing GABAA receptor α, γ, and ε subunits, and another one containing GABAA receptor ρ, β, δ, θ, and π subunits. The presence of GABA receptor subunits from each of the major clades in the Ciona intestinalis genome suggests that these ancestral duplication events occurred before the divergence of urochordates. However, while gene divergence proceeded at similar rates on most receptor subunits, we show that the mammalian-specific subunits θ and ε experienced an episode of positive selection and of relaxed constraints, respectively, after the duplication event. Sites putatively under positive selection are placed on a three-dimensional model obtained by homology-modeling. Conclusions Our results suggest an early divergence of the GABA receptor subunits, before the split from urochordates. We show that functional changes occurred in the lineages leading to the mammalian-specific subunit θ, and we identify the amino acid sites putatively responsible for the functional divergence. We discuss potential consequences for the evolution of mammals and of their CNS.
Collapse
Affiliation(s)
- Christopher J. Martyniuk
- Department of Biology and Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, Canada
| | - Stéphane Aris-Brosou
- Department of Biology and Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, Canada
- Department of Mathematics and Statistics, University of Ottawa, Ottawa, Ontario, Canada
- * To whom correspondence should be addressed. E-mail:
| | - Guy Drouin
- Department of Biology and Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, Canada
| | - Joel Cahn
- Department of Biology and Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, Canada
| | - Vance L. Trudeau
- Department of Biology and Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
27
|
Frazao R, Nogueira MI, Wässle H. Colocalization of synaptic GABA(C)-receptors with GABA (A)-receptors and glycine-receptors in the rodent central nervous system. Cell Tissue Res 2007; 330:1-15. [PMID: 17610086 DOI: 10.1007/s00441-007-0446-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Accepted: 05/24/2007] [Indexed: 10/23/2022]
Abstract
Fast inhibition in the nervous system is preferentially mediated by GABA- and glycine-receptors. Two types of ionotropic GABA-receptor, the GABA(A)-receptor and GABA(C)-receptor, have been identified; they have specific molecular compositions, different sensitivities to GABA, different kinetics, and distinct pharmacological profiles. We have studied, by immunocytochemistry, the synaptic localization of glycine-, GABA(A)-, and GABA(C)-receptors in rodent retina, spinal cord, midbrain, and brain-stem. Antibodies specific for the alpha1 subunit of the glycine-receptor, the gamma2 subunit of the GABA(A)-receptor, and the rho subunits of the GABA(C)-receptor have been applied. Using double-immunolabeling, we have determined whether these receptors are expressed at the same postsynaptic sites. In the retina, no such colocalization was observed. However, in the spinal cord, we found the colocalization of glycine-receptors with GABA(A)- or GABA(C)-receptors and the colocalization of GABA(A)- and GABA(C)-receptors in approximately 25% of the synapses. In the midbrain and brain-stem, GABA(A)- and GABA(C)-receptors were colocalized in 10%-15% of the postsynaptic sites. We discuss the possible expression of heteromeric (hybrid) receptors assembled from GABA(A)- and GABA(C)-receptor subunits. Our results suggest that GABA(A)- and GABA(C)-receptors are colocalized in a minority of synapses of the central nervous system.
Collapse
Affiliation(s)
- Renata Frazao
- Neuroanatomie, Max-Planck-Institut für Hirnforschung, Deutschordenstrasse 46, 60528, Frankfurt/Main, Germany
| | | | | |
Collapse
|
28
|
Reis GML, Duarte IDG. Involvement of chloride channel coupled GABA(C) receptors in the peripheral antinociceptive effect induced by GABA(C) receptor agonist cis-4-aminocrotonic acid. Life Sci 2007; 80:1268-73. [PMID: 17316706 DOI: 10.1016/j.lfs.2006.12.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Revised: 11/22/2006] [Accepted: 12/12/2006] [Indexed: 10/23/2022]
Abstract
We investigated the effect of chloride and potassium channel blockers on the antinociception induced by GABA(C) receptor agonist CACA (cis-4-aminocrotonic acid) using the paw pressure test, in which pain sensitivity was increased by an intraplantar injection (2 microg) of prostaglandin E(2) (PGE(2)). CACA administered locally into the right hindpaw (25, 50 and 100 microg/paw) elicited a dose-dependent antinociceptive effect which was demonstrated to be local, since only higher doses produced an effect when injected in the contralateral paw. The GABA(C) receptor antagonist (1,2,5,6 tetrahydropyridin-4-yl) methylphosphinic acid (TPMPA; 5, 10 and 20 microg/paw) antagonized, in a dose-dependent manner, the peripheral antinociception induced by CACA (100 microg), suggesting a specific effect. This effect was reversed by the chloride channel coupled receptor blocker picrotoxin (0.8 microg/paw). Glibenclamide (160 microg) and tolbutamide (320 microg), blockers of ATP-sensitive potassium channels, charybdotoxin (2 microg), a large-conductance potassium channel blocker, dequalinium (50 microg), a small-conductance potassium channel blocker, and cesium (500 microg), a non-specific potassium channel blocker did not modify the peripheral antinociception induced by CACA. This study provides evidence that activation of GABA(C) receptors in the periphery induces antinociception, that this effect results from the activation of chloride channel coupled GABA(C) receptors and that potassium channels appear not to be involved.
Collapse
Affiliation(s)
- Gláucia Maria Lopes Reis
- Department of Pharmacology, Institute of Biological Sciences, UFMG, Av. Antônio Carlos, Belo Horizonte, Brazil
| | | |
Collapse
|
29
|
Palmer MJ. Functional segregation of synaptic GABAA and GABAC receptors in goldfish bipolar cell terminals. J Physiol 2006; 577:45-53. [PMID: 17008372 PMCID: PMC2000669 DOI: 10.1113/jphysiol.2006.119560] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The transmission of light responses to retinal ganglion cells is regulated by inhibitory input from amacrine cells to bipolar cell (BC) synaptic terminals. GABA(A) and GABA(C) receptors in BC terminals mediate currents with different kinetics and are likely to have distinct functions in limiting BC output; however, the synaptic properties and localization of the receptors are currently poorly understood. By recording endogenous GABA receptor currents directly from BC terminals in goldfish retinal slices, I show that spontaneous GABA release activates rapid GABA(A) receptor miniature inhibitory postsynaptic currents (mIPSCs) (predominant decay time constant (tau(decay)), 1.0 ms) in addition to a tonic GABA(C) receptor current. The GABA(C) receptor antagonist (1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA) has no effect on the amplitude or kinetics of the rapid GABA(A) mIPSCs. In addition, inhibition of the GAT-1 GABA transporter, which strongly regulates GABA(C) receptor currents in BC terminals, fails to reveal a GABA(C) component in the mIPSCs. These data suggest that GABA(A) and GABA(C) receptors are highly unlikely to be synaptically colocalized. Using non-stationary noise analysis of the mIPSCs, I estimate that GABA(A) receptors in BC terminals have a single-channel conductance (gamma) of 17 pS and that an average of just seven receptors mediates a quantal event. From noise analysis of the tonic current, GABA(C) receptor gamma is estimated to be 4 pS. Identified GABA(C) receptor mIPSCs exhibit a slow decay (tau(decay), 54 ms) and are mediated by approximately 42 receptors. The distinct properties and localization of synaptic GABA(A) and GABA(C) receptors in BC terminals are likely to facilitate their specific roles in regulating the transmission of light responses in the retina.
Collapse
Affiliation(s)
- Mary J Palmer
- Neuroscience Group, Institute for Science and Technology in Medicine, Keele University, Keele, ST5 5BG, UK.
| |
Collapse
|
30
|
Yu D, Eldred WD. Gycine and GABA interact to regulate the nitric oxide/cGMP signaling pathway in the turtle retina. Vis Neurosci 2006; 22:825-38. [PMID: 16469191 PMCID: PMC1464840 DOI: 10.1017/s0952523805226123] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Accepted: 07/27/2005] [Indexed: 11/05/2022]
Abstract
Nitric oxide (NO) is a free radical that is important in retinal signal transduction and cyclic guanosine monophosphate (cGMP) is a critical downstream messenger of NO. The NO/cGMP signaling pathway has been shown to modulate neurotransmitter release and gap junction coupling in horizontal cells and amacrine cells, and increase the gain of the light response in photoreceptors. However, many of the mechanisms controlling the production of NO and cGMP remain unclear. Previous studies have shown activation of NO/cGMP production in response to stimulation with N-methyl-d-aspartate (NMDA) or nicotine, and the differential modulation of cGMP production by GABA(A) and GABA(C) receptors (GABA(A)Rs and GABA(C)Rs). This study used cGMP immunocytochemistry and NO imaging to investigate how the inhibitory GABAergic and glycinergic systems modulate the production of NO and cGMP. Our data show that blocking glycine receptors (GLYR) with strychnine (STRY) produced moderate increases in cGMP-like immunoreactivity (cGMP-LI) in select types of amacrine and bipolar cells, and strong increases in NO-induced fluorescence (NO-IF). TPMPA, a selective GABACR antagonist, greatly reduced the increases in cGMP-LI stimulated by STRY, but did not influence the increase in NO-IF stimulated by STRY. Bicuculline (BIC), a GABA(A)R antagonist, however, enhanced the increases in both the cGMP-LI and NO-IF stimulated by STRY. CNQX, a selective antagonist for alpha-Amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid hydrobromide/kainic acid (AMPA/KA) receptors, eliminated both the increases in cGMP-LI and NO-IF stimulated by STRY, while MK801, a selective antagonist for NMDA receptors, slightly increased the cGMP-LI and slightly decreased the NO-IF stimulated by STRY. Finally, double labeling of NO-stimulated cGMP and either GLY or GABA indicated that cGMP predominantly colocalized with GLY. Taken together, these findings support the hypothesis that GLY and GABA interact in the regulation of the NO/cGMP signaling pathway, where GLY primarily inhibits NO production and GABA has a greater effect on cGMP production. Such interacting inhibitory pathways could shape the course of signal transduction of the NO/cGMP pathway under different physiological situations.
Collapse
Affiliation(s)
- Dou Yu
- Boston University, Program in Neuroscience, Massachusetts 02215, USA
| | | |
Collapse
|
31
|
López-Chávez A, Miledi R, Martínez-Torres A. Cloning and functional expression of the bovine GABA(C) rho2 subunit. Molecular evidence of a widespread distribution in the CNS. Neurosci Res 2005; 53:421-7. [PMID: 16213047 DOI: 10.1016/j.neures.2005.08.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2005] [Revised: 08/30/2005] [Accepted: 08/31/2005] [Indexed: 11/17/2022]
Abstract
GABA(C) receptors were first described as a non-desensitizing, bicuculline- and baclofen-insensitive component in Xenopus oocytes expressing bovine retina mRNA. However, the expression, tissue distribution and functional properties of GABA(C) receptors from other areas of the CNS still remain controversial. In previous experiments, the injection of rat cerebellum mRNA into Xenopus oocytes induced the expression of receptors that generated currents with both GABA(A) and GABA(C) characteristics; the latter component apparently being given by the rho2 subunit, suggesting the expression of GABA(C) receptors in the CNS and the formation of homooligomeric receptors. In this study, using RT-PCR, we found that the rho1 and rho2 subunits are widely expressed in the CNS including areas where they have not been previously described such as the bulb, pons and the caudate nucleus. To determine if the GABA(C) component of the GABA-currents elicited by oocytes expressing cerebellum mRNA was caused by activation of homomeric GABA rho2 receptors, we cloned the corresponding cDNA and expressed it in Xenopus oocytes. It was found that oocytes injected with rho2 cDNA, efficiently formed GABA-gated homooligomeric receptors. The GABA-dose-current response gave an EC50=1.19muM and the currents were resistant to bicuculline and reversibly antagonized by the specific GABA(C) receptor antagonist TPMPA. Altogether, our results indicate a widespread distribution of both rho1 and rho2 subunits in the bovine CNS and show further that the rho2 subunit cDNA isolated from cerebellum, forms fully functional receptors when expressed in Xenopus oocytes.
Collapse
Affiliation(s)
- Ariel López-Chávez
- Instituto de Neurobiología, Universidad Nacional Autónoma de México-Campus Juriquilla, AP1-1141 Querétaro, Mexico
| | | | | |
Collapse
|
32
|
Mora-Ferrer C, Hausselt S, Schmidt Hoffmann R, Ebisch B, Schick S, Wollenberg K, Schneider C, Teege P, Jürgens K. Pharmacological properties of motion vision in goldfish measured with the optomotor response. Brain Res 2005; 1058:17-29. [PMID: 16150425 DOI: 10.1016/j.brainres.2005.07.073] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Revised: 07/21/2005] [Accepted: 07/22/2005] [Indexed: 11/26/2022]
Abstract
In goldfish, the retinal pathways involved in motion coding have been demonstrated to have an L-cone dominated action spectrum (S. Schaerer, C. Neumeyer, Motion detection in goldfish investigated with the optomotor response is "color blind", Vision Res. 36 (1996) 4025-4034). The neurotransmitters involved in retinal motion coding mechanisms, and the relevance of these retinal motion coding mechanisms for motion perception, are little investigated in fish. In this study, the optomotor response was used to investigate the effect of antagonists on different receptor types for acetylcholine (ACh), GABA, for the dopamine D2-receptor (D2-R) - which is known to modulate the action spectrum in motion coding (C. Mora-Ferrer, K. Behrend, Dopaminergic modulation of photopic temporal transfer properties in goldfish retina investigated with the ERG, Vision Res. 44 (2004) 2067-2081) - and of an agonist for against the mGluR6-receptor (mGluR6) on goldfish motion vision in the photopic range. Blockade of nicotinic ACh-R, GABAa-R and both GABAa- and GABAc-R eliminated the optomotor response completely. Neither a muscarinic ACH-R antagonist, a D2-R antagonist or a mGluR6-agonist affected goldfish motion vision. The pharmacological profile of the goldfish optomotor response resembles the pharmacological profile of direction-selective ganglion cells (DS-GC) described for vertebrate retinas in electrophysiological experiments, e.g. (S. Weng, W. Sun, S. He, Identification of ON-OFF direction-selective ganglion cells in the mouse retina, J. Physiol. 562 (2005) 915-923). This indicates that cells with direction-selective receptive field properties exist in the goldfish retina. It is proposed that these cells provide the input for the full field motion perception in goldfish.
Collapse
MESH Headings
- Acetylcholine/metabolism
- Animals
- Dopamine/metabolism
- Eye Movements/drug effects
- Eye Movements/physiology
- GABA Antagonists/pharmacology
- Goldfish
- Motion Perception/drug effects
- Motion Perception/physiology
- Nicotinic Antagonists/pharmacology
- Psychomotor Performance/drug effects
- Psychomotor Performance/physiology
- Receptors, Dopamine D2/drug effects
- Receptors, Dopamine D2/metabolism
- Receptors, GABA/drug effects
- Receptors, GABA/metabolism
- Receptors, GABA-A/drug effects
- Receptors, GABA-A/metabolism
- Receptors, Nicotinic/drug effects
- Receptors, Nicotinic/metabolism
- Retina/cytology
- Retina/drug effects
- Retina/physiology
- Retinal Ganglion Cells/cytology
- Retinal Ganglion Cells/drug effects
- Retinal Ganglion Cells/physiology
- Vision, Ocular/drug effects
- Vision, Ocular/physiology
- Visual Fields/physiology
- gamma-Aminobutyric Acid/metabolism
Collapse
Affiliation(s)
- Carlos Mora-Ferrer
- Institute Zoology III, J Gutenberg University Mainz, 55099 Mainz, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Ichinose T, Lukasiewicz PD. Inner and outer retinal pathways both contribute to surround inhibition of salamander ganglion cells. J Physiol 2005; 565:517-35. [PMID: 15760938 PMCID: PMC1464530 DOI: 10.1113/jphysiol.2005.083436] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Illumination of the receptive-field surround reduces the sensitivity of a retinal ganglion cell to centre illumination. The steady, antagonistic receptive-field surround of retinal ganglion cells is classically attributed to the signalling of horizontal cells in the outer plexiform layer (OPL). However, amacrine cell signalling in the inner plexiform layer (IPL) also contributes to the steady receptive-field surround of the ganglion cell. We examined the contributions of these two forms of presynaptic lateral inhibition to ganglion cell light sensitivity by measuring the effects of surround illumination on EPSCs evoked by centre illumination. GABA(C) receptor antagonists reduced inhibition attributed to dim surround illumination, suggesting that this inhibition was mediated by signalling to bipolar cell axon terminals. Brighter surround illumination further reduced the light sensitivity of the ganglion cell. The bright surround effects on the EPSCs were insensitive to GABA receptor blockers. Perturbing outer retinal signalling with either carbenoxolone or cobalt blocked the effects of the bright surround illumination, but not the effects of dim surround illumination. We found that the light sensitivities of presynaptic, inhibitory pathways in the IPL and OPL were different. GABA(C) receptor blockers reduced dim surround inhibition, suggesting it was mediated in the IPL. By contrast, carbenoxolone and cobalt reduced bright surround, suggesting it was mediated by horizontal cells in the OPL. Direct amacrine cell input to ganglion cells, mediated by GABA(A) receptors, comprised another surround pathway that was most effectively activated by bright illumination. Our results suggest that surround activation of lateral pathways in the IPL and OPL differently modulate the sensitivity of the ganglion cell to centre illumination.
Collapse
Affiliation(s)
- Tomomi Ichinose
- Department of Ophthalmology/Campus Box 8096, Washington University School of Medicine, 660 S. Euclid Avenue, St Louis, MO 63110, USA
| | | |
Collapse
|
34
|
Lukasiewicz PD. Synaptic mechanisms that shape visual signaling at the inner retina. PROGRESS IN BRAIN RESEARCH 2005; 147:205-18. [PMID: 15581708 DOI: 10.1016/s0079-6123(04)47016-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The retina is a layered structure that processes information in two stages. The outer plexiform layer (OPL) comprises the first stage and is where photoreceptors, bipolar cells, and horizontal cells interact synaptically. This is the synaptic layer where ON and OFF responses to light are formed, as well as the site where receptive field center and surround organization is first thought to occur. The inner plexiform layer (IPL) is where the second stage of synaptic interactions occurs. This synaptic layer is where subsequent visual processing occurs that may contribute to the formation of transient responses, which may underlie motion and direction sensitivity. In addition, synaptic interactions in the IPL may also contribute to the classical ganglion cell receptive field properties. This chapter will focus on the synapse and network properties at the IPL that sculpt light-evoked ganglion cell responses. These include synaptic mechanisms that may shape ganglion cell responses like desensitizing glutamate receptors and transporters, which remove glutamate from the synapse. Recent work suggests that inhibitory signaling at the IPL contributes to the surround receptive field organization of ganglion cells. A component of this amacrine cell inhibitory signaling is mediated by GABAC receptors, which are found on bipolar cell axon terminals in the IPL. Pharmacological experiments show that a component of the ganglion cell surround signal is mediated by these receptors, indicating that the ganglion cell center and surround receptive field organization is not formed entirely in the outer plexiform layer, as earlier thought.
Collapse
Affiliation(s)
- Peter D Lukasiewicz
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA.
| |
Collapse
|
35
|
Lukasiewicz PD, Eggers ED, Sagdullaev BT, McCall MA. GABAC receptor-mediated inhibition in the retina. Vision Res 2005; 44:3289-96. [PMID: 15535996 DOI: 10.1016/j.visres.2004.07.023] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2004] [Indexed: 11/28/2022]
Abstract
Inhibition at bipolar cell axon terminals regulates excitatory signaling to ganglion cells and is mediated, in part, by GABAC receptors. We investigated GABAC receptor-mediated inhibition using pharmacological approaches and genetically altered mice that lack GABAC receptors. Responses to applied GABA showed distinct time courses in various bipolar cell classes, attributable to different proportions of GABAA and GABAC receptors. The elimination of GABAC receptors in GABAC null mice reduced and shortened GABA-activated currents and light-evoked inhibitory synaptic currents (L-IPSCs) in rod bipolar cells. ERG measurements and recordings from the optic nerve showed that inner retinal function was altered in GABAC null mice. These data suggest that GABAC receptors determine the time course and extent of inhibition at bipolar cell terminals that, in turn, modulates the magnitude of excitatory transmission from bipolar cells to ganglion cells.
Collapse
Affiliation(s)
- Peter D Lukasiewicz
- Department of Ophthalmology, Washington University School of Medicine, Campus Box 8096, 660 South Euclid Avenue, Saint Louis, MO 63110, USA.
| | | | | | | |
Collapse
|
36
|
Yang XL. Characterization of receptors for glutamate and GABA in retinal neurons. Prog Neurobiol 2004; 73:127-50. [PMID: 15201037 DOI: 10.1016/j.pneurobio.2004.04.002] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2003] [Accepted: 04/12/2004] [Indexed: 11/16/2022]
Abstract
Glutamate and gamma-aminobutyric acid (GABA) are major excitatory and inhibitory neurotransmitters in the vertebrate retina, "a genuine neural center" (Ramón y Cajal, 1964, Recollections of My Life, C.E. Horne (Translater) MIT Press, Cambridge, MA). Photoreceptors, generating visual signals, and bipolar cells, mediating signal transfer from photoreceptors to ganglion cells, both release glutamate, which induces and/or changes the activity of the post-synaptic neurons (horizontal and bipolar cells for photoreceptors; amacrine and ganglion cells for bipolar cells). Horizontal and amacrine cells, which mediate lateral interaction in the outer and inner retina respectively, use GABA as a principal neurotransmitter. In recent years, glutamate receptors and GABA receptors in the retina have been extensively studied, using multi-disciplinary approaches. In this article some important advances in this field are reviewed, with special reference to retinal information processing. Photoreceptors possess metabotropic glutamate receptors and several subtypes of GABA receptors. Most horizontal cells express AMPA receptors, which may be predominantly assembled from flop slice variants. In addition, these cells also express GABAA and GABAC receptors. Signal transfer from photoreceptors to bipolar cells is rather complicated. Whereas AMPA/KA receptors mediate transmission for OFF type bipolar cells, several subtypes of glutamate receptors, both ionotropic and metabotropic, are involved in the generation of light responses of ON type bipolar cells. GABAA and GABAC receptors with distinct kinetics are differentially expressed on dendrites and axon terminals of both ON and OFF bipolar cells, mediating inhibition from horizontal cells and amacrine cells. Amacrine cells possess ionotropic glutamate receptors, whereas ganglion cells express both ionotropic and metabotropic glutamate receptors. GABAA receptors exist in amacrine and ganglion cells. Physiological data further suggest that GABAC receptors may be involved in the activity of these neurons. Moreover, responses of these retinal third order neurons are modulated by GABAB receptors, and in ganglion cells there exist several subtypes of GABAB receptors. A variety of glutamate receptor and GABA receptor subtypes found in the retina perform distinct functions, thus providing a wide range of neural integration and versatility of synaptic transmission. Perspectives in this research field are presented.
Collapse
Affiliation(s)
- Xiong-Li Yang
- Institute of Neurobiology, Fudan University, 220 Handan Road, Shanghai 200433, China.
| |
Collapse
|
37
|
Yu D, Eldred WD. GABA(A) and GABA(C) receptor antagonists increase retinal cyclic GMP levels through nitric oxide synthase. Vis Neurosci 2004; 20:627-37. [PMID: 15088716 DOI: 10.1017/s0952523803206052] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The nitric oxide (NO)/cyclic guanosine monophosphate (cGMP) signal transduction pathway plays a role in every retinal cell type. Previous studies have shown that excitatory glutamatergic synaptic pathways can increase cGMP-like immunoreactivity (cGMP-LI) in retina through stimulation of NO production, but little is known about the role of synaptic inhibition in the modulation of cGMP-LI. Gamma-amino-n-butyric acid (GABA) plays critical roles in modulating excitatory synaptic pathways in the retina. Therefore, we used GABA receptor antagonists to explore the role of GABAergic inhibitory synaptic pathways on the modulation of the NO/cGMP signal-transduction system. Cyclic GMP immunocytochemistry was used to investigate the effects of the GABA receptor antagonists bicuculline, picrotoxin, and (1,2,5,6-tetrahyropyridin-4-yl) methylphosphinic acid (TPMPA) on levels of cGMP-LI. Cyclic GMP-LI was strongly increased in response to the GABA(A) receptor antagonist bicuculline, while the GABA(C) receptor antagonist TPMPA had little effect on cGMP-LI. The GABA(A)/GABA(C) receptor antagonist, picrotoxin, caused a moderate increase in cGMP-LI, which was mimicked by the combination of bicuculline and TPMPA. The nitric oxide synthase inhibitor, S-methyl-L-thiocitrulline (SMTC), blocked the increased cGMP-LI in response to stimulation with either bicuculline or picrotoxin. Treatments with either of the glutamate receptor antagonists (5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine (MK-801) or 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) partially blocked the increases in cGMP-LI seen in response to bicuculline, but a combination of MK-801 and CNQX completely eliminated these increases. These results suggest that inhibitory synaptic pathways involving both types of GABA receptors work through excitatory glutamatergic receptors to regulate the NO/cGMP signal-transduction pathway in retina.
Collapse
Affiliation(s)
- Dou Yu
- Department of Biology, Boston University, Boston, MA 02215, USA
| | | |
Collapse
|
38
|
Schlicker K, Boller M, Schmidt M. GABAC receptor mediated inhibition in acutely isolated neurons of the rat dorsal lateral geniculate nucleus. Brain Res Bull 2004; 63:91-7. [PMID: 15130697 DOI: 10.1016/j.brainresbull.2004.01.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2003] [Revised: 01/19/2004] [Accepted: 01/23/2004] [Indexed: 11/27/2022]
Abstract
In the dorsal lateral geniculate nucleus (dLGN), GABA(C) receptors seems to be specifically expressed by local GABAergic interneurons. Although the presence of GABA(C) receptors has been demonstrated, a quantitative estimation of their contribution to inhibition in dLGN is lacking. Because the amount of inhibition mediated by these receptors might reflect their functional importance we performed whole-cell patch clamp recordings from dLGN cells acutely dissociated from brain slices. We focally applied the GABA receptor agonist muscimol and quantified effects mediated through either GABA(C) or GABA(A) receptors. Because their basic dendritic morphology was preserved, we tried to morphologically differentiate between thalamocortical cells and local interneurons. In the majority of multipolar cells, representing thalamocortical projection neurons, the specific GABA(A) receptor antagonist bicuculline completely blocked muscimol induced currents. In contrast, in most of the bipolar cells, representing interneurons, bicuculline blocked only 70-80% of the muscimol induced currents. The remaining currents were blocked by co-application of TPMPA, a specific GABA(C) receptor antagonist, or picrotoxin, an unspecific GABA(A) and GABA(C) receptor blocker. The latter neurons were also sensitive to the selective GABA(C) receptor agonist cis-aminocrotonic acid. These results indicate that in those dLGN neurons that express GABA(C) receptors, these receptors contribute considerably to GABAergic inhibitory inputs.
Collapse
Affiliation(s)
- Katja Schlicker
- Allgemeine Zoologie and Neurobiologie, Ruhr-Universität Bochum, ND 6/25, D-44780 Bochum, Germany
| | | | | |
Collapse
|
39
|
Boué-Grabot E, Emerit MB, Toulmé E, Séguéla P, Garret M. Cross-talk and co-trafficking between rho1/GABA receptors and ATP-gated channels. J Biol Chem 2004; 279:6967-75. [PMID: 14660627 DOI: 10.1074/jbc.m307772200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gamma-aminobutyric-acid (GABA) and ATP ionotropic receptors represent two structurally and functionally different classes of neurotransmitter-gated channels involved in fast synaptic transmission. We demonstrate here that, when the inhibitory rho1/GABA and the excitatory P2X2 receptor channels are co-expressed in Xenopus oocytes, activation of one channel reduces the currents mediated by the other one. This reciprocal inhibitory cross-talk is a receptor-mediated phenomenon independent of agonist cross-modulation, membrane potential, direction of ionic flux, or channel densities. Functional interaction is disrupted when the cytoplasmic C-terminal domain of P2X2 is deleted or in competition experiments with minigenes coding for the C-terminal domain of P2X2 or the main intracellular loop of rho1 subunits. We also show a physical interaction between P2X2 and rho1 receptors expressed in oocytes and the co-clustering of these receptors in transfected hippocampal neurons. Co-expression with P2X2 induces retargeting and recruitment of mainly intracellular rho1/GABA receptors to surface clusters. Therefore, molecular and functional cross-talk between inhibitory and excitatory ligand-gated channels may regulate synaptic strength both by activity-dependent current occlusion and synaptic receptors co-trafficking.
Collapse
Affiliation(s)
- Eric Boué-Grabot
- CNRS Unité Mixte de Recherche 5543, Université Victor Segalen Bordeaux 2, 33076 Bordeaux cedex, France.
| | | | | | | | | |
Collapse
|
40
|
Klooster J, Nunes Cardozo B, Yazulla S, Kamermans M. Postsynaptic localization of ?-aminobutyric acid transporters and receptors in the outer plexiform layer of the goldfish retina: An ultrastructural study. J Comp Neurol 2004; 474:58-74. [PMID: 15156579 DOI: 10.1002/cne.20114] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The gamma-aminobutyric acid (GABA)-ergic system in the outer plexiform layer (OPL) of the goldfish retina was studied via light and electron immunohistochemistry. The subcellular distributions of immunoreactivity (-IR) of plasma membrane GABA transporters GAT2 and GAT3, the alpha1 and alpha3 subunits of the ionotropic GABA(A) receptor, and the rho1 subunit of the ionotropic GABA(C) receptor were determined. The localization of the GAT2-IR and GAT3-IR to horizontal cell dendrites at the base of the cone synaptic complex was the main characteristic at the ultrastructural level. Very rarely, GAT2-IR and GAT3-IR were found in horizontal cell dendrites innervating rod spherules. alpha1-IR and alpha3-IR were seen in wide bands in the OPL, whereas rho1-IR appeared as a narrow band in the OPL. Most alpha1-IR was intracellular in rod and cone terminals. Membrane-associated alpha1-IR was observed in cone pedicles but not in rod spherules; postsynaptic elements were also labeled. alpha3-IR was concentrated in the lateral elements of horizontal cell dendrites in cone pedicles. In contrast, rho1-IR was found mainly on the spinules of the horizontal cell dendrites in cone pedicles. In addition, in another type of cone pedicle, rho1-IR was found at the position of OFF-bipolar cell dendrites. alpha3-IR and rho1-IR were rarely found in horizontal cell dendrites innervating rods. We suggest that two GABAergic pathways exist in the outer retina- first, a GABAergic positive loop with GABA receptors mainly on the horizontal cell dendrites and spinules and, second, a GABAergic feedback pathway involving GABA receptors on cone pedicles and GABA transporters on horizontal cells and that this pathway presumably modulates feedback strength from horizontal cells to cones.
Collapse
Affiliation(s)
- Jan Klooster
- Department of Retinal Signal Processing, Netherlands Ophthalmic Research Institute-KNAW, 1105 BA Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
41
|
Abstract
Night (scotopic) vision is mediated by a distinct retinal circuit in which the light responses of rod-driven neurons are faster than those of the rods themselves. To investigate the dynamics of synaptic transmission at the second synapse in the rod pathway, we made paired voltage-clamp recordings from rod bipolar cells (RBCs) and postsynaptic AII and A17 amacrine cells in rat retinal slices. Depolarization of RBCs from -60 mV elicited sustained Ca2+ currents and evoked AMPA receptor (AMPAR)-mediated EPSCs in synaptically coupled amacrine cells that exhibited large, rapidly rising initial peaks that decayed rapidly to smaller, steady-state levels. The transient component persisted in the absence of feedback inhibition to the RBC terminal and when postsynaptic AMPA receptor desensitization was blocked with cyclothiazide, indicating that it reflects a time-dependent decrease in the rate of exocytosis from the presynaptic terminal. The EPSC waveform was similar when RBCs were recorded in perforated-patch or whole-cell configurations, but asynchronous release from RBCs was enhanced when the intraterminal Ca2+ buffer capacity was reduced. When RBCs were depolarized from -100 mV, inactivating, low voltage-activated (T-type channel-mediated) Ca2+ currents were evident. Although Ca2+ influx through T-type channels boosted vesicle release, as reflected by larger EPSCs, it did not make the EPSCs faster, indicating that activation of T-type channels is not necessary to generate a transient phase of exocytosis. We conclude that the time course of vesicle release from RBCs is inherently transient and, together with the fast kinetics of postsynaptic AMPARs, speeds transmission at this synapse.
Collapse
|
42
|
Zheng W, Xie W, Zhang J, Strong JA, Wang L, Yu L, Xu M, Lu L. Function of gamma-aminobutyric acid receptor/channel rho 1 subunits in spinal cord. J Biol Chem 2003; 278:48321-9. [PMID: 12970343 DOI: 10.1074/jbc.m307930200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
gamma-Aminobutyric acid (GABA) receptor/channel rho 1 subunits are important components in inhibitory pathways in the central nervous system. However, the precise locations and roles of these receptors in the central nervous system are unknown. We studied the expression localization of GABA receptor/channel rho 1 subunit in mouse spinal cord and dorsal root ganglia (DRG). The immunohistochemistry results indicated that GABA receptor/channel rho 1 subunits were expressed in mouse spinal cord superficial dorsal horn (lamina I and lamina II) and in DRG. To understand the functions of the GABA receptor/channel rho 1 subunit in these crucial sites of sensory transmission in vivo, we generated GABA receptor/channel rho 1 subunit mutant mice (rho 1-/-). GABA receptor/channel rho 1 subunit expression in the rho 1-/- mice was eliminated completely, whereas the gross neuroanatomical structures of the rho 1-/- mice spinal cord and DRG were unchanged. Electrophysiological recording showed that GABA-mediated spinal cord response was altered in the rho 1-/- mice. A decreased threshold for mechanical pain in the rho 1-/- mice compared with control mice was observed with the von Frey filament test. These findings indicate that the GABA receptor/channel rho 1 subunit plays an important role in modulating spinal cord pain transmission functions in vivo.
Collapse
MESH Headings
- Animals
- Blotting, Southern
- Central Nervous System/metabolism
- DNA, Complementary/metabolism
- Electrophysiology
- Exons
- Female
- Ganglia, Spinal/metabolism
- Immunohistochemistry
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Microscopy, Fluorescence
- Models, Genetic
- Mutation
- Pain
- Receptors, GABA/chemistry
- Receptors, GABA/genetics
- Receptors, GABA/metabolism
- Recombinant Proteins/metabolism
- Retina/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Spinal Cord/metabolism
Collapse
Affiliation(s)
- Wei Zheng
- Division of Molecular Medicine, Harbor-UCLA Medical Center, The David Geffen School of Medicine University of California Los Angeles, Torrance, California 90502, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Elimination of the rho1 subunit abolishes GABA(C) receptor expression and alters visual processing in the mouse retina. J Neurosci 2002. [PMID: 12019334 DOI: 10.1523/jneurosci.22-10-04163.2002] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Inhibition is crucial for normal function in the nervous system. In the CNS, inhibition is mediated primarily by the amino acid GABA via activation of two ionotropic GABA receptors, GABA(A) and GABA(C). GABA(A) receptor composition and function have been well characterized, whereas much less is known about native GABA(C) receptors. Differences in molecular composition, anatomical distributions, and physiological properties strongly suggest that GABA(A) receptors and GABA(C) receptors have distinct functional roles in the CNS. To determine the functional role of GABA(C) receptors, we eliminated their expression in mice using a knock-out strategy. Although native rodent GABA(C) receptors are composed of rho1 and rho2 subunits, we show that after rho1 subunit expression was selectively eliminated there was no GABA(C) receptor expression. We assessed GABA(C) receptor function in the retina because GABA(C) receptors are highly expressed on the axon terminals of rod bipolar cells and because this site modulates the visual signal to amacrine and ganglion cells. In GABA(C)rho1 null mice, GABA-evoked responses, normally mediated by GABA(C) receptors, were eliminated, and signaling from rod bipolar cells to third order cells was altered. These data demonstrate that elimination of the GABA(C)rho1 subunit, via gene targeting, results in the absence of GABA(C) receptors in the retina and selective alterations in normal visual processing.
Collapse
|
44
|
Jentsch TJ, Stein V, Weinreich F, Zdebik AA. Molecular structure and physiological function of chloride channels. Physiol Rev 2002; 82:503-68. [PMID: 11917096 DOI: 10.1152/physrev.00029.2001] [Citation(s) in RCA: 941] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cl- channels reside both in the plasma membrane and in intracellular organelles. Their functions range from ion homeostasis to cell volume regulation, transepithelial transport, and regulation of electrical excitability. Their physiological roles are impressively illustrated by various inherited diseases and knock-out mouse models. Thus the loss of distinct Cl- channels leads to an impairment of transepithelial transport in cystic fibrosis and Bartter's syndrome, to increased muscle excitability in myotonia congenita, to reduced endosomal acidification and impaired endocytosis in Dent's disease, and to impaired extracellular acidification by osteoclasts and osteopetrosis. The disruption of several Cl- channels in mice results in blindness. Several classes of Cl- channels have not yet been identified at the molecular level. Three molecularly distinct Cl- channel families (CLC, CFTR, and ligand-gated GABA and glycine receptors) are well established. Mutagenesis and functional studies have yielded considerable insights into their structure and function. Recently, the detailed structure of bacterial CLC proteins was determined by X-ray analysis of three-dimensional crystals. Nonetheless, they are less well understood than cation channels and show remarkably different biophysical and structural properties. Other gene families (CLIC or CLCA) were also reported to encode Cl- channels but are less well characterized. This review focuses on molecularly identified Cl- channels and their physiological roles.
Collapse
Affiliation(s)
- Thomas J Jentsch
- Zentrum für Molekulare Neurobiologie Hamburg, Universität Hamburg, Hamburg, Germany.
| | | | | | | |
Collapse
|
45
|
Didelon F, Sciancalepore M, Savic' N, Mladinic' M, Bradbury A, Cherubini E. gamma-Aminobutyric acidA rho receptor subunits in the developing rat hippocampus. J Neurosci Res 2002; 67:739-44. [PMID: 11891787 DOI: 10.1002/jnr.10178] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The RT-PCR approach was used to estimate the expression of gamma-aminobutyric acid (GABA)(A) rho receptor subunits in the hippocampus of neonatal and adult rats. All three rho subunits were detected at postnatal day (P) 2, the rho3 subunit being expressed at an extremely low level. The rho1 and rho2 products appeared to be developmentally regulated; they were found to be more pronounced in adulthood. In another set of experiments, to correlate gene expression with receptor function, GABA(A) rho subunit mRNAs were detected with single-cell RT-PCR in CA3 pyramidal cells (from P3-P4 hippocampal slices), previously characterized with electrophysiological experiments for their bicuculline-sensitive or -insensitive responses to GABA. In 6 of 19 cells (31%), pressure application of GABA evoked at -70 mV inward currents that persisted in the presence of 100 microM bicuculline (314 plus minus 129 pA). RT-PCR performed in two of these neurons revealed the presence of rho1 and rho2 subunits, the latter being present with the alpha2 subunit. A rho2 subunit was also found in 1 neuron (among 9) exhibiting a response to GABA, which was completely abolished by bicuculline. This might be due to the lack of putative accessory GABA(A) subunits that can coassemble with rho2 to make functional receptors. Similar experiments from 10 P15 CA3 pyramidal cells failed to reveal any rho1-3 transcripts. However, these neurons abundantly express alpha3 subunits. It is likely that in CA3 pyramidal cells of neonatal and adult hippocampus GABA(A) rho subunits are present but at very low levels of expression.
Collapse
Affiliation(s)
- Frédéric Didelon
- Neuroscience Program and Istituto Nazionale Fisica della Materia (INFM), International School for Advanced Studies (SISSA), Trieste, Italy
| | | | | | | | | | | |
Collapse
|
46
|
Fletcher EL, Clark MJ, Senior P, Furness JB. Gene expression and localization of GABA(C) receptors in neurons of the rat gastrointestinal tract. Neuroscience 2002; 107:181-9. [PMID: 11744257 DOI: 10.1016/s0306-4522(01)00339-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The effects of GABA in the CNS are mediated by three different GABA receptors: GABA(A), GABA(B) and GABA(C) receptors. GABA(A) and GABA(B) receptors, but not yet GABA(C) receptors, have been demonstrated in the enteric nervous system, where GABA has been proposed to be a transmitter. The purpose of this study was to determine whether GABA(C) receptors are present and thus may play a role in mediating the effects of GABA in the myenteric plexus of the rat gastrointestinal tract. We examined the expression of the three known GABA(C) receptor subunits, rho1, rho2 and rho3, in the rat duodenum, ileum and colon using the reverse transcriptase-polymerase chain reaction. We determined the localization of GABA(C) receptors in the myenteric plexus of these regions using two different antisera directed against GABA(C) receptor subunits. The polymerase chain reaction revealed that all three subunits were expressed in the gastrointestinal tract. When the layers of the intestine were separated and the layer containing myenteric neurons was assayed, the rho3 subunit was found in the ileum and colon, whereas rho1 was expressed in the duodenum and weakly in the colon and rho2 was expressed in the ileum. Immunocytochemistry revealed numerous labeled neurons in the myenteric plexus of each region. Colocalization showed that a large proportion of calbindin plus calretinin immunoreactive neurons (intrinsic primary afferent neurons) were immunoreactive for the GABA(C) receptor, and that 56% of nitric oxide synthase immunoreactive neurons (inhibitory motor neurons) exhibited the receptor. These results indicate that GABA(C) receptors of differing subunit compositions are expressed by neurons in the rat gastrointestinal tract. The effects of GABA on intrinsic sensory and on inhibitory motor neurons are likely to be mediated in part through GABA(C) receptors.
Collapse
Affiliation(s)
- E L Fletcher
- Department of Anatomy and Cell Biology, The University of Melbourne, Grattan Street, 3010, Parkville, Vic, Australia
| | | | | | | |
Collapse
|
47
|
Abstract
In the central nervous system inhibitory neurotransmission is primarily achieved through activation of receptors for gamma-aminobutyric acid (GABA). Three types of GABA receptors have been identified on the basis of their pharmacological and electrophysiological properties. The predominant type, termed GABA(A), and a recently identified GABA(C) type, form ligand-gated chloride channels, whereas GABA(B) receptors activate separate cation channels via G proteins. Based on their homology to nicotinic acetylcholine receptors, GABA(C) receptors are believed to be oligomeric protein complexes composed of five subunits in a pentameric arrangement. To date up to five different GABA(C) receptors subunits have been identified in various species. Recent studies have shed new light on the biological characteristics of GABA(C) receptors, including the chromosomal localization of its subunit genes and resulting links to deseases, the cloning of new splice variants, the identification of GABA(C) receptor-associated proteins, the identification of domains involved in subunit assembly, and finally structure/function studies examining functional consequences of introduced mutations. This review summarizes recent data in view of the molecular structure of GABA(C) receptors and presents new insights into the biological function of this protein in the retina.
Collapse
Affiliation(s)
- R Enz
- Emil-Fischer Zentrum, Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
48
|
Wu SM, Gao F, Maple BR. Integration and segregation of visual signals by bipolar cells in the tiger salamander retina. PROGRESS IN BRAIN RESEARCH 2001; 131:125-43. [PMID: 11420936 DOI: 10.1016/s0079-6123(01)31012-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Affiliation(s)
- S M Wu
- Cullen Eye Institute, Baylor College of Medicine, 6565 Fannin Street, NC-205, Houston, TX 77030, USA.
| | | | | |
Collapse
|
49
|
Affiliation(s)
- H Qian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 West Taylor Srteet, Chicago, IL 60612, USA.
| | | |
Collapse
|
50
|
Yazulla S, Studholme KM, Fan SF, Mora-Ferrer C. Neuromodulation of voltage-dependent K+ channels in bipolar cells: immunocytochemical and electrophysiological studies. PROGRESS IN BRAIN RESEARCH 2001; 131:201-13. [PMID: 11420941 DOI: 10.1016/s0079-6123(01)31017-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Affiliation(s)
- S Yazulla
- Department of Neurobiology and Behavior, SUNY Stony Brook, NY 11794-5230, USA.
| | | | | | | |
Collapse
|