1
|
Xing P, Liu H, Xiao W, Zhang G, Zhang C, Liao Z, Li T, Yang J. The fusion gene LRP1-SNRNP25 drives invasion and migration by activating the pJNK/37LRP/MMP2 signaling pathway in osteosarcoma. Cell Death Discov 2024; 10:198. [PMID: 38678020 PMCID: PMC11055890 DOI: 10.1038/s41420-024-01962-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/29/2024] Open
Abstract
Through transcriptome sequencing, we previously identified a new osteosarcoma-specific, frequent fusion gene, LRP1-SNRNP25, and found that it played an important role in tumor cell invasion and migration. However, the specific mechanism remains unclear. In this article, whole-genome sequencing further confirmed that the LRP1-SNRNP25 fusion gene is formed by fusion of LRP1 exon 8 and SNRNP25 exon 2. In vitro, scratch and Transwell assays demonstrated that the migration and invasion abilities of LRP1-SNRNP25-overexpressing osteosarcoma cells were significantly increased. To explore the molecular mechanism of the LRP1-SNRNP25 fusion in affecting osteosarcoma cell migration and invasion, we evaluated the migration and invasion-related molecular signaling pathways by western blotting. Some migration- and invasion-related genes, including pJNK and MMP2, were upregulated. Coimmunoprecipitation-mass spectrometry showed that 37LRP can interact with pJNK. Western blotting confirmed that LRP1-SNRNP25 overexpression upregulates 37LRP protein expression. Immunofluorescence staining showed the intracellular colocalization of LRP1-SNRNP25 with pJNK and 37LRP proteins and that LRP1-SNRNP25 expression increased the pJNK and 37LRP levels. Coimmunoprecipitation (co-IP) confirmed that LRP1-SNRNP25 interacted with pJNK and 37LRP proteins. The pJNK inhibitor SP600125 dose-dependently decreased the pJNK/37LRP/MMP2 levels. After siRNA-mediated 37LRP knockdown, the MMP2 protein level decreased. These two experiments proved the upstream/downstream relationship among pJNK, 37LRP, and MMP2, with pJNK the farthest upstream and MMP2 the farthest downstream. These results proved that the LRP1-SNRNP25 fusion gene exerts biological effects through the pJNK/37LRP/MMP2 signaling pathway. In vivo, LRP1-SNRNP25 promoted osteosarcoma cell growth. Tumor growth was significantly inhibited after SP600125 treatment. Immunohistochemical analysis showed that the pJNK, MMP2, and Ki-67 protein levels were significantly increased in tumor tissues of LRP1-SNRNP25-overexpressing cell-injected nude mice. Furthermore, lung and liver metastasis were more prevalent in these mice. In a word, LRP1-SNRNP25 promotes invasion, migration, and metastasis via pJNK/37LRP/MMP2 pathway. LRP1-SNRNP25 is a potential therapeutic target for LRP1-SNRNP25-positive osteosarcoma.
Collapse
Affiliation(s)
- Peipei Xing
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, PR China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, PR China
- Radiation Oncology Department, Tianjin Medical University General Hospital, Tianjin, 300052, PR China
| | - Haotian Liu
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, PR China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, PR China
| | - Wanyi Xiao
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, PR China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, PR China
| | - Gengpu Zhang
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, PR China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, PR China
| | - Chao Zhang
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, PR China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, PR China
| | - Zhichao Liao
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, PR China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, PR China
| | - Ting Li
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, PR China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, PR China
| | - Jilong Yang
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, PR China.
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, PR China.
| |
Collapse
|
2
|
Kurdoğlu M, Kurdoğlu Z, Küçükaydın Z, Erten R, Bulut G, Özen S. Laminin receptor 1 expression in premalignant and malignant squamous lesions of the cervix. Biotech Histochem 2024; 99:174-181. [PMID: 38736402 DOI: 10.1080/10520295.2024.2346912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024] Open
Abstract
Laminin receptor 1 (LAMR) may have a role in the progression of premalignant squamous epithelial lesions to cervical cancer. Therefore, we aimed to investigate the expression of laminin receptor 1 (LAMR) in normal, premalignant, and malignant tissues of the uterine cervix. Paraffin blocks of 129 specimens with the diagnoses of normal cervical tissue (n = 33), cervical intraepithelial neoplasia (CIN) 1 (n = 30), CIN 2 (n = 14), CIN 3 (n = 28), and squamous cell carcinoma (n = 24) were immunohistochemically stained with LAMR antibody and its expression percentage, pattern, and intensity in these tissues were assessed. Compared to the other groups, the nonstaining with LAMR was highest in low grade squamous intraepithelial lesion (LSIL) (p < 0.0001). LAMR expression, which was positive in less than 50% of cells with weak staining, increased significantly between normal cervical epithelium and high-grade squamous intraepithelial lesion (HSIL) or invasive carcinoma, as well as between LSIL and HSIL (p < 0.0001). Between LSIL and invasive carcinoma, a significant increment was also observed for weak staining in less than 50% of cells (p < 0.001). LAMR expression, which was positive in more than 50% of cells with strong staining, was significantly higher in normal cervical tissue compared to the other groups (p < 0.0001). Disease progression related gradual increment of LAMR expression from normal cervical epithelium or LSIL towards HSIL or cervical cancer reveals that LAMR may play an important role in the transition from premalignant to malignant state in cervical lesions.
Collapse
Affiliation(s)
- Mertihan Kurdoğlu
- Department of Obstetrics and Gynecology, Yüzüncü Yıl University School of Medicine, Van, Turkey
| | - Zehra Kurdoğlu
- Department of Obstetrics and Gynecology, Yüzüncü Yıl University School of Medicine, Van, Turkey
| | - Zehra Küçükaydın
- Department of Obstetrics and Gynecology, Yüzüncü Yıl University School of Medicine, Van, Turkey
| | - Remzi Erten
- Department of Pathology, Yüzüncü Yıl University School of Medicine, Van, Turkey
| | - Gülay Bulut
- Department of Pathology, Yüzüncü Yıl University School of Medicine, Van, Turkey
| | - Süleyman Özen
- Department of Pathology, Yüzüncü Yıl University School of Medicine, Van, Turkey
| |
Collapse
|
3
|
Pampeno C, Opp S, Hurtado A, Meruelo D. Sindbis Virus Vaccine Platform: A Promising Oncolytic Virus-Mediated Approach for Ovarian Cancer Treatment. Int J Mol Sci 2024; 25:2925. [PMID: 38474178 PMCID: PMC10932354 DOI: 10.3390/ijms25052925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/30/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
This review article provides a comprehensive overview of a novel Sindbis virus vaccine platform as potential immunotherapy for ovarian cancer patients. Ovarian cancer is the most lethal of all gynecological malignancies. The majority of high-grade serous ovarian cancer (HGSOC) patients are diagnosed with advanced disease. Current treatment options are very aggressive and limited, resulting in tumor recurrences and 50-60% patient mortality within 5 years. The unique properties of armed oncolytic Sindbis virus vectors (SV) in vivo have garnered significant interest in recent years to potently target and treat ovarian cancer. We discuss the molecular biology of Sindbis virus, its mechanisms of action against ovarian cancer cells, preclinical in vivo studies, and future perspectives. The potential of Sindbis virus-based therapies for ovarian cancer treatment holds great promise and warrants further investigation. Investigations using other oncolytic viruses in preclinical studies and clinical trials are also presented.
Collapse
Affiliation(s)
- Christine Pampeno
- Department of Pathology, NYU Grossman School of Medicine, New York University, New York, NY 10016, USA
| | | | - Alicia Hurtado
- Department of Pathology, NYU Grossman School of Medicine, New York University, New York, NY 10016, USA
| | - Daniel Meruelo
- Department of Pathology, NYU Grossman School of Medicine, New York University, New York, NY 10016, USA
| |
Collapse
|
4
|
Pampeno C, Hurtado A, Opp S, Meruelo D. Channeling the Natural Properties of Sindbis Alphavirus for Targeted Tumor Therapy. Int J Mol Sci 2023; 24:14948. [PMID: 37834397 PMCID: PMC10573789 DOI: 10.3390/ijms241914948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/21/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Sindbis alphavirus vectors offer a promising platform for cancer therapy, serving as valuable models for alphavirus-based treatment. This review emphasizes key studies that support the targeted delivery of Sindbis vectors to tumor cells, highlighting their effectiveness in expressing tumor-associated antigens and immunomodulating proteins. Among the various alphavirus vectors developed for cancer therapy, Sindbis-vector-based imaging studies have been particularly extensive. Imaging modalities that enable the in vivo localization of Sindbis vectors within lymph nodes and tumors are discussed. The correlation between laminin receptor expression, tumorigenesis, and Sindbis virus infection is examined. Additionally, we present alternative entry receptors for Sindbis and related alphaviruses, such as Semliki Forest virus and Venezuelan equine encephalitis virus. The review also discusses cancer treatments that are based on the alphavirus vector expression of anti-tumor agents, including tumor-associated antigens, cytokines, checkpoint inhibitors, and costimulatory immune molecules.
Collapse
Affiliation(s)
| | | | | | - Daniel Meruelo
- Department of Pathology, NYU Grossman School of Medicine, New York University, New York, NY 10016, USA
| |
Collapse
|
5
|
Sun K, Shi X, Li L, Nie X, Xu L, Jia F, Xu F. Oncolytic Viral Therapy for Glioma by Recombinant Sindbis Virus. Cancers (Basel) 2023; 15:4738. [PMID: 37835433 PMCID: PMC10571546 DOI: 10.3390/cancers15194738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND The characteristics of glioblastoma, such as drug resistance during treatment, short patient survival, and high recurrence rates, have made patients with glioblastoma more likely to benefit from oncolytic therapy. METHODS In this study, we investigated the safety of the sindbis virus by injecting virus intravenously and intracranially in mice and evaluated the therapeutic effect of the virus carrying different combinations of IL-12, IL-7, and GM-CSF on glioma in a glioma-bearing mouse model. RESULTS SINV was autologously eliminated from the serum and organs as well as from neural networks after entering mice. Furthermore, SINV was restricted to the injection site in the tree shrew brain and did not spread throughout the whole brain. In addition, we found that SINV-induced apoptosis in conjunction with the stimulation of the immune system by tumor-killing cytokines substantially suppressed tumor development. It is worth mentioning that SINV carrying IL-7 and IL-12 had the most notable glioma-killing effect. Furthermore, in an intracranial glioma model, SINV containing IL-7 and IL-12 effectively prolonged the survival time of mice and inhibited glioma progression. CONCLUSIONS These results suggest that SINV has a significant safety profile as an oncolytic virus and that combining SINV with cytokines is an efficient treatment option for malignant gliomas.
Collapse
Affiliation(s)
- Kangyixin Sun
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China;
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; (X.S.); (L.L.)
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xiangwei Shi
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; (X.S.); (L.L.)
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Li
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; (X.S.); (L.L.)
| | - Xiupeng Nie
- CAS Key Laboratory of Animal Models and Human Disease Mechanisms, KIZ-SU Joint Laboratory of Animal Model and Drug Development, Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; (X.N.); (L.X.)
| | - Lin Xu
- CAS Key Laboratory of Animal Models and Human Disease Mechanisms, KIZ-SU Joint Laboratory of Animal Model and Drug Development, Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; (X.N.); (L.X.)
| | - Fan Jia
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; (X.S.); (L.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fuqiang Xu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China;
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; (X.S.); (L.L.)
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
6
|
Sakae Y, Takada H, Ichinose S, Nakajima M, Sakai A, Ogawa R. Treatment with YIGSR peptide ameliorates mouse tail lymphedema by 67 kDa laminin receptor (67LR)-dependent cell-cell adhesion. Biochem Biophys Rep 2023; 35:101514. [PMID: 37521371 PMCID: PMC10372372 DOI: 10.1016/j.bbrep.2023.101514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 08/01/2023] Open
Abstract
Impaired microcirculation can cause lymphatic leakage which leads to a chronic swelling in the tissues of the body. However, no successful treatment gives any protection against lymphedema due to the lack of well-revealed pathophysiology of secondary lymphedema. Binary image of laminin immunohistochemical expression revealed that distribution of laminin expression localized during surgically induced lymphedema. 67 kDa laminin receptor (67LR) mRNA expression showed a peak at during lymphedema exacerbation. Since the response of 67LR molecules may affect the prevention of inflammation and edema, here we have hypothesized that 67LR ligand of YIGSR peptide could permit reconstructive environment for amelioration of lymphedema and evaluated the effect of YIGSR in a mouse tail model of lymphedema. Indeed, intra-abdominal injections of YIGSR for the first 3 days after inducing lymphedema in the mouse tail model reduced the tail lymphedema on day 14 by 27% (P = 0.035). Histology showed that YIGSR treatment protected lymphedema impairment in epidermis and dermis, and it also inhibited the expansion of intercellular spaces and enhanced especially cell adhesion in the basement membrane as revealed by transmission electron microscopy. Interestingly, the treatment also reduced the local expression of transforming growth factor (TGF)β. Further elucidation of the mechanisms of 67LR-facilitated lymphangiogenesis contributes to find potential targets for the treatment of lymphedema.
Collapse
Affiliation(s)
- Y. Sakae
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Japan
| | - H. Takada
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Japan
- Department of Anti-Aging and Preventive Medicine, Nippon Medical School, Japan
| | - S. Ichinose
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Japan
| | - M. Nakajima
- Department of Pharmacology, Nippon Medical School, Japan
| | - A. Sakai
- Department of Pharmacology, Nippon Medical School, Japan
| | - R. Ogawa
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Japan
- Department of Anti-Aging and Preventive Medicine, Nippon Medical School, Japan
| |
Collapse
|
7
|
Sung DB, Lee JS. Natural-product-based fluorescent probes: recent advances and applications. RSC Med Chem 2023; 14:412-432. [PMID: 36970151 PMCID: PMC10034199 DOI: 10.1039/d2md00376g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Fluorescent probes are attractive tools for biology, drug discovery, disease diagnosis, and environmental analysis. In bioimaging, these easy-to-operate and inexpensive probes can be used to detect biological substances, obtain detailed cell images, track in vivo biochemical reactions, and monitor disease biomarkers without damaging biological samples. Over the last few decades, natural products have attracted extensive research interest owing to their great potential as recognition units for state-of-the-art fluorescent probes. This review describes representative natural-product-based fluorescent probes and recent discoveries, with a particular focus on fluorescent bioimaging and biochemical studies.
Collapse
Affiliation(s)
- Dan-Bi Sung
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology Busan Republic of Korea
| | - Jong Seok Lee
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology Busan Republic of Korea
- Department of Marine Biotechnology, Korea University of Science and Technology Daejeon Republic of Korea
| |
Collapse
|
8
|
Opp S, Hurtado A, Pampeno C, Lin Z, Meruelo D. Potent and Targeted Sindbis Virus Platform for Immunotherapy of Ovarian Cancer. Cells 2022; 12:77. [PMID: 36611875 PMCID: PMC9818975 DOI: 10.3390/cells12010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Our laboratory has been developing a Sindbis viral (SV) vector platform for treatments of ovarian and other types of cancers. In this study we show that SV.IL-12 combined with an agonistic OX40 antibody can eliminate ovarian cancer in a Mouse Ovarian Surface Epithelial Cell Line (MOSEC) model and further prevent tumors in mice rechallenged with tumor cells after approximately 5 months. Treatment efficacy is shown to be dependent upon T-cells that are transcriptionally and metabolically reprogramed. An influx of immune cells to the tumor microenvironment occurs. Combination of sequences encoding both IL-12 and anti-OX40 into a single SV vector, SV.IgGOX40.IL-12, facilitates the local delivery of immunoregulatory agents to tumors enhancing the anti-tumor response. We promote SV.IgGOX40.IL-12 as a safe and effective therapy for multiple types of cancer.
Collapse
Affiliation(s)
| | | | | | | | - Daniel Meruelo
- Department of Pathology, NYU Grossman School of Medicine, New York University, New York, NY 10016, USA
| |
Collapse
|
9
|
Hayashi D, Mouchlis VD, Okamoto S, Namba T, Wang L, Li S, Ueda S, Yamanoue M, Tachibana H, Arai H, Ashida H, Dennis EA, Shirai Y. Vitamin E functions by association with a novel binding site on the 67 kDa laminin receptor activating diacylglycerol kinase. J Nutr Biochem 2022; 110:109129. [PMID: 35977663 PMCID: PMC10243646 DOI: 10.1016/j.jnutbio.2022.109129] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 03/27/2022] [Accepted: 07/16/2022] [Indexed: 01/13/2023]
Abstract
It is generally recognized that the main function of α-tocopherol (αToc), which is the most active form of vitamin E, is its antioxidant effect, while non-antioxidant effects have also been reported. We previously found that αToc ameliorates diabetic nephropathy via diacylglycerol kinase alpha (DGKα) activation in vivo, and the activation was not related to the antioxidant effect. However, the underlying mechanism of how αToc activates DGKα have been enigmatic. We report that the membrane-bound 67 kDa laminin receptor (67LR), which has previously been shown to serve as a receptor for epigallocatechin gallate (EGCG), also contains a novel binding site for vitamin E, and its association with Vitamin E mediates DGKα activation by αToc. We employed hydrogen-deuterium exchange mass spectrometry (HDX/MS) and molecular dynamics (MD) simulations to identify the specific binding site of αToc on the 67LR and discovered the conformation of the specific hydrophobic pocket that accommodates αToc. Also, HDX/MS and MD simulations demonstrated the detailed binding of EGCG to a water-exposed hydrophilic site on 67LR, while in contrast αToc binds to a distinct hydrophobic site. We demonstrated that 67LR triggers an important signaling pathway mediating non-antioxidant effects of αToc, such as DGKα activation. This is the first evidence demonstrating a membrane receptor for αToc and one of the underlying mechanisms of a non-antioxidant function for αToc.
Collapse
Affiliation(s)
- Daiki Hayashi
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Science, Faculty of Agriculture, Kobe University, Kobe, Japan; Department of Pharmacology, and Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| | - Varnavas D Mouchlis
- Department of Pharmacology, and Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| | - Seika Okamoto
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Science, Faculty of Agriculture, Kobe University, Kobe, Japan
| | - Tomoka Namba
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Science, Faculty of Agriculture, Kobe University, Kobe, Japan
| | - Liuqing Wang
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Science, Faculty of Agriculture, Kobe University, Kobe, Japan
| | - Sheng Li
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Shuji Ueda
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Science, Faculty of Agriculture, Kobe University, Kobe, Japan
| | - Minoru Yamanoue
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Science, Faculty of Agriculture, Kobe University, Kobe, Japan
| | - Hirofumi Tachibana
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Arai
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo Japan
| | - Hitoshi Ashida
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Science, Faculty of Agriculture, Kobe University, Kobe, Japan
| | - Edward A Dennis
- Department of Pharmacology, and Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| | - Yasuhito Shirai
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Science, Faculty of Agriculture, Kobe University, Kobe, Japan.
| |
Collapse
|
10
|
Gadelha MIP. Validade dos marcadores tumorais. REVISTA BRASILEIRA DE CANCEROLOGIA 2022. [DOI: 10.32635/2176-9745.rbc.1998v44n3.2813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Considerando-se o número crescente dos chamados marcadores tumorais e a sua incorporação sistemática à prática médica, procedeu-se a um levantamento, por meio de Medline® 1995, na Biblioteca Central do Instituto Nacional de Câncer - INCA, e revisão de 95 resumos de trabalhos publicados de 1995 a abril de 1997. Verificou-se que a validade dos marcadores é maior para o diagnóstico patológico de alguns tipos tumorais e determinação de alguns fatores prognósticos; que poucos são os de real utilidade clínica, seja para prevenção, diagnóstico ou prognóstico, vez que a maioria deles só alcança significância quando a doença já provoca algum sinal ou sintoma; que a maioria das referências correspondem, a rigor, a trabalhos repetidos, que avaliam os mesmos marcadores, embora em diferentes tumores; e que há trabalhos que se referem a poucos casos, quando não pouquíssimos, e cujos resultados tomam-se, por isso, inconsistentes. Neste artigo, os marcadores tumorais são classificados por tipos (genes, expressões genéticas, substâncias circulantes, substâncias celulares, receptores da membrana celular e índices de proliferação tumoral) e por finalidades (prevenção, detecção, diagnóstico, estadiamento, monitoração terapêutica, seguimento pós-tratamento e prognóstico) e são correlacionados com o(s) tumor(es) em que foram pesquisados. Apresentam-se três grupos de critérios de validação (estatísticos, biomédicos e por finalidades) e resume-se, a partir também de mais 16 outras referências bibliográficas, a utilidade de marcadores dos cânceres de mama [ADN, fração de Fase S, índice de ADN, C-erbB-2 (HER-2/neu), P53, CAT-D, CA15.3 e CEA - sem validade; marcadores tumorais hormonais - úteis para a indicação de hormonioterapia adjuvante ou paliativa]; colorretal [LASA, CA 19.9, índice de ADN, fração de Fase S, p53 e ras - sem validade; CEA-com validade para estadiamento e planejamento cirúrgico, e para seguimento pós-operatório (dosagem seriada a cada 2-3 meses por 2 anos, se houve suspeita de metástase hepática em estádios cirúrgicos II e III)] e de próstata (PSA com utilidade para a detecção, mas associado ao toque retal, em homens acima de 40-50 anos, como indicativos da necessidade de exames mais acurados, e para o seguimento dos casos tratados). E inquestionável a utilidade da dosagem de alfa-feto-proteína (aFP) e da gonadotrofina coriônica (hCG), para o estadiamento, tratamento, avaliação da resposta terapêutica e seguimento dos casos tratados de tumores testiculares (aFP e hCG) e de neoplasia trofoblástica gestacional (hCG). Também inquestionável é o papel da identificação dos marcadores de diferenciação celular no diagnóstico patológico de leucemias e linfomas. Os dilemas evidenciados a partir deste estudo referem-se a cinco binômios: 1) ausência de sinal ou sintoma versus positividade de marcador tumoral; 2) detecção de recidiva assintomática versus a qualidade e a quantidade da sobrevida do indivíduo; 3) natureza da causa versus aumento do marcador; 4) exame falso-positivo versus tratamento; e 5) baixo risco de evolução de neoplasia detectada versus tratamento. Conclui-se que, exceto pelos marcadores de validade estabelecida para o diagnóstico, o seguimento do tratamento ou o prognóstico dos casos de alguns cânceres, o médico precisa, além de conhecer os marcadores tumorais e suas siglas, saber os limites das suas indicações e ter opinião, crítica e método na sua utilização.
Collapse
|
11
|
Lee DH, Paik ES, Cho YJ, Lee YY, Lee B, Lee EJ, Choi JJ, Choi CH, Lee S, Choi JW, Lee JW. Changes in subcellular localization of Lysyl-tRNA synthetase and the 67-kDa laminin receptor in epithelial ovarian cancer metastases. Cancer Biomark 2022; 35:99-109. [DOI: 10.3233/cbm-210077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: Although lysyl-tRNA synthetase (KARS1) is predominantly located in the cytosol, it is also present in the plasma membrane where it stabilizes the 67-kDa laminin receptor (67LR). This physical interaction is strongly increased under metastatic conditions. However, the dynamic interaction of these two proteins and the turnover of KARS1 in the plasma membrane has not previously been investigated. OBJECTIVE: Our objective in this study was to identify the membranous location of KARS1 and 67LR and investigate if this changes with the developmental stage of epithelial ovarian cancer (EOC) and treatment with the inhibitor BC-K01. In addition, we evaluated the therapeutic efficacy of BC-K01 in combination with paclitaxel, as the latter is frequently used to treat patients with EOC. METHODS: Overall survival and prognostic significance were determined in EOC patients according to KARS1 and 67LR expression levels as determined by immunohistochemistry. Changes in the location and expression of KARS1 and 67LR were investigated in vitro after BC-K01 treatment. The effects of this compound on tumor growth and apoptosis were evaluated both in vitro and in vivo. RESULTS: EOC patients with high KARS1 and high 67LR expression had lower progression-free survival rates than those with low expression levels of these two markers. BC-K01 reduced cell viability and increased apoptosis in combination with paclitaxel in EOC cell xenograft mouse models. BC-K01 decreased membranous KARS1 expression, causing a reduction in 67LR membrane expression in EOC cell lines. BC-K01 significantly decreased in vivo tumor weight and number of nodules, especially when used in combination with paclitaxel. CONCLUSIONS: Co-localization of KARS1 and 67LR in the plasma membrane contributes to EOC progression. Inhibition of the KARS1-67LR interaction by BC-K01 suppresses metastasis in EOC.
Collapse
Affiliation(s)
- Dae Hoon Lee
- Department of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul, Korea
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Korea
- Department of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul, Korea
| | - E. Sun Paik
- Department of Obstetrics and Gynecology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul, Korea
| | - Young-Jae Cho
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul, Korea
| | - Yoo-Young Lee
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Bada Lee
- Department of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul, Korea
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Korea
| | - Eui Jin Lee
- Department of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul, Korea
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Korea
| | - Jung-Joo Choi
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Chel-Hun Choi
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sangmin Lee
- Department of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul, Korea
| | - Jin Woo Choi
- Department of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul, Korea
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Korea
- Department of Regulatory Science, College of Pharmacy, Kyung Hee University, Seoul, Korea
| | - Jeong-Won Lee
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
12
|
Sun L, Wen S, Li Q, Lai X, Chen R, Zhang Z, Cao J, Sun S. Theaflavin-3,3'-di-gallate represses prostate cancer by activating the PKCδ/aSMase signaling pathway through a 67 kDa laminin receptor. Food Funct 2022; 13:4421-4431. [PMID: 35302141 DOI: 10.1039/d1fo04198c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Prostate cancer is a major cause of morbidity and mortality in men. Theaflavin-3,3'-digallate (TF-3) is an important functional ingredient of black tea. We aimed to evaluate the cytotoxic effects of TF-3 on prostate cancer and to identify the underlying molecular mechanism. In this study, we explored the effects of TF-3 on prostate cancer in PC-3 cells and in NOD/SCID mice with prostate cancer. The results demonstrated that TF-3 inhibited prostate cancer cell proliferation by regulating the PKCδ/aSMase signaling pathway. The anti-prostate cancer effect of TF-3 was attributed to the expression of the 67 kDa laminin receptor (67LR), which is overexpressed in various cancers, playing a vital role in the growth and metastasis of tumor cells. Stable knockdown of 67LR could efficiently inhibit TF-3 induced apoptosis and cell cycle arrest in PC-3 cells, through interacting with the PKCδ/aSMase signaling pathway. In vivo studies also confirmed the above findings that TF-3 effectively inhibited tumor growth in terms of tumor volume. TF-3 treatment can significantly inhibit tumor growth and up-regulate the phosphorylation of PKCδ and the expression of aSMase in tumor xenografts developed by subcutaneously implanting PC-3 cells and 67LR-overexpressing PC-3 cells in mice. However, in tumor xenografts formed by subcutaneously implanting 67LR-knockdown PC-3 cells, TF-3 has no significant effect on PKCδ/aSMase pathway regulation and tumor growth inhibition.
Collapse
Affiliation(s)
- Lingli Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Shuai Wen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Qiuhua Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Xingfei Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Ruohong Chen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Zhenbiao Zhang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Junxi Cao
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Shili Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| |
Collapse
|
13
|
Kumazoe M, Fujimura Y, Yoshitomi R, Shimada Y, Tachibana H. Fustin, a Flavanonol, Synergically Potentiates the Anticancer Effect of Green Tea Catechin Epigallocatechin-3- O-Gallate with Activation of the eNOS/cGMP Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3458-3466. [PMID: 35212538 DOI: 10.1021/acs.jafc.1c07567] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Epigallocatechin-3-O-gallate (EGCG), a catechin present in green tea, selectively elicits apoptosis in multiple myeloma cells by activating the endothelial nitric oxide synthase (eNOS)/cyclic guanosine monophosphate (cGMP) axis. However, the effects of EGCG alone are limited. Herein, we revealed that fustin, a flavanonol, enhances the EGCG-elicited activation of the cGMP/eNOS axis in multiple myeloma cells. Isobologram analysis demonstrated that EGCG/fustin synergistically elicited cell death in multiple myeloma cells. Importantly, this chemical combination significantly promoted cell death without affecting the normal cells. To assess the effects of EGCG and fustin in vivo, female BALB/c mice were inoculated with multiple myeloma MPC11 cells and then treated with each compound. The combination of EGCG/fustin suppressed tumor growth in vivo without affecting alanine aminotransferase/aspartate aminotransferase levels, the dose-limiting toxicity of EGCG. Consistent with in vitro findings, this combination increased eNOS phosphorylation at Ser1177 in the tumor. Collectively, fustin amplified EGCG-induced activation of the eNOS/cGMP axis.
Collapse
Affiliation(s)
- Motofumi Kumazoe
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Yoshinori Fujimura
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Ren Yoshitomi
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Yu Shimada
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Hirofumi Tachibana
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
14
|
Kooti W, Esmaeili Gouvarchin Ghaleh H, Farzanehpour M, Dorostkar R, Jalali Kondori B, Bolandian M. Oncolytic Viruses and Cancer, Do You Know the Main Mechanism? Front Oncol 2022; 11:761015. [PMID: 35004284 PMCID: PMC8728693 DOI: 10.3389/fonc.2021.761015] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/22/2021] [Indexed: 12/28/2022] Open
Abstract
The global rate of cancer has increased in recent years, and cancer is still a threat to human health. Recent developments in cancer treatment have yielded the understanding that viruses have a high potential in cancer treatment. Using oncolytic viruses (OVs) is a promising approach in the treatment of malignant tumors. OVs can achieve their targeted treatment effects through selective cell death and induction of specific antitumor immunity. Targeting tumors and the mechanism for killing cancer cells are among the critical roles of OVs. Therefore, evaluating OVs and understanding their precise mechanisms of action can be beneficial in cancer therapy. This review study aimed to evaluate OVs and the mechanisms of their effects on cancer cells.
Collapse
Affiliation(s)
- Wesam Kooti
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Mahdieh Farzanehpour
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ruhollah Dorostkar
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Bahman Jalali Kondori
- Department of Anatomical Sciences, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Masoumeh Bolandian
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Matsuo K, Akiba J, Ogasawara S, Kondo R, Naito Y, Kusano H, Sanada S, Kakuma T, Kusukawa J, Yano H. Expression and significance of laminin receptor in squamous cell carcinoma of the tongue. J Oral Pathol Med 2021; 51:263-271. [PMID: 34581463 DOI: 10.1111/jop.13247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/19/2021] [Accepted: 09/03/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Laminin receptor is a non-integrin cell-surface receptor that binds laminin present on the basement membrane. It has been reported to be associated with infiltration and metastasis of various malignant tumors. However, no studies regarding tongue cancer have been reported. This study aimed to clarify the role of laminin receptor in squamous cell carcinoma of the tongue. METHODS We performed immunohistochemical staining of specimens from 66 patients with squamous cell carcinoma of the tongue and assessed laminin receptor expression and clinicopathological factors. As epithelial-mesenchymal transition has been shown to be associated with infiltration and metastasis of malignant tumors, staining for E-cadherin, vimentin, and N-cadherin were also performed. RESULTS Of 20 patients with postoperative recurrence, 14 exhibited high laminin receptor expression (p = 0.0025). Kaplan-Meier analysis revealed a significantly shorter time to postoperative recurrence for the high laminin receptor expression group than that for the low laminin receptor expression group (p = 0.0008). Based on multivariate analyses for postoperative recurrence, high laminin receptor expression was associated with poor prognosis (high expression vs. low expression; HR =3.19, 95% CI =0.92-11.08; p = 0.0682). There was a correlation between laminin receptor and N-cadherin (p = 0.0089) but not between laminin receptor and E-cadherin (p = 0.369) or vimentin (p = 0.4221). CONCLUSION These results suggest that high laminin receptor expression is a useful prognostic factor for postoperative recurrence and may be a target for molecular therapy to treat squamous cell carcinoma of the tongue.
Collapse
Affiliation(s)
- Katsuhisa Matsuo
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan.,Dental and Oral Medical Center, Kurume University School of Medicine, Kurume, Japan
| | - Jun Akiba
- Department of Diagnostic Pathology, Kurume University Hospital, Kurume, Japan
| | - Sachiko Ogasawara
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Reiichiro Kondo
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Yoshiki Naito
- Department of Diagnostic Pathology, Kurume University Hospital, Kurume, Japan
| | - Hironori Kusano
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Sakiko Sanada
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Tatsuyuki Kakuma
- Department of Biostatistics Center, Kurume University, Kurume, Japan
| | - Jingo Kusukawa
- Dental and Oral Medical Center, Kurume University School of Medicine, Kurume, Japan
| | - Hirohisa Yano
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
16
|
Lee S, Kwon NH, Seo B, Lee JY, Cho HY, Kim K, Kim HS, Jung K, Jeon YH, Kim S, Suh YG. Discovery of novel potent migrastatic Thiazolo[5,4-b]pyridines targeting Lysyl-tRNA synthetase (KRS) for treatment of Cancer metastasis. Eur J Med Chem 2021; 218:113405. [PMID: 33831781 DOI: 10.1016/j.ejmech.2021.113405] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/19/2021] [Accepted: 03/19/2021] [Indexed: 11/28/2022]
Abstract
Recently, non-canonical roles of Lysyl-tRNA Synthetase (KRS), which is associated with cell migration and cancer metastasis, have been reported. Therefore, KRS has emerged as a promising target for the treatment of cell migration-related diseases, especially cancer metastasis, although the satisfying chemical inhibitors targeting KRS have not yet been identified. Here, we report the discovery of novel, mechanistically unique, and potent cell migration inhibitors targeting KRS, including the chemical and biological studies on the most effective N,N-dialkylthiazolo [5,4-b]pyridin-2-amine (SL-1910). SL-1910 exhibited highly potent migration inhibition (EC50 = 81 nM against the mutant KRS-overexpressed MDA-MB-231 cells) and was superior to the previously reported KRS inhibitor (migration inhibitory EC50 = 8.5 μM against H226 cells). The KRS protein binding study via fluorescence-based binding titration and KRS protein 2D-NMR mapping study, in vitro concentration-dependent cell migration inhibition, and in vivo anti-metastatic activity of SL-1910, which consists of a new scaffold, have been reported in this study. In addition, in vitro absorption, distribution, metabolism, and excretion studies and mouse pharmacokinetics experiments for SL-1910 were conducted.
Collapse
Affiliation(s)
- Seungbeom Lee
- College of Pharmacy, CHA University, Gyeonggi-do, 11160, Republic of Korea; College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nam Hoon Kwon
- Medicinal Bioconvergence Research Center, Institute for Artificial Intelligence and Biomedical Research, College of Pharmacy and College of Medicine, Gangnam Severance Hospital, Yonsei University, Incheon, South Korea, 21983
| | - Bokyung Seo
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jin Young Lee
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hye Young Cho
- College of Pharmacy, Korea University, 2511 Sejong-ro, Sejong, 339-700, Republic of Korea
| | - Kyeojin Kim
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyun Su Kim
- College of Pharmacy, CHA University, Gyeonggi-do, 11160, Republic of Korea
| | - Kiwon Jung
- College of Pharmacy, CHA University, Gyeonggi-do, 11160, Republic of Korea
| | - Young Ho Jeon
- College of Pharmacy, Korea University, 2511 Sejong-ro, Sejong, 339-700, Republic of Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, Institute for Artificial Intelligence and Biomedical Research, College of Pharmacy and College of Medicine, Gangnam Severance Hospital, Yonsei University, Incheon, South Korea, 21983.
| | - Young-Ger Suh
- College of Pharmacy, CHA University, Gyeonggi-do, 11160, Republic of Korea; College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
17
|
Jiang Z, Shi Y, Tan G, Wang Z. Computational screening of potential glioma-related genes and drugs based on analysis of GEO dataset and text mining. PLoS One 2021; 16:e0247612. [PMID: 33635875 PMCID: PMC7909668 DOI: 10.1371/journal.pone.0247612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 02/09/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Considering the high invasiveness and mortality of glioma as well as the unclear key genes and signaling pathways involved in the development of gliomas, there is a strong need to find potential gene biomarkers and available drugs. METHODS Eight glioma samples and twelve control samples were analyzed on the GSE31095 datasets, and differentially expressed genes (DEGs) were obtained via the R software. The related glioma genes were further acquired from the text mining. Additionally, Venny program was used to screen out the common genes of the two gene sets and DAVID analysis was used to conduct the corresponding gene ontology analysis and cell signal pathway enrichment. We also constructed the protein interaction network of common genes through STRING, and selected the important modules for further drug-gene analysis. The existing antitumor drugs that targeted these module genes were screened to explore their efficacy in glioma treatment. RESULTS The gene set obtained from text mining was intersected with the previously obtained DEGs, and 128 common genes were obtained. Through the functional enrichment analysis of the identified 128 DEGs, a hub gene module containing 25 genes was obtained. Combined with the functional terms in GSE109857 dataset, some overlap of the enriched function terms are both in GSE31095 and GSE109857. Finally, 4 antitumor drugs were identified through drug-gene interaction analysis. CONCLUSIONS In this study, we identified that two potential genes and their corresponding four antitumor agents could be used as targets and drugs for glioma exploration.
Collapse
Affiliation(s)
- Zhengye Jiang
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, Xiamen, China
- Institute of Neurosurgery, School of Medicine, Xiamen University, Xiamen, China
| | - Yanxi Shi
- Department of Cardiology, Jiaxing Second Hospital, Jiaxing, China
| | - Guowei Tan
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, Xiamen, China
- Institute of Neurosurgery, School of Medicine, Xiamen University, Xiamen, China
| | - Zhanxiang Wang
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, Xiamen, China
- Institute of Neurosurgery, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
18
|
Kumazoe M, Kadomatsu M, Bae J, Otsuka Y, Fujimura Y, Tachibana H. Src Mediates Epigallocatechin-3- O-Gallate-Elicited Acid Sphingomyelinase Activation. Molecules 2020; 25:molecules25225481. [PMID: 33238540 PMCID: PMC7700551 DOI: 10.3390/molecules25225481] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/14/2020] [Accepted: 11/18/2020] [Indexed: 11/18/2022] Open
Abstract
Epigallocatechin-3-O-gallate (EGCG) is one of the major bioactive compounds known to be present in green tea. We previously reported that EGCG shows selective toxicity through activation of the protein kinase B (Akt)/cyclic guanosine monophosphate (cGMP)/acid sphingomyelinase (ASM) axis via targeting its receptor 67-kDa laminin receptor (67LR), which is overexpressed in cancer. However, little is known about upstream mechanisms of EGCG-elicited ASM activation. In this study we show that the proto-oncogene tyrosine-protein kinase Src, also known as c-src, plays a crucial role in the anticancer effect of EGCG. We showed that EGCG elicits phosphorylation of Src at Tyr 416, a crucial phosphorylation site for its activity, and that the pharmacological inhibition of Src impedes the upstream events in EGCG-induced cell death signaling including upregulation of Akt activity, increase in cGMP levels, and activation of ASM. Moreover, focal adhesion kinase (FAK), which is involved in the phosphorylation of Src, is colocalized with 67LR. EGCG treatment enhanced interaction of FAK and 67LR. Consistent with these findings, pharmacological inhibition of FAK significantly neutralized EGCG-induced upregulation of Akt activity and activation of ASM. Taken together, FAK/Src play crucial roles in the upstream signaling of EGCG.
Collapse
|
19
|
Kumazoe M, Fujimura Y, Tachibana H. 67-kDa Laminin Receptor Mediates the Beneficial Effects of Green Tea Polyphenol EGCG. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s40495-020-00228-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
20
|
Lorusso G, Rüegg C, Kuonen F. Targeting the Extra-Cellular Matrix-Tumor Cell Crosstalk for Anti-Cancer Therapy: Emerging Alternatives to Integrin Inhibitors. Front Oncol 2020; 10:1231. [PMID: 32793493 PMCID: PMC7387567 DOI: 10.3389/fonc.2020.01231] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/16/2020] [Indexed: 12/11/2022] Open
Abstract
The extracellular matrix (ECM) is a complex network composed of a multitude of different macromolecules. ECM components typically provide a supportive structure to the tissue and engender positional information and crosstalk with neighboring cells in a dynamic reciprocal manner, thereby regulating tissue development and homeostasis. During tumor progression, tumor cells commonly modify and hijack the surrounding ECM to sustain anchorage-dependent growth and survival, guide migration, store pro-tumorigenic cell-derived molecules and present them to enhance receptor activation. Thereby, ECM potentially supports tumor progression at various steps from initiation, to local growth, invasion, and systemic dissemination and ECM-tumor cells interactions have long been considered promising targets for cancer therapy. Integrins represent key surface receptors for the tumor cell to sense and interact with the ECM. Yet, attempts to therapeutically impinge on these interactions using integrin inhibitors have failed to deliver anticipated results, and integrin inhibitors are still missing in the emerging arsenal of drugs for targeted therapies. This paradox situation should urge the field to reconsider the role of integrins in cancer and their targeting, but also to envisage alternative strategies. Here, we review the therapeutic targets implicated in tumor cell adhesion to the ECM, whose inhibitors are currently in clinical trials and may offer alternatives to integrin inhibition.
Collapse
Affiliation(s)
- Girieca Lorusso
- Experimental and Translational Oncology, Department of Oncology Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Curzio Rüegg
- Experimental and Translational Oncology, Department of Oncology Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - François Kuonen
- Department of Dermatology and Venereology, Hôpital de Beaumont, Lausanne University Hospital Center, Lausanne, Switzerland
| |
Collapse
|
21
|
EGCG down-regulates MuRF1 expression through 67-kDa laminin receptor and the receptor signaling is amplified by eriodictyol. J Nat Med 2020; 74:673-679. [DOI: 10.1007/s11418-020-01417-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/17/2020] [Indexed: 12/18/2022]
|
22
|
Kumazoe M, Hiroi S, Tanimoto Y, Miyakawa J, Yamanouchi M, Suemasu Y, Yoshitomi R, Murata M, Fujimura Y, Takahashi T, Tanaka H, Tachibana H. Cancer cell selective probe by mimicking EGCG. Biochem Biophys Res Commun 2020; 525:974-981. [DOI: 10.1016/j.bbrc.2020.03.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 01/28/2023]
|
23
|
Bae J, Kumazoe M, Murata K, Fujimura Y, Tachibana H. Procyanidin C1 Inhibits Melanoma Cell Growth by Activating 67-kDa Laminin Receptor Signaling. Mol Nutr Food Res 2020; 64:e1900986. [PMID: 32103628 DOI: 10.1002/mnfr.201900986] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 02/06/2020] [Indexed: 12/11/2022]
Abstract
SCOPE Procyanidin C1 (PC1) is an epicatechin trimer found mainly in grapes that is reported to provide several health benefits. However, little is known about the molecular mechanisms underlying these benefits. The aim of this study is to demonstrate the molecular mechanisms by which PC1 operates. METHODS AND RESULTS A 67-kDa laminin receptor (67LR) is identified as a cell surface receptor of PC1, with a Kd value of 2.8 µm. PC1 induces an inhibitory effect on growth, accompanied by dephosphorylation of the C-kinase potentiated protein phosphatase-1 inhibitor protein of 17 kDa (CPI17) and myosin regulatory light chain (MRLC) proteins, followed by actin cytoskeleton remodeling in melanoma cells. These actions are mediated by protein kinase A (PKA) and protein phosphatase 2A (PP2A) activation once PC1 is bound to 67LR. CONCLUSION It is demonstrated that PC1 elicits melanoma cell growth inhibition by activating the 67LR/PKA/PP2A/CPI17/MRLC pathway.
Collapse
Affiliation(s)
- Jaehoon Bae
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| | - Motofumi Kumazoe
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| | - Kyosuke Murata
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| | - Yoshinori Fujimura
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| | - Hirofumi Tachibana
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| |
Collapse
|
24
|
Wu Y, Tan X, Liu P, Yang Y, Huang Y, Liu X, Meng X, Yu B, Wu M, Jin H. ITGA6 and RPSA synergistically promote pancreatic cancer invasion and metastasis via PI3K and MAPK signaling pathways. Exp Cell Res 2019; 379:30-47. [PMID: 30894280 DOI: 10.1016/j.yexcr.2019.03.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 03/14/2019] [Accepted: 03/14/2019] [Indexed: 12/24/2022]
Abstract
Pancreatic cancer is one of the most malignant tumors. Invasion and metastasis can occur in the early stage of pancreatic cancer, contributing to the poor prognosis. Accordingly, in this study, we evaluated the molecular mechanisms underlying invasion and metastasis. Using mass spectrometry, we found that Integrin alpha 6 (ITGA6) was more highly expressed in a highly invasive pancreatic cancer cell line (PC-1.0) than in a less invasive cell line (PC-1). Through in vitro and in vivo experiments, we observed significant decreases in invasion and metastasis in pancreatic cancer cells after inhibiting ITGA6. Based on data in TCGA, high ITGA6 expression significantly predicted poor prognosis. By using Co-IP combined mass spectrometry, we found that ribosomal protein SA (RPSA), which was also highly expressed in PC-1.0, interacted with ITGA6. Similar to ITGA6, high RPSA expression promoted invasion and metastasis and indicated poor prognosis. Interestingly, although ITGA6 and RPSA interacted, they did not mutually regulate each other. ITGA6 and RPSA affected invasion and metastasis via the PI3K and MAPK signaling pathways, respectively. Inhibiting ITGA6 significantly reduced the expression of p-AKT, while inhibiting RPSA led to the downregulation of p-ERK1/2. Compared with the inhibition of ITGA6 or RPSA alone, the downregulation of both ITGA6 and RPSA weakened invasion and metastasis to a greater extent and led to the simultaneous downregulation of p-AKT and p-ERK1/2. Our research indicates that the development of drugs targeting both ITGA6 and RPSA may be an effective strategy for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Yunhao Wu
- Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, PR China
| | - Xiaodong Tan
- Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, PR China.
| | - Peng Liu
- Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, PR China
| | - Yifan Yang
- Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, PR China
| | - Yinpeng Huang
- Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, PR China
| | - Xinlu Liu
- Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, PR China
| | - Xiangli Meng
- Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, PR China
| | - Boqiang Yu
- Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, PR China
| | - Mengwei Wu
- Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, PR China
| | - Haoyi Jin
- Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, PR China
| |
Collapse
|
25
|
Cloutier G, Sallenbach-Morrissette A, Beaulieu JF. Non-integrin laminin receptors in epithelia. Tissue Cell 2019; 56:71-78. [DOI: 10.1016/j.tice.2018.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/17/2018] [Accepted: 12/21/2018] [Indexed: 12/14/2022]
|
26
|
Expression of Laminin Receptor 1 in Normal, Hyperplastic, and Malignant Endometrium. Int J Gynecol Pathol 2018; 38:326-334. [PMID: 30028353 DOI: 10.1097/pgp.0000000000000535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Laminin receptor 1 may have a role in the progression from endometrial hyperplasia with or without atypia to endometrial cancer. Therefore, we aimed to investigate the pattern, percentage, and intensity of laminin receptor 1 expression in normal, hyperplastic, and neoplastic endometrium. Paraffin blocks of 131 specimens with the diagnoses of normal endometrium (n=25), endometrial hyperplasia with atypia (n=21) or without atypia (n=55), and endometrial cancer (n=30) were immunostained with laminin receptor 1 antibody, and its expression percentage, pattern, and intensity in the epithelial cytoplasm, basement membrane, and endometrial stroma of these tissues were assessed. When compared with hyperplasia with or without atypia and endometrial cancer, the percentage of nonstaining with laminin receptor 1 in the epithelial basement membrane was higher (96%), and the percentage of <50% staining with laminin receptor 1 was lower (4%) in the normal endometrium (P=0.001). While a progressive increment in staining percentage and density of epithelial cytoplasm and basement membrane was noted through an orderly progression from normal endometrium to endometrial hyperplasia without atypia, endometrial hyperplasia with atypia, and cancer of endometrium (P<0.001), such a relationship was not found for the staining percentage and density of endometrial stroma (P>0.05). Disease progression-related gradual increment in laminin receptor 1 expression in the epithelial basement membranes of hyperplastic endometrium with or without atypia and cancer of endometrium reveals that it may play a substantial role in the transition from premalignant to the malignant state of endometrial lesions.
Collapse
|
27
|
Chaurasiya S, Chen NG, Warner SG. Oncolytic Virotherapy versus Cancer Stem Cells: A Review of Approaches and Mechanisms. Cancers (Basel) 2018; 10:E124. [PMID: 29671772 PMCID: PMC5923379 DOI: 10.3390/cancers10040124] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/11/2018] [Accepted: 04/14/2018] [Indexed: 12/26/2022] Open
Abstract
A growing body of evidence suggests that a subset of cells within tumors are resistant to conventional treatment modalities and may be responsible for disease recurrence. These cells are called cancer stem cells (CSC), which share properties with normal stem cells including self-renewal, pluripotency, drug resistance, and the ability to maintain quiescence. While most conventional therapies can efficiently destroy rapidly dividing cancer cells comprising the bulk of a tumor, they often fail to kill the less abundant and quiescent CSCs. Furthermore, killing of only differentiated cells in the tumor may actually allow for enrichment of CSCs and thereby portend a bad prognosis. Therefore, targeting of CSCs is important to achieve long-term success in cancer therapy. Oncolytic viruses represent a completely different class of therapeutics that can kill cancer cells in a variety of ways, which differ from those of conventional therapies. Hence, CSCs that are inherently resistant to conventional therapies may be susceptible to oncolytic virus-mediated killing. Recent studies have shown that oncolytic viruses can efficiently kill CSCs in many types of cancer. Here, we discuss the mechanism through which CSCs can escape conventional therapies and how they may still be susceptible to different classes of oncolytic viruses. Furthermore, we provide a summary of recent studies that have tested oncolytic viruses on CSCs of different origins and discuss possible future directions for this fascinating subset of oncolytic virus research.
Collapse
Affiliation(s)
- Shyambabu Chaurasiya
- Department of Surgery, Division of Surgical Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA.
| | - Nanhai G Chen
- Department of Surgery, Division of Surgical Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA.
- Center for Gene Therapy, Department of Hematologic and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA.
- Gene Editing and Viral Vector Core, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA.
| | - Susanne G Warner
- Department of Surgery, Division of Surgical Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA.
| |
Collapse
|
28
|
Sugiyama I, Kaihatsu K, Soma Y, Kato N, Sadzuka Y. Dual-effect liposomes with increased antitumor effects against 67-kDa laminin receptor-overexpressing tumor cells. Int J Pharm 2018; 541:206-213. [DOI: 10.1016/j.ijpharm.2018.02.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/13/2018] [Accepted: 02/23/2018] [Indexed: 12/01/2022]
|
29
|
Kumazoe M, Takai M, Hiroi S, Takeuchi C, Yamanouchi M, Nojiri T, Onda H, Bae J, Huang Y, Takamatsu K, Yamashita S, Yamada S, Kangawa K, Takahashi T, Tanaka H, Tachibana H. PDE3 inhibitor and EGCG combination treatment suppress cancer stem cell properties in pancreatic ductal adenocarcinoma. Sci Rep 2017; 7:1917. [PMID: 28507327 PMCID: PMC5432527 DOI: 10.1038/s41598-017-02162-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/07/2017] [Indexed: 02/06/2023] Open
Abstract
Recurrence following chemotherapy is observed in the majority of patients with pancreatic ductal adenocarcinoma (PDAC). Recent studies suggest that cancer stem cells (CSCs) may be involved in PDAC recurrence and metastasis. However, an efficient approach to targeting pancreatic CSCs remains to be established. Here we show that in cancer cells overexpressing the 67-kDa laminin receptor (67LR)-dependent cyclic GMP (cGMP) inducer, epigallocatechin-3-O-gallate (EGCG) and a phosphodiesterase 3 (PDE3) inhibitor in combination significantly suppressed the Forkhead box O3 and CD44 axis, which is indispensable for the CSC properties of PDAC. We confirmed that the EGCG and PDE3 inhibitor in combination strongly suppressed tumour formation and liver metastasis in vivo. We also found that a synthesized EGCG analog capable of inducing strong cGMP production drastically suppressed the CSC properties of PDAC and extended the survival period in vivo. In conclusion, the combination treatment of EGCG and a PDE3 inhibitor as a strong cGMP inducer could be a potential treatment candidate for the eradication of CSCs of PDAC.
Collapse
Affiliation(s)
- Motofumi Kumazoe
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan
| | - Mika Takai
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan
| | - Shun Hiroi
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan
| | - Chieri Takeuchi
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan
| | - Maasa Yamanouchi
- Department of Applied Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo, 152-8552, Japan
| | - Takashi Nojiri
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishiro-dai, Suita-City, Osaka, 565-8565, Japan
| | - Hiroaki Onda
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishiro-dai, Suita-City, Osaka, 565-8565, Japan
| | - Jaehoon Bae
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan
| | - Yuhui Huang
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan
| | - Kanako Takamatsu
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan
| | - Shuya Yamashita
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan
| | - Shuhei Yamada
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan
| | - Kenji Kangawa
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishiro-dai, Suita-City, Osaka, 565-8565, Japan
| | - Takashi Takahashi
- Yokohama College of Pharmacy 601, Matana-cho, Totsuka-ku, Yokohama, Kanagawa, 245-0066, Japan
| | - Hiroshi Tanaka
- Department of Applied Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo, 152-8552, Japan
| | - Hirofumi Tachibana
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan.
| |
Collapse
|
30
|
Al-Eisawi Z, Beale P, Chan C, Yu JQ, Proschogo N, Molloy M, Huq F. Changes in the in vitro activity of platinum drugs when administered in two aliquots. BMC Cancer 2016; 16:688. [PMID: 27566066 PMCID: PMC5002105 DOI: 10.1186/s12885-016-2731-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 06/28/2016] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The management of ovarian cancer remains a challenge. Because of the lack of early symptoms, it is often diagnosed at a late stage when it is likely to have metastasized beyond ovaries. Currently, platinum based chemotherapy is the primary treatment for the disease. However acquired drug resistance remains an on-going problem. As cisplatin brings about apoptosis by intrinsic and extrinsic pathways, this study aimed to determine changes in activity of platinum drugs when administered in two aliquots as against a bolus and sought to determine association with changes in GSH, speciation of platinum drugs and changes in protein expression. METHODS The efficacy of administering cisplatin, carboplatin and oxaliplatin in two aliquots with a time gap was investigated in ovarian A2780, A2780(cisR), A2780(ZD0473R) and SKOV-3 cell lines. The cellular accumulation of platinum, level of platinum - DNA binding and cellular glutathione level were determined, and proteomic studies were carried out to identify key proteins associated with platinum resistance in ovarian A2780(cisR) cancer cell line. RESULTS Much greater cell kill was observed with solutions left standing at room temperature than with freshly prepared solutions, indicating that the increase in activity on ageing was related to speciation of the drug in solution. Proteomic studies identified 72 proteins that were differentially expressed in A2780 and A2780(cisR) cell lines; 22 of them were restored back to normal levels as a result of synergistic treatments, indicating their relevance in enhanced drug action. CONCLUSIONS The proteins identified are relevant to several different cellular functions including invasion and metastasis, cell cycle regulation and proliferation, metabolic and biosynthesis processes, stress-related proteins and molecular chaperones, mRNA processing, cellular organization/cytoskeleton, cellular communication and signal transduction. This highlights the multifactorial nature of platinum resistance in which many different proteins with diverse functions play key roles. This means multiple strategies can be harnessed to overcome platinum resistance in ovarian cancer. The results of the studies can be significant both from fundamental and clinical view points.
Collapse
Affiliation(s)
- Zaynab Al-Eisawi
- Discipline of Biomedical Science, Sydney Medical School, University of Sydney, Sydney, NSW 2141 Australia
- Department of Medical Laboratory Sciences, Faculty of Allied Health Science, Hashemite University, Zarqa, Hashemite Kingdom of Jordan
| | - Philip Beale
- Sydney Cancer Centre, Concord Hospital, Sydney, NSW 2139 Australia
| | - Charles Chan
- Department of Pathology, Concord Hospital, Sydney, NSW 2139 Australia
| | - Jun Qing Yu
- Discipline of Biomedical Science, Sydney Medical School, University of Sydney, Sydney, NSW 2141 Australia
| | - Nicholas Proschogo
- Mass Spectrometry Unit, School of Chemistry, University of Sydney, Sydney, NSW 2006 Australia
| | - Mark Molloy
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW 2109 Australia
| | - Fazlul Huq
- Discipline of Biomedical Science, Sydney Medical School, University of Sydney, Sydney, NSW 2141 Australia
- Discipline of Biomedical Science, School of Medical Sciences, Sydney Medical School, The University of Sydney, Cumberland Campus C42, 75 East Street, Lidcombe, NSW 1825 Australia
| |
Collapse
|
31
|
Digiacomo V, Gando IA, Venticinque L, Hurtado A, Meruelo D. The Transition of the 37-Kda Laminin Receptor (Rpsa) to Higher Molecular Weight Species: Sumoylation or Artifact? Cell Mol Biol Lett 2016; 20:571-85. [PMID: 26146125 DOI: 10.1515/cmble-2015-0031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 06/18/2015] [Indexed: 11/15/2022] Open
Abstract
The 37-kDa laminin receptor (37LRP or RPSA) is a remarkable, multifaceted protein that functions in processes ranging from matrix adhesion to ribosome biogenesis. Its ability to engage extracellular laminin is further thought to contribute to cellular migration and invasion. Most commonly associated with metastatic cancer, RPSA is also increasingly found to be important in other pathologies, including microbial infection, neurodegenerative disease and developmental malformations. Importantly, it is thought to have higher molecular weight forms, including a 67-kDa species (67LR), the expression of which is linked to strong laminin binding and metastatic behavior. The composition of these larger forms has remained elusive and controversial. Homo- and heterodimerization have been proposed as events capable of building the larger species from the monomeric 37-kDa precursor, but solid evidence is lacking. Here, we present data suggesting that higher molecular weight species require SUMOylation to form. We also comment on the difficulty of isolating larger RPSA species for unambiguous identification and demonstrate that cell lines stably expressing tagged RPSA for long periods of time fail to produce tagged higher molecular weight RPSA. It is possible that higher molecular weight species like 67LR are not derived from RPSA.
Collapse
|
32
|
Lin Q, Lim HSR, Lin HL, Tan HT, Lim TK, Cheong WK, Cheah PY, Tang CL, Chow PKH, Chung MCM. Analysis of colorectal cancer glyco-secretome identifies laminin β-1 (LAMB1) as a potential serological biomarker for colorectal cancer. Proteomics 2015; 15:3905-20. [PMID: 26359947 DOI: 10.1002/pmic.201500236] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/20/2015] [Accepted: 09/08/2015] [Indexed: 12/12/2022]
Abstract
The high mortality rate in colorectal cancer is mostly ascribed to metastasis, but the only clinical biomarker available for disease monitoring and prognosis is the carcinoembryonic antigen (CEA). However, the prognostic utility of CEA remains controversial. In an effort to identify novel biomarkers that could be potentially translated for clinical use, we collected the secretomes from the colon adenocarcinoma cell line HCT-116 and its metastatic derivative, E1, using the hollow fiber culture system, and utilized the multilectin affinity chromatography approach to enrich for the secreted glycoproteins (glyco-secretome). The HCT-116 and E1 glyco-secretomes were compared using the label-free quantitative SWATH-MS technology, and a total of 149 glycoproteins were differentially secreted in E1 cells. Among these glycoproteins, laminin β-1 (LAMB1), a glycoprotein not previously known to be secreted in colorectal cancer cells, was observed to be oversecreted in E1 cells. In addition, we showed that LAMB1 levels were significantly higher in colorectal cancer patient serum samples as compared to healthy controls when measured using ELISA. ROC analyses indicated that LAMB1 performed better than CEA at discriminating between colorectal cancer patients from controls. Moreover, the diagnostic performance was further improved when LAMB1 was used in combination with CEA.
Collapse
Affiliation(s)
- Qifeng Lin
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Hannah S R Lim
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Hui Ling Lin
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Hwee Tong Tan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Teck Kwang Lim
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Wai Kit Cheong
- Division of Colorectal Surgery, National University Hospital, Singapore.,Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Peh Yean Cheah
- Department of Colorectal Surgery, Singapore General Hospital, Singapore.,Saw Swee Hock School of Public Health, National University of Singapore, Singapore.,Duke-NUS Graduate Medical School, National University of Singapore, Singapore
| | - Choong Leong Tang
- Department of Colorectal Surgery, Singapore General Hospital, Singapore
| | - Pierce K H Chow
- Department of General Surgery, Singapore General Hospital, Singapore.,Department of Surgical Oncology, National Cancer Centre, Singapore.,Centre for Quantitative Medicine, Duke-NUS Graduate Medical School, National University of Singapore, Singapore
| | - Maxey C M Chung
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| |
Collapse
|
33
|
Khumalo T, Ferreira E, Jovanovic K, Veale RB, Weiss SFT. Knockdown of LRP/LR Induces Apoptosis in Breast and Oesophageal Cancer Cells. PLoS One 2015; 10:e0139584. [PMID: 26427016 PMCID: PMC4591328 DOI: 10.1371/journal.pone.0139584] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 09/15/2015] [Indexed: 12/18/2022] Open
Abstract
Cancer is a global burden due to high incidence and mortality rates and is ranked the second most diagnosed disease amongst non-communicable diseases in South Africa. A high expression level of the 37kDa/67kDa laminin receptor (LRP/LR) is one characteristic of cancer cells. This receptor is implicated in the pathogenesis of cancer cells by supporting tumor angiogenesis, metastasis and especially for this study, the evasion of apoptosis. In the current study, the role of LRP/LR on cellular viability of breast MCF-7, MDA-MB 231 and WHCO1 oesophageal cancer cells was investigated. Western blot analysis revealed that total LRP expression levels of MCF-7, MDA-MB 231 and WHCO1 were significantly downregulated by targeting LRP mRNA using siRNA-LAMR1. This knockdown of LRP/LR resulted in a significant decrease of viability in the breast and oesophageal cancer cells as determined by an MTT assay. Transfection of MDA-MB 231 cells with esiRNA-RPSA directed against a different region of the LRP mRNA had similar effects on LRP/LR expression and cell viability compared to siRNA-LAMR1, excluding an off-target effect of siRNA-LAMR1. This reduction in cellular viability is as a consequence of apoptosis induction as indicated by the exposure of the phosphatidylserine protein on the surface of breast MCF-7, MDA-MB 231 and oesophageal WHCO1 cancer cells, respectively, detected by an Annexin-V/FITC assay as well as nuclear morphological changes observed post-staining with Hoechst. These observations indicate that LRP/LR is crucial for the maintenance of cellular viability of breast and oesophageal cancer cells and recommend siRNA technology targeting LRP expression as a possible novel alternative technique for breast and oesophageal cancer treatment.
Collapse
Affiliation(s)
- Thandokuhle Khumalo
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg, The Republic of South Africa (RSA)
| | - Eloise Ferreira
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg, The Republic of South Africa (RSA)
| | - Katarina Jovanovic
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg, The Republic of South Africa (RSA)
| | - Rob B. Veale
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg, The Republic of South Africa (RSA)
| | - Stefan F. T. Weiss
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg, The Republic of South Africa (RSA)
- * E-mail:
| |
Collapse
|
34
|
Tsukamoto S, Huang Y, Kumazoe M, Lesnick C, Yamada S, Ueda N, Suzuki T, Yamashita S, Kim YH, Fujimura Y, Miura D, Kay NE, Shanafelt TD, Tachibana H. Sphingosine Kinase-1 Protects Multiple Myeloma from Apoptosis Driven by Cancer-Specific Inhibition of RTKs. Mol Cancer Ther 2015; 14:2303-12. [PMID: 26264277 DOI: 10.1158/1535-7163.mct-15-0185] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 08/06/2015] [Indexed: 11/16/2022]
Abstract
Activation of acid sphingomyelinase (ASM) leads to ceramide accumulation and induces apoptotic cell death in cancer cells. In the present study, we demonstrate that the activation of ASM by targeting cancer-overexpressed 67-kDa laminin receptors (67LR) induces lipid raft disruption and inhibits receptor tyrosine kinase (RTK) activation in multiple myeloma cells. Sphingosine kinase 1 (SphK1), a negative regulator of ceramide accumulation with antiapoptotic effects, was markedly elevated in multiple myeloma cells. The silencing of SphK1 potentiated the apoptotic effects of the green tea polyphenol epigallocatechin-3-O-gallate (EGCG), an activator of ASM through 67LR. Furthermore, the SphK1 inhibitor safingol synergistically sensitized EGCG-induced proapoptotic cell death and tumor suppression in multiple myeloma cells by promoting the prevention of RTK phosphorylation and activation of death-associated protein kinase 1 (DAPK1). We propose that targeting 67LR/ASM and SphK1 may represent a novel therapeutic strategy against multiple myeloma.
Collapse
Affiliation(s)
- Shuntaro Tsukamoto
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Yuhui Huang
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Motofumi Kumazoe
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Connie Lesnick
- Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Shuhei Yamada
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Naoki Ueda
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Takashi Suzuki
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Shuya Yamashita
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Yoon Hee Kim
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Yoshinori Fujimura
- Innovation Center for Medical Redox Navigation, Kyushu University, Fukuoka, Japan
| | - Daisuke Miura
- Innovation Center for Medical Redox Navigation, Kyushu University, Fukuoka, Japan
| | - Neil E Kay
- Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | | | - Hirofumi Tachibana
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan. Innovation Center for Medical Redox Navigation, Kyushu University, Fukuoka, Japan. Food Functional Design Research Center, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
35
|
Jovanovic K, Chetty CJ, Khumalo T, Da Costa Dias B, Ferreira E, Malindisa ST, Caveney R, Letsolo BT, Weiss SFT. Novel patented therapeutic approaches targeting the 37/67 kDa laminin receptor for treatment of cancer and Alzheimer's disease. Expert Opin Ther Pat 2015; 25:567-82. [PMID: 25747044 DOI: 10.1517/13543776.2015.1014802] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The 37/67 kDa high-affinity laminin receptor (laminin receptor precursor/laminin receptor, LRP/LR) is a multi-faceted cellular receptor. It plays a vital role in the malignancy of various cancer types where it is seen to contribute to invasion, adhesion, apoptosis evasion and angiogenesis. Furthermore, it has been found to play an important role in facilitating the processes leading to neurotoxicity in Alzheimer's disease (AD). Various therapeutic options targeting this receptor have been patented with the outlook on application for the treatment/prevention of these diseases. AREAS COVERED The various roles that LRP/LR plays in cancer, AD and infectious diseases caused by viruses and bacteria have been examined in detail and an overview of the current patented therapeutic strategies targeting this receptor is given. EXPERT OPINION Molecular tools directed against LRP/LR, such as antibodies and small interfering RNA, could prove to be effective in the prevention of metastasis and angiogenesis while inducing apoptosis in cancers. Moreover, these strategies could also be applied to AD where LRP/LR is seen to facilitate the production and internalization of the neurotoxic Aβ peptide. This review provides a comprehensive overview of the mechanisms by which LRP/LR is involved in eliciting pathogenic events, while showing how the use of patented approaches targeting this receptor could be used to treat them.
Collapse
Affiliation(s)
- Katarina Jovanovic
- University of the Witwatersrand, School of Molecular and Cell Biology , Private Bag 3, Wits 2050, Johannesburg , Republic of South Africa
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
DiGiacomo V, Meruelo D. Looking into laminin receptor: critical discussion regarding the non-integrin 37/67-kDa laminin receptor/RPSA protein. Biol Rev Camb Philos Soc 2015; 91:288-310. [PMID: 25630983 DOI: 10.1111/brv.12170] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/04/2014] [Accepted: 12/08/2014] [Indexed: 02/06/2023]
Abstract
The 37/67-kDa laminin receptor (LAMR/RPSA) was originally identified as a 67-kDa binding protein for laminin, an extracellular matrix glycoprotein that provides cellular adhesion to the basement membrane. LAMR has evolutionary origins, however, as a 37-kDa RPS2 family ribosomal component. Expressed in all domains of life, RPS2 proteins have been shown to have remarkably diverse physiological roles that vary across species. Contributing to laminin binding, ribosome biogenesis, cytoskeletal organization, and nuclear functions, this protein governs critical cellular processes including growth, survival, migration, protein synthesis, development, and differentiation. Unsurprisingly given its purview, LAMR has been associated with metastatic cancer, neurodegenerative disease and developmental abnormalities. Functioning in a receptor capacity, this protein also confers susceptibility to bacterial and viral infection. LAMR is clearly a molecule of consequence in human disease, directly mediating pathological events that make it a prime target for therapeutic interventions. Despite decades of research, there are still a large number of open questions regarding the cellular biology of LAMR, the nature of its ability to bind laminin, the function of its intrinsically disordered C-terminal region and its conversion from 37 to 67 kDa. This review attempts to convey an in-depth description of the complexity surrounding this multifaceted protein across functional, structural and pathological aspects.
Collapse
Affiliation(s)
- Vincent DiGiacomo
- Department of Pathology, New York University School of Medicine, 180 Varick Street, New York, NY 10014, U.S.A
| | - Daniel Meruelo
- Department of Pathology, New York University School of Medicine, 180 Varick Street, New York, NY 10014, U.S.A.,NYU Cancer Institute, 550 First Avenue, New York, NY 10016, U.S.A.,NYU Gene Therapy Center, 550 First Avenue, New York, NY 10016, U.S.A
| |
Collapse
|
37
|
A proteomic analysis of placental trophoblastic cells in preeclampsia-eclampsia. Cell Biochem Biophys 2014; 69:247-58. [PMID: 24343450 DOI: 10.1007/s12013-013-9792-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
To explore the proteomic changes of placental trophoblastic cells in preeclampsia-eclampsia (PE), placental trophoblastic cells from normally pregnant women and women with hypertension during gestational period were prepared by laser capture microdissection (LCM), and proteins isolated from these cells were subjected to labeling and proteolysis with isotope-coded affinity tag reagent. A qualitative and quantitative analysis of the proteome expression of placental trophoblastic cells was made using two-dimensional liquid chromatography tandem mass spectrometry (2D LC-MS/MS). A total of 831 proteins in placental trophoblastic cells were identified by combined use of LCM technique and 2D LC-MS/MS. The result was superior to that of conventional two-dimensional electrophoresis method. There were marked differences in 169 proteins of placental trophoblastic cells between normally pregnant women and women with PE. Of 70 (41.4 %) proteins with more than twofold differences, 31 proteins were down-regulated, and 39 were up-regulated in placental trophoblastic cells of the woman with PE. Laminin expression in placenta trophoblastic cells of women with PE was significantly down-regulated as confirmed by Western blot analysis. These findings provide insights into the proteomic changes in placental trophoblastic cells in response to PE and may identify novel protein targets associated with the pathogenesis of PE.
Collapse
|
38
|
Tsukamoto S, Huang Y, Umeda D, Yamada S, Yamashita S, Kumazoe M, Kim Y, Murata M, Yamada K, Tachibana H. 67-kDa laminin receptor-dependent protein phosphatase 2A (PP2A) activation elicits melanoma-specific antitumor activity overcoming drug resistance. J Biol Chem 2014; 289:32671-81. [PMID: 25294877 DOI: 10.1074/jbc.m114.604983] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The Ras/Raf/MEK/ERK pathway has been identified as a major, druggable regulator of melanoma. Mutational activation of BRAF is the most prevalent genetic alteration in human melanoma, resulting in constitutive melanoma hyperproliferation. A selective BRAF inhibitor showed remarkable clinical activity in patients with mutated BRAF. Unfortunately, most patients acquire resistance to the BRAF inhibitor, highlighting the urgent need for new melanoma treatment strategies. Green tea polyphenol (-)-epigallocatechin-3-O-gallate (EGCG) inhibits cell proliferation independently of BRAF inhibitor sensitivity, suggesting that increased understanding of the anti-melanoma activity of EGCG may provide a novel therapeutic target. Here, by performing functional genetic screening, we identified protein phosphatase 2A (PP2A) as a critical factor in the suppression of melanoma cell proliferation. We demonstrated that tumor-overexpressed 67-kDa laminin receptor (67LR) activates PP2A through adenylate cyclase/cAMP pathway eliciting inhibitions of oncoproteins and activation of tumor suppressor Merlin. Activating 67LR/PP2A pathway leading to melanoma-specific mTOR inhibition shows strong synergy with the BRAF inhibitor PLX4720 in the drug-resistant melanoma. Moreover, SET, a potent inhibitor of PP2A, is overexpressed on malignant melanoma. Silencing of SET enhances 67LR/PP2A signaling. Collectively, activation of 67LR/PP2A signaling may thus be a novel rational strategy for melanoma-specific treatment.
Collapse
Affiliation(s)
- Shuntaro Tsukamoto
- From the Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture and
| | - Yuhui Huang
- From the Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture and
| | - Daisuke Umeda
- From the Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture and
| | - Shuhei Yamada
- From the Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture and
| | - Shuya Yamashita
- From the Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture and
| | - Motofumi Kumazoe
- From the Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture and
| | - Yoonhee Kim
- From the Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture and
| | - Motoki Murata
- From the Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture and
| | - Koji Yamada
- From the Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture and
| | - Hirofumi Tachibana
- From the Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture and Food Functional Design Research Center, Kyushu University, Fukuoka 812-8581, Japan
| |
Collapse
|
39
|
Pampeno C, Derkatch IL, Meruelo D. Interaction of human laminin receptor with Sup35, the [PSI⁺] prion-forming protein from S. cerevisiae: a yeast model for studies of LamR interactions with amyloidogenic proteins. PLoS One 2014; 9:e86013. [PMID: 24416454 PMCID: PMC3885751 DOI: 10.1371/journal.pone.0086013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 12/09/2013] [Indexed: 12/25/2022] Open
Abstract
The laminin receptor (LamR) is a cell surface receptor for extracellular matrix laminin, whereas the same protein within the cell interacts with ribosomes, nuclear proteins and cytoskeletal fibers. LamR has been shown to be a receptor for several bacteria and viruses. Furthermore, LamR interacts with both cellular and infectious forms of the prion protein, PrP(C) and PrP(Sc). Indeed, LamR is a receptor for PrP(C). Whether LamR interacts with PrP(Sc) exclusively in a capacity of the PrP receptor, or LamR specifically recognizes prion determinants of PrP(Sc), is unclear. In order to explore whether LamR has a propensity to interact with prions and amyloids, we examined LamR interaction with the yeast prion-forming protein, Sup35. Sup35 is a translation termination factor with no homology or functional relationship to PrP. Plasmids expressing LamR or LamR fused with the green fluorescent protein (GFP) were transformed into yeast strain variants differing by the presence or absence of the prion conformation of Sup35, respectively [PSI⁺] and [psi⁻]. Analyses by immunoprecipitation, centrifugal fractionation and fluorescent microscopy reveal interaction between LamR and Sup35 in [PSI⁺] strains. The presence of [PSI⁺] promotes LamR co-precipitation with Sup35 as well as LamR aggregation. In [PSI⁺] cells, LamR tagged with GFP or mCherry forms bright fluorescent aggregates that co-localize with visible [PSI⁺] foci. The yeast prion model will facilitate studying the interaction of LamR with amyloidogenic prions in a safe and easily manipulated system that may lead to a better understanding and treatment of amyloid diseases.
Collapse
Affiliation(s)
- Christine Pampeno
- Gene Therapy Center, Cancer Institute and Department of Pathology, New York University School of Medicine, New York, New York, United States of America
| | - Irina L. Derkatch
- Department of Neuroscience, College of Physicians and Surgeons of Columbia University, New York, New York, United States of America
| | - Daniel Meruelo
- Gene Therapy Center, Cancer Institute and Department of Pathology, New York University School of Medicine, New York, New York, United States of America
| |
Collapse
|
40
|
Kim DG, Lee JY, Kwon NH, Fang P, Zhang Q, Wang J, Young NL, Guo M, Cho HY, Mushtaq AU, Jeon YH, Choi JW, Han JM, Kang HW, Joo JE, Hur Y, Kang W, Yang H, Nam DH, Lee MS, Lee JW, Kim ES, Moon A, Kim K, Kim D, Kang EJ, Moon Y, Rhee KH, Han BW, Yang JS, Han G, Yang WS, Lee C, Wang MW, Kim S. Chemical inhibition of prometastatic lysyl-tRNA synthetase-laminin receptor interaction. Nat Chem Biol 2013; 10:29-34. [PMID: 24212136 DOI: 10.1038/nchembio.1381] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 09/18/2013] [Indexed: 01/11/2023]
Abstract
Lysyl-tRNA synthetase (KRS), a protein synthesis enzyme in the cytosol, relocates to the plasma membrane after a laminin signal and stabilizes a 67-kDa laminin receptor (67LR) that is implicated in cancer metastasis; however, its potential as an antimetastatic therapeutic target has not been explored. We found that the small compound BC-K-YH16899, which binds KRS, impinged on the interaction of KRS with 67LR and suppressed metastasis in three different mouse models. The compound inhibited the KRS-67LR interaction in two ways. First, it directly blocked the association between KRS and 67LR. Second, it suppressed the dynamic movement of the N-terminal extension of KRS and reduced membrane localization of KRS. However, it did not affect the catalytic activity of KRS. Our results suggest that specific modulation of a cancer-related KRS-67LR interaction may offer a way to control metastasis while avoiding the toxicities associated with inhibition of the normal functions of KRS.
Collapse
Affiliation(s)
- Dae Gyu Kim
- 1] Medicinal Bioconvergence Research Center, Seoul National University, Seoul, Korea. [2] Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea. [3]
| | - Jin Young Lee
- 1] Medicinal Bioconvergence Research Center, Seoul National University, Seoul, Korea. [2] Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea. [3]
| | - Nam Hoon Kwon
- 1] Medicinal Bioconvergence Research Center, Seoul National University, Seoul, Korea. [2] Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Pengfei Fang
- Department of Cancer Biology, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, USA
| | - Qian Zhang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, USA
| | - Jing Wang
- Department of Cancer Biology, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, USA
| | - Nicolas L Young
- Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, USA
| | - Min Guo
- Department of Cancer Biology, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, USA
| | - Hye Young Cho
- College of Pharmacy, Korea University, Sejong, Korea
| | | | - Young Ho Jeon
- College of Pharmacy, Korea University, Sejong, Korea
| | - Jin Woo Choi
- 1] Medicinal Bioconvergence Research Center, Seoul National University, Seoul, Korea. [2] Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jung Min Han
- 1] Medicinal Bioconvergence Research Center, Seoul National University, Seoul, Korea. [2] Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | | | | | - Youn Hur
- Yuhan Research Institute, Yongin, Korea
| | - Wonyoung Kang
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Heekyoung Yang
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Do-Hyun Nam
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Mi-Sook Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Jung Weon Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Eun-Sook Kim
- College of Pharmacy, Duksung Women's University, Seoul, Korea
| | - Aree Moon
- College of Pharmacy, Duksung Women's University, Seoul, Korea
| | - Kibom Kim
- 1] Medicinal Bioconvergence Research Center, Seoul National University, Seoul, Korea. [2] Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Doyeun Kim
- 1] Medicinal Bioconvergence Research Center, Seoul National University, Seoul, Korea. [2] Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Eun Joo Kang
- Medicinal Bioconvergence Research Center, Seoul National University, Seoul, Korea
| | - Youngji Moon
- Medicinal Bioconvergence Research Center, Seoul National University, Seoul, Korea
| | - Kyung Hee Rhee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Byung Woo Han
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Jee Sun Yang
- Translational Research Center for Protein Function Control, Department of Biotechnology and WCU Department of Biomedical Sciences, Yonsei University, Seoul, Korea
| | - Gyoonhee Han
- Translational Research Center for Protein Function Control, Department of Biotechnology and WCU Department of Biomedical Sciences, Yonsei University, Seoul, Korea
| | - Won Suk Yang
- 1] Medicinal Bioconvergence Research Center, Seoul National University, Seoul, Korea. [2] Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Cheolju Lee
- BRI, Korea Institute of Science and Technology, Seoul, Korea
| | - Ming-Wei Wang
- The National Center for Drug Screening, Zhangjiang High-Tech Park, Shanghai, China
| | - Sunghoon Kim
- 1] Medicinal Bioconvergence Research Center, Seoul National University, Seoul, Korea. [2] Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea. [3] World Class University Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
41
|
Parkin induces upregulation of 40S ribosomal protein SA and posttranslational modification of cytokeratins 8 and 18 in human cervical cancer cells. Appl Biochem Biotechnol 2013; 171:1630-8. [PMID: 23990477 DOI: 10.1007/s12010-013-0443-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 08/06/2013] [Indexed: 10/26/2022]
Abstract
Parkin was originally identified as a protein associated with Parkinson's disease. Recently, numerous research studies have suggested that parkin acts as a tumor suppressor. In accordance with these studies, we previously reported that overexpression of parkin in HeLa cells induced growth inhibition. To elucidate possible mechanisms by which parkin may inhibit cell growth, HeLa cells were infected with adenoviruses expressing either the parkin gene or adenovirus alone for 72 h and a total proteomic analysis was performed using 2-D gel electrophoresis followed by LC-MS/MS. We identified three proteins whose expression changed between the two groups: the 40S ribosomal protein SA (RPSA) was downregulated in parkin virus-infected cells, and cytokeratins 8 and 18 exhibited an acid shift in pI value without a change in molecular weight, suggesting that these proteins became phosphorylated in parkin virus-infected cells. The changes in these three proteins were first observed at 60 h postinfection and were most dramatic at 72 h postinfection. Because upregulation of RPSA and dephosphorylation of cytokeratins 8/18 have been linked with tumor progression, these data suggest that parkin may inhibit cell growth, at least in part, by decreasing RPSA expression and inducing phosphorylation of cytokeratin 8/18.
Collapse
|
42
|
Khalfaoui T, Groulx JF, Sabra G, GuezGuez A, Basora N, Vermette P, Beaulieu JF. Laminin receptor 37/67LR regulates adhesion and proliferation of normal human intestinal epithelial cells. PLoS One 2013; 8:e74337. [PMID: 23991217 PMCID: PMC3750003 DOI: 10.1371/journal.pone.0074337] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 07/31/2013] [Indexed: 12/21/2022] Open
Abstract
Interactions between the cell basal membrane domain and the basement membrane are involved in several cell functions including proliferation, migration and differentiation. Intestinal epithelial cells can interact with laminin, a major intestinal basement membrane glycoprotein, via several cell-surface laminin-binding proteins including integrin and non-integrin receptors. The 37/67kDa laminin receptor (37/67LR) is one of these but its role in normal epithelial cells is still unknown. The aim of this study was to characterise the expression pattern and determine the main function of 37/67LR in the normal human small intestinal epithelium. Immunolocalization studies revealed that 37/67LR was predominantly present in the undifferentiated/proliferative region of the human intestinal crypt in both the immature and adult intestine. Using a human intestinal epithelial crypt (HIEC) cell line as experimental model, we determined that 37/67LR was expressed in proliferative cells in both the cytoplasmic and membrane compartments. Small-interfering RNA-mediated reduction of 37/67LR expression led to HIEC cell-cycle reduction and loss of the ability to adhere to laminin-related peptides under conditions not altering ribosomal function. Taken together, these findings indicate that 37/67LR regulates proliferation and adhesion in normal intestinal epithelial cells independently of its known association with ribosomal function.
Collapse
Affiliation(s)
- Taoufik Khalfaoui
- Laboratory of Intestinal Physiopathology, Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Jean-François Groulx
- Laboratory of Intestinal Physiopathology, Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Georges Sabra
- Laboratory of Bioengineering and Biophysics, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Amel GuezGuez
- Laboratory of Intestinal Physiopathology, Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Nuria Basora
- Laboratory of Intestinal Physiopathology, Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Patrick Vermette
- Laboratory of Bioengineering and Biophysics, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Jean-François Beaulieu
- Laboratory of Intestinal Physiopathology, Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
43
|
Adhesion and Invasion of Breast and Oesophageal Cancer Cells Are Impeded by Anti-LRP/LR-Specific Antibody IgG1-iS18. PLoS One 2013; 8:e66297. [PMID: 23823499 PMCID: PMC3688881 DOI: 10.1371/journal.pone.0066297] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 05/03/2013] [Indexed: 12/31/2022] Open
Abstract
Adhesion and invasion have been identified as the two key components of metastasis. The 37 kDa/67 kDa laminin receptor (LRP/LR) is thought to enhance these two processes thus endorsing the progression of cancer. Here we report on LRP/LR and the metastatic potential of MDA-MB 231 breast and WHCO1 oesophageal cancer cells. Western blot analysis revealed a significant increase in total laminin receptor precursor (LRP) levels of breast and oesophageal cancer cells in comparison to non-invasive MCF-7 breast cancer cells, whereas LRP/LR cell surface levels in both cell lines were not significantly different to those of MCF-7 cells as analysed by flow cytometry. Incubation of breast and oesophageal cancer cells with the anti-LRP/LR specific antibody, IgG1-iS18, resulted in significant reduction in the adhesive potential of WHCO1 and MDA-MB 231 cells by 92% and 16%, respectively. Moreover, invasion was significantly impeded by 98% and 25% for WHCO1 and MDA-MB 231 cells, respectively. Pearson's correlation coefficients proved a positive correlation between total LRP/LR levels and invasive potential as well as between the adhesive and invasive potential of breast and oesophageal cancer cells. Our findings suggest that through interference of the LRP/LR-laminin-1 interaction, anti-LRP/LR specific antibody IgG1-iS18 may act as a possible alternative therapeutic tool for metastatic breast and oesophageal cancer treatment.
Collapse
|
44
|
Wang L, Zhang D, Yu Y, Guan H, Qiao C, Shang T. RNA interference-mediated silencing of laminin receptor 1 (LR1) suppresses migration and invasion and down-regulates matrix metalloproteinase (MMP)-2 and MMP-9 in trophoblast cells: implication in the pathogenesis of preeclampsia. J Mol Histol 2013; 44:661-8. [PMID: 23729238 DOI: 10.1007/s10735-013-9515-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 05/27/2013] [Indexed: 12/30/2022]
Abstract
Shallow trophoblast invasion is a common pathological feature of preeclampsia. The 67 kDa laminin receptor 1 (LR1) is a laminin-binding protein that has been reported to be down-regulated in preeclamptic placentas. The aim of the present study was to determine the functional role of LR1 in the migration and invasion of the trophoblast cell line, JEG3 cells. RNA interference mediated by plasmid expressing LR1 short hairpin RNA (shRNA) was utilized to knockdown LR1 expression in JEG3 cells. We found that the mRNA and protein expression levels of LR1 were significantly reduced in LR1-specific shRNA transfected cells compared with the untransfected and control shRNA transfected cells. The wound healing and Transwell invasion assays demonstrated that LR1 knockdown remarkably suppressed the migration and invasion potential of JEG3 cells. The gelatin zymography assay showed that LR1 knockdown greatly reduced matrix metalloproteinase (MMP)-2 and MMP-9 activities in the culture supernatants. Western blot analysis showed that LR1 shRNA significantly decreased expression levels of MMP-2, MMP-9 and phospho-extracellular signal-regulated kinase, but increased expression levels of tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2 in comparison to the control vector-transfected cells. In conclusion, our data support an important role for LR1 in regulating trophoblast invasion and migration, and suggest a possible pathological mechanism of preeclampsia.
Collapse
Affiliation(s)
- Leilei Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, 36 Sanhao Street, Shenyang, 110004, People's Republic of China
| | | | | | | | | | | |
Collapse
|
45
|
Stelter L, Tseng JC, Torosjan A, Levin B, Longo VA, Pillarsetty N, Zanzonico P, Meruelo D, Larson SM. Tumor-specific targeting with modified Sindbis viral vectors: evaluation with optical imaging and positron emission tomography in vivo. Mol Imaging Biol 2013; 15:166-74. [PMID: 22847302 PMCID: PMC4429791 DOI: 10.1007/s11307-012-0585-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
PURPOSE Sindbis virus (SINV) infect tumor cells specifically and systemically throughout the body. Sindbis vectors are capable of expressing high levels of transduced suicide genes and thus efficiently produce enzymes for prodrug conversion in infected tumor cells. The ability to monitor suicide gene expression levels and viral load in patients, after administration of the vectors, would significantly enhance this tumor-specific therapeutic option. PROCEDURES The tumor specificity of SINV is mediated by the 67-kDa laminin receptor (LR). We probed different cancer cell lines for their LR expression and, to determine the specific role of LR-expression in the infection cycle, used different molecular imaging strategies, such as bioluminescence, fluorescence molecular tomography, and positron emission tomography, to evaluate SINV-mediated infection in vitro and in vivo. RESULTS All cancer cell lines showed a marked expression of LR. The infection rates of the SINV particles, however, differed significantly among the cell lines. CONCLUSION We used novel molecular imaging techniques to visualize vector delivery to different neoplatic cells. SINV infection rates proofed to be not solely dependent on cellular LR expression. Further studies need to evaluate the herein discussed ways of cellular infection and viral replication.
Collapse
Affiliation(s)
- Lars Stelter
- Nuclear Medicine Service, Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Khusal R, Da Costa Dias B, Moodley K, Penny C, Reusch U, Knackmuss S, Little M, Weiss SFT. In vitro inhibition of angiogenesis by antibodies directed against the 37kDa/67kDa laminin receptor. PLoS One 2013; 8:e58888. [PMID: 23554951 PMCID: PMC3595224 DOI: 10.1371/journal.pone.0058888] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 02/07/2013] [Indexed: 11/24/2022] Open
Abstract
The 37kDa/67kDa laminin receptor (LRP/LR) is a central receptor mediating interactions between tumour cells and the basement membrane and is thereby a key player in adhesion and invasion, essential processes in metastatic cancer. To affect continued tumour growth, tumours induce angiogenesis for the constant delivery of nutrients and oxygen. This study aims to determine the blocking effect of the anti-LRP/LR specific antibody, W3 on the angiogenic potential of HUVE (human umbilical vein endothelial) cells. Flow cytometric analysis revealed that 97% of HUVE cells display cell surface LRP/LR. An angiogenesis assay was conducted employing HUVE cells seeded on the basement membrane reconstituent Matrigel™ supplemented with the pro-angiogenic factor vascular endothelial growth factor (VEGF). Post 18h incubation at 37°C tubular structures, namely tube lengths were assessed. Treatment of established tubular structures with 100 µg/ml anti-LRP/LR specific antibody completely blocked angiogenesis. Our findings suggest a central role of the 37kDa/67kDa LRP/LR in tube formation and recommends anti-LRP/LR specific antibodies as potential therapeutic tools for treatment of tumour angiogenesis.
Collapse
Affiliation(s)
- Raksha Khusal
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Bianca Da Costa Dias
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Kiashanee Moodley
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Clement Penny
- Department of Internal Medicine, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Uwe Reusch
- Affimed Therapeutics AG, Technologiepark, Im Neuenheimer Feld 582, Heidelberg, Germany
| | - Stefan Knackmuss
- Affimed Therapeutics AG, Technologiepark, Im Neuenheimer Feld 582, Heidelberg, Germany
| | - Melvyn Little
- Affimed Therapeutics AG, Technologiepark, Im Neuenheimer Feld 582, Heidelberg, Germany
| | - Stefan F. T. Weiss
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, Republic of South Africa
| |
Collapse
|
47
|
Moodley K, Weiss SFT. Downregulation of the non-integrin laminin receptor reduces cellular viability by inducing apoptosis in lung and cervical cancer cells. PLoS One 2013; 8:e57409. [PMID: 23472084 PMCID: PMC3589420 DOI: 10.1371/journal.pone.0057409] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 01/21/2013] [Indexed: 12/31/2022] Open
Abstract
The non-integrin laminin receptor, here designated the 37-kDa/67-kDa laminin receptor (LRP/LR), is involved in many physiologically relevant processes, as well as numerous pathological conditions. The overexpression of LRP/LR on various cancerous cell lines plays critical roles in tumour metastasis and angiogenesis. This study investigated whether LRP/LR is implicated in the maintenance of cellular viability in lung and cervical cancer cell lines. Here we show a significant reduction in cellular viability in the aforementioned cell lines as a result of the siRNA-mediated downregulation of LRP. This reduction in cellular viability is due to increased apoptotic processes, reflected by the loss of nuclear integrity and the significant increase in the activity of caspase-3. These results indicate that LRP/LR is involved in the maintenance of cellular viability in tumorigenic lung and cervix uteri cells through the blockage of apoptosis. Knockdown of LRP/LR by siRNA might represent an alternative therapeutic strategy for the treatment of lung and cervical cancer.
Collapse
Affiliation(s)
- Kiashanee Moodley
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, Gauteng, The Republic of South Africa
| | - Stefan F. T. Weiss
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, Gauteng, The Republic of South Africa
| |
Collapse
|
48
|
Kumazoe M, Sugihara K, Tsukamoto S, Huang Y, Tsurudome Y, Suzuki T, Suemasu Y, Ueda N, Yamashita S, Kim Y, Yamada K, Tachibana H. 67-kDa laminin receptor increases cGMP to induce cancer-selective apoptosis. J Clin Invest 2013; 123:787-99. [PMID: 23348740 DOI: 10.1172/jci64768] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 11/01/2012] [Indexed: 12/16/2022] Open
Abstract
The 67-kDa laminin receptor (67LR) is a laminin-binding protein overexpressed in various types of cancer, including bile duct carcinoma, colorectal carcinoma, cervical cancer, and breast carcinoma. 67LR plays a vital role in growth and metastasis of tumor cells and resistance to chemotherapy. Here, we show that 67LR functions as a cancer-specific death receptor. In this cell death receptor pathway, cGMP initiated cancer-specific cell death by activating the PKCδ/acid sphingomyelinase (PKCδ/ASM) pathway. Furthermore, upregulation of cGMP was a rate-determining process of 67LR-dependent cell death induced by the green tea polyphenol (-)-epigallocatechin-3-O-gallate (EGCG), a natural ligand of 67LR. We found that phosphodiesterase 5 (PDE5), a negative regulator of cGMP, was abnormally expressed in multiple cancers and attenuated 67LR-mediated cell death. Vardenafil, a PDE5 inhibitor that is used to treat erectile dysfunction, significantly potentiated the EGCG-activated 67LR-dependent apoptosis without affecting normal cells and prolonged the survival time in a mouse xenograft model. These results suggest that PDE5 inhibitors could be used to elevate cGMP levels to induce 67LR-mediated, cancer-specific cell death.
Collapse
Affiliation(s)
- Motofumi Kumazoe
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Although aminoacyl-tRNA synthetases (ARSs) and ARS-interacting multi-functional proteins (AIMPs) have long been recognized as housekeeping proteins, evidence indicating that they play a key role in regulating cancer is now accumulating. In this chapter we will review the conventional and non-conventional functions of ARSs and AIMPs with respect to carcinogenesis. First, we will address how ARSs and AIMPs are altered in terms of expression, mutation, splicing, and post-translational modifications. Second, the molecular mechanisms for ARSs' and AIMPs' involvement in the initiation, maintenance, and progress of carcinogenesis will be covered. Finally, we will introduce the development of therapeutic approaches that target ARSs and AIMPs with the goal of treating cancer.
Collapse
|
50
|
Yoon JH, Kim J, Lee H, Kim SY, Jang HH, Ryu SH, Kim BJ, Lee TG. Laminin peptide YIGSR induces collagen synthesis in Hs27 human dermal fibroblasts. Biochem Biophys Res Commun 2012; 428:416-21. [PMID: 23111328 DOI: 10.1016/j.bbrc.2012.10.070] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 10/19/2012] [Indexed: 11/27/2022]
Abstract
The dermal ECM is synthesized from fibroblasts and is primarily compromised of fibrillar collagen and elastic fibers, which support the mechanical strength and resiliency of skin, respectively. Laminin, a major glycoprotein located in the basement membrane, promotes cell adhesion, cell growth, differentiation, and migration. The laminin tyrosine-isoleucine-glycine-serine-arginine (YIGSR) peptide, corresponding to the 929-933 sequence of the β1 chain, is known to be a functional motif with effects on the inhibition of tumor metastasis, the regulation of sensory axonal response and the inhibition of angiogenesis through high affinity to the 67kDa laminin receptor. In this study, we identified a novel function of the YIGSR peptide to enhance collagen synthesis in human dermal fibroblasts. To elucidate this novel function regarding collagen synthesis, we treated human dermal fibroblasts with YIGSR peptide in both a time- and dose-dependent manner. According to subsequent experiments, we found that the YIGSR peptide strongly enhanced collagen type 1 synthesis without changing cell proliferation or cellular MMP-1 level. This YIGSR peptide-mediated collagen type 1 synthesis was modulated by FAK inhibitor and MEK inhibitor. This study clearly reveals that YIGSR peptide plays a novel function on the collagen type 1 synthesis of dermal fibroblasts and also suggests that YIGSR is a strong candidate peptide for the treatment of skin aging and wrinkles.
Collapse
Affiliation(s)
- Jong Hyuk Yoon
- NovaCell Technology Inc., Pohang, Kyungbuk 790-784, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|