1
|
Keener JE, Goh B, Yoo JS, Oh SF, Brodbelt JS. Top-Down Characterization of Bacterial Lipopolysaccharides and Lipooligosaccharides Using Activated-Electron Photodetachment Mass Spectrometry. Anal Chem 2024; 96:9151-9158. [PMID: 38758019 PMCID: PMC11384421 DOI: 10.1021/acs.analchem.4c00952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Lipopolysaccharides (LPS) and lipooligosaccharides (LOS) are located in the outer membrane of Gram-negative bacteria and are comprised of three distinctive parts: lipid A, core oligosaccharide (OS), and O-antigen. The structure of each region influences bacterial stability, toxicity, and pathogenesis. Here, we highlight the use of targeted activated-electron photodetachment (a-EPD) tandem mass spectrometry to characterize LPS and LOS from two crucial players in the human gut microbiota, Escherichia coli Nissle and Bacteroides fragilis. a-EPD is a hybrid activation method that uses ultraviolet photoirradiation to generate charge-reduced radical ions followed by collisional activation to produce informative fragmentation patterns. We benchmark the a-EPD method for top-down characterization of triacyl LOS from E. coli R2, then focus on characterization of LPS from E. coli Nissle and B. fragilis. Notably, a-EPD affords extensive fragmentation throughout the backbone of the core OS and O-antigen regions of LPS from E. coli Nissle. This hybrid approach facilitated the elucidation of structural details for LPS from B. fragilis, revealing a putative hexuronic acid (HexA) conjugated to lipid A.
Collapse
Affiliation(s)
- James E Keener
- Department of Chemistry, University of Texas, Austin, Texas 78712, United States
| | - Byoungsook Goh
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States
| | - Ji-Sun Yoo
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States
| | - Sungwhan F Oh
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States
- Program in Immunology, Division of Medical Sciences, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas, Austin, Texas 78712, United States
| |
Collapse
|
2
|
Mikhael A, Hardie D, Smith D, Pětrošová H, Ernst RK, Goodlett DR. Structural Elucidation of Intact Rough-type Lipopolysaccharides Using Field Asymmetric Ion Mobility Spectrometry and Kendrick Mass Defect Plots. Anal Chem 2023; 95:16796-16800. [PMID: 37943784 PMCID: PMC10666081 DOI: 10.1021/acs.analchem.3c02947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/15/2023] [Indexed: 11/12/2023]
Abstract
Lipopolysaccharides (LPSs) are a hallmark virulence factor of Gram-negative bacteria. They are complex, structurally heterogeneous mixtures due to variations in number, type, and position of their simplest units: fatty acids and monosaccharides. Thus, LPS structural characterization by traditional mass spectrometry (MS) methods is challenging. Here, we describe the benefits of field asymmetric ion mobility spectrometry (FAIMS) for analysis of an intact R-type lipopolysaccharide complex mixture (lipooligosaccharide; LOS). Structural characterization was performed using Escherichia coli J5 (Rc mutant) LOS, a TLR4 agonist widely used in glycoconjugate vaccine research. FAIMS gas-phase fractionation improved the (S/N) ratio and number of detected LOS species. Additionally, FAIMS allowed the separation of overlapping isobars facilitating their tandem MS characterization and unequivocal structural assignments. In addition to FAIMS gas-phase fractionation benefits, extra sorting of the structurally related LOS molecules was further accomplished using Kendrick mass defect (KMD) plots. Notably, a custom KMD base unit of [Na-H] created a highly organized KMD plot that allowed identification of interesting and novel structural differences across the different LOS ion families, i.e., ions with different acylation degrees, oligosaccharides composition, and chemical modifications. Defining the composition of a single LOS ion by tandem MS along with the organized KMD plot structural network was sufficient to deduce the composition of 181 LOS species out of 321 species present in the mixture. The combination of FAIMS and KMD plots allowed in-depth characterization of the complex LOS mixture and uncovered a wealth of novel information about its structural variations.
Collapse
Affiliation(s)
- Abanoub Mikhael
- Department
of Biochemistry and Microbiology, University
of Victoria, Victoria, British Columbia V8W 2Y2, Canada
- University
of Victoria Genome British Columbia Proteomics Centre, Victoria, British Columbia V8Z 7X8, Canada
| | - Darryl Hardie
- University
of Victoria Genome British Columbia Proteomics Centre, Victoria, British Columbia V8Z 7X8, Canada
| | - Derek Smith
- University
of Victoria Genome British Columbia Proteomics Centre, Victoria, British Columbia V8Z 7X8, Canada
| | - Helena Pětrošová
- Department
of Biochemistry and Microbiology, University
of Victoria, Victoria, British Columbia V8W 2Y2, Canada
- University
of Victoria Genome British Columbia Proteomics Centre, Victoria, British Columbia V8Z 7X8, Canada
| | - Robert K. Ernst
- Department
of Microbial Pathogenesis, University of
Maryland—Baltimore, Baltimore, Maryland 21201, United States
| | - David R. Goodlett
- Department
of Biochemistry and Microbiology, University
of Victoria, Victoria, British Columbia V8W 2Y2, Canada
- University
of Victoria Genome British Columbia Proteomics Centre, Victoria, British Columbia V8Z 7X8, Canada
| |
Collapse
|
3
|
Mikhael A, Hardie D, Smith D, Pětrošová H, Ernst RK, Goodlett DR. Structural Elucidation of Intact Rough-Type Lipopolysaccharides using Field Asymmetric Ion Mobility Spectrometry and Kendrick Mass Defect Plots. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.21.545950. [PMID: 37461651 PMCID: PMC10349945 DOI: 10.1101/2023.06.21.545950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Lipopolysaccharide (LPS) is a hallmark virulence factor of Gram-negative bacteria. It is a complex, structurally heterogeneous mixture due to variations in number, type, and position of its simplest units: fatty acids and monosaccharides. Thus, LPS structural characterization by traditional mass spectrometry (MS) methods is challenging. Here, we describe the benefits of field asymmetric ion mobility spectrometry (FAIMS) for analysis of intact R-type lipopolysaccharide complex mixture (lipooligosaccharide; LOS). Structural characterization was performed using Escherichia coli J5 (Rc mutant) LOS, a TLR4 agonist widely used in glycoconjugate vaccine research. FAIMS gas phase fractionation improved the (S/N) ratio and number of detected LOS species. Additionally, FAIMS allowed the separation of overlapping isobars facilitating their tandem MS characterization and unequivocal structural assignments. In addition to FAIMS gas phase fractionation benefits, extra sorting of the structurally related LOS molecules was further accomplished using Kendrick mass defect (KMD) plots. Notably, a custom KMD base unit of [NaH] created a highly organized KMD plot that allowed identification of interesting and novel structural differences across the different LOS ion families; i.e., ions with different acylation degrees, oligosaccharides composition, and chemical modifications. Defining the composition of a single LOS ion by tandem MS along with the organized KMD plot structural network was sufficient to deduce the composition of 179 LOS species out of 321 species present in the mixture. The combination of FAIMS and KMD plots allowed in-depth characterization of the complex LOS mixture and uncovered a wealth of novel information about its structural variations.
Collapse
Affiliation(s)
- Abanoub Mikhael
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
- University of Victoria Genome British Columbia Proteomics Centre, Victoria, British Columbia V8Z 7X8, Canada
| | - Darryl Hardie
- University of Victoria Genome British Columbia Proteomics Centre, Victoria, British Columbia V8Z 7X8, Canada
| | - Derek Smith
- University of Victoria Genome British Columbia Proteomics Centre, Victoria, British Columbia V8Z 7X8, Canada
| | - Helena Pětrošová
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
- University of Victoria Genome British Columbia Proteomics Centre, Victoria, British Columbia V8Z 7X8, Canada
| | - Robert K Ernst
- Department of Microbial Pathogenesis, University of Maryland - Baltimore, Baltimore, MD, 21201 USA
| | - David R Goodlett
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
- University of Victoria Genome British Columbia Proteomics Centre, Victoria, British Columbia V8Z 7X8, Canada
| |
Collapse
|
4
|
Aissa I, Kilár A, Dörnyei Á. Study on the CID Fragmentation Pathways of Deprotonated 4'-Monophosphoryl Lipid A. Molecules 2021; 26:5961. [PMID: 34641505 PMCID: PMC8512036 DOI: 10.3390/molecules26195961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 11/25/2022] Open
Abstract
Lipid A, the membrane-bound phosphoglycolipid component of bacteria, is held responsible for the clinical syndrome of gram-negative sepsis. In this study, the fragmentation behavior of a set of synthetic lipid A derivatives was studied by electrospray ionization multistage mass spectrometry (ESI-MSn), in conjunction with tandem mass spectrometry (MS/MS), using low-energy collision-induced dissociation (CID). Genealogical insight about the fragmentation pathways of the deprotonated 4'-monophosphoryl lipid A structural analogs led to proposals of a number of alternative dissociation routes that have not been reported previously. Each of the fragment ions was interpreted using various possible mechanisms, consistent with the principles of reactions described in organic chemistry. Specifically, the hypothesized mechanisms are: (i) cleavage of the C-3 primary fatty acid leaves behind an epoxide group attached to the reducing sugar; (ii) cleavage of the C-3' primary fatty acid (as an acid) generates a cyclic phosphate connected to the nonreducing sugar; (iii) cleavage of the C-2' secondary fatty acid occurs both in acid and ketene forms; iv) the C-2 and C-2' primary fatty acids are eliminated as an amide and ketene, respectively; (v) the 0,2A2 cross-ring fragment contains a four-membered ring (oxetanose); (vi) the 0,4A2 ion is consecutively formed from the 0,2A2 ion by retro-aldol, retro-cycloaddition, and transesterification; and (vii) formations of H2PO4- and PO3- are associated with the formation of sugar epoxide. An understanding of the relation between 0,2A2 and 0,4A2-type sugar fragments and the different cleavage mechanisms of the two ester-linked primary fatty acids is invaluable for distinguishing lipid A isomers with different locations of a single ester-linked fatty acid (i.e., at C-3 or C-3'). Thus, in addition to a better comprehension of lipid A fragmentation processes in mass spectrometers, our observations can be applied for a more precise elucidation of naturally occurring lipid A structures.
Collapse
Affiliation(s)
- Ibrahim Aissa
- Department of Analytical and Environmental Chemistry, Faculty of Sciences, University of Pécs, Ifjúság útja 6, H-7624 Pécs, Hungary;
| | - Anikó Kilár
- Institute of Bioanalysis, Medical School and Szentágothai Research Centre, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary;
| | - Ágnes Dörnyei
- Department of Analytical and Environmental Chemistry, Faculty of Sciences, University of Pécs, Ifjúság útja 6, H-7624 Pécs, Hungary;
| |
Collapse
|
5
|
Oyler BL, Khan MM, Smith DF, Harberts EM, Kilgour DPA, Ernst RK, Cross AS, Goodlett DR. Top Down Tandem Mass Spectrometric Analysis of a Chemically Modified Rough-Type Lipopolysaccharide Vaccine Candidate. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1221-1229. [PMID: 29464544 PMCID: PMC8294406 DOI: 10.1007/s13361-018-1897-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/08/2018] [Accepted: 01/08/2018] [Indexed: 06/08/2023]
Abstract
Recent advances in lipopolysaccharide (LPS) biology have led to its use in drug discovery pipelines, including vaccine and vaccine adjuvant discovery. Desirable characteristics for LPS vaccine candidates include both the ability to produce a specific antibody titer in patients and a minimal host inflammatory response directed by the innate immune system. However, in-depth chemical characterization of most LPS extracts has not been performed; hence, biological activities of these extracts are unpredictable. Additionally, the most widely adopted workflow for LPS structure elucidation includes nonspecific chemical decomposition steps before analyses, making structures inferred and not necessarily biologically relevant. In this work, several different mass spectrometry workflows that have not been previously explored were employed to show proof-of-principle for top down LPS primary structure elucidation, specifically for a rough-type mutant (J5) E. coli-derived LPS component of a vaccine candidate. First, ion mobility filtered precursor ions were subjected to collision induced dissociation (CID) to define differences in native J5 LPS v. chemically detoxified J5 LPS (dLPS). Next, ultra-high mass resolving power, accurate mass spectrometry was employed for unequivocal precursor and product ion empirical formulae generation. Finally, MS3 analyses in an ion trap instrument showed that previous knowledge about dissociation of LPS components can be used to reconstruct and sequence LPS in a top down fashion. A structural rationale is also explained for differential inflammatory dose-response curves, in vitro, when HEK-Blue hTLR4 cells were administered increasing concentrations of native J5 LPS v. dLPS, which will be useful in future drug discovery efforts. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Benjamin L Oyler
- School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Mohd M Khan
- School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Donald F Smith
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, 32310, USA
| | - Erin M Harberts
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, 21201, USA
| | - David P A Kilgour
- Chemistry and Forensics, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Robert K Ernst
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, 21201, USA
| | - Alan S Cross
- Center for Vaccine Development, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - David R Goodlett
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Pharmacy Hall North Room 623, 20 N. Pine St, Baltimore, MD, 21201, USA.
| |
Collapse
|
6
|
Chemical Structure of the Lipid A component of Pseudomonas sp. strain PAMC 28618 from Thawing Permafrost in Relation to Pathogenicity. Sci Rep 2017; 7:2168. [PMID: 28526845 PMCID: PMC5438365 DOI: 10.1038/s41598-017-02145-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 04/07/2017] [Indexed: 12/02/2022] Open
Abstract
Climate change causes permafrost thawing, and we are confronted with the unpredictable risk of newly discovered permafrost microbes that have disease-causing capabilities. Here, we first characterized the detailed chemical structure of the lipid A moiety from a Pseudomonas species that was isolated from thawing arctic permafrost using MALDI-based mass spectrometric approaches (i.e., MALDI-TOF MS and MALDI-QIT-TOF MSn). The MALDI multi-stage mass spectrometry (MS) analysis of lipid A extracted from the Pseudomonas sp. strain PAMC 28618 demonstrated that the hexaacyl lipid A ([M−H]− at m/z 1616.5) contains a glucosamine (GlcN) disaccharide backbone, two phosphates, four main acyl chains and two branched acyl chains. Moreover, the lipid A molecule–based structural activity relationship with other terrestrial Gram-negative bacteria indicated that strain PAMC 28618 has an identical lipid A structure with the mesophilic Pseudomonas cichorii which can cause rot disease in endive (Cichorium endivia) and that their bacterial toxicities were equivalent. Therefore, the overall lipid A validation process provides a general strategy for characterizing bacteria that have been isolated from arctic permafrost and analyzing their respective pathogenicities.
Collapse
|
7
|
Li Y, Yoon SH, Wang X, Ernst RK, Goodlett DR. Structural derivation of lipid A from Cronobacter sakazakii using tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:2265-2270. [PMID: 27502448 DOI: 10.1002/rcm.7712] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/18/2016] [Accepted: 08/03/2016] [Indexed: 06/06/2023]
Abstract
RATIONALE Cronobacter sakazakii is a Gram-negative opportunistic pathogen that can cause necrotizing enterocolitis, bacteremia, and meningitis. Lipid A, the glycolipid membrane anchor of lipopolysaccharide (LPS), is a potential virulence factor for C. sakazakii. Given the potential importance of this molecule in infection and virulence, structural characterization of lipid A was carried out. METHODS The structural characterization of lipid A extracted from C. sakazakii was performed using electrospray ionization and collision-induced dissociation in a linear ion trap mass spectrometer. Specifically, for detailed structural characterization, hierarchical tandem mass spectrometry was performed on the dominant ions present in the precursor ion mass spectra. By comparing the C. sakazakii fragmentation pathways to those of the known structure of E. coli lipid A, a structure of C. sakazakii lipid A was derived. RESULTS The precursor ion at m/z 1796 from C. sakazakii is produced from a lipid A molecule where the acyl chains between the 2'b (C14) and 3'b (C12) positions are reversed as compared to E. coli lipid A. Additionally, the precursor ion at m/z 1824 from C. sakazakii corresponds to an E. coli structure with the same acyl chain at the 2'b position (C14), but a longer acyl chain (C14) at the 3'b position versus m/z 1796. CONCLUSIONS Two lipid A structures were derived for the C. sakazakii ions at m/z 1796 and 1824. They differed in composition at the 2'b and 3'b acyl chain substituents, which may be a result of differences in substrate specificity of the two lipid A acyl chain transferases: LpxL and LpxM. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yanyan Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- Joint International Research Laboratory of Food Safety, Jiangnan University, Wuxi, 214122, China.
| | - Sung Hwan Yoon
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, 21201, USA
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- Joint International Research Laboratory of Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Robert K Ernst
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, 21201, USA
| | - David R Goodlett
- Department of Pharmaceutical Science, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA.
| |
Collapse
|
8
|
O'Brien JP, Needham BD, Brown DB, Trent MS, Brodbelt JS. Top-Down Strategies for the Structural Elucidation of Intact Gram-negative Bacterial Endotoxins. Chem Sci 2014; 5:4291-4301. [PMID: 25386333 PMCID: PMC4224326 DOI: 10.1039/c4sc01034e] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Re-modelling of lipopolysaccharides, which are the primary constituent of the outer cell membrane of Gram-negative bacteria, modulates pathogenesis and resistance to microbials. Reported herein is the characterization of intact Gram-negative bacterial lipooligosaccharides (LOS) via a new strategy utilizing online liquid chromatography (LC) coupled with ultraviolet photodissociation (UVPD) mass spectrometry. Compared to collision-based MS/MS methods, UVPD and UVPD/HCD promoted a greater array of cleavages within both the glycan and lipid moieties, including C-C, C-N, C-O cleavages in the acyl chains as well as glycosidic and cross-ring cleavages, thus providing the most far-reaching structural characterization of LOS. This LC-MS/MS strategy affords a robust analytical method to structurally characterize complex mixtures of bacterial endotoxins that maintains the integrity of the core oligosaccharide and lipid A domains of LOS, providing direct feedback about the cell envelope architectures and LOS modification strategies involved in resistance host innate immune defense.
Collapse
Affiliation(s)
- John P O'Brien
- Department of Chemistry, The University of Texas at Austin, 1 University Station A5300, Austin, TX, USA 78712
| | - Brittany D Needham
- The University of Texas at Austin, Department of Molecular Biosciences, 2506 Speedway A5000, Austin, TX, USA 78712
| | - Dusty B Brown
- The University of Texas at Austin, Department of Molecular Biosciences, 2506 Speedway A5000, Austin, TX, USA 78712
| | - M Stephen Trent
- The University of Texas at Austin, Department of Molecular Biosciences, 2506 Speedway A5000, Austin, TX, USA 78712
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin, 1 University Station A5300, Austin, TX, USA 78712
| |
Collapse
|
9
|
O'Brien JP, Needham BD, Henderson JC, Nowicki EM, Trent MS, Brodbelt JS. 193 nm ultraviolet photodissociation mass spectrometry for the structural elucidation of lipid A compounds in complex mixtures. Anal Chem 2014; 86:2138-45. [PMID: 24446701 PMCID: PMC3958132 DOI: 10.1021/ac403796n] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
![]()
Here we implement ultraviolet photodissociation
(UVPD) in an online
liquid chromatographic tandem mass spectrometry (MS/MS) strategy to
support analysis of complex mixtures of lipid A combinatorially modified
during development of vaccine adjuvants. UVPD mass spectrometry at
193 nm was utilized to characterize the structures and fragment ion
types of lipid A from Escherichia coli, Vibrio
cholerae, and Pseudomonas aeruginosa using
an Orbitrap mass spectrometer. The fragment ions generated by UVPD
were compared to those from collision induced dissociation (CID) and
higher energy collision dissociation (HCD) with respect to the precursor
charge state. UVPD afforded the widest array of fragment ion types
including acyl chain C–O, C–N, and C–C bond cleavages
and glycosidic C–O and cross ring cleavages, thus providing
the most comprehensive structural analysis of the lipid A. UVPD exhibited
virtually no dependence on precursor ion charge state and was best
at determining lipid A structure including acyl chain length and composition,
giving it an advantage over collision based methods. UVPD was incorporated
into an LC–MS/MS methodology for the analysis of a number of
structural variants in a complex mixture of combinatorially engineered Escherichia coli lipid A.
Collapse
Affiliation(s)
- John P O'Brien
- Department of Chemistry, The University of Texas at Austin , 1 University Station A5300, Austin, Texas 78712, United States
| | | | | | | | | | | |
Collapse
|
10
|
Henderson JC, O'Brien JP, Brodbelt JS, Trent MS. Isolation and chemical characterization of lipid A from gram-negative bacteria. J Vis Exp 2013:e50623. [PMID: 24084191 DOI: 10.3791/50623] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Lipopolysaccharide (LPS) is the major cell surface molecule of gram-negative bacteria, deposited on the outer leaflet of the outer membrane bilayer. LPS can be subdivided into three domains: the distal O-polysaccharide, a core oligosaccharide, and the lipid A domain consisting of a lipid A molecular species and 3-deoxy-D-manno-oct-2-ulosonic acid residues (Kdo). The lipid A domain is the only component essential for bacterial cell survival. Following its synthesis, lipid A is chemically modified in response to environmental stresses such as pH or temperature, to promote resistance to antibiotic compounds, and to evade recognition by mediators of the host innate immune response. The following protocol details the small- and large-scale isolation of lipid A from gram-negative bacteria. Isolated material is then chemically characterized by thin layer chromatography (TLC) or mass-spectrometry (MS). In addition to matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) MS, we also describe tandem MS protocols for analyzing lipid A molecular species using electrospray ionization (ESI) coupled to collision induced dissociation (CID) and newly employed ultraviolet photodissociation (UVPD) methods. Our MS protocols allow for unequivocal determination of chemical structure, paramount to characterization of lipid A molecules that contain unique or novel chemical modifications. We also describe the radioisotopic labeling, and subsequent isolation, of lipid A from bacterial cells for analysis by TLC. Relative to MS-based protocols, TLC provides a more economical and rapid characterization method, but cannot be used to unambiguously assign lipid A chemical structures without the use of standards of known chemical structure. Over the last two decades isolation and characterization of lipid A has led to numerous exciting discoveries that have improved our understanding of the physiology of gram-negative bacteria, mechanisms of antibiotic resistance, the human innate immune response, and have provided many new targets in the development of antibacterial compounds.
Collapse
Affiliation(s)
- Jeremy C Henderson
- Section of Molecular Genetics and Microbiology, The University of Texas at Austin
| | | | | | | |
Collapse
|
11
|
Unique structural modifications are present in the lipopolysaccharide from colistin-resistant strains of Acinetobacter baumannii. Antimicrob Agents Chemother 2013; 57:4831-40. [PMID: 23877686 DOI: 10.1128/aac.00865-13] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Acinetobacter baumannii is a nosocomial opportunistic pathogen that can cause severe infections, including hospital-acquired pneumonia, wound infections, and sepsis. Multidrug-resistant (MDR) strains are prevalent, further complicating patient treatment. Due to the increase in MDR strains, the cationic antimicrobial peptide colistin has been used to treat A. baumannii infections. Colistin-resistant strains of A. baumannii with alterations to the lipid A component of lipopolysaccharide (LPS) have been reported; specifically, the lipid A structure was shown to be hepta-acylated with a phosphoethanolamine (pEtN) modification present on one of the terminal phosphate residues. Using a tandem mass spectrometry platform, we provide definitive evidence that the lipid A isolated from colistin-resistant A. baumannii MAC204 LPS contains a novel structure corresponding to a diphosphoryl hepta-acylated lipid A structure with both pEtN and galactosamine (GalN) modifications. To correlate our structural studies with clinically relevant samples, we characterized colistin-susceptible and -resistant isolates obtained from patients. These results demonstrated that the clinical colistin-resistant isolate had the same pEtN and GalN modifications as those seen in the laboratory-adapted A. baumannii strain MAC204. In summary, this work has shown complete structure characterization including the accurate assignment of acylation, phosphorylation, and glycosylation of lipid A from A. baumannii, which are important for resistance to colistin.
Collapse
|
12
|
Kilár A, Dörnyei Á, Kocsis B. Structural characterization of bacterial lipopolysaccharides with mass spectrometry and on- and off-line separation techniques. MASS SPECTROMETRY REVIEWS 2013; 32:90-117. [PMID: 23165926 DOI: 10.1002/mas.21352] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 03/27/2012] [Accepted: 03/27/2012] [Indexed: 06/01/2023]
Abstract
The focus of this review is the application of mass spectrometry to the structural characterization of bacterial lipopolysaccharides (LPSs), also referred to as "endotoxins," because they elicit the strong immune response in infected organisms. Recently, a wide variety of MS-based applications have been implemented to the structure elucidation of LPS. Methodological improvements, as well as on- and off-line separation procedures, proved the versatility of mass spectrometry to study complex LPS mixtures. Special attention is given in the review to the tandem mass spectrometric methods and protocols for the analyses of lipid A, the endotoxic principle of LPS. We compare and evaluate the different ionization techniques (MALDI, ESI) in view of their use in intact R- and S-type LPS and lipid A studies. Methods for sample preparation of LPS prior to mass spectrometric analysis are also described. The direct identification of intrinsic heterogeneities of most intact LPS and lipid A preparations is a particular challenge, for which separation techniques (e.g., TLC, slab-PAGE, CE, GC, HPLC) combined with mass spectrometry are often necessary. A brief summary of these combined methodologies to profile LPS molecular species is provided.
Collapse
Affiliation(s)
- Anikó Kilár
- Department of Analytical and Environmental Chemistry, Institute of Chemistry, Faculty of Sciences, University of Pécs, Pécs, Hungary.
| | | | | |
Collapse
|
13
|
The outer membrane of Gram-negative bacteria: lipid A isolation and characterization. Methods Mol Biol 2013; 966:239-258. [PMID: 23299739 DOI: 10.1007/978-1-62703-245-2_15] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The isolation and characterization of the lipid A domain of lipopolysaccharide (LPS) are important methodologies utilized to gain understanding of the Gram-negative cell envelope. Here, we describe protocols often employed by our laboratory for small- and large-scale isolation of lipid A from bacterial cells. Additionally, we describe various methodologies including isolation of radiolabeled lipid A, thin layer chromatography, and various mass spectrometry methods. Tandem mass spectrometry is an integral tool for the structural characterization of lipid A molecules, and both coventional collision induced dissociation (CID) and new ultraviolet photodissociation (UVPD) methods are described.
Collapse
|
14
|
Abstract
PagL and LpxO are enzymes that modify lipid A. PagL is a 3-O deacylase that removes the primary acyl chain from the 3 position, and LpxO is an oxygenase that 2-hydroxylates specific acyl chains in the lipid A. pagL and lpxO homologues have been identified in the genome of Bordetella bronchiseptica, but in the current structure for B. bronchiseptica lipid A the 3 position is acylated and 2-OH acylation is not reported. We have investigated the role of B. bronchiseptica pagL and lpxO in lipid A biosynthesis. We report a different structure for wild-type (WT) B. bronchiseptica lipid A, including the presence of 2-OH-myristate, the presence of which is dependent on lpxO. We also demonstrate that the 3 position is not acylated in the major WT lipid A structures but that mutation of pagL results in the presence of 3-OH-decanoic acid at this position, suggesting that lipid A containing this acylation is synthesized but that PagL removes most of it from the mature lipid A. These data refine the structure of B. bronchiseptica lipid A and demonstrate that pagL and lpxO are involved in its biosynthesis.
Collapse
|
15
|
Madsen JA, Cullen TW, Trent MS, Brodbelt JS. IR and UV photodissociation as analytical tools for characterizing lipid A structures. Anal Chem 2011; 83:5107-13. [PMID: 21595441 PMCID: PMC3128199 DOI: 10.1021/ac103271w] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The utility of 193-nm ultraviolet photodissociation (UVPD) and 10.6-μm infrared multiphoton dissociation (IRMPD) for the characterization of lipid A structures was assessed in an ion trap mass spectrometer. The fragmentation behavior of lipid A species was also evaluated by activated-electron photodetachment (a-EPD), which uses 193-nm photons to create charge reduced radicals that are subsequently dissociated by collisional activation. In contrast to collision-induced dissociation (CID), IRMPD offered the ability to selectively differentiate product ions with varying degrees of phosphorylation because of the increased photoabsorption cross sections and thus dissociation of phosphate-containing species. Both 193-nm UVPD and a-EPD yielded higher abundances and a larger array of product ions arising from C-C cleavages, as well as cross-ring and inter-ring glucosamine cleavages, compared to CID and IRMPD, because of high energy, single-photon absorption, and/or radical-directed dissociation. UVPD at 193 nm also exhibited enhanced cleavage between the amine and carbonyl groups on the 2- and 2'-linked primary acyl chains. Lastly, UVPD of phosphorylethanolamine-modified lipid A species resulted in preferential cleavage of the C-O bond between ethanolamine and phosphate, enabling the selective identification of this modification.
Collapse
Affiliation(s)
- James A. Madsen
- Department of Chemistry and Biochemistry, The University of Texas at Austin, 1 University Station A5300, Austin, TX, USA 78712
| | - Thomas W. Cullen
- Section of Molecular Genetics and Microbiology, The University of Texas at Austin, Austin, TX, USA 78712
| | - M. Stephen Trent
- Section of Molecular Genetics and Microbiology, The University of Texas at Austin, Austin, TX, USA 78712
- The Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA 78712
| | - Jennifer S. Brodbelt
- Department of Chemistry and Biochemistry, The University of Texas at Austin, 1 University Station A5300, Austin, TX, USA 78712
| |
Collapse
|
16
|
Phillips NJ, Adin DM, Stabb EV, McFall-Ngai MJ, Apicella MA, Gibson BW. The lipid A from Vibrio fischeri lipopolysaccharide: a unique structure bearing a phosphoglycerol moiety. J Biol Chem 2011; 286:21203-19. [PMID: 21498521 PMCID: PMC3122182 DOI: 10.1074/jbc.m111.239475] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 04/13/2011] [Indexed: 11/06/2022] Open
Abstract
Vibrio fischeri, a bioluminescent marine bacterium, exists in an exclusive symbiotic relationship with the Hawaiian bobtail squid, Euprymna scolopes, whose light organ it colonizes. Previously, it has been shown that the lipopolysaccharide (LPS) or free lipid A of V. fischeri can trigger morphological changes in the juvenile squid's light organ that occur upon colonization. To investigate the structural features that might be responsible for this phenomenon, the lipid A from V. fischeri ES114 LPS was isolated and characterized by multistage mass spectrometry (MS(n)). A microheterogeneous mixture of mono- and diphosphorylated diglucosamine disaccharides was observed with variable states of acylation ranging from tetra- to octaacylated forms. All lipid A species, however, contained a set of conserved primary acyl chains consisting of an N-linked C14:0(3-OH) at the 2-position, an unusual N-linked C14:1(3-OH) at the 2'-position, and two O-linked C12:0(3-OH) fatty acids at the 3- and 3'-positions. The fatty acids found in secondary acylation were considerably more variable, with either a C12:0 or C16:1 at the 2-position, C14:0 or C14:0(3-OH) at the 2'-position, and C12:0 or no substituent at the 3'-position. Most surprising was the presence of an unusual set of modifications at the secondary acylation site of the 3-position consisting of phosphoglycerol (GroP), lysophosphatidic acid (GroP bearing C12:0, C16:0, or C16:1), or phosphatidic acid (GroP bearing either C16:0 + C12:0 or C16:0 + C16:1). Given their unusual nature, it is possible that these features of the V. fischeri lipid A may underlie the ability of E. scolopes to recognize its symbiotic partner.
Collapse
Affiliation(s)
- Nancy J. Phillips
- From the Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143
| | - Dawn M. Adin
- the Department of Microbiology, University of Georgia, Athens, Georgia 30602
| | - Eric V. Stabb
- the Department of Microbiology, University of Georgia, Athens, Georgia 30602
| | - Margaret J. McFall-Ngai
- the Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin 53706
| | - Michael A. Apicella
- the Department of Microbiology, University of Iowa College of Medicine, Iowa City, Iowa 52242, and
| | - Bradford W. Gibson
- From the Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143
- the Buck Institute for Research on Aging, Novato, California 94945
| |
Collapse
|
17
|
Jones JW, Cohen IE, Tureĉek F, Goodlett DR, Ernst RK. Comprehensive structure characterization of lipid A extracted from Yersinia pestis for determination of its phosphorylation configuration. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2010; 21:785-799. [PMID: 20185334 DOI: 10.1016/j.jasms.2010.01.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 01/08/2010] [Accepted: 01/08/2010] [Indexed: 05/28/2023]
Abstract
We report on comprehensive structure characterization of lipid A extracted from Yersinia pestis (Yp) for determination of its phosphorylation configuration that was achieved by combining the methods of molecular biology with high-resolution tandem mass spectrometry. The phosphorylation pattern of diphosphorylated lipid A extracted from Yp has recently been found to be a heterogeneous mixture of C-1 and C-4' bisphosphate, C-1 pyrophosphate, and C-4' pyrophosphate (Proc. Natl. Acad. Sci. 2008, 105, 12742). To reduce the inherent phosphate heterogeneity of diphosphorylated lipid A extracted from Yp, we incorporated specific C-1 and C-4' position phosphatases into wild type KIM6+ Yp grown at 37 degrees C. Comprehensive high-resolution tandem mass spectrometric analyses of lipid A extracted from Yp modified with either the C-1 or C-4' phosphatase allowed for unambiguous structure assignment of monophosphorylated and diphosphorylated lipid A and distinction of isomeric bisphosphate and pyrophosphate forms. The prevalent aminoarabinose modification was determined to be exclusively attached to the lipid A disaccharide via a phospho-diester linkage at either or both the C-1 and C-4' positions.
Collapse
Affiliation(s)
- Jace W Jones
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, USA
| | | | | | | | | |
Collapse
|
18
|
Determination of pyrophosphorylated forms of lipid A in Gram-negative bacteria using a multivaried mass spectrometric approach. Proc Natl Acad Sci U S A 2008; 105:12742-7. [PMID: 18753624 DOI: 10.1073/pnas.0800445105] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lipid A isolated from several bacteria (Escherichia coli, Pseudomonas aeruginosa, Salmonella enterica, and various strains of Yersinia) showed abundant formation of pyrophosphate anions upon ion dissociation. Pyrophosphate [H(3)P(2)O(7)](-) and/or [HP(2)O(6)](-) anions were observed as dominant fragments from diphosphorylated lipid A anions regardless of the ionization mode (matrix-assisted laser desorption ionization or electrospray ionization), excitation mode (collisional activation or infrared photoexcitation), or mass analyzer (time-of-flight/time-of-flight, tandem quadrupole, Fourier transform-ion cyclotron resonance mass spectrometry). Dissociations of anions from model lipid phosphate, pyrophosphate, and hexose diphosphates confirmed that pyrophosphate fragments were formed abundantly only in the presence of an intact pyrophosphate group in the analyte molecule and were not due to intramolecular rearrangement upon ionization, ion-molecule reactions, or rearrangement following activation. This indicated that pyrophosphate groups are present in diphosphorylated lipid A from a variety of Gram-negative bacteria.
Collapse
|
19
|
Shaffer SA, Harvey MD, Goodlett DR, Ernst RK. Structural heterogeneity and environmentally regulated remodeling of Francisella tularensis subspecies novicida lipid A characterized by tandem mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2007; 18:1080-92. [PMID: 17446084 PMCID: PMC2743246 DOI: 10.1016/j.jasms.2007.03.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Revised: 03/16/2007] [Accepted: 03/20/2007] [Indexed: 05/15/2023]
Abstract
The structural characterization of environmentally-regulated lipid A derived from Francisella tularensis subspecies novicida (Fn) U112 is described using negative electrospray ionization with a linear ion trap Fourier transform ion cyclotron resonance (IT-FT-ICR) hybrid mass spectrometer. The results indicate that a unique profile of lipid A molecular structures are synthesized in response to Fn growth at 25 degrees C versus 37 degrees C. Molecular species were found to be tetra-acylated, sharing a conserved glucosamine disaccharide backbone, a galactosamine-1-phosphate linked to the reducing glucosamine, and multiple O- and N-linked fatty acyl groups. Deprotonated molecules were interrogated by MS(n) scanning techniques at both high and nominal mass resolution and were found to be complex heterogeneous mixtures where structures differed based on the positions and identities of the O- and N-linked fatty acyl substituents. For the dominant ion series, which consisted of five peaks, 30 unique lipid A structures were identified. Estimates for the relative abundance of each structure were derived from MS relative abundance ratios and fragment ion ratios from comparable dissociation pathways from MS(2) through MS(4) experiments. The results suggest a remodeling pathway in which the amide linked fatty acid of the reducing glucosamine favors a 3-hydroxyhexadecanoic acid substituent for growth conditions at 25 degrees C versus a 3-hydroxyoctadecanoic acid substituent for growth conditions at 37 degrees C.
Collapse
Affiliation(s)
- Scott A Shaffer
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
20
|
El-Aneed A, Banoub J. Elucidation of the molecular structure of lipid A isolated from both a rough mutant and a wild strain of Aeromonas salmonicida lipopolysaccharides using electrospray ionization quadrupole time-of-flight tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2005; 19:1683-95. [PMID: 15912470 DOI: 10.1002/rcm.1971] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The chemical structure of lipid A, isolated by mild acid hydrolysis from a rough mutant and a wild strain of Aeromonas salmonicida lipopolysaccharide, was investigated using electrospray ionization quadrupole time-of-flight (QqToF) hybrid tandem mass spectrometry and showed a great degree of microheterogeneity. The chemical structure of the main constituent of this heterogeneous mixture was identified as a beta-D-(1 --> 6) linked D-glucosamine disaccharide substituted by two phosphate groups, one being bound to the non-reducing end at position O-4' and the other to the position O-1 of the reducing end of the D-glucosamine disaccharide. The location of the fatty acids linked to the disaccharide backbone was established by identifying diagnostic ions in the conventional QqToF-MS scan. Low-energy collision tandem mass spectrometry analysis of the selected precursor diagnostic ions confirmed, unambiguously, their proposed molecular structures. We have established that myristyloxylauric (C14:0(3-O(12:0))) acid residues were both N-2' and O-3' linked to the non-reducing end of the D-GlcN residue, and that two 3-hydroxymyristic (C14:0(3-OH)) acid chains acylated the remaining positions of the reducing end. The MS and MS/MS data obtained allowed us to determine the complex molecular structure of lipid A. The QqToF-MS/MS instrument has shown excellent superiority over a conventional quadrupole-hexapole-quadrupole tandem instrument which failed to fragment the selected precursor ion.
Collapse
Affiliation(s)
- Anas El-Aneed
- Memorial University of Newfoundland, Biochemistry Department, St. John's, NL, A1B 3X9, Canada
| | | |
Collapse
|
21
|
Kussak A, Weintraub A. Quadrupole ion-trap mass spectrometry to locate fatty acids on lipid A from Gram-negative bacteria. Anal Biochem 2002; 307:131-7. [PMID: 12137789 DOI: 10.1016/s0003-2697(02)00004-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The structure of lipid A released by mild acid hydrolysis from lipopolysaccharide from two strains of Shigella flexneri with different degrees of acylation was characterized using electrospray ionization (ESI) and ion-trap mass spectrometry. The lipid A was analyzed underivatized with ESI in negative-ion mode. With multiple stages of fragmentation (MS(n)), both the degree of acylation and the positions of the fatty acids on the disaccharide backbone could be determined. It was possible to determine the degree of acylation by the MS(n) technique, where in each MS stage the parent ion was an ion where one fatty acid had been eliminated. One way to determine the location of the fatty acids was by identifying cross-ring fragments of the reducing sugar from parent ions containing different numbers of fatty acids. Another was by identifying a possible charge-driven release of fatty acids situated close to a phosphate group. The fatty acids were otherwise eliminated by a charge-remote fragmentation mechanism. The combined data show the usefulness of ion-trap mass spectrometers for this type of analysis.
Collapse
Affiliation(s)
- Anders Kussak
- University College of South Stockholm, SE-141 89 Stockholm, Sweden.
| | | |
Collapse
|
22
|
Post DMB, Phillips NJ, Shao JQ, Entz DD, Gibson BW, Apicella MA. Intracellular survival of Neisseria gonorrhoeae in male urethral epithelial cells: importance of a hexaacyl lipid A. Infect Immun 2002; 70:909-20. [PMID: 11796626 PMCID: PMC127693 DOI: 10.1128/iai.70.2.909-920.2002] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neisseria gonorrhoeae is a strict human pathogen that invades and colonizes the urogenital tracts of males and females. Lipooligosaccharide (LOS) has been shown to play a role in gonococcal pathogenesis. The acyl transferase MsbB is involved in the biosynthesis of the lipid A portion of the LOS. In order to determine the role of an intact lipid A structure on the pathogenesis of N. gonorrhoeae, the msbB gene was cloned and sequenced, a deletion and insertion mutation was introduced into N. gonorrhoeae, and the mutant strain was designated 1291A11K3. Mass spectrometric analyses of 1291A11K3 LOS determined that this mutation resulted in a pentaacyl rather than a hexaacyl lipid A structure. These analyses also demonstrated an increase in the phosphorylation of lipid A and an increase in length of the oligosaccharide of a minor species of the msbB LOS. The interactions of this mutant with male urethral epithelial cells (uec) were examined. Transmission and scanning electron microscopy studies indicated that the msbB mutants formed close associations with and were internalized by the uec at levels similar to those of the parent strain. Gentamicin survival assays performed with 1291A11K3 and 1291 bacteria demonstrated that there was no difference in the abilities of the two strains to adhere to uec; however, significantly fewer 1291A11K3 bacteria than parent strain bacteria were recovered from gentamicin-treated uec. These studies suggest that the lipid A modification in the N. gonorrhoeae msbB mutant may render it more susceptible to innate intracellular killing mechanisms when internalized by uec.
Collapse
MESH Headings
- Acyltransferases/chemistry
- Acyltransferases/genetics
- Acyltransferases/physiology
- Amino Acid Sequence
- Antigens, Bacterial
- Bacterial Proteins/chemistry
- Bacterial Proteins/genetics
- Bacterial Proteins/physiology
- Base Sequence
- Blotting, Western/methods
- DNA, Bacterial
- Electrophoresis, Polyacrylamide Gel/methods
- Epithelial Cells/microbiology
- Escherichia coli/genetics
- Escherichia coli Proteins
- Humans
- Intracellular Fluid/microbiology
- Lipopolysaccharides/analysis
- Lipopolysaccharides/chemistry
- Male
- Microscopy, Electron/methods
- Microscopy, Electron, Scanning/methods
- Molecular Sequence Data
- Molecular Structure
- Mutagenesis
- Neisseria gonorrhoeae/enzymology
- Neisseria gonorrhoeae/growth & development
- Neisseria gonorrhoeae/pathogenicity
- Plasmids
- Sequence Homology, Amino Acid
- Sodium Dodecyl Sulfate
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
- Urethra/cytology
- Urethra/microbiology
Collapse
Affiliation(s)
- Deborah M B Post
- Department of Microbiology, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | |
Collapse
|