• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4632504)   Today's Articles (329)   Subscriber (49903)
For: Hartenstein V, Nassif C, Lekven A. Embryonic development of theDrosophila brain. II. Pattern of glial cells. J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19981207)402:1<32::aid-cne3>3.0.co;2-v] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Number Cited by Other Article(s)
1
Lago-Baldaia I, Cooper M, Seroka A, Trivedi C, Powell GT, Wilson SW, Ackerman SD, Fernandes VM. A Drosophila glial cell atlas reveals a mismatch between transcriptional and morphological diversity. PLoS Biol 2023;21:e3002328. [PMID: 37862379 PMCID: PMC10619882 DOI: 10.1371/journal.pbio.3002328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/01/2023] [Accepted: 09/08/2023] [Indexed: 10/22/2023]  Open
2
Markey KM, Saunders JC, Smuts J, von Reyn CR, Garcia ADR. Astrocyte development—More questions than answers. Front Cell Dev Biol 2023;11:1063843. [PMID: 37051466 PMCID: PMC10083403 DOI: 10.3389/fcell.2023.1063843] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/14/2023] [Indexed: 03/28/2023]  Open
3
Ramon-Cañellas P, Peterson HP, Morante J. From Early to Late Neurogenesis: Neural Progenitors and the Glial Niche from a Fly's Point of View. Neuroscience 2018;399:39-52. [PMID: 30578972 DOI: 10.1016/j.neuroscience.2018.12.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 12/06/2018] [Accepted: 12/12/2018] [Indexed: 12/15/2022]
4
Enriquez J, Rio LQ, Blazeski R, Bellemin S, Godement P, Mason C, Mann RS. Differing Strategies Despite Shared Lineages of Motor Neurons and Glia to Achieve Robust Development of an Adult Neuropil in Drosophila. Neuron 2018;97:538-554.e5. [PMID: 29395908 PMCID: PMC5941948 DOI: 10.1016/j.neuron.2018.01.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 12/04/2017] [Accepted: 01/03/2018] [Indexed: 11/15/2022]
5
Omoto JJ, Lovick JK, Hartenstein V. Origins of glial cell populations in the insect nervous system. CURRENT OPINION IN INSECT SCIENCE 2016;18:96-104. [PMID: 27939718 PMCID: PMC5825180 DOI: 10.1016/j.cois.2016.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/06/2016] [Accepted: 09/15/2016] [Indexed: 06/06/2023]
6
Omoto JJ, Yogi P, Hartenstein V. Origin and development of neuropil glia of the Drosophila larval and adult brain: Two distinct glial populations derived from separate progenitors. Dev Biol 2015;404:2-20. [PMID: 25779704 DOI: 10.1016/j.ydbio.2015.03.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 03/01/2015] [Accepted: 03/05/2015] [Indexed: 12/17/2022]
7
Gan G, Lv H, Xie W. Morphological identification and development of neurite in Drosophila ventral nerve cord neuropil. PLoS One 2014;9:e105497. [PMID: 25166897 PMCID: PMC4148333 DOI: 10.1371/journal.pone.0105497] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 07/24/2014] [Indexed: 12/02/2022]  Open
8
Boyan G, Liu Y. Timelines in the insect brain: fates of identified neural stem cells generating the central complex in the grasshopper Schistocerca gregaria. Dev Genes Evol 2013;224:37-51. [PMID: 24343526 DOI: 10.1007/s00427-013-0462-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 12/02/2013] [Indexed: 11/27/2022]
9
Gliogenesis in the embryonic brain of the grasshopper Schistocerca gregaria with particular focus on the protocerebrum prior to mid-embryogenesis. Cell Tissue Res 2013;354:697-705. [PMID: 23917388 DOI: 10.1007/s00441-013-1682-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 06/06/2013] [Indexed: 10/26/2022]
10
Viktorin G, Riebli N, Reichert H. A multipotent transit-amplifying neuroblast lineage in the central brain gives rise to optic lobe glial cells in Drosophila. Dev Biol 2013;379:182-94. [PMID: 23628691 DOI: 10.1016/j.ydbio.2013.04.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 04/18/2013] [Accepted: 04/18/2013] [Indexed: 12/27/2022]
11
Glia associated with central complex lineages in the embryonic brain of the grasshopper Schistocerca gregaria. Dev Genes Evol 2013;223:213-23. [PMID: 23494665 DOI: 10.1007/s00427-013-0439-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 02/27/2013] [Indexed: 12/17/2022]
12
Homem CCF, Knoblich JA. Drosophila neuroblasts: a model for stem cell biology. Development 2013;139:4297-310. [PMID: 23132240 DOI: 10.1242/dev.080515] [Citation(s) in RCA: 311] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
13
Boyan G, Williams L, Götz S. Postembryonic development of astrocyte-like glia of the central complex in the grasshopper Schistocerca gregaria. Cell Tissue Res 2012;351:361-72. [PMID: 23250573 DOI: 10.1007/s00441-012-1535-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 11/06/2012] [Indexed: 12/25/2022]
14
A cellular network of dye-coupled glia associated with the embryonic central complex in the grasshopper Schistocerca gregaria. Dev Genes Evol 2012;222:125-38. [PMID: 22460819 DOI: 10.1007/s00427-012-0394-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 03/11/2012] [Indexed: 12/25/2022]
15
Viktorin G, Riebli N, Popkova A, Giangrande A, Reichert H. Multipotent neural stem cells generate glial cells of the central complex through transit amplifying intermediate progenitors in Drosophila brain development. Dev Biol 2011;356:553-65. [PMID: 21708145 DOI: 10.1016/j.ydbio.2011.06.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 05/27/2011] [Accepted: 06/11/2011] [Indexed: 10/18/2022]
16
Astrocyte-like glia associated with the embryonic development of the central complex in the grasshopper Schistocerca gregaria. Dev Genes Evol 2011;221:141-55. [PMID: 21556852 DOI: 10.1007/s00427-011-0366-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 04/07/2011] [Indexed: 01/16/2023]
17
Hartenstein V. Morphological diversity and development of glia in Drosophila. Glia 2011;59:1237-52. [PMID: 21438012 DOI: 10.1002/glia.21162] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 01/25/2011] [Indexed: 12/31/2022]
18
Oland LA, Tolbert LP. Roles of glial cells in neural circuit formation: insights from research in insects. Glia 2010;59:1273-95. [PMID: 21732424 DOI: 10.1002/glia.21096] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 09/22/2010] [Indexed: 11/09/2022]
19
Edwards TN, Meinertzhagen IA. The functional organisation of glia in the adult brain of Drosophila and other insects. Prog Neurobiol 2010;90:471-97. [PMID: 20109517 DOI: 10.1016/j.pneurobio.2010.01.001] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 01/14/2010] [Accepted: 01/14/2010] [Indexed: 12/24/2022]
20
Spindler SR, Ortiz I, Fung S, Takashima S, Hartenstein V. Drosophila cortex and neuropile glia influence secondary axon tract growth, pathfinding, and fasciculation in the developing larval brain. Dev Biol 2009;334:355-68. [PMID: 19646433 DOI: 10.1016/j.ydbio.2009.07.035] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 07/23/2009] [Accepted: 07/23/2009] [Indexed: 01/09/2023]
21
KUNIYOSHI HISATO, USUI-AOKI KAZUE, JUNI NAOTO, YAMAMOTO DAISUKE. EXPRESSION ANALYSIS OF THELINGERERGENE IN THE LARVAL CENTRAL NERVOUS SYSTEM OFDROSOPHILA MELANOGASTER. J Neurogenet 2009. [DOI: 10.1080/neg.17.2-3.117.137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
22
Larsen C, Shy D, Spindler SR, Fung S, Pereanu W, Younossi-Hartenstein A, Hartenstein V. Patterns of growth, axonal extension and axonal arborization of neuronal lineages in the developing Drosophila brain. Dev Biol 2009;335:289-304. [PMID: 19538956 DOI: 10.1016/j.ydbio.2009.06.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 06/09/2009] [Accepted: 06/11/2009] [Indexed: 10/20/2022]
23
Rand MD, Dao JC, Clason TA. Methylmercury disruption of embryonic neural development in Drosophila. Neurotoxicology 2009;30:794-802. [PMID: 19409416 DOI: 10.1016/j.neuro.2009.04.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 04/21/2009] [Accepted: 04/21/2009] [Indexed: 11/15/2022]
24
Jeibmann A, Paulus W. Drosophila melanogaster as a model organism of brain diseases. Int J Mol Sci 2009;10:407-440. [PMID: 19333415 PMCID: PMC2660653 DOI: 10.3390/ijms10020407] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 01/16/2009] [Accepted: 01/20/2009] [Indexed: 01/29/2023]  Open
25
Hartenstein V, Spindler S, Pereanu W, Fung S. The development of the Drosophila larval brain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009;628:1-31. [PMID: 18683635 DOI: 10.1007/978-0-387-78261-4_1] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
26
Glial cell regulation of neurotransmission and behavior in Drosophila. ACTA ACUST UNITED AC 2008;4:11-7. [PMID: 18950546 DOI: 10.1017/s1740925x09000027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
27
Haydon PG, Blendy J, Moss SJ, Rob Jackson F. Astrocytic control of synaptic transmission and plasticity: a target for drugs of abuse? Neuropharmacology 2008;56 Suppl 1:83-90. [PMID: 18647612 DOI: 10.1016/j.neuropharm.2008.06.050] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 06/24/2008] [Accepted: 06/25/2008] [Indexed: 02/03/2023]
28
The tumor suppressor, vitamin D3 up-regulated protein 1 (VDUP1), functions downstream of REPO during Drosophila gliogenesis. Dev Biol 2008;315:489-504. [PMID: 18262515 DOI: 10.1016/j.ydbio.2008.01.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Revised: 11/02/2007] [Accepted: 01/09/2008] [Indexed: 11/24/2022]
29
Suh J, Jackson FR. Drosophila ebony activity is required in glia for the circadian regulation of locomotor activity. Neuron 2007;55:435-47. [PMID: 17678856 PMCID: PMC2034310 DOI: 10.1016/j.neuron.2007.06.038] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Revised: 05/31/2007] [Accepted: 06/28/2007] [Indexed: 10/23/2022]
30
Sprecher SG, Hirth F. Expression and function of the columnar patterning gene msh in late embryonic brain development of Drosophila. Dev Dyn 2007;235:2920-9. [PMID: 16929521 DOI: 10.1002/dvdy.20936] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]  Open
31
Younossi-Hartenstein A, Nguyen B, Shy D, Hartenstein V. Embryonic origin of theDrosophila brain neuropile. J Comp Neurol 2006;497:981-98. [PMID: 16802336 DOI: 10.1002/cne.20884] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
32
Iyengar BG, Chou CJ, Sharma A, Atwood HL. Modular neuropile organization in theDrosophila larval brain facilitates identification and mapping of central neurons. J Comp Neurol 2006;499:583-602. [PMID: 17029252 DOI: 10.1002/cne.21133] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
33
Mandal L, Dumstrei K, Hartenstein V. Role of FGFR signaling in the morphogenesis of the Drosophila visceral musculature. Dev Dyn 2005;231:342-8. [PMID: 15366011 DOI: 10.1002/dvdy.20088] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]  Open
34
Pereanu W, Shy D, Hartenstein V. Morphogenesis and proliferation of the larval brain glia in Drosophila. Dev Biol 2005;283:191-203. [PMID: 15907832 DOI: 10.1016/j.ydbio.2005.04.024] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Revised: 03/31/2005] [Accepted: 04/04/2005] [Indexed: 11/26/2022]
35
Pereanu W, Hartenstein V. Digital three-dimensional models of Drosophila development. Curr Opin Genet Dev 2004;14:382-91. [PMID: 15261654 DOI: 10.1016/j.gde.2004.06.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
36
Winkfein RJ, Pearson B, Ward R, Szerencsei RT, Colley NJ, Schnetkamp PPM. Molecular characterization, functional expression and tissue distribution of a second NCKX Na+/Ca2+-K+ exchanger from Drosophila. Cell Calcium 2004;36:147-55. [PMID: 15193862 DOI: 10.1016/j.ceca.2004.01.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2003] [Accepted: 01/29/2004] [Indexed: 10/26/2022]
37
Chang T, Younossi-Hartenstein A, Hartenstein V. Development of neural lineages derived from the sine oculis positive eye field of Drosophila. ARTHROPOD STRUCTURE & DEVELOPMENT 2003;32:303-317. [PMID: 18089014 DOI: 10.1016/j.asd.2003.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2003] [Accepted: 09/10/2003] [Indexed: 05/25/2023]
38
Urbach R, Schnabel R, Technau GM. The pattern of neuroblast formation, mitotic domains and proneural gene expression during early brain development in Drosophila. Development 2003;130:3589-606. [PMID: 12835378 DOI: 10.1242/dev.00528] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
39
Urbach R, Technau GM, Breidbach O. Spatial and temporal pattern of neuroblasts, proliferation, and Engrailed expression during early brain development in Tenebrio molitor L. (Coleoptera). ARTHROPOD STRUCTURE & DEVELOPMENT 2003;32:125-140. [PMID: 18088999 DOI: 10.1016/s1467-8039(03)00043-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2003] [Accepted: 04/28/2003] [Indexed: 05/25/2023]
40
Robertson K, Mergliano J, Minden JS. Dissecting Drosophila embryonic brain development using photoactivated gene expression. Dev Biol 2003;260:124-37. [PMID: 12885560 DOI: 10.1016/s0012-1606(03)00220-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
41
Younossi-Hartenstein A, Salvaterra PM, Hartenstein V. Early development of the Drosophila brain: IV. Larval neuropile compartments defined by glial septa. J Comp Neurol 2003;455:435-50. [PMID: 12508318 DOI: 10.1002/cne.10483] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
42
Nassif C, Noveen A, Hartenstein V. Early development of the Drosophila brain: III. The pattern of neuropile founder tracts during the larval period. J Comp Neurol 2003;455:417-34. [PMID: 12508317 DOI: 10.1002/cne.10482] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
43
Bonner J, Auld V, O'Connor T. Migrating mesoderm establish a uniform distribution of laminin in the developing grasshopper embryo. Dev Biol 2002;249:57-73. [PMID: 12217318 DOI: 10.1006/dbio.2002.0750] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
44
Soustelle L, Besson MT, Rival T, Birman S. Terminal glial differentiation involves regulated expression of the excitatory amino acid transporters in the Drosophila embryonic CNS. Dev Biol 2002;248:294-306. [PMID: 12167405 DOI: 10.1006/dbio.2002.0742] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
45
Oland LA, Tolbert LP. Key interactions between neurons and glial cells during neural development in insects. ANNUAL REVIEW OF ENTOMOLOGY 2002;48:89-110. [PMID: 12194908 DOI: 10.1146/annurev.ento.48.091801.112654] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
46
Kretzschmar D, Pflugfelder GO. Glia in development, function, and neurodegeneration of the adult insect brain. Brain Res Bull 2002;57:121-31. [PMID: 11827744 DOI: 10.1016/s0361-9230(01)00643-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
47
Sun B, Xu P, Wang W, Salvaterra PM. In vivo modification of Na(+),K(+)-ATPase activity in Drosophila. Comp Biochem Physiol B Biochem Mol Biol 2001;130:521-36. [PMID: 11691629 DOI: 10.1016/s1096-4959(01)00470-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
48
Rangarajan R, Courvoisier H, Gaul U. Dpp and Hedgehog mediate neuron-glia interactions in Drosophila eye development by promoting the proliferation and motility of subretinal glia. Mech Dev 2001;108:93-103. [PMID: 11578864 DOI: 10.1016/s0925-4773(01)00501-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
49
Callaerts P, Leng S, Clements J, Benassayag C, Cribbs D, Kang YY, Walldorf U, Fischbach KF, Strauss R. Drosophila Pax-6/eyeless is essential for normal adult brain structure and function. JOURNAL OF NEUROBIOLOGY 2001;46:73-88. [PMID: 11153010 DOI: 10.1002/1097-4695(20010205)46:2<73::aid-neu10>3.0.co;2-n] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
50
Hitier R, Simon AF, Savarit F, Préat T. no-bridge and linotte act jointly at the interhemispheric junction to build up the adult central brain of Drosophila melanogaster. Mech Dev 2000;99:93-100. [PMID: 11091077 DOI: 10.1016/s0925-4773(00)00483-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
PrevPage 1 of 2 12Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA