1
|
Sakai Y, Kuwahara K. Carcinogenesis caused by transcription-coupled DNA damage through GANP and other components of the TREX-2 complex. Pathol Int 2024; 74:103-118. [PMID: 38411330 DOI: 10.1111/pin.13415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 02/05/2024] [Accepted: 02/10/2024] [Indexed: 02/28/2024]
Abstract
Perturbation of genes is important for somatic hypermutation to increase antibody affinity during B-cell immunity; however, it may also promote carcinogenesis. Previous studies have revealed that transcription is an important process that can induce DNA damage and genomic instability. Transciption-export-2 (TREX-2) complex, which regulates messenger RNA (mRNA) nuclear export, has been studied in the budding yeast Saccharomyces cerevisiae; however, recent studies have started investigating the molecular function of the mammalian TREX-2 complex. The central molecule in the TREX-2 complex, that is, germinal center-associated nuclear protein (GANP), is closely associated with antibody affinity maturation as well as cancer etiology. In this review, we focus on carcinogenesis, lymphomagenesis, and teratomagenesis caused by transcription-coupled DNA damage through GANP and other components of the TREX-2 complex. We review the basic machinery of mRNA nuclear export and transcription-coupled DNA damage. We then briefly describe the immunological relationship between GANP and the affinity maturation of antibodies. Finally, we illustrate that the aberrant expression of the components of the TREX-2 complex, especially GANP, is associated with the etiology of various solid tumors, lymphomas, and testicular teratoma. These components serve as reliable predictors of cancer prognosis and response to chemotherapy.
Collapse
Affiliation(s)
- Yasuhiro Sakai
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Shizuoka, Japan
- Department of Joint Research Laboratory of Clinical Medicine, Fujita Health University School of Medicine, Aichi, Japan
| | - Kazuhiko Kuwahara
- Department of Diagnostic Pathology, Kindai University Hospital, Osaka, Japan
| |
Collapse
|
2
|
Joshua IM, Lin M, Mardjuki A, Mazzola A, Höfken T. A Protein-Protein Interaction Analysis Suggests a Wide Range of New Functions for the p21-Activated Kinase (PAK) Ste20. Int J Mol Sci 2023; 24:15916. [PMID: 37958899 PMCID: PMC10647699 DOI: 10.3390/ijms242115916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
The p21-activated kinases (PAKs) are important signaling proteins. They contribute to a surprisingly wide range of cellular processes and play critical roles in a number of human diseases including cancer, neurological disorders and cardiac diseases. To get a better understanding of PAK functions, mechanisms and integration of various cellular activities, we screened for proteins that bind to the budding yeast PAK Ste20 as an example, using the split-ubiquitin technique. We identified 56 proteins, most of them not described previously as Ste20 interactors. The proteins fall into a small number of functional categories such as vesicle transport and translation. We analyzed the roles of Ste20 in glucose metabolism and gene expression further. Ste20 has a well-established role in the adaptation to changing environmental conditions through the stimulation of mitogen-activated protein kinase (MAPK) pathways which eventually leads to transcription factor activation. This includes filamentous growth, an adaptation to nutrient depletion. Here we show that Ste20 also induces filamentous growth through interaction with nuclear proteins such as Sac3, Ctk1 and Hmt1, key regulators of gene expression. Combining our observations and the data published by others, we suggest that Ste20 has several new and unexpected functions.
Collapse
Affiliation(s)
| | - Meng Lin
- Institute of Biochemistry, Kiel University, 24118 Kiel, Germany
| | - Ariestia Mardjuki
- Division of Biosciences, Brunel University London, Uxbridge UB8 3PH, UK; (I.M.J.)
| | - Alessandra Mazzola
- Division of Biosciences, Brunel University London, Uxbridge UB8 3PH, UK; (I.M.J.)
- Department of Biopathology and Medical and Forensic Biotechnologies, University of Palermo, 90133 Palermo, Italy
| | - Thomas Höfken
- Division of Biosciences, Brunel University London, Uxbridge UB8 3PH, UK; (I.M.J.)
- Institute of Biochemistry, Kiel University, 24118 Kiel, Germany
| |
Collapse
|
3
|
Corradi GR, Mazzitelli LR, Petrovich GD, de Tezanos Pinto F, Rochi L, Adamo HP. Plasma Membrane Ca 2+ Pump PMCA4z Is More Active Than Splicing Variant PMCA4x. Front Cell Neurosci 2021; 15:668371. [PMID: 34512262 PMCID: PMC8428515 DOI: 10.3389/fncel.2021.668371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/22/2021] [Indexed: 11/13/2022] Open
Abstract
The plasma membrane Ca2+ pumps (PMCA) are P-ATPases that control Ca2+ signaling and homeostasis by transporting Ca2+ out of the eukaryotic cell. Humans have four genes that code for PMCA isoforms (PMCA1-4). A large diversity of PMCA isoforms is generated by alternative mRNA splicing at sites A and C. The different PMCA isoforms are expressed in a cell-type and developmental-specific manner and exhibit differential sensitivity to a great number of regulatory mechanisms. PMCA4 has two A splice variants, the forms "x" and "z". While PMCA4x is ubiquitously expressed and relatively well-studied, PMCA4z is less characterized and its expression is restricted to some tissues such as the brain and heart muscle. PMCA4z lacks a stretch of 12 amino acids in the so-called A-M3 linker, a conformation-sensitive region of the molecule connecting the actuator domain (A) with the third transmembrane segment (M3). We expressed in yeast PMCA4 variants "x" and "z", maintaining constant the most frequent splice variant "b" at the C-terminal end, and obtained purified preparations of both proteins. In the basal autoinhibited state, PMCA4zb showed a higher ATPase activity and a higher apparent Ca2+ affinity than PMCA4xb. Both isoforms were stimulated by calmodulin but PMCA4zb was more strongly activated by acidic lipids than PMCA4xb. The results indicate that a PMCA4 intrinsically more active and more responsive to acidic lipids is produced by the variant "z" of the splicing site A.
Collapse
Affiliation(s)
- Gerardo R Corradi
- Departamento de Química Biológica, Instituto de Química y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Luciana R Mazzitelli
- Departamento de Química Biológica, Instituto de Química y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Guido D Petrovich
- Departamento de Química Biológica, Instituto de Química y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Felicitas de Tezanos Pinto
- Departamento de Química Biológica, Instituto de Química y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Lucia Rochi
- Departamento de Química Biológica, Instituto de Química y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Hugo P Adamo
- Departamento de Química Biológica, Instituto de Química y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
4
|
Sakai Y, Phimsen S, Okada S, Kuwahara K. The critical role of germinal center-associated nuclear protein in cell biology, immunohematology, and hematolymphoid oncogenesis. Exp Hematol 2020; 90:30-38. [PMID: 32827560 DOI: 10.1016/j.exphem.2020.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/14/2020] [Accepted: 08/16/2020] [Indexed: 11/16/2022]
Abstract
Germinal center-associated nuclear protein (GANP) is a unique and multifunctional protein that plays a critical role in cell biology, neurodegenerative disorders, immunohematology, and oncogenesis. GANP is an orthologue of Saccharomyces Sac3, one of the components of the transcription export 2 (TREX-2) complex and a messenger RNA (mRNA) nuclear export factor. GANP is widely conserved in all mammals, including humans. Although GANP was originally discovered as a molecule upregulated in the germinal centers of secondary lymphoid follicles in peripheral lymphoid organs, it is expressed ubiquitously in many tissues. It serves numerous functions, including making up part of the mammalian TREX-2 complex; mRNA nuclear export via nuclear pores; prevention of R-loop formation, genomic instability, and hyper-recombination; and B-cell affinity maturation. In this review, we first overview the extensive analyses that have revealed the basic functions of GANP and its ancestor molecule Sac3, including mRNA nuclear export and regulation of R-loop formation. We then describe how aberrant expression of GANP is significantly associated with cancer development. Moreover, we discuss a crucial role for GANP in B-cell development, especially affinity maturation in germinal centers. Finally, we illustrate that overexpression of GANP in B cells leads to lymphomagenesis resembling Hodgkin lymphoma derived from germinal center B cells, and that GANP may be involved in transdifferentiation of B cells to macrophages, which strongly affects Hodgkin lymphomagenesis.
Collapse
Affiliation(s)
- Yasuhiro Sakai
- Department of Diagnostic Pathology, Fujita Health University School of Medicine, Toyoake, Japan.
| | - Suchada Phimsen
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Retroviral Infection, Kumamoto University, Kumamoto, Japan
| | - Kazuhiko Kuwahara
- Department of Diagnostic Pathology, Fujita Health University School of Medicine, Toyoake, Japan.
| |
Collapse
|
5
|
PRP4KA, a Putative Spliceosomal Protein Kinase, Is Important for Alternative Splicing and Development in Arabidopsis thaliana. Genetics 2018; 210:1267-1285. [PMID: 30297453 PMCID: PMC6283158 DOI: 10.1534/genetics.118.301515] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 10/03/2018] [Indexed: 01/08/2023] Open
Abstract
Prp4 kinase (Prp4k) is the first spliceosome-associated kinase shown to regulate splicing in fungi and metazoans, but nothing is yet known about its functions in plants. Here, Kanno and Venhuizen et al. report... Splicing of precursor messenger RNAs (pre-mRNAs) is an essential step in the expression of most eukaryotic genes. Both constitutive splicing and alternative splicing, which produces multiple messenger RNA (mRNA) isoforms from a single primary transcript, are modulated by reversible protein phosphorylation. Although the plant splicing machinery is known to be a target for phosphorylation, the protein kinases involved remain to be fully defined. We report here the identification of pre-mRNA processing 4 (PRP4) KINASE A (PRP4KA) in a forward genetic screen based on an alternatively spliced GFP reporter gene in Arabidopsis thaliana (Arabidopsis). Prp4 kinase is the first spliceosome-associated kinase shown to regulate splicing in fungi and mammals but it has not yet been studied in plants. In the same screen we identified mutants defective in SAC3A, a putative mRNA export factor that is highly coexpressed with PRP4KA in Arabidopsis. Whereas the sac3a mutants appear normal, the prp4ka mutants display a pleiotropic phenotype featuring atypical rosettes, late flowering, tall final stature, reduced branching, and lowered seed set. Analysis of RNA-sequencing data from prp4ka and sac3a mutants identified widespread and partially overlapping perturbations in alternative splicing in the two mutants. Quantitative phosphoproteomic profiling of a prp4ka mutant detected phosphorylation changes in several serine/arginine-rich proteins, which regulate constitutive and alternative splicing, and other splicing-related factors. Tests of PRP4KB, the paralog of PRP4KA, indicated that the two genes are not functionally redundant. The results demonstrate the importance of PRP4KA for alternative splicing and plant phenotype, and suggest that PRP4KA may influence alternative splicing patterns by phosphorylating a subset of splicing regulators.
Collapse
|
6
|
Sakaguchi N, Maeda K. Germinal Center B-Cell-Associated Nuclear Protein (GANP) Involved in RNA Metabolism for B Cell Maturation. Adv Immunol 2016; 131:135-86. [PMID: 27235683 DOI: 10.1016/bs.ai.2016.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Germinal center B-cell-associated nuclear protein (GANP) is upregulated in germinal center B cells against T-cell-dependent antigens in mice and humans. In mice, GANP depletion in B cells impairs antibody affinity maturation. Conversely, its transgenic overexpression augments the generation of high-affinity antigen-specific B cells. GANP associates with AID in the cytoplasm, shepherds AID into the nucleus, and augments its access to the rearranged immunoglobulin (Ig) variable (V) region of the genome in B cells, thereby precipitating the somatic hypermutation of V region genes. GANP is also upregulated in human CD4(+) T cells and is associated with APOBEC3G (A3G). GANP interacts with A3G and escorts it to the virion cores to potentiate its antiretroviral activity by inactivating HIV-1 genomic cDNA. Thus, GANP is characterized as a cofactor associated with AID/APOBEC cytidine deaminase family molecules in generating diversity of the IgV region of the genome and genetic alterations of exogenously introduced viral targets. GANP, encoded by human chromosome 21, as well as its mouse equivalent on chromosome 10, contains a region homologous to Saccharomyces Sac3 that was characterized as a component of the transcription/export 2 (TREX-2) complex and was predicted to be involved in RNA export and metabolism in mammalian cells. The metabolism of RNA during its maturation, from the transcription site at the chromosome within the nucleus to the cytoplasmic translation apparatus, needs to be elaborated with regard to acquired and innate immunity. In this review, we summarize the current knowledge on GANP as a component of TREX-2 in mammalian cells.
Collapse
Affiliation(s)
- N Sakaguchi
- WPI Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan; Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| | - K Maeda
- WPI Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan; Laboratory of Host Defense, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| |
Collapse
|
7
|
Mazzitelli LR, Adamo HP. Hyperactivation of the human plasma membrane Ca2+ pump PMCA h4xb by mutation of Glu99 to Lys. J Biol Chem 2014; 289:10761-10768. [PMID: 24584935 DOI: 10.1074/jbc.m113.535583] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transport of calcium to the extracellular space carried out by plasma membrane Ca(2+) pumps (PMCAs) is essential for maintaining low Ca(2+) concentrations in the cytosol of eukaryotic cells. The activity of PMCAs is controlled by autoinhibition. Autoinhibition is relieved by the binding of Ca(2+)-calmodulin to the calmodulin-binding autoinhibitory sequence, which in the human PMCA is located in the C-terminal segment and results in a PMCA of high maximal velocity of transport and high affinity for Ca(2+). Autoinhibition involves the intramolecular interaction between the autoinhibitory domain and a not well defined region of the molecule near the catalytic site. Here we show that the fusion of GFP to the C terminus of the h4xb PMCA causes partial loss of autoinhibition by specifically increasing the Vmax. Mutation of residue Glu(99) to Lys in the cytosolic portion of the M1 transmembrane helix at the other end of the molecule brought the Vmax of the h4xb PMCA to near that of the calmodulin-activated enzyme without increasing the apparent affinity for Ca(2+). Altogether, the results suggest that the autoinhibitory interaction of the extreme C-terminal segment of the h4 PMCA is disturbed by changes of negatively charged residues of the N-terminal region. This would be consistent with a recently proposed model of an autoinhibited form of the plant ACA8 pump, although some differences are noted.
Collapse
Affiliation(s)
- Luciana R Mazzitelli
- Instituto de Química y Fisicoquímica Biológicas-Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, Argentina
| | - Hugo P Adamo
- Instituto de Química y Fisicoquímica Biológicas-Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, Argentina.
| |
Collapse
|
8
|
Corradi GR, de Tezanos Pinto F, Mazzitelli LR, Adamo HP. Shadows of an absent partner: ATP hydrolysis and phosphoenzyme turnover of the Spf1 (sensitivity to Pichia farinosa killer toxin) P5-ATPase. J Biol Chem 2012; 287:30477-84. [PMID: 22745129 DOI: 10.1074/jbc.m112.363465] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The P5-ATPases are important components of eukaryotic cells. They have been shown to influence protein biogenesis, folding, and transport. The knowledge of their biochemical properties is, however, limited, and the transported ions are still unknown. We expressed in Saccharomyces cerevisiae the yeast Spf1 P5A-ATPase containing the GFP fused at the N-terminal end. The GFP-Spf1 protein was localized in the yeast endoplasmic reticulum. Purified preparations of GFP-Spf1 hydrolyzed ATP at a rate of ~0.3-1 μmol of P(i)/mg/min and formed a phosphoenzyme in a simple reaction medium containing no added metal ions except Mg(2+). No significant differences were found between the ATPase activity of GFP-Spf1 and recombinant Spf1. Omission of protease inhibitors from the purification buffers resulted in a high level of endogenous proteolysis at the C-terminal portion of the GFP-Spf1 molecule that abolished phosphoenzyme formation. The Mg(2+) dependence of the GFP-Spf1 ATPase was similar to that of other P-ATPases where Mg(2+) acts as a cofactor. The addition of Mn(2+) to the reaction medium decreased the ATPase activity. The enzyme manifested optimal activity at a near neutral pH. When chased by the addition of cold ATP, 90% of the phosphoenzyme remained stable after 5 s. In contrast, the phosphoenzyme rapidly decayed to less than 20% when chased for 3 s by the addition of ADP. The greater effect of ADP accelerating the disappearance of EP suggests that GFP-Spf1 accumulated the E1~P phosphoenzyme. This behavior may reflect a limiting countertransported substrate needed to promote turnover or a missing regulatory factor.
Collapse
Affiliation(s)
- Gerardo R Corradi
- From the Instituto de Química y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, 1113 Ciudad Autónoma de Buenos Aires, Argentina
| | | | | | | |
Collapse
|
9
|
Cura CI, Corradi GR, Rinaldi DE, Adamo HP. High sensibility to reactivation by acidic lipids of the recombinant human plasma membrane Ca2+-ATPase isoform 4xb purified from Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:2757-64. [PMID: 18822268 DOI: 10.1016/j.bbamem.2008.08.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2008] [Revised: 08/25/2008] [Accepted: 08/26/2008] [Indexed: 11/17/2022]
Abstract
The human plasma membrane Ca2+ pump (isoform 4xb) was expressed in Saccharomyces cerevisiae and purified by calmodulin-affinity chromatography. Under optimal conditions the recombinant enzyme (yPMCA) hydrolyzed ATP in a Ca2+ dependent manner at a rate of 15 micromol/mg/min. The properties of yPMCA were compared to those of the PMCA purified from human red cells (ePMCA). The mobility of yPMCA in SDS-PAGE was the expected for the hPMCA4xb protein but slightly lower than that of ePMCA. Both enzymes achieved maximal activity when supplemented with acidic phospholipids. However, while ePMCA in mixed micelles of phosphatidylcholine-detergent had 30% of its maximal activity, the yPMCA enzyme was nearly inactive. Increasing the phosphatidylcholine content of the micelles did not increase the activity of yPMCA but the activity in the presence of phosphatidylcholine improved by partially removing the detergent. The reactivation of the detergent solubilized yPMCA required specifically acidic lipids and, as judged by the increase in the level of phosphoenzyme, it involved the increase in the amount of active enzyme. These results indicate that the function of yPMCA is highly sensitive to delipidation and the restitution of acidic lipids is needed for a functional enzyme.
Collapse
Affiliation(s)
- Carolina I Cura
- Instituto de Química y Fisicoquímica Biológicas (IQUIFIB)-Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Ciudad de Buenos Aires, Argentina.
| | | | | | | |
Collapse
|
10
|
Corradi GR, Adamo HP. Intramolecular Fluorescence Resonance Energy Transfer between Fused Autofluorescent Proteins Reveals Rearrangements of the N- and C-terminal Segments of the Plasma Membrane Ca2+ Pump Involved in the Activation. J Biol Chem 2007; 282:35440-8. [PMID: 17901055 DOI: 10.1074/jbc.m703377200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The blue and green fluorescent proteins (BFP and GFP) have been fused at the N- and C-terminal ends, respectively, of the plasma membrane Ca(2+) pump (PMCA) isoform 4xb (hPMCA4xb). The fusion protein was successfully expressed in yeast and purified by calmodulin affinity chromatography. Despite the presence of the fused autofluorescent proteins BFP-PMCA-GFP performed similarly to the wild-type enzyme with respect to Ca(2+)-ATPase activity and sensitivity to calmodulin activation. In the autoinhibited state BFP-PMCA-GFP exhibited a significant intramolecular fluorescence resonance energy transfer (FRET) consistent with the location of the fluorophores at an average distance of 45A. The FRET intensity in BFP-PMCA-GFP decreased when the enzyme was activated either by Ca(2+)-calmodulin, partial proteolysis, or acidic lipids. Moreover, FRET decreased and became insensitive to calmodulin when hPMCA4xb was activated by mutation D170N in BFP-PMCA(D170N)-GFP. The results suggest that the ends of the PMCA are in close proximity in the autoinhibited conformation, and they separate or reorient when the PMCA achieves its final activated conformation.
Collapse
Affiliation(s)
- Gerardo R Corradi
- IQUIFIB, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires 1113, Argentina
| | | |
Collapse
|
11
|
Sakaguchi N, Kimura T, Matsushita S, Fujimura S, Shibata J, Araki M, Sakamoto T, Minoda C, Kuwahara K. Generation of high-affinity antibody against T cell-dependent antigen in the Ganp gene-transgenic mouse. THE JOURNAL OF IMMUNOLOGY 2005; 174:4485-94. [PMID: 15814669 DOI: 10.4049/jimmunol.174.8.4485] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Generation of high-affinity Ab is impaired in mice lacking germinal center-associated DNA primase (GANP) in B cells. In this study, we examined the effect of its overexpression in ganp transgenic C57BL/6 mice (Ganp(Tg)). Ganp(Tg) displayed normal phenotype in B cell development, serum Ig levels, and responses against T cell-independent Ag; however, it generated the Ab with much higher affinity against nitrophenyl-chicken gammaglobulin in comparison with C57BL/6. To further examine the affinity increase, we established hybridomas producing high-affinity mAbs and compared their affinities using BIAcore. C57BL/6 generated high-affinity anti-nitrophenyl mAbs (K(D) approximately 2.50 x 10(-7) M) of IgG1/lambda1 and contained the V(H)186.2 region with W33L mutation. Ganp(Tg) generated much higher affinity (K(D) > 1.57 x 10(-9) M) by usage of V(H)186.2 as well as noncanonical V(H)7183 regions. Ganp(Tg) also generated exceptionally high-affinity anti-HIV-1 (V3 peptide) mAbs (K(D) > 9.90 x 10(-11) M) with neutralizing activity. These results demonstrated that GANP is involved in V region alteration generating high-affinity Ab.
Collapse
Affiliation(s)
- Nobuo Sakaguchi
- Department of Immunology, Graduate School of Medical Sciences, Kumamoto University, Honjo, Kumamoto, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Bredeston LM, Adamo HP. Loss of autoinhibition of the plasma membrane Ca(2+) pump by substitution of aspartic 170 by asparagin. A ctivation of plasma membrane calcium ATPase 4 without disruption of the interaction between the catalytic core and the C-terminal regulatory domain. J Biol Chem 2004; 279:41619-25. [PMID: 15292209 DOI: 10.1074/jbc.m403116200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The plasma membrane calcium ATPase (PMCA) actively transports Ca(2+) from the cytosol to the extra cellular space. The C-terminal segment of the PMCA functions as an inhibitory domain by interacting with the catalytic core. Ca(2+)-calmodulin binds to the C-terminal segment and stops inhibition. Here we showed that residue Asp(170), in the putative "A" domain of human PMCA isoform 4xb, plays a critical role in autoinhibition. In the absence of calmodulin a PMCA containing a site-specific mutation of D170N had 80% of the maximum activity of the calmodulin-activated PMCA and a similar high affinity for Ca(2+). The mutation did not change the activation of the PMCA by ATP. Deletion of the C-terminal segment further downstream of the calmodulin-binding site led to an additional increase in the maximal activity of the mutant, which suggests that the mutation did not affect the inhibition because of this portion of the C-terminal segment. The calmodulin-activated PMCA was more sensitive to vanadate inhibition than the autoinhibited enzyme. In contrast, inhibition of the D170N mutant required higher concentrations of vanadate and was not affected by calmodulin. Despite its higher basal activity, the mutant had an apparent affinity for calmodulin similar to that of the wild type enzyme, and its rate of proteolysis at the C-terminal segment was still calmodulin-dependent. Altogether these results suggest that activation by mutation D170N does not involve the displacement of the calmodulin-binding autoinhibitory domain from the catalytic core and may arise directly from changes in the accessibility to the calcium-binding residues of the pump.
Collapse
Affiliation(s)
- Luis M Bredeston
- Instituto de Química y Fisicoquímica Biológicas (IQUIFIB)-Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Ciudad de Buenos Aires, Argentina
| | | |
Collapse
|
13
|
Lei EP, Stern CA, Fahrenkrog B, Krebber H, Moy TI, Aebi U, Silver PA. Sac3 is an mRNA export factor that localizes to cytoplasmic fibrils of nuclear pore complex. Mol Biol Cell 2003; 14:836-47. [PMID: 12631707 PMCID: PMC151563 DOI: 10.1091/mbc.e02-08-0520] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In eukaryotes, mRNAs are transcribed in the nucleus and exported to the cytoplasm for translation to occur. Messenger RNAs complexed with proteins referred to as ribonucleoparticles are recognized for nuclear export in part by association with Mex67, a key Saccharomyces cerevisiae mRNA export factor and homolog of human TAP/NXF1. Mex67, along with its cofactor Mtr2, is thought to promote ribonucleoparticle translocation by interacting directly with components of the nuclear pore complex (NPC). Herein, we show that the nuclear pore-associated protein Sac3 functions in mRNA export. Using a mutant allele of MTR2 as a starting point, we have identified a mutation in SAC3 in a screen for synthetic lethal interactors. Loss of function of SAC3 causes a strong nuclear accumulation of mRNA and synthetic lethality with a number of mRNA export mutants. Furthermore, Sac3 can be coimmunoprecipitated with Mex67, Mtr2, and other factors involved in mRNA export. Immunoelectron microscopy analysis shows that Sac3 localizes exclusively to cytoplasmic fibrils of the NPC. Finally, Mex67 accumulates at the nuclear rim when SAC3 is mutated, suggesting that Sac3 functions in Mex67 translocation through the NPC.
Collapse
Affiliation(s)
- Elissa P Lei
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Dana Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
A novel nuclear phosphoprotein, GANP, is up-regulated in centrocytes of the germinal center and associated with MCM3, a protein essential for DNA replication. Blood 2000. [DOI: 10.1182/blood.v95.7.2321.007k33_2321_2328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antigen (Ag) immunization induces formation of the germinal center (GC), with large, rapidly proliferating centroblasts in the dark zone, and small, nondividing centrocytes in the light zone. We identified a novel nuclear protein, GANP, that is up-regulated in centrocytes. We found that GANP was up-regulated in GC B cells of Peyer's patches in normal mice and in spleens from Ag-immunized mice. GANP-positive cells appeared in the light zone of the GC, with coexpression of the peanut agglutinin (PNA) (PNA)-positive B220-positive phenotype. The expression of GANP was strikingly correlated with GC formation because Bcl6-deficient mice did not show the up-regulation of GANP. GANP-positive cells were mostly surrounded by follicular dendritic cells. Stimulation with anti-μ and anti-CD40 induced up-regulation of ganp messenger RNA as well as GANP protein in B220-positive B cells in vitro. GANP is a 210-kd protein localized in both the cytoplasm and nuclei, with a homologous region to Map80 that is associated with MCM3, a protein essential for DNA replication. Remarkably, GANP is associated with MCM3 in B cells and MCM3 is also up-regulated in the GC area. These results suggest that the up-regulation of GANP might participate in the development of Ag-driven B cells in GCs through its interaction with MCM3.
Collapse
|
15
|
A novel nuclear phosphoprotein, GANP, is up-regulated in centrocytes of the germinal center and associated with MCM3, a protein essential for DNA replication. Blood 2000. [DOI: 10.1182/blood.v95.7.2321] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractAntigen (Ag) immunization induces formation of the germinal center (GC), with large, rapidly proliferating centroblasts in the dark zone, and small, nondividing centrocytes in the light zone. We identified a novel nuclear protein, GANP, that is up-regulated in centrocytes. We found that GANP was up-regulated in GC B cells of Peyer's patches in normal mice and in spleens from Ag-immunized mice. GANP-positive cells appeared in the light zone of the GC, with coexpression of the peanut agglutinin (PNA) (PNA)-positive B220-positive phenotype. The expression of GANP was strikingly correlated with GC formation because Bcl6-deficient mice did not show the up-regulation of GANP. GANP-positive cells were mostly surrounded by follicular dendritic cells. Stimulation with anti-μ and anti-CD40 induced up-regulation of ganp messenger RNA as well as GANP protein in B220-positive B cells in vitro. GANP is a 210-kd protein localized in both the cytoplasm and nuclei, with a homologous region to Map80 that is associated with MCM3, a protein essential for DNA replication. Remarkably, GANP is associated with MCM3 in B cells and MCM3 is also up-regulated in the GC area. These results suggest that the up-regulation of GANP might participate in the development of Ag-driven B cells in GCs through its interaction with MCM3.
Collapse
|