1
|
Wefelmeier K, Schmitz S, Haut AM, Otten J, Jülich T, Blank LM. Engineering the methylotrophic yeast Ogataea polymorpha for lactate production from methanol. Front Bioeng Biotechnol 2023; 11:1223726. [PMID: 37456718 PMCID: PMC10347679 DOI: 10.3389/fbioe.2023.1223726] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction: Lactate has gained increasing attention as a platform chemical, particularly for the production of the bioplastic poly-lactic acid (PLA). While current microbial lactate production processes primarily rely on the use of sugars as carbon sources, it is possible to envision a future where lactate can be produced from sustainable, non-food substrates. Methanol could be such a potential substrate, as it can be produced by (electro)chemical hydrogenation from CO2. Methods: In this study, the use of the methylotrophic yeast Ogataea polymorpha as a host organism for lactate production from methanol was explored. To enable lactate production in Ogataea polymorpha, four different lactate dehydrogenases were expressed under the control of the methanol-inducible MOX promoter. The L-lactate dehydrogenase of Lactobacillus helveticus performed well in the yeast, and the lactate production of this engineered strain could additionally be improved by conducting methanol fed-batch experiments in shake flasks. Further, the impact of different nitrogen sources and the resulting pH levels on production was examined more closely. In order to increase methanol assimilation of the lactate-producing strain, an adaptive laboratory evolution experiment was performed. Results and Discussion: The growth rate of the lactate-producing strain on methanol was increased by 55%, while at the same time lactate production was preserved. The highest lactate titer of 3.8 g/L in this study was obtained by cultivating this evolved strain in a methanol fed-batch experiment in shake flasks with urea as nitrogen source. This study provides a proof of principle that Ogataea polymorpha is a suitable host organism for the production of lactate using methanol as carbon source. In addition, it offers guidance for the engineering of methylotrophic organisms that produce platform chemicals from CO2-derived substrates. With reduced land use, this technology will promote the development of a sustainable industrial biotechnology in the future.
Collapse
|
2
|
Malyavko AN, Petrova OA, Zvereva MI, Polshakov VI, Dontsova OA. Telomere length regulation by Rif1 protein from Hansenula polymorpha. eLife 2022; 11:75010. [PMID: 35129114 PMCID: PMC8820739 DOI: 10.7554/elife.75010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/14/2022] [Indexed: 11/17/2022] Open
Abstract
Rif1 is a large multifaceted protein involved in various processes of DNA metabolism – from telomere length regulation and replication to double-strand break repair. The mechanistic details of its action, however, are often poorly understood. Here, we report functional characterization of the Rif1 homologue from methylotrophic thermotolerant budding yeast Hansenula polymorpha DL-1. We show that, similar to other yeast species, H. polymorpha Rif1 suppresses telomerase-dependent telomere elongation. We uncover two novel modes of Rif1 recruitment at H. polymorpha telomeres: via direct DNA binding and through the association with the Ku heterodimer. Both of these modes (at least partially) require the intrinsically disordered N-terminal extension – a region of the protein present exclusively in yeast species. We also demonstrate that Rif1 binds Stn1 and promotes its accumulation at telomeres in H. polymorpha.
Collapse
Affiliation(s)
- Alexander N Malyavko
- Faculty of Chemistry and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Olga A Petrova
- Faculty of Chemistry and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Maria I Zvereva
- Faculty of Chemistry and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Vladimir I Polshakov
- Center for Magnetic Tomography and Spectroscopy, Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Olga A Dontsova
- Faculty of Chemistry and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation.,Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russian Federation.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
3
|
Karginov AV, Alexandrov AI, Kushnirov VV, Agaphonov MO. Perturbations in the Heme and Siroheme Biosynthesis Pathways Causing Accumulation of Fluorescent Free Base Porphyrins and Auxotrophy in Ogataea Yeasts. J Fungi (Basel) 2021; 7:jof7100884. [PMID: 34682305 PMCID: PMC8540529 DOI: 10.3390/jof7100884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/16/2021] [Accepted: 10/17/2021] [Indexed: 01/18/2023] Open
Abstract
The biosynthesis of cyclic tetrapyrrol chromophores such as heme, siroheme, and chlorophyll involves the formation of fluorescent porphyrin precursors or compounds, which become fluorescent after oxidation. To identify Ogataea polymorpha mutations affecting the final steps of heme or siroheme biosynthesis, we performed a search for clones with fluorescence characteristic of free base porphyrins. One of the obtained mutants was defective in the gene encoding a homologue of Saccharomyces cerevisiae Met8 responsible for the last two steps of siroheme synthesis. Same as the originally obtained mutation, the targeted inactivation of this gene in O. polymorpha and O. parapolymorpha led to increased porphyrin fluorescence and methionine auxotrophy. These features allow the easy isolation of Met8-defective mutants and can potentially be used to construct auxotrophic strains in various yeast species. Besides MET8, this approach also identified the HEM3 gene encoding porphobilinogen deaminase, whose increased dosage led to free base porphyrin accumulation.
Collapse
|
4
|
Baghban R, Farajnia S, Rajabibazl M, Ghasemi Y, Mafi A, Hoseinpoor R, Rahbarnia L, Aria M. Yeast Expression Systems: Overview and Recent Advances. Mol Biotechnol 2019; 61:365-384. [PMID: 30805909 DOI: 10.1007/s12033-019-00164-8] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Yeasts are outstanding hosts for the production of functional recombinant proteins with industrial or medical applications. Great attention has been emerged on yeast due to the inherent advantages and new developments in this host cell. For the production of each specific product, the most appropriate expression system should be identified and optimized both on the genetic and fermentation levels, considering the features of the host, vector and expression strategies. Currently, several new systems are commercially available; some of them are private and need licensing. The potential for secretory expression of heterologous proteins in yeast proposed this system as a candidate for the production of complex eukaryotic proteins. The common yeast expression hosts used for recombinant proteins' expression include Saccharomyces cerevisiae, Pichia pastoris, Hansenula polymorpha, Yarrowia lipolytica, Arxula adeninivorans, Kluyveromyces lactis, and Schizosaccharomyces pombe. This review is dedicated to discuss on significant characteristics of the most common methylotrophic and non-methylotrophic yeast expression systems with an emphasis on their advantages and new developments.
Collapse
Affiliation(s)
- Roghayyeh Baghban
- Medical Biotechnology Department, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran.,Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Biotechnology Research Center, Tabriz University of Medical Sciences, Daneshgah Ave, Tabriz, Iran
| | - Safar Farajnia
- Biotechnology Research Center, Tabriz University of Medical Sciences, Daneshgah Ave, Tabriz, Iran. .,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Masoumeh Rajabibazl
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Velenjak, Arabi Ave, Tehran, Iran. .,Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Younes Ghasemi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - AmirAli Mafi
- Anesthesiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reyhaneh Hoseinpoor
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Rahbarnia
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Aria
- Biotechnology Research Center, Tabriz University of Medical Sciences, Daneshgah Ave, Tabriz, Iran
| |
Collapse
|
5
|
Manfrão-Netto JHC, Gomes AMV, Parachin NS. Advances in Using Hansenula polymorpha as Chassis for Recombinant Protein Production. Front Bioeng Biotechnol 2019; 7:94. [PMID: 31119131 PMCID: PMC6504786 DOI: 10.3389/fbioe.2019.00094] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/16/2019] [Indexed: 11/13/2022] Open
Abstract
The methylotrophic yeast Hansenula polymorpha, known as a non-conventional yeast, is used for the last 30 years for the production of recombinant proteins, including enzymes, vaccines, and biopharmaceuticals. Although a large number of reviews have been published elucidating the applications of this yeast as a cell factory, the latest was released about 10 years ago. Therefore, this review aimed at summarizing available information on the use of H. polymorpha as a host for recombinant protein production in the last decade. Examples of chemicals and virus-like particles produced using this yeast also are discussed. Firstly, the aspects that feature this yeast as a host for recombinant protein production are highlighted including the techniques available for its genetic manipulation as well as strategies for cultivation in bioreactors. Special attention is given to the novel genomic editing tools, mainly CRISPR/Cas9 that was recently established in this yeast. Finally, recent examples of using H. polymorpha as an expression platform are presented and discussed. The production of human Parathyroid Hormone (PTH) and Staphylokinase (SAK) in H. polymorpha are described as case studies for process establishment in this yeast. Altogether, this review is a guideline for this yeast utilization as an expression platform bringing a thorough analysis of the genetic aspects and fermentation protocols used up to date, thus encouraging the production of novel biomolecules in H. polymorpha.
Collapse
Affiliation(s)
| | - Antônio Milton Vieira Gomes
- Grupo Engenharia de Biocatalisadores, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brazil
| | - Nádia Skorupa Parachin
- Grupo Engenharia de Biocatalisadores, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brazil
| |
Collapse
|
6
|
Gündüz Ergün B, Hüccetoğulları D, Öztürk S, Çelik E, Çalık P. Established and Upcoming Yeast Expression Systems. Methods Mol Biol 2019; 1923:1-74. [PMID: 30737734 DOI: 10.1007/978-1-4939-9024-5_1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Yeast was the first microorganism used by mankind for biotransformation of feedstock that laid the foundations of industrial biotechnology. Long historical use, vast amount of data, and experience paved the way for Saccharomyces cerevisiae as a first yeast cell factory, and still it is an important expression platform as being the production host for several large volume products. Continuing special needs of each targeted product and different requirements of bioprocess operations have led to identification of different yeast expression systems. Modern bioprocess engineering and advances in omics technology, i.e., genomics, transcriptomics, proteomics, secretomics, and interactomics, allow the design of novel genetic tools with fine-tuned characteristics to be used for research and industrial applications. This chapter focuses on established and upcoming yeast expression platforms that have exceptional characteristics, such as the ability to utilize a broad range of carbon sources or remarkable resistance to various stress conditions. Besides the conventional yeast S. cerevisiae, established yeast expression systems including the methylotrophic yeasts Pichia pastoris and Hansenula polymorpha, the dimorphic yeasts Arxula adeninivorans and Yarrowia lipolytica, the lactose-utilizing yeast Kluyveromyces lactis, the fission yeast Schizosaccharomyces pombe, and upcoming yeast platforms, namely, Kluyveromyces marxianus, Candida utilis, and Zygosaccharomyces bailii, are compiled with special emphasis on their genetic toolbox for recombinant protein production.
Collapse
Affiliation(s)
- Burcu Gündüz Ergün
- Biochemical Reaction Engineering Laboratory, Department of Chemical Engineering, Middle East Technical University, Ankara, Turkey
| | - Damla Hüccetoğulları
- Biochemical Reaction Engineering Laboratory, Department of Chemical Engineering, Middle East Technical University, Ankara, Turkey
| | - Sibel Öztürk
- Biochemical Reaction Engineering Laboratory, Department of Chemical Engineering, Middle East Technical University, Ankara, Turkey
| | - Eda Çelik
- Department of Chemical Engineering, Hacettepe University, Ankara, Turkey
- Bioengineering Division, Institute of Science, Hacettepe University, Ankara, Turkey
| | - Pınar Çalık
- Biochemical Reaction Engineering Laboratory, Department of Chemical Engineering, Middle East Technical University, Ankara, Turkey.
- Industrial Biotechnology and Metabolic Engineering Laboratory, Department of Biotechnology, Graduate School of Natural and Applied Sciences, Middle East Technical University, Ankara, Turkey.
| |
Collapse
|
7
|
Yoo SJ, Moon HY, Kang HA. Screening and Selection of Production Strains: Secretory Protein Expression and Analysis in Hansenula polymorpha. Methods Mol Biol 2019; 1923:133-151. [PMID: 30737738 DOI: 10.1007/978-1-4939-9024-5_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The thermotolerant methylotrophic yeast Hansenula polymorpha has been used as a host for the high-level production of recombinant proteins from industrial enzymes to therapeutic proteins. Despite favorable characteristics of the H. polymorpha-based platform for application to heterologous gene expression, several problems and limitations, such as over-glycosylation and proteolytic degradation, can be encountered in the development of production strains for secretory proteins. Here, H. polymorpha genetic tools and host strains, developed for authentic processing and modification of secretory recombinant proteins, are introduced with the analytical protocols.
Collapse
Affiliation(s)
- Su Jin Yoo
- Department of Life Science, College of Natural Science, Chung-Ang University, Seoul, Republic of Korea
| | - Hye Yun Moon
- Department of Life Science, College of Natural Science, Chung-Ang University, Seoul, Republic of Korea
| | - Hyun Ah Kang
- Department of Life Science, College of Natural Science, Chung-Ang University, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Karginov AV, Fokina AV, Kang HA, Kalebina TS, Sabirzyanova TA, Ter-Avanesyan MD, Agaphonov MO. Dissection of differential vanadate sensitivity in two Ogataea species links protein glycosylation and phosphate transport regulation. Sci Rep 2018; 8:16428. [PMID: 30401924 PMCID: PMC6219546 DOI: 10.1038/s41598-018-34888-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/24/2018] [Indexed: 11/08/2022] Open
Abstract
The closely related yeasts Ogataea polymorpha and O. parapolymorpha differ drastically from each other by sensitivity to the toxic phosphate analog vanadate. Search for genes underlying this difference revealed two genes, one designated as ABV1 (Alcian Blue staining, Vanadate resistance), which encodes a homologue of Saccharomyces cerevisiae Mnn4 responsible for attachment of mannosylphosphate to glycoside chains of secretory proteins, and the other designated as its S. cerevisiae homologue PHO87, encoding the plasma membrane low affinity phosphate sensor/transporter. The effect of Pho87 on vanadate resistance was bidirectional, since it decreased the resistance on phosphate-depleted medium, but was required for pronounced protection against vanadate by external phosphate. This highlights the dual function of this protein as a low affinity phosphate transporter and an external phosphate sensor. Involvement of Pho87 in phosphate sensing was confirmed by its effects on regulation of the promoter of the PHO84 gene, encoding a high affinity phosphate transporter. The effect of Abv1 was also complex, since it influenced Pho87 level and enhanced repression of the PHO84 promoter via a Pho87-independent pathway. Role of the identified genes in the difference in vanadate resistance between O. polymorpha and O. parapolymorpha is discussed.
Collapse
Affiliation(s)
- Azamat V Karginov
- Bach Institute of Biochemistry, Research Center of Biotechnology RAS, Moscow, Russian Federation
| | - Anastasia V Fokina
- Bach Institute of Biochemistry, Research Center of Biotechnology RAS, Moscow, Russian Federation
| | - Hyun Ah Kang
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Tatyana S Kalebina
- Department of Molecular Biology, Biological Faculty, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Tatyana A Sabirzyanova
- Department of Molecular Biology, Biological Faculty, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Michael D Ter-Avanesyan
- Bach Institute of Biochemistry, Research Center of Biotechnology RAS, Moscow, Russian Federation
| | - Michael O Agaphonov
- Bach Institute of Biochemistry, Research Center of Biotechnology RAS, Moscow, Russian Federation.
| |
Collapse
|
9
|
Wang L, Deng A, Zhang Y, Liu S, Liang Y, Bai H, Cui D, Qiu Q, Shang X, Yang Z, He X, Wen T. Efficient CRISPR-Cas9 mediated multiplex genome editing in yeasts. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:277. [PMID: 30337956 PMCID: PMC6180501 DOI: 10.1186/s13068-018-1271-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 09/26/2018] [Indexed: 05/27/2023]
Abstract
BACKGROUND The thermotolerant methylotrophic yeast Ogataea polymorpha has been regarded as an important organism for basic research and biotechnological applications. It is generally recognized as an efficient and safe cell factory in fermentative productions of chemicals, biofuels and other bio-products. However, it is difficult to genetically engineer for the deficiency of an efficient and versatile genome editing technology. RESULTS In this study, we developed a CRISPR-Cas9-assisted multiplex genome editing (CMGE) approach including multiplex genes knock-outs, multi-locus (ML) and multi-copy (MC) integration methods in yeasts. Based on CMGE, various genome modifications, including gene deletion, integration, and precise point mutation, were performed in O. polymorpha. Using the CMGE-ML integration method, three genes TAL from Herpetosiphon aurantiacus, 4CL from Arabidopsis thaliana and STS from Vitis vinifera of resveratrol biosynthetic pathway were simultaneously integrated at three different loci, firstly achieving the biosynthesis of resveratrol in O. polymorpha. Using the CMGE-MC method, ∼ 10 copies of the fusion expression cassette P ScTEF1 -TAL-P ScTPI1 -4CL-P ScTEF2 -STS were integrated into the genome. Resveratrol production was increased ~ 20 fold compared to the one copy integrant and reached 97.23 ± 4.84 mg/L. Moreover, the biosynthesis of human serum albumin and cadaverine were achieved in O. polymorpha using CMGE-MC to integrate genes HSA and cadA, respectively. In addition, the CMGE-MC method was successfully developed in Saccharomyces cerevisiae. CONCLUSIONS An efficient and versatile multiplex genome editing method was developed in yeasts. The method would provide an efficient toolkit for genetic engineering and synthetic biology researches of O. polymorpha and other yeast species.
Collapse
Affiliation(s)
- Laiyou Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Aihua Deng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Yun Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Shuwen Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Yong Liang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Hua Bai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Di Cui
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Qidi Qiu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xiuling Shang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Zhao Yang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Xiuping He
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Tingyi Wen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
10
|
Fokina AV, Chechenova MB, Karginov AV, Ter-Avanesyan MD, Agaphonov MO. Genetic Evidence for the Role of the Vacuole in Supplying Secretory Organelles with Ca2+ in Hansenula polymorpha. PLoS One 2015; 10:e0145915. [PMID: 26717478 PMCID: PMC4696657 DOI: 10.1371/journal.pone.0145915] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 12/10/2015] [Indexed: 11/18/2022] Open
Abstract
Processes taking place in the secretory organelles require Ca2+ and Mn2+, which in yeast are supplied by the Pmr1 ion pump. Here we observed that in the yeast Hansenula polymorpha Ca2+ deficiency in the secretory pathway caused by Pmr1 inactivation is exacerbated by (i) the ret1-27 mutation affecting COPI-mediated vesicular transport, (ii) inactivation of the vacuolar Ca2+ ATPase Pmc1 and (iii) inactivation of Vps35, which is a component of the retromer complex responsible for protein transport between the vacuole and secretory organelles. The ret1-27 mutation also exerted phenotypes indicating alterations in transport between the vacuole and secretory organelles. These data indicate that ret1-27, pmc1 and vps35 affect a previously unknown Pmr1-independent route of the Ca2+ delivery to the secretory pathway. We also observed that the vacuolar protein carboxypeptidase Y receives additional modifications of its glycoside chains if it escapes the Vps10-dependent sorting to the vacuole.
Collapse
Affiliation(s)
- Anastasia V. Fokina
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Maria B. Chechenova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Azamat V. Karginov
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Michael D. Ter-Avanesyan
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Michael O. Agaphonov
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
- * E-mail:
| |
Collapse
|
11
|
Sibirny A, Madzak C, Fickers P. Genetic engineering of nonconventional yeasts for the production of valuable compounds. Microb Biotechnol 2014. [DOI: 10.1201/b17587-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
12
|
Stable overproducer of hepatitis B surface antigen in the methylotrophic yeast Hansenula polymorpha due to multiple integration of heterologous auxotrophic selective markers and defect in peroxisome biogenesis. Appl Microbiol Biotechnol 2013; 97:9969-79. [DOI: 10.1007/s00253-013-5223-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 08/27/2013] [Accepted: 08/29/2013] [Indexed: 10/26/2022]
|
13
|
Development of an α-amylase reporter system for efficient screening of clones with highly expressed heterologous protein in Hansenula polymorpha. Biotechnol Lett 2010; 32:1473-9. [DOI: 10.1007/s10529-010-0314-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 05/11/2010] [Indexed: 11/27/2022]
|
14
|
Cheon SA, Choo J, Ubiyvovk VM, Park JN, Kim MW, Oh DB, Kwon O, Sibirny AA, Kim JY, Kang HA. New selectable host-marker systems for multiple genetic manipulations based on TRP1, MET2 and ADE2 in the methylotrophic yeast Hansenula polymorpha. Yeast 2009; 26:507-21. [PMID: 19653331 DOI: 10.1002/yea.1701] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interest has been increasing in the thermotolerant methylotrophic yeast Hansenula polymorpha as a useful system for fundamental research and applied purposes. Only a few genetic marker genes and auxotrophic hosts are yet available for this yeast. Here we isolated and developed H. polymorpha TRP1, MET2 and ADE2 genes as selectable markers for multiple genetic manipulations. The H. polymorpha TRP1 (HpTRP1), MET2 (HpMET2) and ADE2 (HpADE2) genes were sequentially disrupted, using an HpURA3 pop-out cassette in H. polymorpha to generate a series of new multiple auxotrophic strains, including up to a quintuple auxotrophic strain. Unexpectedly, the HpTRP1 deletion mutants required additional tryptophan supplementation for their full growth, even on complex media such as YPD. Despite the clearly increased resistance to 5-fluoroanthranilic acid of the HpTRP1 deletion mutants, the HpTRP1 blaster cassette does not appear to be usable as a counter-selection marker in H. polymorpha. Expression vectors carrying HpADE2, HpTRP1 or HpMET2 with their own promoters and terminators as selectable markers were constructed and used to co-transform the quintuple auxotrophic strain for the targeted expression of a heterologous gene, Aspergillus saitoi MsdS, at the ER, the Golgi and the cell surface, respectively.
Collapse
Affiliation(s)
- Seon Ah Cheon
- Department of Life Science, College of Natural Science, Chung-Ang University, Seoul 156-756, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Böer E, Steinborn G, Kunze G, Gellissen G. Yeast expression platforms. Appl Microbiol Biotechnol 2007; 77:513-23. [PMID: 17924105 DOI: 10.1007/s00253-007-1209-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Revised: 09/13/2007] [Accepted: 09/16/2007] [Indexed: 11/29/2022]
Abstract
Yeasts provide attractive expression platforms. They combine ease of genetic manipulations and the option for a simple fermentation design of a microbial organism with the capabilities of an eukaryotic organism to secrete and to modify a protein according to a general eukaryotic scheme. For platform applications, a range of yeast species has been developed during the last decades. We present in the following review a selection of established and newly defined expression systems. The review is concluded by the description of a wide-range vector system that allows the assessment of the selected organisms in parallel for criteria like secretion or appropriate processing and modification in a given case.
Collapse
Affiliation(s)
- Erik Böer
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, Corrensstr. 3, 06466, Gatersleben, Germany
| | | | | | | |
Collapse
|
16
|
Gellissen G, Kunze G, Gaillardin C, Cregg JM, Berardi E, Veenhuis M, van der Klei I. New yeast expression platforms based on methylotrophic Hansenula polymorpha and Pichia pastoris and on dimorphic Arxula adeninivorans and Yarrowia lipolytica - a comparison. FEMS Yeast Res 2005; 5:1079-96. [PMID: 16144775 DOI: 10.1016/j.femsyr.2005.06.004] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Revised: 06/09/2005] [Accepted: 06/09/2005] [Indexed: 11/29/2022] Open
Abstract
Yeasts combine the ease of genetic manipulation and fermentation of a microbial organism with the capability to secrete and to modify proteins according to a general eukaryotic scheme. Yeasts thus provide attractive platforms for the production of recombinant proteins. Here, four important species are presented and compared: the methylotrophic Hansenula polymorpha and Pichia pastoris, distinguished by an increasingly large track record as industrial platforms, and the dimorphic species Arxula adeninivorans and Yarrrowia lipolytica, not yet established as industrial platforms, but demonstrating promising technological potential, as discussed in this article.
Collapse
Affiliation(s)
- Gerd Gellissen
- PharmedArtis GmbH, Forckenbeckstr. 6, 52074 Aachen, Germany
| | | | | | | | | | | | | |
Collapse
|
17
|
Chechenova MB, Romanova NV, Deev AV, Packeiser AN, Smirnov VN, Agaphonov MO, Ter-Avanesyan MD. C-terminal truncation of alpha-COP affects functioning of secretory organelles and calcium homeostasis in Hansenula polymorpha. EUKARYOTIC CELL 2004; 3:52-60. [PMID: 14871936 PMCID: PMC329505 DOI: 10.1128/ec.3.1.52-60.2004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In eukaryotic cells, COPI vesicles retrieve resident proteins to the endoplasmic reticulum and mediate intra-Golgi transport. Here, we studied the Hansenula polymorpha homologue of the Saccharomyces cerevisiae RET1 gene, encoding alpha-COP, a subunit of the COPI protein complex. H. polymorpha ret1 mutants, which expressed truncated alpha-COP lacking more than 300 C-terminal amino acids, manifested an enhanced ability to secrete human urokinase-type plasminogen activator (uPA) and an inability to grow with a shortage of Ca2+ ions, whereas a lack of alpha-COP expression was lethal. The alpha-COP defect also caused alteration of intracellular transport of the glycosylphosphatidylinositol-anchored protein Gas1p, secretion of abnormal uPA forms, and reductions in the levels of Pmr1p, a Golgi Ca2+-ATPase. Overexpression of Pmr1p suppressed some ret1 mutant phenotypes, namely, Ca2+ dependence and enhanced uPA secretion. The role of COPI-dependent vesicular transport in cellular Ca2+ homeostasis is discussed.
Collapse
Affiliation(s)
- Maria B Chechenova
- Institute of Experimental Cardiology, Cardiology Research Center, 121552 Moscow, Russia
| | | | | | | | | | | | | |
Collapse
|
18
|
Heo JH, Hong WK, Cho EY, Kim MW, Kim JY, Kim CH, Rhee SK, Kang HA. Properties of the -derived constitutive promoter, assessed using an HSA reporter gene. FEMS Yeast Res 2003; 4:175-84. [PMID: 14613882 DOI: 10.1016/s1567-1356(03)00150-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The glyceraldehyde-3-phosphate dehydrogenase promoter, P(GAP), was employed to direct the constitutive expression of recombinant human serum albumin (HSA) in Hansenula polymorpha. A set of integration vectors containing the HSA cDNA under the control of P(GAP) was constructed and the elemental parameters affecting the expression of HSA from P(GAP) were analyzed. The presence of a 5'-untranslated region derived from the HSA cDNA and the integration of the expression vector into the GAP locus were shown to improve the expression of HSA under P(GAP). Glycerol supported a higher level of HSA expression from P(GAP) along with a higher cell density than either glucose or methanol. The growth at high glycerol concentrations up to 12% did not cause any significant repression of the cell growth. A high cell density culture, up to 83 g l(-1) dry cell weight with a HSA production of 550 mg l(-1), was obtained in less than 32 h of cultivation in a fed-batch fermentation employing intermittent feeding with 12% glycerol. The GAP promoter-based HSA expression system showed a higher specific production rate and required a much simpler fermentation process than the MOX promoter-based system, demonstrating that P(GAP) can be a practical alternative of the MOX promoter in the large-scale production of HSA from H. polymorpha.
Collapse
Affiliation(s)
- Joo Hyung Heo
- Korea Research Institute of Bioscience and Biotechnology, Yusong P.O. Box 115, 305-600, Taejon, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Kim SY, Sohn JH, Bae JH, Pyun YR, Agaphonov MO, Ter-Avanesyan MD, Choi ES. Efficient library construction by in vivo recombination with a telomere-originated autonomously replicating sequence of Hansenula polymorpha. Appl Environ Microbiol 2003; 69:4448-54. [PMID: 12902228 PMCID: PMC169078 DOI: 10.1128/aem.69.8.4448-4454.2003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A high frequency of transformation and an equal gene dosage between transformants are generally required for activity-based selection of mutants from a library obtained by directed evolution. An efficient library construction method was developed by using in vivo recombination in Hansenula polymorpha. Various linear sets of vectors and insert fragments were transformed and analyzed to optimize the in vivo recombination system. A telomere-originated autonomously replicating sequence (ARS) of H. polymorpha, reported as a recombination hot spot, facilitates in vivo recombination between the linear transforming DNA and chromosomes. In vivo recombination of two linear DNA fragments containing the telomeric ARS drastically increases the transforming frequency, up to 10-fold, compared to the frequency of circular plasmids. Direct integration of the one-end-recombined linear fragment into chromosomes produced transformants with single-copy gene integration, resulting in the same expression level for the reporter protein between transformants. This newly developed in vivo recombination system of H. polymorpha provides a suitable library for activity-based selection of mutants after directed evolution.
Collapse
Affiliation(s)
- So-Young Kim
- Laboratory of Microbial Functions, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yusong, Taejon 305-333, Russia
| | | | | | | | | | | | | |
Collapse
|
20
|
Agaphonov MO, Romanova NV, Trushkina PM, Smirnov VN, Ter-Avanesyan MD. Aggregation and retention of human urokinase type plasminogen activator in the yeast endoplasmic reticulum. BMC Mol Biol 2002; 3:15. [PMID: 12366865 PMCID: PMC130179 DOI: 10.1186/1471-2199-3-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2002] [Accepted: 10/07/2002] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Secretion of recombinant proteins in yeast can be affected by their improper folding in the endoplasmic reticulum and subsequent elimination of the misfolded molecules via the endoplasmic reticulum associated protein degradation pathway. Recombinant proteins can also be degraded by the vacuolar protease complex. Human urokinase type plasminogen activator (uPA) is poorly secreted by yeast but the mechanisms interfering with its secretion are largely unknown. RESULTS We show that in Hansenula polymorpha overexpression worsens uPA secretion and stimulates its intracellular aggregation. The absence of the Golgi modifications in accumulated uPA suggests that aggregation occurs within the endoplasmic reticulum. Deletion analysis has shown that the N-terminal domains were responsible for poor uPA secretion and propensity to aggregate. Mutation abolishing N-glycosylation decreased the efficiency of uPA secretion and increased its aggregation degree. Retention of uPA in the endoplasmic reticulum stimulates its aggregation. CONCLUSIONS The data obtained demonstrate that defect of uPA secretion in yeast is related to its retention in the endoplasmic reticulum. Accumulation of uPA within the endoplasmic reticulum disturbs its proper folding and leads to formation of high molecular weight aggregates.
Collapse
Affiliation(s)
- Michael O Agaphonov
- Institute of Experimental Cardiology, Cardiology Research Center, 3 Cherepkovskaya Str. 15A, Moscow, 121552, Russia
| | - Nina V Romanova
- Institute of Experimental Cardiology, Cardiology Research Center, 3 Cherepkovskaya Str. 15A, Moscow, 121552, Russia
| | - Polina M Trushkina
- Institute of Experimental Cardiology, Cardiology Research Center, 3 Cherepkovskaya Str. 15A, Moscow, 121552, Russia
| | - Vladimir N Smirnov
- Institute of Experimental Cardiology, Cardiology Research Center, 3 Cherepkovskaya Str. 15A, Moscow, 121552, Russia
| | - Michael D Ter-Avanesyan
- Institute of Experimental Cardiology, Cardiology Research Center, 3 Cherepkovskaya Str. 15A, Moscow, 121552, Russia
| |
Collapse
|
21
|
Kim MW, Agaphonov MO, Kim JY, Rhee SK, Kang HA. Sequencing and functional analysis of the Hansenula polymorpha genomic fragment containing the YPT1 and PMI40 genes. Yeast 2002; 19:863-71. [PMID: 12112240 DOI: 10.1002/yea.881] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A 6.0 kb genomic DNA segment was isolated by its ability to rescue the temperature-sensitive growth defect and the hypersensitivity to sodium deoxycholate of a spontaneous vanadate-resistant mutant derived from Hansenula polymorpha DL-1. The genomic fragment contains four open reading frames homologous to the Saccharomyces cerevisiae genes YPT1 (which codes for a GTP-binding protein; 75% amino acid identity), PMI40 (encoding phosphomannose isomerase; 61% identity), YLR065c (30% identity) and CST13 (28% identity). The H. polymorpha YPT1 homologue (HpYPT1) was found to be responsible for the complementation of the temperature-sensitive phenotype and the sodium deoxycholate sensitivity of the mutant strain. Disruption of the H. polymorpha PMI40 homologue (HpPMI40) resulted in the auxotrophic requirement for D-mannose. The heterologous expressions of HpYPT1 and HpPMI40 were able to complement the temperature-sensitive phenotype of S. cerevisiae ypt1-1 mutant and the mannose auxotrophy of S. cerevisiae pmi40 null mutant, respectively, indicating that the H. polymorpha genes encode the functional homologues of S. cerevisiae YPT1 and PMI40 proteins. The nucleotide sequence has been submitted to GenBank under Accession No. AF454544.
Collapse
Affiliation(s)
- Moo Woong Kim
- Biomolecular Process Engineering Laboratory, Korea Research Institute of Bioscience and Biotechnology, Oun-dong 52, Yusong-gu, Taejon 305-600, Korea
| | | | | | | | | |
Collapse
|
22
|
Haan GJ, van Dijk R, Kiel JAKW, Veenhuis M. Characterization of the Hansenula polymorpha PUR7 gene and its use as selectable marker for targeted chromosomal integration. FEMS Yeast Res 2002; 2:17-24. [PMID: 12702317 DOI: 10.1111/j.1567-1364.2002.tb00064.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The Hansenula polymorpha genes encoding the putative functional homologs of the enzymes involved in the seventh and eighth step in purine biosynthesis, HpPUR7 and HpPUR8, were cloned and sequenced. An overexpression vector designated pHIPA4 was constructed, which contains the HpPUR7 gene as selectable marker and allows expression of genes of interest via the strong, inducible alcohol oxidase promoter. An ade11 auxotrophic mutant that is affected in the activity of the HpPUR7 gene product was used to construct strain NCYC495 ade11.1 leu1.1 ura3. This strain grew on methanol at wild-type rates (doubling time of approximately 4 h) and is suitable for independent introduction of four expression cassettes, each using one of the markers for selection, in addition to the zeocin resistance marker. It was subsequently used as a host for overproduction of two endogenous peroxisomal matrix proteins, amine oxidase and catalase. Efficient site-specific integration of pHIPA4 and overproduction of amine oxidase and catalase is demonstrated. The expression cassette appeared to be pre-eminently suited to mediate moderate protein production levels. The advantages of pHIPA4 and the new triple auxotrophic strain in relation to the use of H. polymorpha as a versatile cell factory or as a model organism for fundamental studies on the principles of peroxisome homeostasis is discussed.
Collapse
Affiliation(s)
- Gert Jan Haan
- Eukaryotic Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, P.O. Box 14, 9750 AA Haren, The Netherlands
| | | | | | | |
Collapse
|
23
|
Kim SY, Sohn JH, Kang HA, Yoo SK, Pyun YR, Choi ES. Cloning and characterization of the Hansenula polymorpha homologue of the Saccharomyces cerevisiae MNN9 gene. Yeast 2001; 18:455-61. [PMID: 11255253 DOI: 10.1002/yea.699] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A gene homologous to Saccharomyces cerevisiae MNN9 has been cloned and characterized in the methylotrophic yeast Hansenula polymorpha. This gene was cloned from a H. polymorpha genomic DNA library using the S. cerevisiae MNN9 gene as a probe. The H. polymorpha MNN9 homologue (HpMNN9) contained a 1062 bp open reading frame encoding a predicted protein of 354 amino acids. The deduced amino acid sequence showed 58% and 51% identity, respectively, with the S. cerevisiae and Candida albicans Mnn9 proteins. Disruption of HpMNN9 leads to phenotypic effects suggestive of cell wall defects, including detergent sensitivity and hygromycin B sensitivity. The hygromycin B sensitivity of S. cerevisiae mnn9 null mutant was complemented in the presence of the HpMNN9 gene. The DNA sequence of the H. polymorpha homologue has been submitted to GenBank with the Accession No. AF264786.
Collapse
Affiliation(s)
- S Y Kim
- Division of Life Sciences, Korea Research Institute of Bioscience and Biotechnology, Taejon 305-333, Korea
| | | | | | | | | | | |
Collapse
|
24
|
Agaphonov MO, Packeiser AN, Chechenova MB, Choi ES, Ter-Avanesyan MD. Mutation of the homologue of GDP-mannose pyrophosphorylase alters cell wall structure, protein glycosylation and secretion in Hansenula polymorpha. Yeast 2001; 18:391-402. [PMID: 11255248 DOI: 10.1002/yea.678] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
A Hansenula polymorpha mutant with enhanced ability to secrete a heterologous protein has been isolated. The mutation defines a gene, designated OPU24, which encodes a protein highly homologous to GDP-mannose pyrophosphorylase Psa1p/Srb1p/Vig9p of Saccharomyces cerevisiae and CaSrb1p of Candida albicans. The opu24 mutant manifests phenotypes similar to those of S. cerevisiae mutants depleted for GDP-mannose, such as cell wall fragility and defects in N- and O-glycosylation of secreted proteins. The influence of the opu24 mutation on endoplasmic reticulum-associated protein degradation is discussed. The GenBank Accession No. for the OPU24 sequence is AF234177.
Collapse
Affiliation(s)
- M O Agaphonov
- Institute of Experimental Cardiology, Cardiology Research Centre, 3rd Cherepkovskaya Street 15A, Moscow 121552, Russia.
| | | | | | | | | |
Collapse
|
25
|
Juretzek T, Le Dall M, Mauersberger S, Gaillardin C, Barth G, Nicaud J. Vectors for gene expression and amplification in the yeast Yarrowia lipolytica. Yeast 2001; 18:97-113. [PMID: 11169753 DOI: 10.1002/1097-0061(20010130)18:2<97::aid-yea652>3.0.co;2-u] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
New vector systems were developed for gene expression in Y. lipolytica. These plasmids contain: (a) as integration target sequences, either a rDNA region or the long terminal repeat zeta of the Y. lipolytica retrotransposon Ylt1; (b) the YlURA3 gene as selection marker for Y. lipolytica, either as the non-defective ura3d1 allele for single integration or the promotor truncated ura3d4 allele for multiple integration; (c) the inducible ICL1 or XPR2 promoters for gene expression; and (d) unique restriction sites for gene insertion. Multiple plasmid integration occurred as inserted tandem-repeats, which are present at 3-39 copies per cell. A correlation between gene copy number and the expressed enzyme activity was demonstrated with Escherichia coli lacZ as reporter gene under the control of the regulated ICL1 promoter. Increases in copy numbers from 5 to 13 for the lacZ expression cassettes resulted in an up to 10-11-fold linear increase of the beta-galactosidase activity in multicopy transformants during their growth on ethanol or glucose, compared with the low-copy replicative plasmid transformants (1.6 plasmid copies). These new tools will enhance the interest in Y. lipolytica as an alternative host for heterologous protein production.
Collapse
Affiliation(s)
- T Juretzek
- Institut für Mikrobiologie, Technische Universität Dresden, Mommsenstrasse 13, D-01062 Dresden, Germany
| | | | | | | | | | | |
Collapse
|
26
|
Kim HY, Sohn JH, Kim CH, Rao KJ, Choi ES, Kim MK, Rhee SK. Rapid selection of multiple gene integrant for the production of recombinant hirudin inHansenula polymorpha. BIOTECHNOL BIOPROC E 2000. [DOI: 10.1007/bf02932344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|