1
|
White CW, Xie JH, Ventura S. Age-related changes in the innervation of the prostate gland: implications for prostate cancer initiation and progression. Organogenesis 2013; 9:206-15. [PMID: 23872639 PMCID: PMC3896592 DOI: 10.4161/org.24843] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The adult prostate gland grows and develops under hormonal control while its physiological functions are controlled by the autonomic nervous system. The prostate gland receives sympathetic input via the hypogastric nerve and parasympathetic input via the pelvic nerve. In addition, the hypogastric and pelvic nerves also provide sensory inputs to the gland. This review provides a summary of the innervation of the adult prostate gland and describes the changes which occur with age and disease. Growth and development of the prostate gland is age dependent as is the occurrence of both benign prostate disease and prostate cancer. In parallel, the activity and influence of both the sympathetic and parasympathetic nervous system changes with age. The influence of the sympathetic nervous system on benign prostatic hyperplasia is well documented and this review considers the possibility of a link between changes in autonomic innervation and prostate cancer progression.
Collapse
Affiliation(s)
- Carl W White
- Drug Discovery Biology; Monash Institute of Pharmaceutical Sciences; Monash University; Parkville, VIC Australia
| | | | | |
Collapse
|
2
|
Vaudry D, Falluel-Morel A, Bourgault S, Basille M, Burel D, Wurtz O, Fournier A, Chow BKC, Hashimoto H, Galas L, Vaudry H. Pituitary Adenylate Cyclase-Activating Polypeptide and Its Receptors: 20 Years after the Discovery. Pharmacol Rev 2009; 61:283-357. [DOI: 10.1124/pr.109.001370] [Citation(s) in RCA: 829] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
3
|
Collado B, Sánchez MG, Díaz-Laviada I, Prieto JC, Carmena MJ. Vasoactive intestinal peptide (VIP) induces c-fos expression in LNCaP prostate cancer cells through a mechanism that involves Ca2+ signalling. Implications in angiogenesis and neuroendocrine differentiation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1744:224-33. [PMID: 15921770 DOI: 10.1016/j.bbamcr.2005.04.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Revised: 03/30/2005] [Accepted: 04/15/2005] [Indexed: 01/05/2023]
Abstract
The effect of vasoactive intestinal peptide (VIP) on intracellular Ca(2+) levels and its relationship with the expression of c-fos and vascular endothelial growth factor (VEGF) as well as with neuroendocrine (NE) differentiation were investigated in human prostate LNCaP cells. VIP induced the expression of c-fos mRNA as studied by reverse transcription polymerase chain reaction (RT-PCR). It was accompanied by VIP stimulation of c-fos protein synthesis, as measured by Western blot analysis. VIP enhanced intracellular Ca(2+) levels as evaluated using the calcium probe fura-2. VIP regulation of c-fos expression depended on [Ca(2+)](i) concentration since the intracellular calcium chelator BAPTA/AM decreased c-fos expression (both mRNA and protein) to basal levels. As shown by means of real-time RT-PCR, VIP stimulated VEGF mRNA expression: the effect was inhibited by 40% in the presence of curcumin (an inhibitor of AP-1 binding), and it was dependent on Ca(2+) since BAPTA/AM inhibited this VIP action by 43%. Similar observations were made on the effects of BAPTA/AM and curcumin on VIP stimulation of VEGF protein expression. Simultaneous treatment of cells with the protein kinase A inhibitor H89 and BAPTA/AM completely blocked this VIP effect, whereas each agent alone led only to a partial inhibition. In addition, the calcium chelator blocked by 37% the ability of VIP to induce NE cell differentiation as estimated by the observation of neurite development. These features support a VIP signalling pathway that could be mediated through both cAMP and [Ca(2+)](i) increase in prostate LNCaP cancer cells. Moreover, our data suggest the implication of c-Fos on the induction of the main angiogenic factor VEGF since the promoter region of the VEGF gene possesses AP-1 (i.e., c-Fos/c-Jun heterodimer) response elements. This feature represents a link between the nuclear oncogene c-fos, angiogenesis and NE differentiation by means of an initiating signal upon VIP receptors.
Collapse
Affiliation(s)
- Beatriz Collado
- Department of Biochemistry and Molecular Biology, Alcalá University, Alcalá de Henares, Spain
| | | | | | | | | |
Collapse
|
4
|
Gutiérrez-Cañas I, Juarranz MG, Collado B, Rodríguez-Henche N, Chiloeches A, Prieto JC, Carmena MJ. Vasoactive intestinal peptide induces neuroendocrine differentiation in the LNCaP prostate cancer cell line through PKA, ERK, and PI3K. Prostate 2005; 63:44-55. [PMID: 15468165 DOI: 10.1002/pros.20173] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND Neuroendocrine (NE) differentiation in prostate cancer has been correlated with unfavorable clinical outcome. The mechanisms by which prostate cancer acquires NE properties are poorly understood, but several signaling pathways have been proposed. We have previously observed that vasoactive intestinal peptide (VIP) stimulates cAMP production mainly through VPAC(1) receptor, inducing NE differentiation in LNCaP cells. The aim of this study was to analyze the mechanisms involved in this process. METHODS Reverse transcriptase (RT)-polymerase chain reaction (PCR), quantitative real-time RT-PCR, Western blotting, and immunocytochemistry were performed. RESULTS LNCaP cells produce VIP, as demonstrated by RT-PCR and immunocytochemistry. VIP induced NE differentiation of LNCaP cells at a time as short as 1 hr of treatment, and the same occurred with the expression and secretion of neuronal-specific enolase (NSE, a NE differentiation marker). These effects were faster than those exerted by serum-deprivation. VIP induced extracellular signal-regulated kinase 1 and 2 (ERK1/2) phosphorylation and NE differentiation by PKA-dependent and independent pathways, since the PKA inhibitor H89 partially blocked VIP-induced NE differentiation and did not affect ERK1/2 phosphorylation. mitogen-activated protein kinase kinase (MEK) and phosphoinositide 3-kinase (PI3K) appear to be also involved since the inhibitors PD98059 and wortmannin abolished ERK1/2 phosphorylation and decreased NE differentiation induced by VIP. Moreover, VIP activated Ras suggesting the involvement of a Ras-dependent pathway. CONCLUSIONS VIP behaves as autocrine/paracrine factor in LNCaP cells by inducing NE differentiation through PKA, ERK1/2, and PI3K.
Collapse
Affiliation(s)
- Irene Gutiérrez-Cañas
- Unidad de Neuroendocrinología Molecular, Departamento de Bioquímica y Biología Molecular, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
5
|
Gutiérrez-Cañas I, Rodríguez-Henche N, Bolaños O, Carmena MJ, Prieto JC, Juarranz MG. VIP and PACAP are autocrine factors that protect the androgen-independent prostate cancer cell line PC-3 from apoptosis induced by serum withdrawal. Br J Pharmacol 2003; 139:1050-8. [PMID: 12839880 PMCID: PMC1573913 DOI: 10.1038/sj.bjp.0705317] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. In the present study, we describe the expression of the neuropeptides vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) as well as their receptors in PC-3 cells, a human prostate cancer cell line. In addition, we have investigated their role in apoptosis induced by serum starvation. 2. By RT-PCR and immunocytochemistry assays, we have demonstrated the production of VIP and PACAP in PC-3 cells. 3. We have demonstrated by RT-PCR and binding assays the expression of common PACAP/VIP (VPAC(1) and VPAC(2)) receptors, but not PACAP-specific (PAC(1)) receptors. The pharmacological profile of [(125)I]-VIP binding assays was as follows: VPAC(1) antagonist=VPAC(1) agonist>VIP>VPAC(2) agonist (IC(50)=1.2, 1.5, 2.3 and 30 nM, respectively). In addition, both receptor subtypes are functional since VIP, PACAP-27 or VPAC(1) and VPAC(2) agonists all increased the intracellular levels of cAMP. 4. The expression of both peptides and their receptors is similar in serum-cultured and serum-deprived PC-3 cells. The treatment of serum-deprived PC-3 cells with exogenous VIP or PACAP-27 increases cell number and viability in a dose-dependent manner, as demonstrated by cellular counting and MTT assays. The increased cell survival is exerted through the VPAC(1) receptor, since a VPAC(1), but not VPAC(2), receptor agonist, mimics the effects and a VPAC(1) receptor antagonist blocks it. Moreover, VIP and PACAP-27 inhibit genomic DNA fragmentation in PC-3 cells triggered by serum starvation, and increase the immunoreactivity of the antiapoptotic protein bcl-2. 5. Our results suggest that VIP and PACAP are autocrine/paracrine factors that protect PC-3 cells from apoptosis through VPAC1 receptors.
Collapse
Affiliation(s)
- Irene Gutiérrez-Cañas
- Department of Biochemistry and Molecular Biology, University of Alcalá, E-28871 Alcalá de Henares, Spain
| | - Nieves Rodríguez-Henche
- Department of Biochemistry and Molecular Biology, University of Alcalá, E-28871 Alcalá de Henares, Spain
| | - Oscar Bolaños
- Department of Biochemistry and Molecular Biology, University of Alcalá, E-28871 Alcalá de Henares, Spain
| | - María J Carmena
- Department of Biochemistry and Molecular Biology, University of Alcalá, E-28871 Alcalá de Henares, Spain
| | - Juan C Prieto
- Department of Biochemistry and Molecular Biology, University of Alcalá, E-28871 Alcalá de Henares, Spain
- Author for correspondence:
| | - María G Juarranz
- Department of Cellular Biology, Faculty of Biology, Complutente University, Madrid, Spain
| |
Collapse
|
6
|
Abstract
The mammalian prostate is densely innervated by hypogastric and pelvic nerves that play an important role in regulating the growth and function of the gland. While there has been much interest in the role of the noradrenergic innervation and adrenoceptors in prostate function, the role of cholinergic neurones in prostate physiology and pathophysiology is not well understood. This review focuses on the role of acetylcholine and cholinoceptors in prostate function. Nitric oxide, vasoactive intestinal polypeptide, and/or neuropeptide Y are co-localised with cholinesterase and/or acetylcholine transporter in some of the nerve fibres supplying the prostate. Their roles are also briefly discussed in this review. A dense network of cholinesterase-staining fibres supplies both prostate epithelium and stroma, suggesting a role of acetylcholine and/or co-localised neuropeptides in the modulation of prostatic secretions, as well as smooth muscle tone. A predominantly epithelial location for prostate muscarinic receptors indicated a major secretomotor role for acetylcholine. The muscarinic receptor subtype mediating muscarinic agonist-induced smooth muscle contraction or enhancement of contractions evoked by nerve stimulation differs in different species. In the human, there is evidence for M(1) receptors on the epithelium, M(2) receptors on the stroma, and both M(1) and M(3) receptors in some prostate cancer cell lines. Several recent investigations indicate that muscarinic receptors may also mediate or modulate normal, benign, and malignant prostate growth. The role of muscarinic agonists and their receptors and the influences of age, testicular, and other steroids in regulating the effects are reviewed.
Collapse
Affiliation(s)
- S Ventura
- Department of Pharmaceutical Biology and Pharmacology, Victorian College of Pharmacy, Monash University, Royal Parade, Victoria 3052, Parkville, Australia
| | | | | |
Collapse
|
7
|
Juarranz MG, Bolaños O, Gutiérrez-Cañas I, Lerner EA, Robberecht P, Carmena MJ, Prieto JC, Rodríguez-Henche N. Neuroendocrine differentiation of the LNCaP prostate cancer cell line maintains the expression and function of VIP and PACAP receptors. Cell Signal 2001; 13:887-94. [PMID: 11728828 DOI: 10.1016/s0898-6568(01)00199-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The molecular mechanisms involved in differentiation of prostate cancer cells to a neuroendocrine (NE) cell phenotype are not well understood. Here we used the androgen-dependent human prostate cancer cell line LNCaP to perform a systematic and broad analysis of the expression, pharmacology, and functionality of vasoactive intestinal peptide (VIP)/pituitary adenylate cyclase-activating peptide (PACAP) receptors. Reverse transcription polymerase chain reaction experiments, together with pharmacological approaches with a set of specific agonists and antagonists, demonstrated the presence of the three VIP/PACAP receptor subtypes (PAC1, VPAC1, and VPAC2 with a major role for VPAC1, acting through adenylate cyclase (AC) stimulation. An essentially similar pattern was observed by NE differentiated cells (4 days after serum deprivation) in spite of the important morphological changes observed. However, the expression of the prostate-specific antigen (PSA) decreased in NE cells (and increased again by dihydrotestosterone, DHT, treatment). The present demonstration of the induction of NE transdifferentiation in LNCaP cells by increasing concentrations of VIP adds value to previous observations on the role of cAMP in this process, an interesting topic in the comprehension of the molecular changes that are involved in the progression of prostate cancer to androgen independence.
Collapse
MESH Headings
- Adenylyl Cyclases/metabolism
- Binding, Competitive
- Cell Differentiation
- Culture Media, Serum-Free
- Cyclic AMP/biosynthesis
- Dose-Response Relationship, Drug
- Humans
- Male
- Neurites/ultrastructure
- Neurons/cytology
- Neurons/metabolism
- Neuropeptides/pharmacology
- Neurosecretory Systems/cytology
- Neurosecretory Systems/metabolism
- Pituitary Adenylate Cyclase-Activating Polypeptide
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
- RNA, Neoplasm/biosynthesis
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I
- Receptors, Pituitary Hormone/genetics
- Receptors, Pituitary Hormone/metabolism
- Receptors, Pituitary Hormone/physiology
- Receptors, Vasoactive Intestinal Peptide/genetics
- Receptors, Vasoactive Intestinal Peptide/metabolism
- Receptors, Vasoactive Intestinal Peptide/physiology
- Receptors, Vasoactive Intestinal Peptide, Type II
- Receptors, Vasoactive Intestinal Polypeptide, Type I
- Transcription, Genetic
- Tumor Cells, Cultured
- Vasoactive Intestinal Peptide/pharmacology
Collapse
Affiliation(s)
- M G Juarranz
- Department of Biochemistry and Molecular Biology, Universidad de Alcalá, 28871, Alcalá de Henares, Spain
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Juarranz MG, Bodega G, Prieto JC, Guijarro LG. Vasoactive intestinal peptide (VIP) stimulates rat prostatic epithelial cell proliferation. Prostate 2001; 47:285-92. [PMID: 11398176 DOI: 10.1002/pros.1073] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Androgens play a major role in supporting normal growth and functional maintenance in the prostate. However, this gland contains an array of neuroendocrine peptides that can play a regulatory role in its physiopathology. Among these peptides, one of the best studied is vasoactive intestinal peptide (VIP), which is abundant in autonomic nerves surrounding both human and rat prostatic acini. This neuropeptide may act through interaction with two types of high-affinity receptors, named VPAC(1) and VPAC(2) receptors. Another regulatory peptide, the pituitary adenylate cyclase-activating peptide (PACAP), interacts with these receptors with the same affinity as VIP, but binds with higher affinity to PAC(1) receptors. Human prostate tumors and rat prostate show a major presence of VPAC(1) receptors, whereas various findings suggest a role for VIP in prostatic development. Here we studied the effects of VIP on the proliferation of rat prostatic epithelial cells in culture. METHODS We studied the [(3)H]-thymidine uptake by rat prostatic epithelial cells in culture, characterized previously by using biomarkers such as cytokeratin and vimentin. In these cells we tested the effect of VIP and PACAP-27 on two different signaling pathways, the cyclic AMP (cAMP) and the inositol phosphate (IPs). RESULTS The rat prostatic cells in culture were cytokeratin (5,6,8) and vimentin positive, indicating that the culture was predominantly epithelial. The proliferation curves showed that the cells followed different states of growth: a quiescent, an exponential proliferative, and a steady state. Cyclic AMP production, but not inositol phosphate production, was increased in the presence of VIP and PACAP-27, which suggests the expression of VPAC(1) and/or VPAC(2) receptors primarily. VIP significantly increased prostatic cell proliferation in a bimodal manner, as shown for dibutyryl cyclic AMP (dbcAMP), which suggests that the effect of VIP upon prostatic proliferation is cAMP-dependent. CONCLUSIONS Here, we demonstrate that VIP increased [(3)H]thymidine uptake by rat prostatic epithelial cells in culture, conceivably by the activation of the adenylate cyclase.
Collapse
Affiliation(s)
- M G Juarranz
- Molecular Neuroendocrinology Unit, Department of Biochemistry and Molecular Biology, University of Alcalá, Alcalá de Henares, Spain
| | | | | | | |
Collapse
|
9
|
Plonowski A, Schally AV, Varga JL, Rekasi Z, Hebert F, Halmos G, Groot K. Potentiation of the inhibitory effect of growth hormone-releasing hormone antagonists on PC-3 human prostate cancer by bombesin antagonists indicative of interference with both IGF and EGF pathways. Prostate 2000; 44:172-80. [PMID: 10881027 DOI: 10.1002/1097-0045(20000701)44:2<172::aid-pros10>3.0.co;2-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND In view of the involvement of various neuropeptides and growth factors in the progression of androgen-independent prostate cancer, we investigated the effects of antagonists of growth hormone-releasing hormone (GHRH) alone or in combination with an antagonist of bombesin/gastrin-releasing peptide (BN/GRP) on PC-3 human prostate cancers. METHODS Nude mice implanted with PC-3 tumors received GHRH antagonists MZ-5-156 or JV-1-38, each at 20 microgram/day s.c. In experiment 2, treatment consisted of daily injections of JV-1-38 (20 microgram), BN/GRP antagonist RC-3940-II (10 microgram), or a combination of JV-1-38 and RC-3940-II. Serum IGF-I levels, expression of mRNA for IGF-II, and characteristics of BN/GRP and EGF receptors in tumor tissue were investigated. RESULTS JV-1-38 induced a greater inhibition of tumor growth and suppression of IGF-II mRNA than MZ-5-156, both compounds causing a similar decrease in serum IGF-I. In experiment 2, JV-1-38 and RC-3940-II produced a comparable reduction in tumor volume (65% and 61%, respectively), but a combination of both antagonists augmented tumor inhibition to 75%. Combined treatment with JV-1-38 and RC-3940-II also led to a greater suppression of IGF-II mRNA (92%), as compared with JV-1-38 (72%) or RC-3940-II (77%). Serum IGF-I concentration was lowered only in mice treated with JV-1-38, while the downregulation of BN/GRP and EGF receptors was specific for groups receiving RC-3940-II. CONCLUSIONS The inhibitory effects of GHRH antagonists on PC-3 human androgen-independent prostate cancer can be potentiated by concomitant use of BN/GRP antagonists. The combination of both types of analogs apparently interferes with both IGF and bombesin/EGF pathways, and might be clinically useful for the management of androgen-independent prostate cancer.
Collapse
Affiliation(s)
- A Plonowski
- Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, New Orleans, Louisiana, USA
| | | | | | | | | | | | | |
Collapse
|