1
|
Wang Y, Nakajima E, Okamura Y, Wang D, Okumura N, Takao T. Metastable decomposition at the peptide C-terminus: Possible use in protein identification. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8734. [PMID: 32031718 DOI: 10.1002/rcm.8734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 12/14/2019] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
RATIONALE The b n-1 ion of a peptide, as well as a [b n-1 + 18] ion, can be observed not only as normal product ions, but also as prominent metastable ions in a reflectron-embedded matrix-assisted laser desorption ionization time-of-flight spectrometer. The m/z values for the peaks are slightly shifted compared with the ordinary product ions and appear as relatively broad peaks, which permits them to be discriminated from other ions. METHODS A standard protein mixture and gel-derived proteins digested with LysN protease, which cleaves peptide linkages in proteins at the N-terminal side of Lys residues, were examined. The collected data were used for protein identification using in-house software, iD-plus (http://coco.protein.osaka-u.ac.jp/id-plus/), which was developed for searching for proteins in the peptide database, based on enzyme specificity (N-terminal Lys in this study), peptide masses and C-terminal amino acids. RESULTS The b n-1 as well as [b n-1 + 18] ions were observed as broad ion peaks for all of the peptides (86 peptides) examined in this study. In silico calculations using the database of LysN digested peptides (11 969 470), created from 553 941 protein sequences (SwissProt: 2017_03), indicate that the use of no less than four peptides permits a protein to be identified without the need of any probability-based scoring. CONCLUSIONS The preference for b n-1 ion formation is probably due to the higher propensity of the C-terminal peptide bond to be cleaved than other internal bonds. The fact that such C-terminal fragmentation takes place for most of the peptides examined suggests that the use of an N-terminal specific enzyme would allow the C-terminal amino acids to be more reliably read out than other internal sequences, information that could be efficiently used for protein identification.
Collapse
Affiliation(s)
- Yang Wang
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, 565-0871, Japan
| | - Etsuko Nakajima
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, 565-0871, Japan
| | - Yoshihito Okamura
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, 565-0871, Japan
| | - Danqing Wang
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, 565-0871, Japan
| | - Nobuaki Okumura
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, 565-0871, Japan
| | - Toshifumi Takao
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, 565-0871, Japan
| |
Collapse
|
2
|
McMillen CL, Wright PM, Cassady CJ. Negative Ion In-Source Decay Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry for Sequencing Acidic Peptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:847-855. [PMID: 26864792 DOI: 10.1007/s13361-016-1345-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/15/2016] [Accepted: 01/16/2016] [Indexed: 06/05/2023]
Abstract
Matrix-assisted laser desorption/ionization (MALDI) in-source decay was studied in the negative ion mode on deprotonated peptides to determine its usefulness for obtaining extensive sequence information for acidic peptides. Eight biological acidic peptides, ranging in size from 11 to 33 residues, were studied by negative ion mode ISD (nISD). The matrices 2,5-dihydroxybenzoic acid, 2-aminobenzoic acid, 2-aminobenzamide, 1,5-diaminonaphthalene, 5-amino-1-naphthol, 3-aminoquinoline, and 9-aminoacridine were used with each peptide. Optimal fragmentation was produced with 1,5-diaminonphthalene (DAN), and extensive sequence informative fragmentation was observed for every peptide except hirudin(54-65). Cleavage at the N-Cα bond of the peptide backbone, producing c' and z' ions, was dominant for all peptides. Cleavage of the N-Cα bond N-terminal to proline residues was not observed. The formation of c and z ions is also found in electron transfer dissociation (ETD), electron capture dissociation (ECD), and positive ion mode ISD, which are considered to be radical-driven techniques. Oxidized insulin chain A, which has four highly acidic oxidized cysteine residues, had less extensive fragmentation. This peptide also exhibited the only charged localized fragmentation, with more pronounced product ion formation adjacent to the highly acidic residues. In addition, spectra were obtained by positive ion mode ISD for each protonated peptide; more sequence informative fragmentation was observed via nISD for all peptides. Three of the peptides studied had no product ion formation in ISD, but extensive sequence informative fragmentation was found in their nISD spectra. The results of this study indicate that nISD can be used to readily obtain sequence information for acidic peptides.
Collapse
Affiliation(s)
- Chelsea L McMillen
- Department of Chemistry, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Patience M Wright
- Department of Chemistry, The University of Alabama, Tuscaloosa, AL, 35487, USA
- Department of Chemistry, The University of Georgia, Athens, GA, 30602, USA
| | - Carolyn J Cassady
- Department of Chemistry, The University of Alabama, Tuscaloosa, AL, 35487, USA.
| |
Collapse
|
3
|
Detection, characterization and biological activities of [bisphospho-thr3,9]ODN, an endogenous molecular form of ODN released by astrocytes. Neuroscience 2015; 290:472-84. [PMID: 25639232 DOI: 10.1016/j.neuroscience.2015.01.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 12/29/2014] [Accepted: 01/05/2015] [Indexed: 11/23/2022]
Abstract
Astrocytes synthesize and release endozepines, a family of regulatory neuropeptides, including diazepam-binding inhibitor (DBI) and its processing fragments such as the octadecaneuropeptide (ODN). At the molecular level, ODN interacts with two types of receptors, i.e. it acts as an inverse agonist of the central-type benzodiazepine receptor (CBR), and as an agonist of a G protein-coupled receptor (GPCR). ODN exerts a wide range of biological effects mediated through these two receptors and, in particular, it regulates astrocyte activity through an autocrine/paracrine mechanism involving the metabotropic receptor. More recently, it has been shown that Müller glial cells secrete phosphorylated DBI and that bisphosphorylated ODN ([bisphospho-Thr(3,9)]ODN, bpODN) has a stronger affinity for CBR than ODN. The aim of the present study was thus to investigate whether bpODN is released by mouse cortical astrocytes and to compare its potency to ODN. Using a radioimmunoassay and mass spectrometry analysis we have shown that bpODN as well as ODN were released in cultured astrocyte supernatants. Both bpODN and ODN increased astrocyte calcium event frequency but in a very different range of concentration. Indeed, ODN stimulatory effect decreased at concentrations over 10(-10)M whereas bpODN increased the calcium event frequency at similar doses. In vivo effects of bpODN and ODN were analyzed in two behavioral paradigms involving either the metabotropic receptor (anorexia) or the CBR (anxiety). As previously described, ODN (100ng, icv) induced a significant reduction of food intake. Similar effect was achieved with bpODN but at a 10 times higher dose (1000 ng, icv). Similarly, and contrasting with our hypothesis, bpODN was also 10 times less potent than ODN to induce anxiety-related behavior in the elevated zero maze test. Thus, the present data do not support that phosphorylation of ODN is involved in receptor selectivity but indicate that it rather weakens ODN activity.
Collapse
|
4
|
Lee YC, Liao PC, Liou YC, Hsiao M, Huang CY, Lu PJ. Glycogen synthase kinase 3 β activity is required for hBora/Aurora A-mediated mitotic entry. Cell Cycle 2013; 12:953-60. [PMID: 23442801 PMCID: PMC3637354 DOI: 10.4161/cc.23945] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The synthesis and degradation of hBora is important for the regulation of mitotic entry and exist. In G 2 phase, hBora can complex with Aurora A to activate Plk1 and control mitotic entry. However, whether the post-translational modification of hBora is relevant to the mitotic entry still unclear. Here, we used the LC-MS/MS phosphopeptide mapping assay to identify 13 in vivo hBora phosphorylation sites and characterized that GSK3β can interact with hBora and phosphorylate hBora at Ser274 and Ser278. Pharmacological inhibitors of GSK3β reduced the retarded migrating band of hBora in cells and diminished the phosphorylation of hBora by in vitro kinase assay. Moreover, as well as in GSK3β activity-inhibited cells, specific knockdown of GSK3β by shRNA and S274A/S278 hBora mutant-expressing cells also exhibited the reduced Plk1 activation and a delay in mitotic entry. It suggests that GSK3β activity is required for hBora-mediated mitotic entry through Ser274 and Ser278 phosphorylation.
Collapse
Affiliation(s)
- Yu-Cheng Lee
- Institute of Basic Medical Sciences; College of Medicine; National Cheng Kung University; Tainan, Taiwan
| | - Po-Chi Liao
- Department of Environment and Occupational Health; College of Medicine; National Cheng Kung University; Tainan, Taiwan
| | - Yih-Cherng Liou
- Department of Biological Science; National University of Singapore; Singapore
| | - Michael Hsiao
- Genomics Research Center; Academia Sínica; Taipei, Taiwan
| | - Chi-Ying Huang
- Institute of Biopharmaceutical Sciences; National Yang-Ming University; Taipei, Taiwan
| | - Pei-Jung Lu
- Institute of Clinical Medicine; College of Medicine; National Cheng Kung University; Tainan, Taiwan
| |
Collapse
|
5
|
Palumbo AM, Smith SA, Kalcic CL, Dantus M, Stemmer PM, Reid GE. Tandem mass spectrometry strategies for phosphoproteome analysis. MASS SPECTROMETRY REVIEWS 2011; 30:600-25. [PMID: 21294150 DOI: 10.1002/mas.20310] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Protein phosphorylation is involved in nearly all essential biochemical pathways and the deregulation of phosphorylation events has been associated with the onset of numerous diseases. A multitude of tandem mass spectrometry (MS/MS) and multistage MS/MS (i.e., MS(n) ) strategies have been developed in recent years and have been applied toward comprehensive phosphoproteomic analysis, based on the interrogation of proteolytically derived phosphopeptides. However, the utility of each of these MS/MS and MS(n) approaches for phosphopeptide identification and characterization, including phosphorylation site localization, is critically dependant on the properties of the precursor ion (e.g., polarity and charge state), the specific ion activation method that is employed, and the underlying gas-phase ion chemistries, mechanisms and other factors that influence the gas-phase fragmentation behavior of phosphopeptide ions. This review therefore provides an overview of recent studies aimed at developing an improved understanding of these issues, and highlights the advantages and limitations of both established (e.g., CID) and newly maturing (e.g., ECD, ETD, photodissociation, etc.) yet complementary, ion activation techniques. This understanding is expected to facilitate the continued refinement of existing MS/MS strategies, and the development of novel MS/MS techniques for phosphopeptide analysis, with great promise in providing new insights into the role of protein phosphorylation on normal biological function, and in the onset and progression of disease. © 2011 Wiley Periodicals, Inc., Mass Spec Rev 30:600-625, 2011.
Collapse
Affiliation(s)
- Amanda M Palumbo
- Department of Chemistry, Michigan State University, East Lansing, USA
| | | | | | | | | | | |
Collapse
|
6
|
Manikwar P, Zimmerman T, Blanco FJ, Williams TD, Siahaan TJ. Rapid identification of fluorochrome modification sites in proteins by LC ESI-Q-TOF mass spectrometry. Bioconjug Chem 2011; 22:1330-6. [PMID: 21612301 DOI: 10.1021/bc100560c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Conjugation of either a fluorescent dye or a drug molecule to the ε-amino groups of lysine residues of proteins has many applications in biology and medicine. However, this type of conjugation produces a heterogeneous population of protein conjugates. Because conjugation of fluorochrome or drug molecule to a protein may have deleterious effects on protein function, the identification of conjugation sites is necessary. Unfortunately, the identification process can be time-consuming and laborious; therefore, there is a need to develop a rapid and reliable way to determine the conjugation sites of the fluorescent label or drug molecule. In this study, the sites of conjugation of fluorescein-5'-isothiocyanate and rhodamine-B-isothiocyanate to free amino groups on the insert-domain (I-domain) protein derived from the α-subunit of lymphocyte function-associated antigen-1 (LFA-1) were determined by electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-Q-TOF MS) along with peptide mapping using trypsin digestion. A reporter fragment of the fluorochrome moiety that is generated in the collision cell of the Q-TOF without explicit MS/MS precursor selection was used to identify the conjugation site. Selected ion plots of the reporter ion readily mark modified peptides in chromatograms of the complex digest. Interrogation of theses spectra reveals a neutral loss/precursor pair that identifies the modified peptide. The results show that one to seven fluorescein molecules or one to four rhodamine molecules were attached to the lysine residue(s) of the I-domain protein. No modifications were found in the metal ion-dependent adhesion site (MIDAS), which is an important binding region of the I-domain.
Collapse
Affiliation(s)
- Prakash Manikwar
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | | | | | | | | |
Collapse
|
7
|
Singer D, Kuhlmann J, Muschket M, Hoffmann R. Separation of Multiphosphorylated Peptide Isomers by Hydrophilic Interaction Chromatography on an Aminopropyl Phase. Anal Chem 2010; 82:6409-14. [DOI: 10.1021/ac100473k] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- David Singer
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine (BBZ), Faculty of Chemistry and Mineralogy, Universität Leipzig, 04103 Leipzig, Germany
| | - Julia Kuhlmann
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine (BBZ), Faculty of Chemistry and Mineralogy, Universität Leipzig, 04103 Leipzig, Germany
| | - Matthias Muschket
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine (BBZ), Faculty of Chemistry and Mineralogy, Universität Leipzig, 04103 Leipzig, Germany
| | - Ralf Hoffmann
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine (BBZ), Faculty of Chemistry and Mineralogy, Universität Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
8
|
Gehrig PM, Roschitzki B, Rutishauser D, Reiland S, Schlapbach R. Phosphorylated serine and threonine residues promote site-specific fragmentation of singly charged, arginine-containing peptide ions. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2009; 23:1435-1445. [PMID: 19353557 DOI: 10.1002/rcm.4019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In order to investigate gas-phase fragmentation reactions of phosphorylated peptide ions, matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI) tandem mass (MS/MS) spectra were recorded from synthetic phosphopeptides and from phosphopeptides isolated from natural sources. MALDI-TOF/TOF (TOF: time-of-flight) spectra of synthetic arginine-containing phosphopeptides revealed a significant increase of y ions resulting from bond cleavages on the C-terminal side of phosphothreonine or phosphoserine. The same effect was found in ESI-MS/MS spectra recorded from the singly charged but not from the doubly charged ions of these phosphopeptides. ESI-MS/MS spectra of doubly charged phosphopeptides containing two arginine residues support the following general fragmentation rule: Increased amide bond cleavage on the C-terminal side of phosphorylated serines or threonines mainly occurs in peptide ions which do not contain mobile protons. In MALDI-TOF/TOF spectra of phosphopeptides displaying N-terminal fragment ions, abundant b-H(3)PO(4) ions resulting from the enhanced dissociation of the pSer/pThr-X bond were detected (X denotes amino acids). Cleavages at phosphoamino acids were found to be particularly predominant in spectra of phosphopeptides containing pSer/pThr-Pro bonds. A quantitative evaluation of a larger set of MALDI-TOF/TOF spectra recorded from phosphopeptides indicated that phosphoserine residues in arginine-containing peptides increase the signal intensities of the respective y ions by almost a factor of 3. A less pronounced cleavage-enhancing effect was observed in some lysine-containing phosphopeptides without arginine. The proposed peptide fragmentation pathways involve a nucleophilic attack by phosphate oxygen on the carbon center of the peptide backbone amide, which eventually leads to cleavage of the amide bond.
Collapse
Affiliation(s)
- Peter Max Gehrig
- Functional Genomics Center Zurich, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
9
|
Fernandez-Lima FA, Becker C, Gillig KJ, Russell WK, Tichy SE, Russell DH. Ion Mobility-Mass Spectrometer Interface for Collisional Activation of Mobility Separated Ions. Anal Chem 2008; 81:618-24. [DOI: 10.1021/ac801919n] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
| | - Christopher Becker
- Department of Chemistry, Texas A&M University, College Station, Texas 77843
| | - Kent J. Gillig
- Department of Chemistry, Texas A&M University, College Station, Texas 77843
| | - William K. Russell
- Department of Chemistry, Texas A&M University, College Station, Texas 77843
| | - Shane E. Tichy
- Department of Chemistry, Texas A&M University, College Station, Texas 77843
| | - David H. Russell
- Department of Chemistry, Texas A&M University, College Station, Texas 77843
| |
Collapse
|
10
|
Chen CT, Chen YC. A two-matrix system for MALDI MS analysis of serine phosphorylated peptides concentrated by Fe3O4/Al2O3 magnetic nanoparticles. JOURNAL OF MASS SPECTROMETRY : JMS 2008; 43:538-541. [PMID: 18074332 DOI: 10.1002/jms.1353] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
|
11
|
Jagannadham MV, Nagaraj R. Detecting the site of phosphorylation in phosphopeptides without loss of phosphate group using MALDI TOF mass spectrometry. ANALYTICAL CHEMISTRY INSIGHTS 2008; 3:21-9. [PMID: 19609387 PMCID: PMC2701175 DOI: 10.4137/aci.s497] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Phosphopeptides with one and four phosphate groups were characterized by MALDI mass spectrometry. The molecular ion of monophosphopeptide could be detected both as positive and negative ions by MALDI TOF with delayed extraction (DE) and in the reflector mode. The tetraphospho peptide could be detected in linear mode. When MS/MS spectra of the monophospho peptides were obtained in a MALDI TOF TOF instrument by CID, b and y ions with the intact phosphate group were observed, in addition the b and y ions without the phosphate group. Our study indicates that it is possible to detect phosphorylated peptides with out the loss of phosphate group by MALDI TOF as well as MALDI TOF TOF instruments with delayed extraction and in the reflector mode.
Collapse
|
12
|
Temporini C, Dolcini L, Abee A, Calleri E, Galliano M, Caccialanza G, Massolini G. Development of an integrated chromatographic system for on-line digestion and characterization of phosphorylated proteins. J Chromatogr A 2008; 1183:65-75. [PMID: 18255078 DOI: 10.1016/j.chroma.2007.12.091] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Revised: 11/29/2007] [Accepted: 12/31/2007] [Indexed: 10/22/2022]
Abstract
The development of an integrated chromatographic system for complete phosphoprotein analysis is described. The digestion of phosphoproteins with trypsin- or pronase-based monolithic bioreactors is carried out on-line with selective enrichment on a TiO(2) trap and separation of the produced phosphopeptides by reversed-phase liquid chromatography-multiple mass spectrometry (RPLC/MS(n)). A detailed study on the selective extraction of peptides with different degrees of phosphorylation on TiO(2) cartridges is discussed. This analytical strategy has been optimized using beta-casein as a standard phosphoprotein, and then applied to the identification of phosphorylation sites in insulin-like grow factor-binding protein 1 (IGFBP-1) isolated from amniotic fluid.
Collapse
Affiliation(s)
- C Temporini
- Dipartimento di Chimica Farmaceutica, Università di Pavia, Via Taramelli 12, Pavia, Italy.
| | | | | | | | | | | | | |
Collapse
|
13
|
Hardouin J. Protein sequence information by matrix-assisted laser desorption/ionization in-source decay mass spectrometry. MASS SPECTROMETRY REVIEWS 2007; 26:672-82. [PMID: 17492750 DOI: 10.1002/mas.20142] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Proteins from biological samples are often identified by mass spectrometry (MS) with the two following "bottom-up" approaches: peptide mass fingerprinting or peptide sequence tag. Nevertheless, these strategies are time-consuming (digestion, liquid chromatography step, desalting step), the N- (or C-) terminal information often lacks and post-translational modifications (PTMs) are hardly observed. The in-source decay (ISD) occurring in a matrix assisted laser desorption/ionization (MALDI) source appears an interesting analytical tool to obtain N-terminal sequence, to identify proteins and to characterize PTMs by a "top-down" strategy. The goal of this review deals with the usefulness of the ISD technique in MALDI source in proteomics fields. In the first part, the ISD principle is explained and in the second part, the use of ISD in proteomic studies is discussed for protein identification and sequence characterization.
Collapse
Affiliation(s)
- Julie Hardouin
- Laboratoire de Biochimie des Protéines et Protéomique, Université Paris XIII, UMR CNRS 7033, 74 rue Marcel Cachin, 93 017, Bobigny Cedex, France.
| |
Collapse
|
14
|
D'Ambrosio C, Salzano AM, Arena S, Renzone G, Scaloni A. Analytical methodologies for the detection and structural characterization of phosphorylated proteins. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 849:163-80. [PMID: 16891166 DOI: 10.1016/j.jchromb.2006.06.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Accepted: 06/28/2006] [Indexed: 01/12/2023]
Abstract
Phosphorylation of proteins is a frequent post-translational modification affecting a great number of fundamental cellular functions in living organisms. Because of its key role in many biological processes, much effort has been spent over the time on the development of analytical methodologies for characterizing phosphoproteins. In the past decade, mass spectrometry-based techniques have emerged as a viable alternative to more traditional methods of phosphorylation analysis, providing accurate information for a purified protein on the number of the occurring phosphate groups and their exact localization on the polypeptide sequence. This review summarizes the analytical methodologies currently available for the analysis of protein phosphorylation, emphasizing novel mass spectrometry (MS) technologies and dedicated biochemical procedures that have been recently introduced in this field. A formidable armamentarium is now available for selective enrichment, exaustive structural characterization and quantitative determination of the modification degree for phosphopeptides/phosphoproteins. These methodologies are now successfully applied to the global analysis of cellular proteome repertoire according a holistic approach, allowing the quantitative study of phosphoproteomes on a dynamic time-course basis. The enormous complexity of the protein phosphorylation pattern inside the cell and its dynamic modification will grant important challenges to future scientists, contributing significantly to deeper insights into cellular processes and cell regulation.
Collapse
Affiliation(s)
- Chiara D'Ambrosio
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, via Argine 1085, 80147 Naples, Italy
| | | | | | | | | |
Collapse
|
15
|
Chae MJ, Lee JS, Nam MH, Cho K, Hong JY, Yi SA, Suh SC, Yoon IS. A rice dehydration-inducible SNF1-related protein kinase 2 phosphorylates an abscisic acid responsive element-binding factor and associates with ABA signaling. PLANT MOLECULAR BIOLOGY 2007; 63:151-69. [PMID: 16977424 DOI: 10.1007/s11103-006-9079-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Accepted: 08/19/2006] [Indexed: 05/11/2023]
Abstract
By a differential cDNA screening technique, we have isolated a dehydration-inducible gene (designated OSRK1) that encodes a 41.8 kD protein kinase of SnRK2 family from Oryza sativa. The OSRK1 transcript level was undetectable in vegetative tissues, but significantly increased by hyperosmotic stress and Abscisic acid (ABA). To determine its biochemical properties, we expressed and isolated OSRK1 and its mutants as glutathione S-transferase fusion proteins in Escherichia coli. In vitro kinase assay showed that OSRK1 can phosphorylate itself and generic substrates as well. Interestingly, OSRK1 showed strong substrate preference for rice bZIP transcription factors and uncommon cofactor requirement for Mn(2+) over Mg(2+). By deletion of C-terminus 73 amino acids or mutations of Ser-158 and Thr-159 to aspartic acids (Asp) in the activation loop, the activity of OSRK1 was dramatically decreased. OSRK1 can transphosphorylate the inactive deletion protein. A rice family of abscisic acid-responsive element (ABRE) binding factor, OREB1 was phosphorylated in vitro by OSRK1 at multiple sites of different functional domains. MALDI-TOF analysis identified a phosphorylation site at Ser44 of OREB1 and mutation of the residue greatly decreased the substrate specificity for OSRK1. The recognition motif for OSRK1, RQSS is highly similar to the consensus substrate sequence of AMPK/SNF1 kinase family. We further showed that OSRK1 interacts with OREB1 in a yeast two-hybrid system and co-localized to nuclei by transient expression analysis of GFP-fused protein in onion epidermis. Finally, ectopic expression of OSRK1 in transgenic tobacco resulted in a reduced sensitivity to ABA in seed germination and root elongation. These findings suggest that OSRK1 is associated with ABA signaling, possibly through the phosphorylation of ABF family in vivo. The interaction between SnRK2 family kinases and ABF transcription factors may constitute an important part of cross-talk mechanism in the stress signaling networks in plants.
Collapse
Affiliation(s)
- Min-Ju Chae
- Cell and Genetics Division, National Institute of Agricultural Biotechnology, Suwon, 441-707, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Chan EHY, Nousiainen M, Chalamalasetty RB, Schäfer A, Nigg EA, Silljé HHW. The Ste20-like kinase Mst2 activates the human large tumor suppressor kinase Lats1. Oncogene 2005; 24:2076-86. [PMID: 15688006 DOI: 10.1038/sj.onc.1208445] [Citation(s) in RCA: 454] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Originally identified in Drosophila melanogaster, the Warts(Wts)/Lats protein kinase has been proposed to function with two other Drosophila proteins, Hippo (Hpo) and Salvador (Sav), in the regulation of cell cycle exit and apoptosis. In mammals, two candidate Warts/Lats homologs, termed Lats1 and Lats2, have been described, and the targeted disruption of LATS1 in mice increases tumor formation. Little, however, is known about the function and regulation of human Lats kinases. Here we report that human Mst2, a STE20-family member and purported Hpo ortholog, phosphorylates and activates both Lats1 and Lats2. Deletion analysis revealed that regulation of Lats1 occurs through the C-terminal, catalytic domain. Within this domain, two regulatory phosphorylation sites were identified by mass spectrometry. These sites, S909 in the activation loop and T1079 within a hydrophobic motif, have been highly conserved during evolution. Moreover, a direct interaction was observed between Mst2 and hWW45, a putative ortholog of Drosophila Sav. These results indicate that Mst2-like kinases regulate Lats kinase activities in an evolutionarily conserved regulatory pathway. Although the function of this pathway remains poorly understood in mammals, it is intriguing that, in Drosophila, it has been linked to development and tissue homeostasis.
Collapse
Affiliation(s)
- Eunice H Y Chan
- Department of Cell Biology, Max Planck Institute for Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
17
|
Chapter 5 Phosphorylation-specific analysis strategies for mass spectrometry: enhanced detection of phosphorylated proteins and peptides. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s0166-526x(05)46005-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
18
|
Sommer S, Hunzinger C, Schillo S, Klemm M, Biefang-Arndt K, Schwall G, Pütter S, Hoelzer K, Schroer K, Stegmann W, Schrattenholz A. Molecular Analysis of Homocysteic Acid-Induced Neuronal Stress. J Proteome Res 2004; 3:572-81. [PMID: 15253439 DOI: 10.1021/pr034115o] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hyperhomocysteinemia is a risk factor for vascular and neuronal lesions often observed with concomitant high levels of homocysteic acid. In contrast to homocysteine, homocysteic acid induces calcium influx into neurons, with characteristics of an excitotoxic glutamatergic agonist at elevated concentrations. On the molecular level this is correlated to fast modifications of proteins (phosphorylation and proteolysis). Within the homocysteic acid induced molecular signature we focused in more detail on phosphorylation of two proteins implicated as risk factors in schizophrenia and neurodegeneration: Dihydropyrimidinase related protein and 14-3-3 protein isoforms. Among the identified proteins there are known chaperones and oxidative metabolism enzymes, but a few are new in context of neuronal stress: Lasp-1, a vitamin D associated factor and an expressed sequence with features of a Rho GDP dissociation inhibitor. Moreover, we detect a specific proteolytic processing of heat shock protein 70 and proteindisulfide isomerase, which is abolished by vitamins (folic acid, vitamin B12, and vitamin B6), which also decrease elevated intracellular calcium levels induced by homocysteic acid.
Collapse
|
19
|
Amoresano A, Marino G, Cirulli C, Quemeneur E. Mapping phosphorylation sites: a new strategy based on the use of isotopically labelled DTT and mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2004; 10:401-412. [PMID: 15187299 DOI: 10.1255/ejms.599] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Phosphoproteomics, nowadays, represents a front line in functional proteomics as testified by the number of papers recently appearing in the literature. In an attempt to improve and simplify the methods so far suggested we have set up a simple isotope-coded approach to label and quantitate phospho-Ser/-Thr residues in protein mixtures. First of all, after appropriate oxidation of cysteine/cystine residues followed by tryptic hydrolysis, we have optimised and simplified the beta-elimination reaction to get the corresponding alkene moiety from the phosphate esters. This was achieved by (a) separating the elimination reaction from the addition reaction, (b) the use of Ba(OH)(2) as alkali reagent and (c) its further elimination by the simple addition of solid CO(2) to the peptide mixture. The Michael reaction was then performed, after the removal of BaCO(3) by centrifugation, by adding dithiothreitol (DTT) to the peptide mixture. Finally, the direct purification of the modified phosphopeptides was performed on a thiol-sepharose column. The availability of fully deuterated DTT, introducing a 6 Da difference with respect to the non-deuterated species, allows quantitation of the differential extent of signalling modification when analysed by matrix-assisted laser desorption/ionisation mass spectrometry (MALDI-MS) and liquid chromatography/mass spectrometry. The entire procedure has been set up by using bovine alpha-casein, and resulted in the identification of all the phosphorylated tryptic peptides, including the tetraphosphorylated peptides, which escaped all previously reported procedures
Collapse
Affiliation(s)
- Angela Amoresano
- Department of Organic Chemistry and Biochemistry, and School of Biotechnological Sciences, Federico II University of Naples, Naples, Italy
| | | | | | | |
Collapse
|
20
|
Honda R, Körner R, Nigg EA. Exploring the functional interactions between Aurora B, INCENP, and survivin in mitosis. Mol Biol Cell 2003; 14:3325-41. [PMID: 12925766 PMCID: PMC181570 DOI: 10.1091/mbc.e02-11-0769] [Citation(s) in RCA: 402] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The function of the Aurora B kinase at centromeres and the central spindle is crucial for chromosome segregation and cytokinesis, respectively. Herein, we have investigated the regulation of human Aurora B by its complex partners inner centromere protein (INCENP) and survivin. We found that overexpression of a catalytically inactive, dominant-negative mutant of Aurora B impaired the localization of the entire Aurora B/INCENP/survivin complex to centromeres and the central spindle and severely disturbed mitotic progression. Similar results were also observed after depletion, by RNA interference, of either Aurora B, INCENP, or survivin. These data suggest that Aurora B kinase activity and the formation of the Aurora B/INCENP/survivin complex both contribute to its proper localization. Using recombinant proteins, we found that Aurora B kinase activity was stimulated by INCENP and that the C-terminal region of INCENP was sufficient for activation. Under identical assay conditions, survivin did not detectably influence kinase activity. Human INCENP was a substrate of Aurora B and mass spectrometry identified three consecutive residues (threonine 893, serine 894, and serine 895) containing at least two phosphorylation sites. A nonphosphorylatable mutant (TSS893-895AAA) was a poor activator of Aurora B, demonstrating that INCENP phosphorylation is important for kinase activation.
Collapse
Affiliation(s)
- Reiko Honda
- Department of Cell Biology, Max-Planck-Institute for Biochemistry, D-82152 Martinsried, Germany
| | | | | |
Collapse
|
21
|
Moyer SC, VonSeggern CE, Cotter RJ. Fragmentation of cationized phosphotyrosine containing peptides by atmospheric pressure MALDI/Ion trap mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2003; 14:581-592. [PMID: 12781459 DOI: 10.1016/s1044-0305(03)00142-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
An investigation of phosphate loss from sodium-cationized phosphotyrosine containing peptide ions was conducted using liquid infrared (2.94 microm) atmospheric pressure matrix-assisted laser desorption/ionization (AP MALDI) coupled to an ion trap mass spectrometer (ITMS). Previous experiments in our laboratory explored the fragmentation patterns of protonated phosphotyrosine containing peptides, which experience a loss of 98 Da under CID conditions in the ITMS. This loss of 98 Da is unexpected for phosphotyrosine, given the structure of its side chain. Phosphate loss from phosphotyrosine residues seems to be dependent on the presence of arginine or lysine residues in the peptide sequence. In the absence of a basic residue, the protonated phosphotyrosine peptides do not undergo losses of HPO(3) (Delta 80 Da) nor HPO(3) + H(2)O (Delta 98 Da) in their CID spectra. However, sodium cationized phosphotyrosine containing peptides that do not contain arginine or lysine residues within their sequences do undergo losses of HPO(3) (Delta 80 Da) and HPO(3) + H(2)O (Delta 98 Da) in their CID spectra.
Collapse
Affiliation(s)
- Susanne C Moyer
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
22
|
Zolodz MD, Wood KV. Detection of tyrosine phosphorylated peptides via skimmer collision-induced dissociation/ion trap mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2003; 38:257-264. [PMID: 12644986 DOI: 10.1002/jms.435] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Phosphorylation of proteins is an important post-translational protein modification in cellular response to environmental change and occurs in both prokaryotes and eukaryotes. Identification of the amino acid on individual proteins that become phosphorylated in response to extracellular stimulus is essential for understanding the mechanisms involved in the intracellular signals that these modifications facilitate. Most protein kinases catalyze the phosphorylation of proteins on serine, threonine or tyrosine. Although tyrosine phosphorylation is often the least abundant of the three major phosphorylation sites, it is important owing to its role in signal pathways. Currently available methods for the identification of phosphorylation sites can often miss low levels of tyrosine phosphorylations. This paper describes a method for the identification of phosphotyrosine-containing peptides using electrospray ionization on an ion trap mass spectrometer. Skimmer-activated collision-induced dissociation (CID) was used to generate the phosphotyrosine immonium ion at m/z 216. This method is gentle enough that the protonated molecule of the intact peptide is still observed. In-trap CID was employed for the verification of the phosphotyrosine immonium ion. Using this technique, low levels of phosphotyrosine-containing peptides can be identified from peptide mixtures separated by nanoflow micro liquid chromatography/mass spectrometry.
Collapse
Affiliation(s)
- Melissa D Zolodz
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 1333 RHPH Building, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
23
|
Zhu H, Hunter TC, Pan S, Yau PM, Bradbury EM, Chen X. Residue-specific mass signatures for the efficient detection of protein modifications by mass spectrometry. Anal Chem 2002; 74:1687-94. [PMID: 12033261 DOI: 10.1021/ac010853p] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Currently available mass spectrometric (MS) techniques lack specificity in identifying protein modifications because molecular mass is the only parameter used to characterize these changes. Consequently, the suspected modified peptides are subjected to tandem MS/MS sequencing that may demand more time and sample. We report the use of stable isotope-enriched amino acids as residue-specific "mass signatures" for the rapid and sensitive detection of protein modifications directly from the peptide mass map (PMM) without enrichment of the modified peptides. These mass signatures are easily recognized through their characteristic spectral patterns and provide fingerprints for peptides containing the same content of specific amino acid residue(s) in a PMM. Without the need for tandem MS/MS sequencing, a peptide and its modified form(s) can readily be identified through their identical fingerprints, regardless of the nature of modifications. In this report, we demonstrate this strategy for the detection of methionine oxidation and protein phosphorylation. More interestingly, the phosphorylation of a histone protein, H2A.X, obtained from human skin fibroblast cells, was effectively identified in response to low-dose radiation. In general, this strategy of residue-specific mass tagging should be applicable to other posttranslational modifications.
Collapse
Affiliation(s)
- Haining Zhu
- C-ACS, Chemistry Division, Los Alamos National Laboratory, New Mexico 87544, USA
| | | | | | | | | | | |
Collapse
|
24
|
Moyer SC, Cotter RJ, Woods AS. Fragmentation of phosphopeptides by atmospheric pressure MALDI and ESI/Ion trap mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2002; 13:274-283. [PMID: 11908807 DOI: 10.1016/s1044-0305(01)00361-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
An investigation of phosphate loss from phosphopeptide ions was conducted, using both atmospheric pressure matrix-assisted laser desorption/ionization (AP MALDI) and electrospray ionization (ESI) coupled to an ion trap mass spectrometer (ITMS). These experiments were carried out on a number of phosphorylated peptides in order to investigate gas phase dephosphorylation patterns associated with phosphoserine, phosphothreonine, and phosphotyrosine residues. In particular, we explored the fragmentation patterns of phosphotyrosine containing peptides, which experience a loss of 98 Da under collision induced dissociation (CID) conditions in the ITMS. The loss of 98 Da is unexpected for phosphotyrosine, given the structure of its side chain. The fragmentation of phosphoserine and phosphothreonine containing peptides was also investigated. While phosphoserine and phosphothreonine residues undergo a loss of 98 Da under CID conditions regardless of peptide amino acid composition, phosphate loss from phosphotyrosine residues seems to be dependent on the presence of arginine or lysine residues in the peptide sequence.
Collapse
Affiliation(s)
- Susanne C Moyer
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland, USA
| | | | | |
Collapse
|
25
|
Adamczyk M, Gebler JC, Wu J. Identification of phosphopeptides by chemical modification with an isotopic tag and ion trap mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2002; 16:999-1001. [PMID: 11968134 DOI: 10.1002/rcm.668] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|
26
|
Abstract
Phosphorylation on serine, threonine and tyrosine residues is an extremely important modulator of protein function. Therefore, there is a great need for methods capable of accurately elucidating sites of phosphorylation. Although full characterization of phosphoproteins remains a formidable analytical challenge, mass spectrometry has emerged as an increasingly viable tool for this task. This review summarizes the methodologies currently available for the analysis of phosphoproteins by mass spectrometry, including enrichment of compounds of interest using immobilized metal affinity chromatography and chemical tagging techniques, detection of phosphopeptides using mass mapping and precursor ion scans, localization of phosphorylation sites by peptide sequencing, and quantitation of phosphorylation by the introduction of mass tags. Despite the variety of powerful analytical methods that are now available, complete characterization of the phosphorylation state of a protein isolated in small quantities from a biological sample remains far from routine.
Collapse
Affiliation(s)
- D T McLachlin
- The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.
| | | |
Collapse
|
27
|
Thomas JJ, Shen Z, Crowell JE, Finn MG, Siuzdak G. Desorption/ionization on silicon (DIOS): a diverse mass spectrometry platform for protein characterization. Proc Natl Acad Sci U S A 2001; 98:4932-7. [PMID: 11296246 PMCID: PMC33141 DOI: 10.1073/pnas.081069298] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2000] [Accepted: 02/12/2001] [Indexed: 12/28/2022] Open
Abstract
Since the advent of matrix-assisted laser desorption/ionization and electrospray ionization, mass spectrometry has played an increasingly important role in protein functional characterization, identification, and structural analysis. Expanding this role, desorption/ionization on silicon (DIOS) is a new approach that allows for the analysis of proteins and related small molecules. Despite the absence of matrix, DIOS-MS yields little or no fragmentation and is relatively tolerant of moderate amounts of contaminants commonly found in biological samples. Here, functional assays were performed on an esterase, a glycosidase, a lipase, as well as exo- and endoproteases by using enzyme-specific substrates. Enzyme activity also was monitored in the presence of inhibitors, successfully demonstrating the ability of DIOS to be used as an inhibitor screen. Because DIOS is a matrix-free desorption technique, it also can be used as a platform for multiple analyses to be performed on the same protein. This unique advantage was demonstrated with acetylcholine esterase for qualitative and quantitative characterization and also by its subsequent identification directly from the DIOS platform.
Collapse
Affiliation(s)
- J J Thomas
- Departments of Chemistry and Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
28
|
Adamczyk M, Gebler JC, Wu J. Selective analysis of phosphopeptides within a protein mixture by chemical modification, reversible biotinylation and mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2001; 15:1481-1488. [PMID: 11507762 DOI: 10.1002/rcm.394] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A new method combining chemical modification and affinity purification is described for the characterization of serine and threonine phosphopeptides in proteins. The method is based on the conversion of phosphoserine and phosphothreonine residues to S-(2-mercaptoethyl)cysteinyl or beta-methyl-S-(2-mercaptoethyl)cysteinyl residues by beta-elimination/1,2-ethanedithiol addition, followed by reversible biotinylation of the modified proteins. After trypsin digestion, the biotinylated peptides were affinity-isolated and enriched, and subsequently subjected to structural characterization by liquid chromatography/tandem mass spectrometry (LC/MS/MS). Database searching allowed for automated identification of modified residues that were originally phosphorylated. The applicability of the method is demonstrated by the identification of all known phosphorylation sites in a mixture of alpha-casein, beta-casein, and ovalbumin. The technique has potential for adaptations to proteome-wide analysis of protein phosphorylation.
Collapse
Affiliation(s)
- M Adamczyk
- Department of Chemistry (9NM), Abbott Diagnostics Division, Abbott Laboratories, Abbott Park, IL 60064-6016, USA.
| | | | | |
Collapse
|
29
|
Affiliation(s)
- J Godovac-Zimmermann
- Center for Molecular Medicine, Department of Medicine, University College London, 5 University Street, London WC1E 6JJ, United Kingdom.
| | | |
Collapse
|
30
|
Doorn JA, Gage DA, Schall M, Talley TT, Thompson CM, Richardson RJ. Inhibition of acetylcholinesterase by (1S,3S)-isomalathion proceeds with loss of thiomethyl: kinetic and mass spectral evidence for an unexpected primary leaving group. Chem Res Toxicol 2000; 13:1313-20. [PMID: 11123973 DOI: 10.1021/tx000184v] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Previous work demonstrated kinetically that inhibition of mammalian acetylcholinesterase (AChE) by (1S)-isomalathions may proceed by loss of thiomethyl instead of the expected diethyl thiosuccinate as the primary leaving group followed by one of four possible modes of rapid aging. This study sought to identify the adduct that renders AChE refractory toward reactivation after inhibition with the (1S, 3S)-stereoisomer. Electric eel acetylcholinesterase (EEAChE) was inhibited with the four stereoisomers of isomalathion, and rate constants for spontaneous and oxime-mediated reactivation (k(3)) were measured. Oxime-mediated k(3) values were >25-fold higher for enzyme inhibited by (1R)- versus (1S)-stereoisomers with the greatest contrast between the (1R,3R)- and (1S,3S)-enantiomers. EEAChE inactivated by (1R,3R)-isomalathion reactivated spontaneously and in the presence of pyridine-2-aldoxime methiodide (2-PAM) with k(3) values of 1.88 x 10(5) and 4.18 x 10(5) min(-)(1), respectively. In contrast, enzyme treated with the (1S,3S)-enantiomer had spontaneous and 2-PAM-mediated k(3) values of 0 and 6.05 x 10(3) min(-)(1), respectively. The kinetic data that were measured were consistent with those obtained for mammalian AChE used in previous studies. Identification of the adduct that renders EEAChE stable toward reactivation after inhibition with (1S,3S)-isomalathion was accomplished using a peptide mass mapping approach with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). A peak with a mass corresponding to the active site peptide containing the catalytic Ser with a covalently bound O-methyl phosphate adduct was found in the mass spectra of (1S, 3S)-treated EEAChE but not control samples. Identities of the modified active site peptide and adduct were confirmed by fragmentation in MALDI-TOF-MS post-source decay (PSD) analysis, and peaks corresponding to the loss of an adduct as phosphorous/phosphoric acid methyl ester were observed. The results demonstrate that inhibition of EEAChE by (1S,3S)-isomalathion proceeds with loss of thiomethyl as the primary leaving group followed by rapid expulsion of diethyl thiosuccinate as the secondary leaving group to yield an aged enzyme.
Collapse
Affiliation(s)
- J A Doorn
- Toxicology Program, Department of Environmental Health Sciences, The University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | |
Collapse
|
31
|
Metzger S, Hoffmann R. Studies on the dephosphorylation of phosphotyrosine-containing peptides during post-source decay in matrix-assisted laser desorption/ionization. JOURNAL OF MASS SPECTROMETRY : JMS 2000; 35:1165-1177. [PMID: 11110089 DOI: 10.1002/1096-9888(200010)35:10<1165::aid-jms44>3.0.co;2-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Phosphorylation of tyrosine residues in proteins is a common regulatory mechanism, although it accounts for less than 1% of the total O-phosphate content in proteins. Whereas aromatic phosphorylation sites can be identified by a number of different analytical techniques, sequence analysis of phosphotyrosine-containing proteins at the low picomole or even femtomole level is still a challenging task. This paper describes the post-source decay in matrix-assisted laser desorption/ionization mass spectrometry of phosphotyrosine-containing model peptides by comparing their fragmentation behavior with sequence-homologous unphosphorylated peptides. Whereas the parent ions showed significant losses of HPO3, all phosphorylated fragment ions of the b- and y-series displayed only minor dephosphorylated signals, which often were not detectable. Surprisingly, one of the studied phosphotyrosine-containing sequences displayed, in addition to the [M + H - 80]+ ion, a more abundant [M + H - 98]+ ion, which could be explained by elimination of phosphoric acid. This dephosphorylation pattern was very similar to the patterns obtained for phosphoserine- and phosphothreonine-containing peptides. Because the dephosphorylation pattern of the parent ion is often used to identify modified amino acids in peptides, we investigated possible dephosphorylation mechanisms in detail. Therefore, we substituted single trifunctional amino acid residues and incorporated deuterated phosphotyrosine residues. After excluding direct elimination of phosphoric acid from tyrosine, we could show that the obtained loss of H3PO4 depends on aspartic acid and arginine residues. Most likely the HPO3 group is transferred to aspartic acid followed by cleavage of phosphoric acid forming a succinimide. On the other hand, arginine appears to induce the H3PO4 loss by protonation of phosphotyrosine leaving a phenyl cation.
Collapse
Affiliation(s)
- S Metzger
- Biologisch-Medizinisches Forschungszentrum, Heinrich-Heine-Universität, Düsseldorf, Germany
| | | |
Collapse
|
32
|
Abstract
Advances in DNA sequencing and the near-term availability of whole genome sequences for several pharmaceutically relevant organisms promise to dramatically alter the breadth and scale of high-throughput proteomic studies. The substantial amount of literature is available in the public domain, demonstrate the potential of proteomics in the preclinical phases of pharmaceutical development. Over the next few years, it is anticipated that functional genomics and proteomics will have major impacts on the clinical phases of drug development. Expected benefits are earlier proof-of-concept studies in man and increased efficiency of clinical trials through the availability of biologically relevant markers for drug efficacy and safety.
Collapse
Affiliation(s)
- S Steiner
- Large Scale Proteomics Corporation, Rockville, MD 20850, USA.
| | | |
Collapse
|