1
|
Thaiparambil J, Amara CS, Sen S, Putluri N, El‐Zein R. Cigarette smoke condensate induces centrosome clustering in normal lung epithelial cells. Cancer Med 2023; 12:8499-8509. [PMID: 36621828 PMCID: PMC10134322 DOI: 10.1002/cam4.5599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Unlike normal cells, cancer cells frequently have multiple centrosomes that can cluster to form bipolar mitotic spindles and allow for successful cell division. Inhibiting centrosome clustering, therefore, holds therapeutic promise to promote cancer cell-specific cell death. METHODS We used confocal microscopy, real-time PCR, siRNA knockdown, and western blot to analyze centrosome clustering and declustering using normal lung bronchial epithelial and nonsmall-cell lung cancer (NSCLC) cell lines. Also, we used Ingenuity Pathway Analysis software to identify novel pathways associated with centrosome clustering. RESULTS In this study, we found that exposure to cigarette smoke condensate induces centrosome amplification and clustering in human lung epithelial cells. We observed a similar increase in centrosome amplification and clustering in unexposed NSCLC cell lines which may suggest a common underlying mechanism for lung carcinogenesis. We identified a cyclin D2-mediated centrosome clustering pathway that involves a sonic hedgehog-forkhead box protein M1 axis which is critical for mitosis. We also observed that cyclin D2 knockdown induced multipolar mitotic spindles that could eventually lead to cell death. CONCLUSIONS Here we report a novel role of cyclin D2 in the regulation of centrosome clustering, which could allow the identification of tumors sensitive to cyclin D2 inhibitors. Our data reveal a pathway that can be targeted to inhibit centrosome clustering by interfering with the expression of cyclin D2-associated genes.
Collapse
Affiliation(s)
| | - Chandra S. Amara
- Department of Molecular and Cellular BiologyBaylor College of MedicineHoustonTexasUSA
| | - Subrata Sen
- Department of Translational Molecular PathologyUT MD Anderson Cancer CenterHoustonTexasUSA
| | - Nagireddy Putluri
- Department of Molecular and Cellular BiologyBaylor College of MedicineHoustonTexasUSA
| | | |
Collapse
|
2
|
Testicular germ cell tumors: Genomic alternations and RAS-dependent signaling. Crit Rev Oncol Hematol 2023; 183:103928. [PMID: 36717007 DOI: 10.1016/j.critrevonc.2023.103928] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/30/2023] Open
Abstract
Testicular germ cell tumors (TGCTs) are a common malignancy occurring in young adult men. The various genetic risk factors have been suggested to contribute to TGCT pathogenesis, however, they have a distinct mutational profile with a low rate of somatic point mutations, more frequent chromosomal gains, and aneuploidy. The most frequently mutated oncogenes in human cancers are RAS oncogenes, while their impact on testicular carcinogenesis and refractory disease is still poorly understood. In this mini-review, we summarize current knowledge on genetic alternations of RAS signaling-associated genes (the single nucleotide polymorphisms and point mutations) in this particular cancer type and highlight their link to chemotherapy resistance mechanisms. We also mention the impact of epigenetic changes on TGCT progression. Lastly, we propose a model for RAS-dependent signaling networks, regulation, cross-talks, and outcomes in TGCTs.
Collapse
|
3
|
Macheroni C, Gameiro Lucas TF, Souza DS, Vicente CM, Pereira GJDS, Junior IDSV, Juliano MA, Porto CS. Activation of estrogen receptor ESR1 and ESR2 induces proliferation of the human testicular embryonal carcinoma NT2/D1 cells. Mol Cell Endocrinol 2022; 554:111708. [PMID: 35792284 DOI: 10.1016/j.mce.2022.111708] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 12/01/2022]
Abstract
The aims of the present study were to investigate the expression of the classic estrogen receptors ESR1 and ESR2, the splicing variant ESR1-36 and GPER in human testicular embryonal carcinoma NT2/D1 cells, and the effects of the activation of the ESR1 and ESR2 on cell proliferation. Immunostaining of ESR1, ESR2, and GPER were predominantly found in the nuclei, and less abundant in the cytoplasm. ESR1-36 isoform was predominantly expressed in the perinuclear region and cytoplasm, and some weakly immunostained in the nuclei. In nonstimulated NT2/D1 cells (control), proteins of the cell cycle CCND1, CCND2, CCNE1 and CDKN1B are present. Activation of ESR1 and ESR2 increases, respectively, CCND2 and CCNE1 expression, but not CCND1. Activation of ESR2 also mediates upregulation of the cell cycle inhibitor CDKN1B. This protein co-immunoprecipitated with CCND2. Also, E2 induces an increase in the number and viability of the NT2/D1 cells. These effects are blocked by simultaneous pretreatment with ESR1-and ESR2-selective antagonists, confirming that both estrogen receptors regulate NT2/D1 cell proliferation. In addition, E2 increases SRC phosphorylation, and SRC mediates cell proliferation. Our study provides novel insights into the signatures and molecular mechanisms of estrogen receptor in NT2/D1 cells.
Collapse
Affiliation(s)
- Carla Macheroni
- Laboratory of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP, 04039-032, Brazil
| | - Thaís Fabiana Gameiro Lucas
- Laboratory of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP, 04039-032, Brazil
| | - Deborah Simão Souza
- Laboratory of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP, 04039-032, Brazil
| | - Carolina Meloni Vicente
- Laboratory of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP, 04039-032, Brazil
| | - Gustavo José da Silva Pereira
- Laboratory of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP, 04039-032, Brazil
| | - Itabajara da Silva Vaz Junior
- Centro de Biotecnologia e Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, Porto Alegre, RS, 91501-970, Brazil
| | - Maria Aparecida Juliano
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de Maio, 100, Vila Clementino, São Paulo, SP, 04044-020, Brazil
| | - Catarina Segreti Porto
- Laboratory of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP, 04039-032, Brazil.
| |
Collapse
|
4
|
Meta-Analysis of Gene Expressions in Testicular Germ Cell Tumor Histologies. Int J Mol Sci 2020; 21:ijms21124487. [PMID: 32599785 PMCID: PMC7349960 DOI: 10.3390/ijms21124487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/02/2023] Open
Abstract
There is no consensus as to how a precursor lesion, germ cell neoplasia in situ (GCNIS), develops into the histologic types of testicular germ cell tumor type II (TGCT). The present meta-analysis examined RNA expressions of 24 candidate genes in three datasets. They included 203 samples of normal testis (NT) and histologic types of TGCT. The Fisher’s test for combined p values was used for meta-analysis of the RNA expressions in the three datasets. The histologic types differed in RNA expression of PRAME, KIT, SOX17, NANOG, KLF4, POU5F1, RB1, DNMT3B, and LIN28A (p < 0.01). The histologic types had concordant differences in RNA expression of the genes in the three datasets. Eight genes had overlap with a high RNA expression in at least two histologic types. In contrast, only seminoma (SE) had a high RNA expression of KLF4 and only embryonal carcinoma (EC) had a high RNA expression of DNMT3B. In conclusion, the meta-analysis showed that the development of the histologic types of TGCT was driven by changes in RNA expression of candidate genes. According to the RNA expressions of the ten genes, TGCT develops from NT over GCNIS, SE, EC, to the differentiated types of TGCT.
Collapse
|
5
|
Shamloo B, Kumar N, Owen RH, Reemmer J, Ost J, Perkins RS, Shen HY. Dysregulation of adenosine kinase isoforms in breast cancer. Oncotarget 2019; 10:7238-7250. [PMID: 31921385 PMCID: PMC6944449 DOI: 10.18632/oncotarget.27364] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/07/2019] [Indexed: 12/25/2022] Open
Abstract
Dysregulated adenosine signaling pathway has been evidenced in the pathogenesis of breast cancer. However, the role of adenosine kinase (ADK) in tumorigenesis remains unclear while it crucially regulates the removal and availability of adenosine. ADK has two isoforms that localize to discrete subcellular spaces: i.e., nuclear, long-isoform (ADK-L) and cytosolic, short-isoform (ADK-S). We hypothesized that these two ADK isoforms would be differentially expressed in breast cancer and may contribute to divergent cellular actions in cancer. In this study, we examined the expression profiles of ADK isoforms in breast cancer tissues from 46 patient and followed up with an in vitro investigation by knocking down the expression of ADK-L or ADK-S using CRISPR gene editing to evaluate the role of ADK isoform in cancer progression and metastasis of cultured triple-negative breast cancer cell line MDA-MB-231. We demonstrated that (i) ADK-L expression level was significantly increased in breast cancer tissues versus paired normal tissues adjacent to tumor, whereas the ADK-S expression levels were not significantly different between cancerous and normal tissues; (ii) CRISPR/Cas9-mediated downregulation of ADK isoforms, led to suppressed cellular proliferation, division, and migration of cultured breast cancer cells; (iii) ADK-L knockdown significantly upregulated gene expression of matrix metalloproteinase (ADAM23, 9.93-fold; MMP9, 24.58-fold) and downregulated expression of cyclin D2 (CCND2, -30.76-fold), adhesive glycoprotein THBS1 (-8.28-fold), and cystatin E/M (CST6, -16.32-fold). Our findings suggest a potential role of ADK-L in mitogenesis, tumorigenesis, and tumor-associated tissue remodeling and invasion; and the manipulation of ADK-L holds promise as a therapeutic strategy for aggressive breast cancer.
Collapse
Affiliation(s)
- Bahar Shamloo
- Department of Translational Neuroscience, Legacy Research Institute, Legacy Health, Portland, OR 97232, USA
| | - Nandita Kumar
- Department of Translational Neuroscience, Legacy Research Institute, Legacy Health, Portland, OR 97232, USA
| | - Randall H Owen
- Department of Translational Neuroscience, Legacy Research Institute, Legacy Health, Portland, OR 97232, USA
| | - Jesica Reemmer
- Department of Translational Neuroscience, Legacy Research Institute, Legacy Health, Portland, OR 97232, USA
| | - John Ost
- Legacy Tumor Bank, Legacy Research Institute, Legacy Health, Portland, OR 97232, USA
| | - R Serene Perkins
- Legacy Tumor Bank, Legacy Research Institute, Legacy Health, Portland, OR 97232, USA.,Mid-Columbia Medical Center, The Dalles, OR 97058, USA
| | - Hai-Ying Shen
- Department of Translational Neuroscience, Legacy Research Institute, Legacy Health, Portland, OR 97232, USA
| |
Collapse
|
6
|
Shan YS, Hsu HP, Lai MD, Hung YH, Wang CY, Yen MC, Chen YL. Cyclin D1 overexpression correlates with poor tumor differentiation and prognosis in gastric cancer. Oncol Lett 2017; 14:4517-4526. [PMID: 28943959 PMCID: PMC5594254 DOI: 10.3892/ol.2017.6736] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 04/24/2017] [Indexed: 12/17/2022] Open
Abstract
Overexpression of cyclin D is associated with the molecular tumorigenesis of gastric cancer. The purpose of the present study was to investigate the expression of cyclin D in human gastric cancer and to determine the potential correlations between cyclin D expression and clinicopathological characteristics of specific histological types, as well as its prognostic significance. In the present study, the expression of the cyclin D1 (CCND1), cyclin D2 (CCND2) and cyclin D3 (CCND3) genes in gastric cancer patients was explored using the Oncomine database, and their correlation with overall survival (OS) and progression-free survival (PFS) was evaluated using Kaplan-Meier analysis. The prognostic significance of CCND1 protein expression was evaluated by western blot analysis of 32 matched specimens of gastric adenocarcinomas and normal tissues obtained from patients treated at the National Cheng Kung University Hospital (Tainan, Taiwan). Analysis of the Oncomine cancer microarray database revealed that CCND1 gene expression was significantly increased in gastric intestinal-type adenocarcinoma, while CCND2 was significantly increased in diffuse gastric adenocarcinoma, gastric intestinal-type adenocarcinoma and gastric mixed adenocarcinoma. Kaplan-Meier analysis indicated that overexpression of CCND1 was associated with reduced OS and PFS. In addition, overexpression of CCND1 and downregulation of CCND2 were significantly correlated with receptor tyrosine-protein kinase erb-2-negative tumors and poor differentiation. The ratio of relative CCND1 expression (expressed as the CCND1/β-actin ratio) in tumor tissues compared with that in normal tissues was correlated with poor differentiation (P=0.0018). In summary, CCND1 overexpression is associated with shorter survival in patients with gastric cancer and with poorly differentiated tumors.
Collapse
Affiliation(s)
- Yan-Shen Shan
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C
| | - Hui-Ping Hsu
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C
| | - Ming-Derg Lai
- Department of Biochemistry and Molecular Biology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C
| | - Yu-Hsuan Hung
- Department of Biochemistry and Molecular Biology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C
| | - Chih-Yang Wang
- Department of Biochemistry and Molecular Biology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C
| | - Meng-Chi Yen
- Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C
| | - Yi-Ling Chen
- Department of Senior Citizen Service Management, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan, R.O.C.,Senior Citizen Development Center, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan, R.O.C
| |
Collapse
|
7
|
MicroRNA expression profiles in human testicular tissues of infertile men with different histopathologic patterns. Fertil Steril 2014; 101:78-86.e2. [DOI: 10.1016/j.fertnstert.2013.09.009] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 09/01/2013] [Accepted: 09/05/2013] [Indexed: 12/14/2022]
|
8
|
Biological markers of cisplatin resistance in advanced testicular germ cell tumours. Clin Transl Oncol 2013; 14:452-7. [PMID: 22634534 DOI: 10.1007/s12094-012-0823-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
INTRODUCTION Germ cell tumours (GCTs) of the testis show exquisite sensitivity to treatment with cisplatin. Despite the high cure rates provided by platinum-based chemotherapy, 10-20% of patients die from progressive disease. Although various cellular pathways may influence cisplatin efficacy, their actual impact has not been comprehensively investigated in advanced GCTs. The objective of the present study was to clarify the role of the expression status of proteins involved in the Rb and p53 tumour suppressor pathways in sensitivity and resistance of GCTs to cisplatin-based chemotherapy. MATERIALS AND METHODS Paraffin-embedded tumour tissues from 84 patients with advanced GCT treated with cisplatin-based chemotherapy were analysed. Immunohistochemical expression of proteins p53 and mdm2, and the G1-phase cyclins D1 and D2 (CD1 and CD2) was assessed and correlated with the clinical course. RESULTS The percentages of positive expression of p53, mdm2, CD1 and CD2 were 56, 57, 37.5 and 55%, respectively. From univariate analysis, there was no significant association between p53, mdm2 or CD1 expression and outcome. Instead, positive CD2 expression was found to be marginally associated with shorter median duration of progression-free survival (PFS) (p=0.06). In multivariate analysis, none of the molecular markers retained statistical significance with treatment response or survival. CONCLUSIONS Tissular expression of p53, mdm2 and CD1 is not associated with prognosis or treatment response in patients with advanced GCT. Aberrant CD2 expression appears to further determine a shorter PFS. Larger and further studies are required to validate CD2 as a marker of cisplatin resistance.
Collapse
|
9
|
Wolgemuth DJ, Manterola M, Vasileva A. Role of cyclins in controlling progression of mammalian spermatogenesis. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2013; 57:159-68. [PMID: 23784826 PMCID: PMC3982229 DOI: 10.1387/ijdb.130047av] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Cyclins are key regulators of the mammalian cell cycle, functioning primarily in concert with their catalytic partners, the cyclin-dependent kinases (Cdks). While their function during mitosis in somatic cells has been extensively documented, their function during both mitosis and meiosis in the germ line is poorly understood. From the perspective of cell cycle regulation there are several aspects of mammalian spermatogenesis that suggest unique modes of regulation and hence, possible unique functions for the cyclins. This review will summarize our current understanding of cyclin expression and function in the male germ line, with particular focus on the A and E type cyclins in the mouse model. While the focus is on mammalian spermatogenesis, we note contrasts with similar functions in the female germ line when relevant and also draw upon observations in other model systems to provide further insight.
Collapse
Affiliation(s)
- Debra J Wolgemuth
- Departments of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA.
| | | | | |
Collapse
|
10
|
Heaney JD, Anderson EL, Michelson MV, Zechel JL, Conrad PA, Page DC, Nadeau JH. Germ cell pluripotency, premature differentiation and susceptibility to testicular teratomas in mice. Development 2012; 139:1577-86. [PMID: 22438569 DOI: 10.1242/dev.076851] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Testicular teratomas result from anomalies in germ cell development during embryogenesis. In the 129 family of inbred strains of mice, teratomas initiate around embryonic day (E) 13.5 during the same developmental period in which female germ cells initiate meiosis and male germ cells enter mitotic arrest. Here, we report that three germ cell developmental abnormalities, namely continued proliferation, retention of pluripotency, and premature induction of differentiation, associate with teratoma susceptibility. Using mouse strains with low versus high teratoma incidence (129 versus 129-Chr19(MOLF/Ei)), and resistant to teratoma formation (FVB), we found that germ cell proliferation and expression of the pluripotency factor Nanog at a specific time point, E15.5, were directly related with increased tumor risk. Additionally, we discovered that genes expressed in pre-meiotic embryonic female and adult male germ cells, including cyclin D1 (Ccnd1) and stimulated by retinoic acid 8 (Stra8), were prematurely expressed in teratoma-susceptible germ cells and, in rare instances, induced entry into meiosis. As with Nanog, expression of differentiation-associated factors at a specific time point, E15.5, increased with tumor risk. Furthermore, Nanog and Ccnd1, genes with known roles in testicular cancer risk and tumorigenesis, respectively, were co-expressed in teratoma-susceptible germ cells and tumor stem cells, suggesting that retention of pluripotency and premature germ cell differentiation both contribute to tumorigenesis. Importantly, Stra8-deficient mice had an 88% decrease in teratoma incidence, providing direct evidence that premature initiation of the meiotic program contributes to tumorigenesis. These results show that deregulation of the mitotic-meiotic switch in XY germ cells contributes to teratoma initiation.
Collapse
Affiliation(s)
- Jason D Heaney
- Department of Genetics, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | | | | | | | | | | | |
Collapse
|
11
|
Willis RE. Human gene control by vital oncogenes: revisiting a theoretical model and its implications for targeted cancer therapy. Int J Mol Sci 2011; 13:316-35. [PMID: 22312254 PMCID: PMC3269688 DOI: 10.3390/ijms13010316] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 12/18/2011] [Accepted: 12/20/2011] [Indexed: 12/31/2022] Open
Abstract
An important assumption of our current understanding of the mechanisms of carcinogenesis has been the belief that clarification of the cancer process would inevitably reveal some of the crucial mechanisms of normal human gene regulation. Since the momentous work of Bishop and Varmus, both the molecular and the biochemical processes underlying the events in the development of cancer have become increasingly clear. The identification of cellular signaling pathways and the role of protein kinases in the events leading to gene activation have been critical to our understanding not only of normal cellular gene control mechanisms, but also have clarified some of the important molecular and biochemical events occurring within a cancer cell. We now know that oncogenes are dysfunctional proto-oncogenes and that dysfunctional tumor suppressor genes contribute to the cancer process. Furthermore, Weinstein and others have hypothesized the phenomenon of oncogene addiction as a distinct characteristic of the malignant cell. It can be assumed that cancer cells, indeed, become dependent on such vital oncogenes. The products of these vital oncogenes, such as c-myc, may well be the Achilles heel by which targeted molecular therapy may lead to truly personalized cancer therapy. The remaining problem is the need to introduce relevant molecular diagnostic tests such as genome microarray analysis and proteomic methods, especially protein kinase identification arrays, for each individual patient. Genome wide association studies on cancers with gene analysis of single nucleotide and other mutations in functional proto-oncogenes will, hopefully, identify dysfunctional proto-oncogenes and allow the development of more specific targeted drugs directed against the protein products of these vital oncogenes. In 1984 Willis proposed a molecular and biochemical model for eukaryotic gene regulation suggesting how proto-oncogenes might function within the normal cell. That model predicted the existence of vital oncogenes and can now be used to hypothesize the biochemical and molecular mechanisms that drive the processes leading to disruption of the gene regulatory machinery, resulting in the transformation of normal cells into cancer.
Collapse
Affiliation(s)
- Rudolph E Willis
- Department of Medical Oncology, Cancer Treatment Centers of America, Eastern Regional Medical Center, 1331 Wyoming Ave, Philadelphia, PA 19124, USA; E-Mail: ; Tel.: +1-215-537-7545
| |
Collapse
|
12
|
Ryser S, Glauser D, Vigier M, Zhang YQ, Tachini P, Schlegel W, Durand P, Irminger-Finger I. Gene expression profiling of rat spermatogonia and Sertoli cells reveals signaling pathways from stem cells to niche and testicular cancer cells to surrounding stroma. BMC Genomics 2011; 12:29. [PMID: 21232125 PMCID: PMC3033334 DOI: 10.1186/1471-2164-12-29] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Accepted: 01/13/2011] [Indexed: 12/21/2022] Open
Abstract
Background Stem cells and their niches are studied in many systems, but mammalian germ stem cells (GSC) and their niches are still poorly understood. In rat testis, spermatogonia and undifferentiated Sertoli cells proliferate before puberty, but at puberty most spermatogonia enter spermatogenesis, and Sertoli cells differentiate to support this program. Thus, pre-pubertal spermatogonia might possess GSC potential and pre-pubertal Sertoli cells niche functions. We hypothesized that the different stem cell pools at pre-puberty and maturity provide a model for the identification of stem cell and niche-specific genes. We compared the transcript profiles of spermatogonia and Sertoli cells from pre-pubertal and pubertal rats and examined how these related to genes expressed in testicular cancers, which might originate from inappropriate communication between GSCs and Sertoli cells. Results The pre-pubertal spermatogonia-specific gene set comprised known stem cell and spermatogonial stem cell (SSC) markers. Similarly, the pre-pubertal Sertoli cell-specific gene set comprised known niche gene transcripts. A large fraction of these specifically enriched transcripts encoded trans-membrane, extra-cellular, and secreted proteins highlighting stem cell to niche communication. Comparing selective gene sets established in this study with published gene expression data of testicular cancers and their stroma, we identified sets expressed genes shared between testicular tumors and pre-pubertal spermatogonia, and tumor stroma and pre-pubertal Sertoli cells with statistic significance. Conclusions Our data suggest that SSC and their niche specifically express complementary factors for cell communication and that the same factors might be implicated in the communication between tumor cells and their micro-enviroment in testicular cancer.
Collapse
Affiliation(s)
- Stephan Ryser
- Molecular Gynecology and Obstetrics Laboratory, Geneva University Hospitals, Geneva, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Downregulation of microRNA-383 is associated with male infertility and promotes testicular embryonal carcinoma cell proliferation by targeting IRF1. Cell Death Dis 2010; 1:e94. [PMID: 21368870 PMCID: PMC3032325 DOI: 10.1038/cddis.2010.70] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Our previous studies have shown that microRNA-383 (miR-383) expression is downregulated in the testes of infertile men with maturation arrest (MA). However, the underlying mechanisms of miR-383 involved in the pathogenesis of MA remain unknown. In this study, we showed that downregulation of miR-383 was associated with hyperactive proliferation of germ cells in patients with mixed patterns of MA. Overexpression of miR-383 in NT2 (testicular embryonal carcinoma) cells resulted in suppression of proliferation, G1-phase arrest and induction of apoptosis, whereas silencing of miR-383 reversed these effects. The effects of miR-383 were mediated through targeting a tumor suppressor, interferon regulatory factor-1 (IRF1), and miR-383 was negatively correlated with IRF1 protein expression in vivo. miR-383 inhibited IRF1 by affecting its mRNA stability, which subsequently reduced the levels of the targets of IRF1, namely cyclin D1, CDK2 and p21. Downregulation of IRF1 or cyclin D1, but not that of CDK2, enhanced miR-383-mediated effects, whereas silencing of p21 partially inhibited the effects of miR-383. Moreover, miR-383 downregulated CDK4 by increasing proteasome-dependent degradation of CDK4, which in turn resulted in an inhibition of phosphorylated retinoblastoma protein (pRb) phosphorylation. These results suggest that miR-383 functions as a negative regulator of proliferation by targeting IRF1, in part, through inactivation of the pRb pathway. Abnormal testicular miR-383 expression may potentiate the connections between male infertility and testicular germ cell tumor.
Collapse
|
14
|
[Value of targeted treatment for testicular cancer: from molecular approaches to clinical possibilities]. Urologe A 2008; 47:1328-33. [PMID: 18587552 DOI: 10.1007/s00120-008-1750-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Due to the introduction of tyrosine kinase-inhibitors in the treatment of metastatic renal cell cancer, targeted therapy raises hopes for other urological tumors as well. Even if excellent cure rates, achieved by standardization of diagnosis und therapy, have made testicular cancer a curable disease, up to 6% of young patients still die from tumors refractory to therapy. The quality of life of patients in advanced stages needing aggressive treatment should be improved by new therapies with reduced side effects. The role of tyrosine kinase inhibitors and angiogenesis inhibitors as well as intervention in the cell cycle and induction of apoptosis are discussed.
Collapse
|
15
|
Yu Q, Wu J. Involvement of cyclins in mammalian spermatogenesis. Mol Cell Biochem 2008; 315:17-24. [PMID: 18470654 DOI: 10.1007/s11010-008-9783-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Accepted: 04/30/2008] [Indexed: 11/29/2022]
Abstract
Mammalian spermatogenesis is a complicated developmental process by which undifferentiated germ cells continuously produce mature sperm throughout a lifetime. Stringent control of the cell cycle during spermatogenesis is required to ensure self-renewal of male germ line cells and differentiation of appropriate numbers of cells for the various lineages. Cyclins are key factors of cell cycle regulation and play crucial roles in governing both the mitotic and meiotic divisions that characterize spermatogenesis. Abnormal expression of some types of cyclins in the testes can induce apoptosis, infertility, testicular tumors, and other problems related to spermatogenesis in mammals. In this review, available data regarding cellular and molecular regulation of several different types of cyclins during mammalian spermatogenesis are collected and further discussed.
Collapse
Affiliation(s)
- Qingsheng Yu
- School of Life Science and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai, China
| | | |
Collapse
|
16
|
Anagnostopoulos GK, Stefanou D, Arkoumani E, Karagiannis J, Paraskeva K, Chalkley L, Habilomati E, Tsianos E, Agnantis NJ. Immunohistochemical expression of cell-cycle proteins in gastric precancerous lesions. J Gastroenterol Hepatol 2008; 23:626-31. [PMID: 18397488 DOI: 10.1111/j.1440-1746.2007.05219.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND The early indicator for the subject predisposed to gastric cancer is abnormal proliferation of gastric epithelial cells, such as atrophic gastritis (AG), intestinal metaplasia (IM), and dysplasia, which have been considered as precancerous lesions of gastric cancer. To determine whether p53 protein, cyclins D1, and D3, and p27(kip1) play a role in the carcinogenesis pathway of gastric cancer, we performed an immunohistochemical study of their expression in gastric precancerous lesions. METHODS A total of 1 45 endoscopic gastric biopsy specimens of AG, IM, and gastric dysplasia were studied. These molecular markers were localized by immunohistochemistry. RESULTS P53 was expressed in 15% of cases with gastric dysplasia and not in the pre-dysplastic stages of the gastric mucosa. All cases were concerning high-grade dysplasia. Cyclin D1 protein was almost undetectable in the precancerous lesions of gastric cancer. Cyclin D3 protein overexpression was seen in 10% of biopsies with IM, and 50% of biopsies with gastric dysplasia. High expression of p27(kip1) protein was demonstrated in all cases of chronic gastritis. As atrophy, IM, and dysplasia develop, expression of p27(kip1) protein is suppressed. In total, 15% of dysplastic cases showed no expression of p27(kip1) protein. CONCLUSIONS (i) P53 mutation must be a late event during the development of gastric cancer. (ii) Cyclin D1 protein overexpression may not play a role in the progression from normal to neoplastic gastric mucosa, while overexpression of cyclin D3 is an earlier event during gastric carcinogenesis, and its role must be further evaluated. (iii) Reduced expression of p27(kip1) is a rather early event in gastric tumorigenesis, before dysplastic changes occur.
Collapse
|
17
|
Denicourt C, Legault P, McNabb FAC, Rassart E. Human and mouse cyclin D2 splice variants: transforming activity and subcellular localization. Oncogene 2007; 27:1253-62. [PMID: 17873913 DOI: 10.1038/sj.onc.1210750] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have previously reported the identification of a novel 17 kDa truncated isoform of the cyclin D2 activated in 13% of the leukemias induced by the Graffi murine leukemia retrovirus. Retroviral integration in the Gris1 locus causes an alternative splicing of the mouse cyclin D2 gene and expression of a truncated protein of 159 amino acids that is detected at high levels in the Gris1 tumors and also in normal mouse tissues mainly the brain and ovaries. A truncated form of the cyclin D2 was also found in human. We show here that both mouse- and human-truncated cyclin D2 are able to transform primary mouse embryo fibroblasts (MEF) when co-expressed with an activated Ras protein. The truncated cyclin D2 localizes only to the cytoplasm of transfected cells. It has retained the ability to interact with cyclin-dependent kinases (CDKs), although it is a poor catalyst of pRb phosphorylation. Interestingly, the presence of a similar, alternatively spliced cyclin D2 mRNA was also detected in some human brain tumors.
Collapse
Affiliation(s)
- C Denicourt
- Laboratoire de Biologie Moléculaire, Département des Sciences Biologiques, Université du Québec à Montréal, Québec, Canada
| | | | | | | |
Collapse
|
18
|
Bartkova J, Rajpert-De Meyts E, Skakkebaek NE, Lukas J, Bartek J. DNA damage response in human testes and testicular germ cell tumours: biology and implications for therapy. ACTA ACUST UNITED AC 2007; 30:282-91; discussion 291. [PMID: 17573848 DOI: 10.1111/j.1365-2605.2007.00772.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DNA damage response (DDR) is emerging as a physiological anti-cancer barrier in early stages of cancer development, as shown for several types of solid cancers derived from somatic cells. Here we discuss our recently published and unpublished results on the exceptional paucity of such constitutive activation of the DDR machinery in human testicular germ cell tumours (TGCTs), including their common pre-invasive stage of carcinoma in situ (CIS). Our conclusions are supported by immunohistochemical analyses of multiple markers of activated DNA damage signalling, such as the phosphorylated ATM and Chk2 checkpoint kinases and phosphorylated histone H2AX. We propose that the unique lack of DDR activation in TGCTs reflects the biology of their cell of origin, the gonocyte. Furthermore, we propose that the lack of DDR activation avoids the pressure to select for mutations in DDR genes such as p53 or ATM, and the resulting intact DDR machinery may have implications for the exceptional curability of TGCTs by DNA damaging therapies.
Collapse
Affiliation(s)
- J Bartkova
- Institute of Cancer Biology and Centre for Genotoxic Stress Research, Danish Cancer Society, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
19
|
Bockstaele L, Coulonval K, Kooken H, Paternot S, Roger PP. Regulation of CDK4. Cell Div 2006; 1:25. [PMID: 17092340 PMCID: PMC1647274 DOI: 10.1186/1747-1028-1-25] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Accepted: 11/08/2006] [Indexed: 12/19/2022] Open
Abstract
Cyclin-dependent kinase (CDK)4 is a master integrator that couples mitogenic and antimitogenic extracellular signals with the cell cycle. It is also crucial for many oncogenic transformation processes. In this overview, we address various molecular features of CDK4 activation that are critical but remain poorly known or debated, including the regulation of its association with D-type cyclins, its subcellular location, its activating Thr172-phosphorylation and the roles of Cip/Kip CDK "inhibitors" in these processes. We have recently identified the T-loop phosphorylation of CDK4, but not of CDK6, as a determining target for cell cycle control by extracellular factors, indicating that CDK4-activating kinase(s) might have to be reconsidered.
Collapse
Affiliation(s)
- Laurence Bockstaele
- Institute of Interdisciplinary Research (IRIBHM), Faculté de Médecine, Université Libre de Bruxelles, Campus Erasme, B-1070 Brussels, Belgium
| | - Katia Coulonval
- Institute of Interdisciplinary Research (IRIBHM), Faculté de Médecine, Université Libre de Bruxelles, Campus Erasme, B-1070 Brussels, Belgium
| | - Hugues Kooken
- Institute of Interdisciplinary Research (IRIBHM), Faculté de Médecine, Université Libre de Bruxelles, Campus Erasme, B-1070 Brussels, Belgium
| | - Sabine Paternot
- Institute of Interdisciplinary Research (IRIBHM), Faculté de Médecine, Université Libre de Bruxelles, Campus Erasme, B-1070 Brussels, Belgium
| | - Pierre P Roger
- Institute of Interdisciplinary Research (IRIBHM), Faculté de Médecine, Université Libre de Bruxelles, Campus Erasme, B-1070 Brussels, Belgium
| |
Collapse
|
20
|
Rajpert-De Meyts E. Developmental model for the pathogenesis of testicular carcinoma in situ: genetic and environmental aspects. Hum Reprod Update 2006; 12:303-23. [PMID: 16540528 DOI: 10.1093/humupd/dmk006] [Citation(s) in RCA: 304] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Carcinoma in situ testis (CIS), also known as intratubular germ cell neoplasia (ITGCN), is a pre-invasive precursor of testicular germ cell tumours, the commonest cancer type of male adolescents and young adults. In this review, evidence supporting the hypothesis of developmental origin of testicular germ cell cancer is summarized, and the current concepts regarding aetiology and pathogenesis of this disease are critically discussed. Comparative studies of cell surface proteins (e.g. PLAP and KIT), some of the germ cell-specific markers (e.g. MAGEA4, VASA, TSPY and NY-ESO-1), supported by studies of regulatory elements of the cell cycle (e.g. p53, CHK2 and p19-INK4d) demonstrated a close similarity of CIS to primordial germ cells and gonocytes, consistent with the pre-meiotic origin of CIS. Recent gene expression profiling studies showed that CIS cells closely resemble embryonic stem cells (ESCs). The abundance of factors associated with pluripotency (NANOG and OCT-3/4) and undifferentiated state (AP-2gamma) may explain the remarkable pluripotency of germ cell neoplasms, which are capable of differentiating to various somatic tissue components of teratomas. Impaired gonadal development resulting in the arrest of gonocyte differentiation and retention of its embryonic features, associated with an increasing genomic instability, is the most probable model for the pathogenesis of CIS. Genomic amplification of certain chromosomal regions, e.g. 12p, may facilitate survival of CIS and further invasive progression. Genetic studies, have so far not identified gene polymorphisms predisposing to the most common non-familial testicular cancer, but this research has only recently begun. Association of CIS with other disorders, such as congenital genital malformations and some forms of impaired spermatogenesis, all rising in incidence in a synchronous manner, led to the hypothesis that CIS might be a manifestation of testicular dysgenesis syndrome (TDS). The aetiology of TDS including testicular cancer remains to be elucidated, but epidemiological trends suggest a primary role for environmental factors, probably combined with genetic susceptibility.
Collapse
Affiliation(s)
- Ewa Rajpert-De Meyts
- University Department of Growth and Reproduction, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark.
| |
Collapse
|
21
|
Sabbir MG, Dasgupta S, Roy A, Bhoumik A, Dam A, Roychoudhury S, Panda CK. Genetic Alterations (Amplification and Rearrangement) of D-Type Cyclins Loci in Head and Neck Squamous Cell Carcinoma of Indian Patients. ACTA ACUST UNITED AC 2006; 15:7-16. [PMID: 16531763 DOI: 10.1097/00019606-200603000-00002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In this study, the alterations (amplification/rearrangement) of 3 D-type cyclins loci were analyzed by Southern blot in 5 dysplastic head and neck lesions and 79 primary head and neck squamous cell carcinoma (HNSCC) of Indian patients to understand the role of the cyclins in development of the disease. No alteration was found in the dysplastic lesions. Overall, 54% of alterations were found in bcl-1/CCND1 locus, whereas amplification was only found in CCND2 and CCND3 loci in 12% and 2% samples, respectively. In bcl-1/CCND1 locus amplification was the major type of alteration; however, rearrangement as well as coalterations had been seen in some samples indicating the common mechanism of activation of this locus in different types of tumors. In bcl-1 region, the breakpoint clustered in the MTC (major translocation cluster) region, whereas in CCND1 the breakpoint located near 3' end of the gene. The coamplification of CCND2 locus with bcl-1, bcl-1/CCND1, and CNND3 loci suggests cumulative effect of these genes in this tumor. The significant association was seen between bcl-1/CCND1 locus alteration with HPV prevalence and poor patient outcome indicating its importance as prognostic marker. This indicates that the genetic instability caused due to HPV infection may induce the alterations in the bcl-1/CCND1 locus, which will provide selective growth advantage to the specific malignant clones resulting poor prognosis of the disease.
Collapse
|
22
|
Fujino RS, Ishikawa YI, Tanaka K, Kanatsu-Shinohara M, Tamura K, Kogo H, Shinohara T, Hara T. Capillary morphogenesis gene (CMG)-1 is among the genes differentially expressed in mouse male germ line stem cells and embryonic stem cells. Mol Reprod Dev 2006; 73:955-66. [PMID: 16705683 DOI: 10.1002/mrd.20504] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We recently established a technique to expand male germ line stem (GS) cells in long-term culture without losing their spermatogenic capacity. To gain insight into the genetic program of these cells, we compared the mRNA expression profile of GS cells with that of embryonic stem (ES) cells using DNA microarrays. We found 79 genes that were upregulated in GS cells compared to ES cells, including synaptonemal complex protein-1, deleted in azoospermia-like, ubiquitin-conjugating enzyme E2B, and ubiquitin carboxy-terminal hydrolase L1, all of which are functionally important for spermatogenesis. In addition, we identified a cDNA encoding the mouse ortholog of capillary morphogenesis gene (CMG)-1. CMG-1 transcripts were predominantly produced in spermatogonia and spermatocytes in mouse testis. When CMG-1 expression was attenuated in a mouse spermatocyte-derived cell line, GC-2spd(ts), by a target-specific short interfering RNA, the morphology of the cells was changed and the expression of cyclin D2 was abrogated. A reporter assay using a genomic region upstream of the mouse cyclin D2 gene revealed that this downmodulation occurs at the transcriptional level. We detected FLAG-tagged CMG-1 protein in the nuclei of transfected COS7 cells, suggesting that CMG-1 may play a unique role in the transcriptional regulation of the cyclin D2 gene. The upregulated GS genes identified in this study will provide useful information for the future investigation of spermatogonial stem cells and the early phase of male germ cell differentiation.
Collapse
Affiliation(s)
- Ryu-Suke Fujino
- Stem cell project group, The Tokyo Metropolitan Institute of Medical Science, Tokyo Metropolitan Organization for Medical Research, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Sun M, Wei Y, Yao L, Xie J, Chen X, Wang H, Jiang J, Gu J. Identification of extracellular signal-regulated kinase 3 as a new interaction partner of cyclin D3. Biochem Biophys Res Commun 2005; 340:209-14. [PMID: 16360641 DOI: 10.1016/j.bbrc.2005.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Accepted: 12/01/2005] [Indexed: 12/13/2022]
Abstract
Cyclin D3, like cyclin D1 and D2 isoforms, is a crucial component of the core cell cycle machinery in mammalian cells. It also exhibits its unique properties in many other physiological processes. In the present study, using yeast two-hybrid screening, we identified ERK3, an atypical mitogen-activated protein kinase (MAPK), as a cyclin D3 binding partner. GST pull-down assays showed that cyclin D3 interacts directly and specifically with ERK3 in vitro. The binding of cyclin D3 and ERK3 was further confirmed in vivo by co-immunoprecipitation assay and confocal microscopic analysis. Moreover, carboxy-terminal extension of ERK3 was responsible for its association with intact cyclin D3. These findings further expand distinct roles of cyclin D3 and suggest the potential activity of ERK3 in cell proliferation.
Collapse
Affiliation(s)
- Maoyun Sun
- State Key Laboratory of Genetic Engineering and Gene Research Center, Shanghai Medical College of Fudan University, Shanghai 200032, PR China
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Mermelshtein A, Gerson A, Walfisch S, Delgado B, Shechter-Maor G, Delgado J, Fich A, Gheber L. Expression of D-type cyclins in colon cancer and in cell lines from colon carcinomas. Br J Cancer 2005; 93:338-45. [PMID: 16012517 PMCID: PMC2361572 DOI: 10.1038/sj.bjc.6602709] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cyclins D1, D2 and D3 play important roles in cell proliferation and differentiation. Although their abnormal expression has been linked to cancer development and progression in a number of tissues, the expression of cyclin D2 and D3 proteins in colon cancer has not yet been characterised. In this study, we examined cyclin D1, D2 and D3 protein expression by Western blot analysis in tumour and adjacent normal colon tissues of 57 patients. In addition, we examined D-type cyclins protein expression in HT29 and LoVo39 cell lines from colon carcinomas, as a function of induced proliferation and differentiation. In both cell lines, the expression of the three D-type cyclins increased as a result of induced proliferation, whereas the expression of cyclin D3 increased as a result of induced differentiation. In colon tumours, cyclin D1 was overexpressed in 44%, cyclin D2 was overexpressed in 53% and cyclin D3 was overexpressed in 35% of the cases. We also found that in 16% of the cases, cyclin D3 protein expression was reduced in the tumour, as compared to the adjacent normal tissue. Examination of D-type cyclin protein overexpression in relation to the TNM stage of the tumours revealed that overexpression of cyclins D1 and/or D2, but not cyclin D3, is linked to colon carcinogenesis and that overexpression of cyclin D2 may be related to a higher TNM stage of the tumour.
Collapse
Affiliation(s)
- A Mermelshtein
- Department of Clinical Biochemistry, Faculty of Health Sciences, Ben-Gurion University of the Negev and Soroka University Medical Center, Beer-Sheva, Israel
| | - A Gerson
- Department of Chemistry, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - S Walfisch
- Colorectal Unit, Faculty of Health Sciences, Ben-Gurion University of the Negev and Soroka University Medical Center, Beer-Sheva, Israel
| | - B Delgado
- Department of Pathology, Faculty of Health Sciences, Ben-Gurion University of the Negev and Soroka University Medical Center, Beer-Sheva, Israel
| | - G Shechter-Maor
- Department of Clinical Biochemistry, Faculty of Health Sciences, Ben-Gurion University of the Negev and Soroka University Medical Center, Beer-Sheva, Israel
| | - J Delgado
- Department of Gastroenterology, Faculty of Health Sciences, Ben-Gurion University of the Negev and Soroka University Medical Center, Beer-Sheva, Israel
| | - A Fich
- Department of Gastroenterology, Faculty of Health Sciences, Ben-Gurion University of the Negev and Soroka University Medical Center, Beer-Sheva, Israel
| | - L Gheber
- Department of Clinical Biochemistry, Faculty of Health Sciences, Ben-Gurion University of the Negev and Soroka University Medical Center, Beer-Sheva, Israel
- Department of Gastroenterology, Faculty of Health Sciences, Ben-Gurion University of the Negev and Soroka University Medical Center, Beer-Sheva, Israel
- Department of Clinical Biochemistry, Faculty of Health Sciences, Ben-Gurion University of the Negev and Soroka University Medical Center, Beer-Sheva, Israel. E-mail:
| |
Collapse
|
25
|
di Pietro A, Vries EGED, Gietema JA, Spierings DCJ, de Jong S. Testicular germ cell tumours: the paradigm of chemo-sensitive solid tumours. Int J Biochem Cell Biol 2005; 37:2437-56. [PMID: 16099193 DOI: 10.1016/j.biocel.2005.06.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2005] [Revised: 06/02/2005] [Accepted: 01/27/2005] [Indexed: 11/16/2022]
Abstract
Testicular germ cell tumours (TGCTs) are the most frequent solid malignant tumour in men 20-40 years of age and the most frequent cause of death from solid tumours in this age group. Up to 50% of the patients suffer from metastatic disease at diagnosis. The majority of metastatic testicular cancer patients, in contrast to most other metastatic solid tumours, can be cured with highly effective cisplatin-based chemotherapy. From a genetic point of view, almost all TGCTs in contrast to solid tumours are characterised by the presence of wild type p53. High p53 expression levels are associated with elevated Mdm2 levels and a loss of p21(Waf1/Cip1) expression suggesting a changed functionality of p53. Expression levels of other proteins involved in the regulation of cell cycle progression indicate a deregulated G1-S phase checkpoint in TGCTs. After cisplatin-induced DNA damage, the increasing levels of p53 lead to the trans-activation of a number of genes but not of p21(Waf1/Cip1), preferentially directing TGCT cells into apoptosis or programmed cell death, both via the mitochondrial and the death receptor apoptosis pathways. The sensitivity of TGCTs to chemotherapeutic drugs may lay in the susceptibility of germ cells to apoptosis. Taken together, this provides TGCT as a tumour type model to investigate and understand the molecular determinants of chemotherapy sensitivity of solid tumours. This review aims to summarise the current knowledge on the biological basis of cisplatin-induced apoptosis and response to chemotherapy in TGCTs.
Collapse
Affiliation(s)
- Alessandra di Pietro
- Department of Medical Oncology, Internal Medicine, University of Groningen and University Medical Center Groningen, 9713 GZ Hanzeplein 1, Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
26
|
Almstrup K, Hoei-Hansen CE, Nielsen JE, Wirkner U, Ansorge W, Skakkebaek NE, Rajpert-De Meyts E, Leffers H. Genome-wide gene expression profiling of testicular carcinoma in situ progression into overt tumours. Br J Cancer 2005; 92:1934-41. [PMID: 15856041 PMCID: PMC2361756 DOI: 10.1038/sj.bjc.6602560] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The carcinoma in situ (CIS) cell is the common precursor of nearly all testicular germ cell tumours (TGCT). In a previous study, we examined the gene expression profile of CIS cells and found many features common to embryonic stem cells indicating that initiation of neoplastic transformation into CIS occurs early during foetal life. Progression into an overt tumour, however, typically first happens after puberty, where CIS cells transform into either a seminoma (SEM) or a nonseminoma (N-SEM). Here, we have compared the genome-wide gene expression of CIS cells to that of testicular SEM and a sample containing a mixture of N-SEM components, and analyse the data together with the previously published data on CIS. Genes showing expression in the SEM or N-SEM were selected, in order to identify gene expression markers associated with the progression of CIS cells. The identified markers were verified by reverse transcriptase–polymerase chain reaction and in situ hybridisation in a range of different TGCT samples. Verification showed some interpatient variation, but combined analysis of a range of the identified markers may discriminate TGCT samples as SEMs or N-SEMs. Of particular interest, we found that both DNMT3B (DNA (cytosine-5-)-methyltransferase 3 beta) and DNMT3L (DNA (cytosine-5-)-methyltransferase 3 like) were overexpressed in the N-SEMs, indicating the epigenetic differences between N-SEMs and classical SEM.
Collapse
Affiliation(s)
- K Almstrup
- University Department of Growth and Reproduction, Rigshospitalet, Section GR-5064, Blegdamsvej 9, Copenhagen DK-2100, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Tan KAL, Turner KJ, Saunders PTK, Verhoeven G, De Gendt K, Atanassova N, Sharpe RM. Androgen Regulation of Stage-Dependent Cyclin D2 Expression in Sertoli Cells Suggests a Role in Modulating Androgen Action on Spermatogenesis1. Biol Reprod 2005; 72:1151-60. [PMID: 15659706 DOI: 10.1095/biolreprod.104.037689] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Regulation of spermatogenesis involves stage-dependent androgen action on Sertoli cells, but the pathways involved are unclear. We assessed if cyclin D2 could play a role. In rats, Sertoli cell nuclear, stage-dependent immunoexpression of cyclin D2 switched on after Day 10 and persisted through Day 35, but disappeared by adulthood. However, ethane dimethane sulfonate (EDS)-induced testosterone withdrawal in adult rats for 6 days induced stage-dependent cyclin D2 immunoexpression in Sertoli cells, with highest expression at stages IX-XII and nondetectable at stages VI-VIII (opposite that for androgen receptor [AR] immunoexpression). In EDS-treated rats, a single injection of testosterone but not of estrogen reversed this change in 4 h, and testosterone administration from the time of EDS treatment prevented expression of cyclin D2 in Sertoli cells. The EDS-induced changes in cyclin D2 immunoexpression were matched by changes in expression of Ccnd2 (cyclin D2) mRNA in isolated stage-dissected tubules. Treatment of adult rats with flutamide induced stage-dependent cyclin D2 immunoexpression in Sertoli cells within 18 h, and confocal microscopy revealed that immunoexpression of AR and cyclin D2 were mutually exclusive within individual seminiferous tubules in these animals. Sertoli cell-selective ablation of the AR in mice using Cre/loxP technology also resulted in stage-dependent Sertoli cell cyclin D2 immunoexpression. Downstream from cyclin D2 action is retinoblastoma 1 (RB1), a tumor suppressor protein, immunoexpression of which paralleled stage-dependent AR expression in Sertoli cells; RB1 stage specificity disappeared after EDS treatment. These results point to a non-cell cycle role for cyclin D2 and RB1 in mature Sertoli cells in the stage-dependent mechanisms regulated by AR expression and androgen action.
Collapse
Affiliation(s)
- K A L Tan
- MRC Human Reproductive Sciences Unit, Centre for Reproductive Biology, University of Edinburgh, Edinburgh EH16 4SB, Scotland, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
The germ-cell tumours are a fascinating group of neoplasms because of their unusual biology and the spectacular therapeutic results that have been obtained in these tumours. Traditionally, this group of neoplasms is presented in an organ-oriented approach. However, recent clinical and experimental data convincingly demonstrate that these neoplasms are one disease with separate entities that can manifest themselves in different anatomical sites. We propose five entities, in which the developmental potential is determined by the maturation stage and imprinting status of the originating germ cell. Recent progress begins to explain the apparent unpredictable development of germ-cell tumours and offers a basis for understanding their exquisite sensitivity to therapy.
Collapse
Affiliation(s)
- J Wolter Oosterhuis
- Department of Pathology, Erasmus MC, University Medical Center Rotterdam, Daniel den Hoed Cancer Center, Josephine Nefkens Institute, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands.
| | | |
Collapse
|
29
|
Diederichs S, Bäumer N, Schultz N, Hamra FK, Schrader MG, Sandstede ML, Berdel WE, Serve H, Müller-Tidow C. Expression patterns of mitotic and meiotic cell cycle regulators in testicular cancer and development. Int J Cancer 2005; 116:207-17. [PMID: 15800920 DOI: 10.1002/ijc.21034] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mitotic and meiotic cell cycle regulation is essential for normal development and tumor prevention. The underlying molecular mechanisms are not completely characterized. The aim of our analysis was to derive a global expression map of cell cycle regulators in mitosis and meiosis. First, the expression of cyclins, CDKs and CDK inhibitors was determined during postnatal testis maturation in mice using microarrays and quantitative RT-PCR. The abundance of cyclins A1, B2, K, M4, CDK2, all CDKLs, CDKN2c, CDKN2d and INCA1 increased during testis maturation. In contrast, cyclins A2, B1, D2, G1, G2, CDK1, CDK4 and CDK2AP1 showed a maturation-associated decrease. Gene expression profiles of isolated germ cells and testicular somatic cells confirmed these results. Second, we determined cyclin expression patterns in human normal and malignant testis samples (n = 36) modeling the reciprocal difference between meiosis and mitosis. Testicular tumors strictly expressed cell cycle regulators identified in mitotically dividing germ cells. Expression of several transcripts was histology-specific in testicular tumors, providing novel molecular markers and potential therapeutic targets. Taken together, our data provide a comprehensive expression map of cell cycle regulators at the switch between mitosis and meiosis in testis development and in cancerogenesis.
Collapse
Affiliation(s)
- Sven Diederichs
- Department of Medicine, Hematology/Oncology, University of Münster, Münster, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Port M, Schmelz HU, Stockinger M, Sparwasser C, Albers P, Pottek T, Abend M. Gene Expression Profiling in Seminoma and Nonseminoma. J Clin Oncol 2005; 23:58-69. [PMID: 15625360 DOI: 10.1200/jco.2005.11.076] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Purpose Gene expression profiles of seminoma were compared with nonseminoma to get insights into tumorigenesis. Materials and Methods Eleven testicular tumor biopsies (five pure seminoma, six nonseminoma; pT1N0M0 to pT2N2M1) and biopsies from unaffected sites were analyzed once per patient using a macroarray (1,176 genes). On the same patients, six genes were validated using real-time quantitative (RTQ) polymerase chain reaction (PCR). Additionally, in a separate cohort of 19 patients, 24 genes selected from the macroarray were measured using RTQ-PCR. Results (1) The agreement in gene expression was 94% between the two methods and two different patient cohorts. (2) Two features in gene expression were independent of the tumor entity: Most changes of gene expression occurred in five functional groups like “cell cycle” and “apoptosis.” Genes within these groups were almost similarly (> 80%) up- or downregulated. (3) Nonseminoma were characterized by downregulated genes (75%), but in seminoma, upregulated genes (64%) prevailed. Furthermore, 64.4% of those genes that were differentially expressed in both tumor entities were usually upregulated in seminoma but downregulated in nonseminoma. A reverse pattern was found in 24.4% of such genes. Eleven percent of these genes showed a similar up- or downregulation in gene expression in both tumor entities. Conclusion Seminoma in this preliminary study can be differentiated from nonseminoma due to almost opposing gene expression profiles (89% of the significantly differentially expressed genes) and are in line with the histological discrimination of both tumor entities. Underlying mechanisms and implications regarding the origin and tumor progression of both entities are discussed.
Collapse
Affiliation(s)
- M Port
- Institute of Radiobiology, Federal Armed Forces, Ernst-von-Bergmann-Kaserne, Neuherbergstr 11, 80937 Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
31
|
López-Guerrero JA, López-Ginés C, Pellín A, Carda C, Llombart-Bosch A. Deregulation of the G1 to S-phase cell cycle checkpoint is involved in the pathogenesis of human osteosarcoma. ACTA ACUST UNITED AC 2004; 13:81-91. [PMID: 15167009 DOI: 10.1097/00019606-200406000-00004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Osteosarcoma (OS) displays complex karyotypes with numerical changes as well as structural abnormalities suggesting that several oncogenes and tumor suppressor genes may be implicated in the biology of OS. The aim of our study was to investigate the possible implication of the molecular alterations of the G1 to S-phase checkpoint genes in the pathogenesis of OS. We analyzed samples from 29 patients and found molecular alterations of the RB and TP53 genes in 6 (21%) and 3 (10%) cases, respectively. Homozygous deletion of the INK4A/ARF locus and methylation of INK4A was detected in 3 (10%) and 2 (7%) cases, respectively. CDK4 and MDM2 co-amplification was observed in 1 case (3%). Cyclin D3 is differentially expressed in a greater proportion than D1- and D2-type cyclins. Cytogenetically, all cases had complex karyotypes being especially significant the losses of the chromosomes 4, 13, and 17. As a whole, 11 of 29 (38%) analyzed OS presented alterations in some of the analyzed G1 to S-phase checkpoint genes. These alterations were more frequently present in adults (P = 0.032). All patients with genetic alterations in the G1/S-phase checkpoint died during their clinical follow-up, whereas more than 53% of the remaining cases were alive in this period (P = 0.007). Hence, in the pathogenesis of human OS, deregulation of the G1/S checkpoint genes, especially RB, TP53, and INK4/ARF locus, plays an important role and defines a subgroup of patients with a poor outcome.
Collapse
|
32
|
von Eyben FE. Chromosomes, genes, and development of testicular germ cell tumors. ACTA ACUST UNITED AC 2004; 151:93-138. [PMID: 15172750 DOI: 10.1016/j.cancergencyto.2003.09.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2003] [Revised: 09/01/2003] [Accepted: 09/09/2003] [Indexed: 12/25/2022]
Abstract
A literature review found 265 articles on testicular germ cell tumors (TGCTs) detailing the copy number of chromosomal regions and expression of 245 genes. An initial precursor stage, intratubular germ cell neoplasia (IGCN), is characterized by triploidization and an upregulation of KIT, ALPP, CCDN2, and ZNF354A, and a downregulation of CDKN2D. TGCT regularly have a series of chromosomal aberrations: a decrease in copy number at 4q21 approximately qter and 5q14 approximately qter; an increase at 7p21 approximately pter, 7q21 approximately q33, and 8q12 approximately q23 (especially high increase in seminoma); a decrease at 11p11 approximately p15 and 11q14 approximately q24; an increase at 12p11 approximately pter; a decrease at 13q14 approximately q31; an increase of 17q11 approximately q21 (only for nonseminoma); a decrease of 18q12 approximately qter; and an increase at 21q21 approximately qter, 22q11 approximately qter (only for seminoma), and Xq. Macroscopically overt TGCT is associated with a characteristic series of abnormalities in the retinoblastoma pathway including upregulation of cyclin D2 and p27 and downregulation of RB1 and the cyclin-dependent kinase inhibitors p16, p18, p19, and p21. TGCT thus has a synergistic pattern in gene expressions of the retinoblastoma pathway that is rare in other malignancies.
Collapse
Affiliation(s)
- Finn Edler von Eyben
- Medical Knowledge Center, Odense University Hospital, DK-5000 Odense M, Denmark.
| |
Collapse
|
33
|
Skotheim RI, Abeler VM, Nesland JM, Fosså SD, Holm R, Wagner U, Flørenes VA, Aass N, Kallioniemi OP, Lothe RA. Candidate genes for testicular cancer evaluated by in situ protein expression analyses on tissue microarrays. Neoplasia 2004; 5:397-404. [PMID: 14670177 PMCID: PMC1502610 DOI: 10.1016/s1476-5586(03)80042-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
By the use of high-throughput molecular technologies, the number of genes and proteins potentially relevant to testicular germ cell tumor (TGCT) and other diseases will increase rapidly. In a recent transcriptional profiling, we demonstrated the overexpression of GRB7 and JUP in TGCTs, and confirmed the reported overexpression of CCND2. We also have recent evidences for frequent genetic alterations of FHIT and epigenetic alterations of MGMT. To evaluate whether the expression of these genes is related to any clinicopathological variables, we constructed a tissue microarray with 510 testicular tissue cores from 279 patients diagnosed with TGCT, covering various histological subgroups and clinical stages. By immunohistochemistry, we found that JUP, GRB7, and CCND2 proteins were rarely present in normal testis, but frequently expressed at high levels in TGCT. Additionally, all premalignant intrabular germ cell neoplasias were JUP-immunopositive. MGMT and FHIT were expressed by normal testicular tissues, but at significantly lower frequencies in TGCT. Except for CCND2, the expressions of all markers were significantly associated with various TGCT subtypes. In summary, we have developed a high-throughput tool for the evaluation of TGCT markers, and utilized this to validate five candidate genes whose protein expressions were indeed deregulated in TGCT.
Collapse
Affiliation(s)
- Rolf I Skotheim
- Department of Genetics, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo, Norway
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Bryja V, Pacherník J, Faldíková L, Krejcí P, Pogue R, Nevrivá I, Dvorák P, Hampl A. The role of p27(Kip1) in maintaining the levels of D-type cyclins in vivo. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1691:105-16. [PMID: 15110991 DOI: 10.1016/j.bbamcr.2004.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2003] [Revised: 12/12/2003] [Accepted: 01/09/2004] [Indexed: 12/14/2022]
Abstract
This in vivo study employs p27-deficient mice to investigate the significance of p27 for the metabolism of D-type cyclins in differentiated cells. The absence of p27 results in decreased levels of cyclins D2 and/or D3 in some organs. As demonstrated on Leydig cells of testis, such dependency is only restricted to certain cell types including terminally differentiated ones, and the absence of p27 in these cells can interfere with their differentiation. The decrease of cyclin D caused by the absence of p27 equals the amount of cyclin D physically associated with p27 in non-mutant animals. The data indicate that it is the proportion of p27-associated cyclin D that determines the response to p27 deficiency. Cells in which the level of D-type cyclin is dependent on p27 do not up-regulate the activity of their CDK2 and CDK4 upon loss of p27, and these cells have a negligible amount of p27 bound to CDK2 and/or cyclin A/E under normal conditions. Together, the findings suggest the existence of a dual role for p27, one being a classical regulation of cell cycle via inhibition of cyclin-dependent kinases (CDK), and the other being participation in the establishment and/or maintenance of differentiated status that is realized in conjunction with D-type cyclins.
Collapse
Affiliation(s)
- Vítezslav Bryja
- Center for Cell Therapy and Tissue Repair, Charles University, Prague, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
A novel approach to class discovery in gene expression datasets is presented. In the context of clinical diagnosis, the central goal of class discovery algorithms is to simultaneously find putative (sub-)types of diseases and to identify informative subsets of genes with disease-type specific expression profile. Contrary to many other approaches in the literature, the method presented implements a wrapper strategy for feature selection, in the sense that the features are directly selected by optimizing the discriminative power of the used partitioning algorithm. The usual combinatorial problems associated with wrapper approaches are overcome by a Bayesian inference mechanism. On the technical side, we present an efficient optimization algorithm with guaranteed local convergence property. The only free parameter of the optimization method is selected by a resampling-based stability analysis. Experiments with Leukemia and Lymphoma datasets demonstrate that our method is able to correctly infer partitions and corresponding subsets of genes which both are relevant in a biological sense. Moreover, the frequently observed problem of ambiguities caused by different but equally high-scoring partitions is successfully overcome by the model selection method proposed.
Collapse
Affiliation(s)
- Volker Roth
- Institute for Computational Science, ETH Zurich, Hirschengraben 84, CH-8092 Zurich, Switzerland.
| | | |
Collapse
|
36
|
Spierings DCJ, de Vries EGE, Vellenga E, de Jong S. The attractive Achilles heel of germ cell tumours: an inherent sensitivity to apoptosis-inducing stimuli. J Pathol 2003; 200:137-48. [PMID: 12754734 DOI: 10.1002/path.1373] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Testicular germ cell tumours (TGCTs) are extremely sensitive to cisplatin-containing chemotherapy. The rapid time course of apoptosis induction after exposure to cisplatin suggests that TGCT cells are primed to undergo programmed cell death as an inherent property of the cell of origin. In fact, apoptosis induction of germ cells in the testis is an important physiological mechanism to control the quality and quantity of the gametes produced. Although p53 protein is highly expressed in the majority of TGCTs, almost no p53 mutations have been detected. Interestingly, p53 overexpression is associated with loss of p21 and gain of mdm2 expression, which might indicate a partial loss in functionality of the p53 regulatory pathway in TGCTs. Besides p21, TGCTs often show low expression of other proteins involved in the regulation of cell cycle progression, such as the retinoblastoma protein and members of the INK4 family. It can be postulated that the deregulated G(1)-S phase checkpoint results in premature entry into the S phase upon DNA damage. In addition to Bcl-2 family members that are involved in the regulation of germ cell apoptosis in the normal testis via the mitochondrial death pathway, the Fas death pathway is also known to regulate apoptosis of germ cells in the testis. Since chemotherapy has been shown to activate the Fas death pathway and TGCTs co-express both Fas and its ligand FasL, TGCT cells might undergo apoptosis upon cisplatin treatment via autocrine or paracrine activation of the Fas system by FasL. The hypothesis suggested here is that the lack of cell cycle arrest following a cisplatin-containing treatment, together with the activation of the Fas death pathway and the mitochondrial death pathway, explains the rapid and efficient apoptosis of TGCT cells. Defining the mechanisms involved in the cisplatin sensitivity of TGCTs will provide tools to increase cisplatin sensitivity in other human tumours with acquired or intrinsic resistance.
Collapse
Affiliation(s)
- Diana C J Spierings
- Departments of Medical Oncology and Haematology, University of Groningen, The Netherlands
| | | | | | | |
Collapse
|
37
|
Bartkova J, Lukas C, Sørensen CS, Rajpert-De Meyts E, Skakkebaek NE, Lukas J, Bartek J. Deregulation of the RB pathway in human testicular germ cell tumours. J Pathol 2003; 200:149-56. [PMID: 12754735 DOI: 10.1002/path.1353] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Deregulation of the RB pathway is shared by most human malignancies. Components upstream of the retinoblastoma tumour suppressor (pRB), namely the INK4 family of cyclin-dependent kinase (CDK) inhibitors, the D-type cyclins, their partner kinases CDK4/CDK6, and pRB as their critical substrate, are differentially targeted in diverse types of cancer. An 'unorthodox' spectrum of defects within this cascade occurs in testicular germ cell tumours (TGCTs), including silencing of pRB transcription, overexpression of cyclin D2, and loss of p18INK4c. To improve understanding of the role of this pathway in spermatogenesis, and its subversion in TGCTs, we examined immunohistochemical expression patterns of CDK4, p16INK4a, p15INK4b, and pRB, and established an in situ assay for cyclin D-mediated phosphorylation of serine795, a phosphorylation event critical for neutralization of pRB's growth-restraining ability. pRB was expressed throughout adult spermatogenesis and was detectable in teratomas, but was absent or grossly reduced in carcinoma in situ (CIS) and most seminomas and embryonal carcinomas. Unexpectedly, we also found that pRB was absent from fetal human gonocytes, the candidate target cell for all types of TGCTs. Thus, rather than a tumorigenesis-promoting loss of pRB, the lack of pRB in TGCTs likely reflects its developmental control. Widespread expression of p15INK4b, found in normal testes, was preserved in TGCTs. In contrast, p16INK4a was lost or reduced in large subsets of TGCTs. CDK4 was expressed in normal spermatogonia, CIS, and invasive TGCTs, as was serine795-phosphorylated pRB. Our data on expression of pRB support the plausible origin of TGCTs from fetal gonocytes, and the serine795 phosphorylation demonstrates that the cyclin D-dependent kinases are active, and neutralize pRB in spermatogonia and in those TGCTs that express pRB. We hope that this study will inspire further immunohistochemical applications of phosphospecific antibodies in pathology, and examination of the RB pathway defects in relation to curability of TGCTs.
Collapse
Affiliation(s)
- Jirina Bartkova
- Department of Cell Cycle and Cancer, Institute of Cancer Biology, Danish Cancer Society, Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
38
|
Kukoski R, Blonigen B, Macri E, Renshaw AA, Hoffman M, Loda M, Datta MW. p27 and cyclin E/D2 associations in testicular germ cell tumors: implications for tumorigenesis. Appl Immunohistochem Mol Morphol 2003; 11:138-43. [PMID: 12777997 DOI: 10.1097/00129039-200306000-00008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The cyclins are key regulators of cell cycle progression and cellular proliferation. We have previously shown that in testicular germ cell tumors, cyclin E expression correlates with more aggressive tumors, higher clinical stage, and the presence of pulmonary metastases. Here, we have examined the association between cyclin activation and the proliferative rate of the pluripotential testicular tumor cell. We have shown that in a panel of 30 testicular germ cell tumors, 15 cases (50%) expressed the cyclin dependent kinase inhibitor p27; of note, 13 of 14 embryonal carcinomas (93%) coexpressed cyclin E and p27, suggesting inhibition of this cyclin. We show that 25 of 30 (83%) of the testicular germ cell tumors express cyclin D2. Using immunoprecipitation assays from the embryonal carcinoma cell line NTera2 or from tumor cell extracts, we have shown that cyclin D2 is complexed with p27, consistent with its known ability to sequester and block the cyclin E inhibitory function of p27. From these results, we propose a model in testicular germ cell tumors, in particular embryonal carcinomas, whereby the overexpression of cyclin D2, a gene localized on chromosome 12p--a region of DNA amplification in germ cell tumors--leads to the functional sequestration of p27 in the presence of cyclin E and cyclin D2, thus favoring cellular proliferation.
Collapse
Affiliation(s)
- Robyn Kukoski
- Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
RAJPERT-DE MEYTS EWA, BARTKOVA JIRINA, SAMSON MICHEL, HOEI-HANSEN CHRISTINAE, FRYDELUND-LARSEN LONE, BARTEK JIRI, SKAKKEBaeK NIELSE. The emerging phenotype of the testicular carcinoma in situ germ cell. APMIS 2003. [DOI: 10.1034/j.1600-0463.2003.11101301.x-i1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Rajpert-De Meyts E, Bartkova J, Samson M, Hoei-Hansen CE, Frydelund-Larsen L, Bartek J, Skakkebaek NE. The emerging phenotype of the testicular carcinoma in situ germ cell. APMIS 2003; 111:267-78; discussion 278-9. [PMID: 12752272 DOI: 10.1034/j.1600-0463.2003.11101301.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review summarises the existing knowledge on the phenotype of the carcinoma in situ (CIS) cell. CIS is a common pre-invasive precursor of testicular germ cell tumours of adolescents and young adults. These tumours display a variety of histological forms. Classical seminoma proliferates along the germ cell lineage, whereas embryonal carcinoma retains embryonic features and readily differentiates into teratomas that resemble various somatic cell lineages. A thorough review of the gene expression in CIS cells in comparison to normal testicular germ cells and overt tumours supports the view that CIS is a common precursor for both tumour types. Impaired cell differentiation resulting in a partial retention of the embryonic features, associated with an increasing genomic instability may be responsible for a remarkable phenotypic heterogeneity of CIS cells. Depending on the degree of differentiation and pluripotency, CIS cells found in adult patients seem to be predestined for further malignant progression into one or the other of the two main types of overt tumours. A new concept of phenotypic continuity of differentiation of germ cells along germinal lineage with a gradual loss of embryonic features based on the analysis of gene expression in all types of germ cells during their ontogeny is presented in this review. The data point out that despite the phenotypic continuum of gene expression, there are two periods of rapid changes of gene expression: first at the transition from primordial germ cells to pre-spermatogonia, and later during the pubertal switch from the mitotic to meiotic cell division. The persistent expression of embryonic traits in CIS cells, and the high expression of the cell cycle regulators that are typical of mitotic germ cells support our long-standing hypothesis that CIS cells originate from primordial germ cells or gonocytes and not from germ cells in the adult testis.
Collapse
Affiliation(s)
- Ewa Rajpert-De Meyts
- University Department of Growth and Reproduction, Rigshospitalet, Copenhagen, Denmark.
| | | | | | | | | | | | | |
Collapse
|
41
|
Bartkova J, Rajpert-De Meyts E, Skakkebaek NE, Lukas J, Bartek J. Deregulation of the G1/S-phase control in human testicular germ cell tumours. APMIS 2003; 111:252-65; discussion 265-6. [PMID: 12760379 DOI: 10.1034/j.1600-0463.2003.1110129.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Deregulated cell cycle and defective genome-integrity checkpoints are among the hallmarks of cancer. Here we summarize our recent studies of key components of the GI/S machinery in normal human spermatogenesis, and their abnormalities in testicular germ cell tumours (TGCTs), with special emphasis on carcinoma in situ lesions (CIS). Our combined immunohistochemical and immunoblotting analyses of normal human adult and fetal testes, CIS, seminomas, embryonal carcinomas, and teratomas, revealed an 'unorthodox' spectrum of defects within the so-called RB pathway in TGCTs. The early aberrations included lack of expression of the retinoblastoma tumour suppressor (pRB) and the CDK inhibitor pl9ink4d, and overexpression of cyclin D2. Progression from CIS to invasive TGCTswas associated with loss of another two CDK inhibitors and tumour suppressors: pl6ink4a and pl8ink4c. We also found the lack of pRB and pl9ink4d in fetal gonocytes, the candidate target cell for all types of TGCTs. These findings, together with the status of the Chk2-p53 DNA-integrity checkpoint, are considered in relation to the origin, biology and pathogenesis of TGCTs, and potential implications of the GI/S defects for the curability of these tumours.
Collapse
Affiliation(s)
- Jirina Bartkova
- Department of Cell Cycle and Cancer, institute of Cancer Biology, Danish Cancer Society, DK-2100 Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
42
|
Abstract
Human testicular germ cell tumour (TGCT) of adolescents and young adults develop from precursor lesions called carcinoma in situ (CIS), which is believed to originate from diploid primordial germ cells during foetal life. CIS is initiated by an aneuploidisation event accompanied by extensive chromosome instability. The further transformation of CIS into invasive TGCT (seminomas and nonseminomas) is associated with increased copy number of chromosome arm 12p, most often seen as isochromosome 12p. Despite the morphological distinctions between seminomatous and nonseminomatous TGCTs, they have many of the same regional genomic disruptions, although frequencies may vary. However, the two histological subtypes have quite distinct epigenomes, which is further evident from their different gene expression patterns. CIS develops from cells with erased parental imprinting, and the seminoma genome is under-methylated compared to that of the nonseminoma genome. High throughput microarray technologies have already pinpointed several genes important to TGCT, and will further unravel secrets of how specific genes and pathways are regulated and deregulated throughout the different stages of TGCT tumourigenesis. In addition to acquiring new insights into the molecular mechanisms of TGCT development, understanding the TGCT genome will also provide clues to the genetics of human embryonic development and of chemotherapy response, as TGCT is a good model system to both.
Collapse
Affiliation(s)
- Rolf I Skotheim
- Department of Genetics, Institute for Cancer Research, The Norwegian Radium Hospital, N-0310 Oslo, Norway
| | | |
Collapse
|
43
|
Denicourt C, Kozak CA, Rassart E. Gris1, a new common integration site in Graffi murine leukemia virus-induced leukemias: overexpression of a truncated cyclin D2 due to alternative splicing. J Virol 2003; 77:37-44. [PMID: 12477808 PMCID: PMC140601 DOI: 10.1128/jvi.77.1.37-44.2003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Graffi murine leukemia virus is a nondefective ecotropic retrovirus that was originally reported to induce myeloid leukemia in some strains of mice (A. Graffi, Ann. N.Y. Acad. Sci. 68:540-558, 1957). Using provirus-flanking sequences as DNA probes, we identified a new common retroviral integration site called Gris1 (for Graffi integration site 1). Viral integrations in Gris1 were detected in 13% of the tumors analyzed. The Gris1 locus was mapped to the distal region of mouse chromosome 6, 85 kb upstream of the cyclin D2 gene. Such viral integration in Gris1 causes overexpression of the normal 6.5-kb major transcript of cyclin D2 but also induces the expression of a new, alternatively spliced 1.1-kb transcript from the cyclin D2 gene that encodes a truncated cyclin D2 of 17 kDa. The expression of this 1.1-kb transcript is specific to tumors in which Gris1 is rearranged but is also detected at low levels in normal tissue.
Collapse
Affiliation(s)
- Catherine Denicourt
- Laboratoire de Biologie Moléculaire, Département des Sciences Biologiques, Université du Québec à Montréal, Canada
| | | | | |
Collapse
|
44
|
Abstract
In humans, Sertoli cell tumors account for approximately 4% of all testicular tumors, and 20% of these are malignant. The mechanisms underlying Sertoli cell tumorigenesis remain largely unknown. Using gene knockout technology, we previously generated mutant mice lacking the alpha subunit of inhibin dimers. The inhibin alpha-null male mice develop testicular Sertoli cell tumors with 100% penetrance. These tumors develop as early as 4 weeks of age and cause a cachexia-like wasting syndrome. Castrated inhibin alpha knockout mice develop sex steroidogenic adrenal cortical tumors. These studies have identified inhibins as secreted tumor suppressors with specificity for the gonads and adrenal glands. It had been suggested that endocrine factors play roles in Sertoli cell tumorigenesis by altering cell cycle machinery of the Sertoli cells. To test the potential of these factors to function as modifiers of Sertoli cell tumorigenesis, we have employed a genetic intercross strategy, breeding inhibin a mutant mice with mutant mice deficient in endocrine signaling factors including gonadotropin releasing hormone (hypogonadal, hpg mice), follicle stimulating hormone, anti-Miillerian hormone (AMH), activin receptor type II, or androgen receptor (testicular feminization, tfm mice), or mice overexpressing follistatin. We are also investigating the effects of loss of critical cell cycle regulators, such as cyclin dependent kinase inhibitor p27, on Sertoli cell tumorigenesis in inhibin alpha knockout males. These studies clearly demonstrate the roles of these factors as modifiers of the Sertoli cell tumorigenesis. Activin signaling through activin receptor type II is responsible for the cachexia-like syndrome observed in the inhibin a knockout mice with tumors. The gonadotropin hormones are essential for testicular tumor development, but elevated FSH levels are not sufficient to cause Sertoli cell tumors. Absence of FSH, lack of androgen receptor, or overexpression of follistatin slows the tumor growth and minimizes the cachexia symptoms, thus prolonging the life span of these double mutant mice. In contrast, absence of AMH or p27 causes earlier onset and more aggressive development of testicular tumor, with an earlier death of double mutant mice. We are currently investigating roles of estrogen signaling pathways, and other cell cycle regulators, in tumor development in the inhibin alpha knockout mice by generating mice with double or triple mutations. Genetic engineering in mouse models provides a powerful tool to study the mechanisms of testicular tumorigenesis and define the important genetic modifiers in vivo.
Collapse
Affiliation(s)
- Wei Yan
- Department of Pathology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
45
|
Bacon CL, Gallagher HC, Haughey JC, Regan CM. Antiproliferative action of valproate is associated with aberrant expression and nuclear translocation of cyclin D3 during the C6 glioma G1 phase. J Neurochem 2002; 83:12-9. [PMID: 12358724 DOI: 10.1046/j.1471-4159.2002.01081.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cell cycle progression is tightly regulated by cyclins, cyclin-dependent kinases (cdks) and related inhibitory phophatases. Here, we employed mitotic selection to synchronize the C6 glioma cell cycle at the start of the G1 phase and mapped the temporal regulation of selected cyclins, cdks and inhibitory proteins throughout the 12 h of G1 by immunoblot analysis. The D-type cyclins, D3 and D1, were differentially expressed during the C6 glioma G1 phase. Cyclin D1 was up-regulated in the mid-G1 phase (4-6 h) while cyclin D3 expression emerged only in late G1 (9-12 h). The influence of the anticonvulsant agent valproic acid (VPA) on expression of cyclins and related proteins was determined, since its teratogenic potency has been linked to cell cycle arrest in the mid-G1 phase. Exposure of C6 glioma to VPA induced a marked up-regulation of cyclin D3 and decreased expression of the proliferating cell nuclear antigen. In synchronized cell populations, increased expression of cyclin D3 by VPA was detected in the mid-G1 phase (3-5 h). Immunocytochemical localization demonstrated rapid intracellular translocation of cyclin D3 to the nucleus following VPA exposure, suggesting that VPA-induced cell cycle arrest may be mediated by precocious activation of cyclin D3 in the G1 phase.
Collapse
Affiliation(s)
- Christopher L Bacon
- Department of Pharmacology, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | |
Collapse
|
46
|
Murakami Y, Tateyama S, Uchida K, Yamaguchi R. Immunohistochemical analysis of cyclins in canine normal testes and testicular tumors. J Vet Med Sci 2001; 63:909-12. [PMID: 11558548 DOI: 10.1292/jvms.63.909] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The expression of cyclins A, D1, D2 and E were examined immunohistochemically in 5 canine normal testes and 31 testicular tumors, including 14 seminomas, 11 Sertoli cell tumors and 6 Leydig cell tumors. In canine normal testes, cyclin A expression was detected in spermatogonia and primary spermatocytes. This suggests that A-type cyclins may play some role in canine spermatogenesis. Cyclin A expression was also observed in 13/14 (92.9%) seminomas and 2/11 (18.2%) Sertoli cell tumors, but no positive reaction was observed in Leydig cell tumors. Parallel examinations for cyclins D1, D2 and E gave negative results in canine normal testes and testicular tumors. High levels of cyclin A expression in canine seminomas indicate that the neoplastic germ cells may be arrested at the spermatogonia and primary spermatocyte stages of differentiation.
Collapse
Affiliation(s)
- Y Murakami
- Department of Veterinary Pathology, Faculty of Agriculture, Miyazaki University, Gakuen Kibana Dai, Japan
| | | | | | | |
Collapse
|
47
|
Bartkova J, Thullberg M, Slezak P, Jaramillo E, Rubio C, Thomassen LH, Bartek J. Aberrant expression of G1-phase cell cycle regulators in flat and exophytic adenomas of the human colon. Gastroenterology 2001; 120:1680-8. [PMID: 11375949 DOI: 10.1053/gast.2001.24880] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS The G1/S-phase controlling mechanism known as the RB pathway is commonly deregulated in human malignancies. Here, the abundance and localization of key components of the retinoblastoma (RB) pathway were determined in exophytic and flat colorectal adenomas. METHODS Samples of normal colonic mucosa (n = 41) and flat (n = 45) and exophytic (n = 26) adenomas were examined immunohistochemically using antibodies to cyclins D1, D2, D3, cyclin-dependent kinase (CDK) 4, retinoblastoma protein (pRB), and the CDK inhibitors p16INK4a, p18INK4c, and p19INK4d. RESULTS In normal colonic epithelium, cyclin D2 was undetectable; expression of cyclin D1, CDK4, and pRB correlated with proliferation; and p16, p18, p19, and cyclin D3 were most abundant in quiescent, differentiated cells. Adenomas showed elevated expression of cyclin D1 and pRB, frequent induction of cyclin D2, and absence of p16. No obvious abnormalities were found for p18, p19, or cyclin D3. Overexpressed cyclin D2 was more common among exophytic and pRB among flat adenomas, respectively. Elevated cyclin D1, D2, and CDK4 correlated with enhanced dysplasia. CONCLUSIONS Aberrant expression of cyclins D1, D2, CDK4, p16, and pRB occur in significant subsets of exophytic and flat adenomas, particularly among cases with high-grade dysplasia. Such defects of the RB pathway may perturb cell-cycle control and thereby contribute an early step in colorectal tumorigenesis.
Collapse
Affiliation(s)
- J Bartkova
- Department of Cell Cycle and Cancer, Institute of Cancer Biology, Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
48
|
Rørth M, Rajpert-De Meyts E, Andersson L, Dieckmann KP, Fosså SD, Grigor KM, Hendry WF, Herr HW, Looijenga LH, Oosterhuis JW, Skakkebaek NE. Carcinoma in situ in the testis. SCANDINAVIAN JOURNAL OF UROLOGY AND NEPHROLOGY. SUPPLEMENTUM 2001:166-86. [PMID: 11144894 DOI: 10.1080/00365590050509896] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Carcinoma in situ (CIS) of the testis is a common precursor of germ-cell tumours in adults and adolescents, with the exception of spermatocytic seminoma. This article reviews existing knowledge on the pathobiology, genetic aspects and epidemiology of CIS, discusses current hypotheses concerning pathogenesis and invasive progression of germ-cell neoplasms and provides guidelines for diagnosis and clinical management of CIS.
Collapse
Affiliation(s)
- M Rørth
- Department of Oncology, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Huang Y, Ohtani K, Iwanaga R, Matsumura Y, Nakamura M. Direct trans-activation of the human cyclin D2 gene by the oncogene product Tax of human T-cell leukemia virus type I. Oncogene 2001; 20:1094-102. [PMID: 11314046 DOI: 10.1038/sj.onc.1204198] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2000] [Revised: 12/14/2000] [Accepted: 12/19/2000] [Indexed: 11/09/2022]
Abstract
Cyclins are one of the pivotal determinants regulating cell cycle progression. We previously reported that the trans-activator Tax of human T-cell leukemia virus type I (HTLV-I) induces endogenous cyclin D2 expression along with cell cycle progression in a resting human T-cell line, Kit 225, suggesting a role of cyclin D2 in Tax-mediated cell cycle progression. The cyclin D2 gene has a typical E2F binding element, raising the possibility that induction of cyclin D2 expression is a consequence of cell cycle progression. In this study, we examined the role and molecular mechanism of induction of the endogenous human cyclin D2 gene by Tax. Introduction of p19(INK4d), a cyclin dependent kinase (CDK) inhibitor of the INK4 family specific for D-type CDK, inhibited Tax-mediated activation of E2F, indicating requirement of D-type CDK in Tax-mediated activation of E2F. Previously indicated E2F binding element and two NF-kappaB-like binding elements in the 1.6 kbp cyclin D2 promoter fragment had little, if any, effect on responsiveness to Tax. We found that trans-activation of the cyclin D2 promoter by Tax was mainly mediated by a newly identified NF-kappaB-like element with auxiliary contribution of a CRE-like element residing in sequences downstream of -444 which were by themselves sufficient for trans-activation by Tax. These results indicate that Tax directly trans-activates the cyclin D2 gene, resulting in growth promotion and perhaps leukemogenesis through activation of D-type CDK.
Collapse
Affiliation(s)
- Y Huang
- Human Gene Sciences Center, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | | | | | | | | |
Collapse
|
50
|
Turchi L, Loubat A, Rochet N, Rossi B, Ponzio G. Evidence for a direct correlation between c-Jun NH2 terminal kinase 1 activation, cyclin D2 expression, and G(1)/S phase transition in the murine hybridoma 7TD1 cells. Exp Cell Res 2000; 261:220-8. [PMID: 11082292 DOI: 10.1006/excr.2000.5060] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In this study we show that the addition of fresh culture medium to high-density growth-arrested 7TD1 cells induces a strong and transient stimulation of the c-Jun NH2 terminal kinase activity (Jun kinase/JNK), a marked increase in cyclin D2 expression, the phosphorylation of pRb, and the transition from G(1) to S phase. The stimulation of cyclin D2 expression and the induction of JNK activity appear to be the consequences of the alkalinization of the extracellular medium. Indeed both parameters (i) can be induced, regardless of cell dilution, by the addition of a weak base such as triethylamine, and (ii) are together inhibited by (N-ethyl-N-isopropyl)amiloride, a specific inhibitor of the Na(+)/H(+) exchanger. We provide a strong argument indicating the existence of a direct correlation between JNK1 activation and cyclin D2 stimulation. Indeed, we demonstrate that cyclin D2 expression is blocked by SB 202190, an agent known to inhibit both JNK and p38(MAPK), but not by SB 203580, a specific inhibitor of p38(MAPK). Furthermore, we also observed that DMSO and forskolin, two agents that inhibit the proliferation of 7TD1 cells, inhibit in parallel cyclin D2 and JNK1. Altogether our results suggest that (i) JNK1 participates in the signaling pathway which controls the expression of cyclin D2 and (ii) that the inhibition of JNK1 by DMSO and forskolin could explain, at least in part, the antiproliferative action of these drugs in 7TD1 cells.
Collapse
Affiliation(s)
- L Turchi
- "Biologie et Physiopathologie de la peau" Faculté de Médecine, INSERM U385, France
| | | | | | | | | |
Collapse
|